PROVA SUB 1: ESPAÇOS DE HILBERT E EDPS

Exercício 1. (1,75 ponto) a) Sejam $f, g: [0,1] \to \mathbb{R}$ funções contínuas. Mostre que

$$\{\varphi\in L^2(0,1): \int_0^1 f(x)\varphi(x)dx = 0\} = \{\varphi\in L^2(0,1): \int_0^1 g(x)\varphi(x)dx = 0\},$$

se, e somente se, existe $\lambda \in \mathbb{R}$ tal que $\lambda \neq 0$ e $f(x) = \lambda g(x)$, para todo $x \in [0,1]$.

(1,5 ponto) b) Sejam $(H,(.,.)_H)$ um espaço de Hilbert e $(V,(.,.)_V)$ um espaço vetorial com produto interno. Suponha que exista uma transformação linear $T:H\to V$ sobrejetora e contínua e uma constante C>0 tal que $||Tu||_V\geq C||u||_H$ para todo $u\in H$. Mostre que $(V,(.,.)_V)$ também é um espaço de Hilbert.

Exercício 2. (1,5 ponto) Sejam H um espaço de Hilbert e $U:H\to H$ um operador unitário. Mostre que $T:H\to H$ é uma projeção ortogonal se, e somente se, $U^{-1}TU:H\to H$ é uma projeção ortogonal. Mostre que $T:H\to H$ é um operador unitário se, e somente se, $U^{-1}TU:H\to H$ é um operador unitário.

Exercício 3. (1,75 ponto) Considere uma sequência limitada $(\lambda_j)_{j\in\mathbb{N}}$ de números reais e o operador $T: L^2(0,1) \to L^2(0,1)$ dado por

$$Tf(x) = 2\sum_{j=1}^{\infty} \lambda_j \left(\int_0^1 \sin(j\pi y) f(y) dy \right) \sin(j\pi x).$$

Dê uma condição necessária e suficiente sobre os valores de λ_j para que T seja uma projeção ortogonal e uma condição necessária e suficiente sobre os valores de λ_j para que T seja um operador unitário. (Dica: Lembre-se que $\mathcal{B} = \left\{e_j(x) = \sqrt{2} \operatorname{sen}(j\pi x) : j \geq 1\right\}$ é uma base de Hilbert de $L^2(0,1)$. Logo $Tf = \sum_{j=1}^{\infty} \lambda_j(e_j, f) e_j$).

Exercício 4. Seja $q:[0,1] \to \mathbb{R}$ uma função contínua tal que $|q(x)| \le 1$ para todo $x \in [0,1]$. Considere o seguinte problema para $f \in L^2(0,1)$.

(0.1)
$$-u''(x) + q(x)u'(x) + u(x) = f(x), x \in]0,1[,$$
$$u(0) = u'(1) = 0.$$

(0,5 ponto) a) Mostre que $H=\left\{u\in H^1(0,1):u(0)=0\right\}$ é um espaço de Hilbert com o produto interno de $H^1(0,1)$.

Dizemos que $u \in H^2(0,1)$ é uma solução forte se satisfizer (0.1).

Uma solução fraca de (0.1) é uma função $u \in H$, em que H foi definido no item a), que satisfaz

$$a(u,v) = F(v), \quad \forall v \in H,$$

em que $a: H \times H \to \mathbb{R}$ e $F: H \to \mathbb{R}$ são dados por

$$a(u,v) = \int_0^1 u'v'dx + \int_0^1 qu'vdx + \int_0^1 uvdx, \quad F(v) = \int_0^1 vfdx.$$

(1 ponto) b) Mostre que se $u \in H^2(0,1)$ for uma solução forte, então u é uma solução fraca do problema.

(1 ponto) c) Mostre que existe uma única solução fraca do problema. Conclua que se existir uma solução forte, ela é única. (Dica: $ab \le \frac{a^2}{2} + \frac{b^2}{2}$).

(1 ponto) d) Mostre que a solução fraca $\tilde{\mathbf{e}}$ uma solução forte. (Para isto, deve-se provar que $u \in H^2(0,1)$ e u satisfaz as condições de contorno do problema).