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Introduction
	 This two-part series will present basic statistical 
principles for the practicing physician to use in his or 
her review of the literature and to the physician en-
gaged in clinical research. The purpose of this series 
is threefold: (1) to provide an overview of common 
epidemiological and statistical terms and concepts 
that can be useful to the practitioner and clinical re-
searcher, (2) to review calculations for common epi-
demiological measures and statistical tests, and (3) to 
provide examples from the published literature of uses 
of statistics in medical care and research. This review 
is not intended to be a comprehensive presentation 
of epidemiology or statistics since there are already a 
number of excellent sources for this information 1-6), 
but rather as a quick reference for practical applica-
tion of statistical principles and concepts in medical 
care and clinical research.
	 In this issue, Part I of the Series is presented 
and includes discussion of the study question, study 
goals, appropriate study design, and appropriate sta-
tistical tests.
	 Physicians can be overwhelmed when review-
ing published and current studies to determine what 
is relevant to their clinical practice and/or clinical re-
search. Some initial questions outlined below may 
guide the process for reviewing an article or setting 
up a clinical study.
• What is the study question?  What are the study 

goals?
• What is the appropriate study design to answer the  

study  question?

• What are the appropriate statistical tests to utilize?

What Is the Study Question? What Are the 
Study Goals?
	 Whether in clinical practice or in a clinical research 
“laboratory,” physicians often make observations that 
lead to questions about a particular exposure and 
a specific disease. For example, one might observe 
in clinical practice that several patients taking a 
certain antihypertensive  therapy develop pulmonary 
symptoms within 2 weeks of taking the drug. The 
physician might question if the antihypertensive 
therapy is associated with these symptoms. A 
cardiologist may observe in a review of the medical 
literature that the initial costs of caring for patients 
with cardiovascular diseases have been reported to 
be greater if the patient is cared for by a specialist than 
if the patient is cared for by a non-specialist. Because 
the physician may believe that although initial costs 
are greater, the follow-up costs are less, he or she may 
question if there would be a difference by specialist 
versus non-specialist if all costs were assessed. 
Questions like these can lead to formal hypotheses 
that can then be tested with appropriate research 
study designs and analytic methods. Identifying the 
study question or hypothesis is a critical first step in 
planning a study or reviewing the medical literature. 
It is also important to understand up front what the 
related study goals are. Some questions that may 
facilitate the process of identifying the study goals 
follow:

• Is the goal to determine:
- how well a drug or device works under ideal 

conditions (i.e., efficacy)?
- how well a drug or device works in a free-living 

population (i.e., effectiveness)?
- the causes or risk factors for a disease?
- the burden of a disease in the community?
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•  Is the study goal to provide information for a quality 
management activity?
• Will the study explore cost-effectiveness of a 
particular treatment or diagnostic tool?
The hypotheses and the goals of a study are the keys 
to determining the study design and statistical tests 
that are most appropriate to use.

What Is the Appropriate Study Design To 
Answer the Study Question?
	 Once the study question(s) and goals have been 
identified, it is important to select the appropriate 
study design. Although the key classification scheme 
utilizes descriptive and analytic terminology, other 
terminology is also in vogue in evaluating health 
services and will be briefly described at the end of 
this section.

Classification Schemes
	 Epidemiology has been defined as “the study of the 
distribution and determinants of disease frequency” 
in human populations (4). The primary classification 
scheme of epidemiological studies distinguishes 
between descriptive and analytic studies. Descriptive 
epidemiology focuses on the distribution of disease 
by populations, by geographic locations, and by 
frequency over time. Analytic epidemiology is 
concerned with the determinants, or etiology, of 
disease and tests the hypotheses generated from 
descriptive studies. Table 1 lists the study design 
strategies for descriptive and analytic studies. Below 
is a brief description of the various design strategies. 
The strengths and limitations of these study designs 
are compared in Table 2.

Descriptive Studies:
	 Correlational studies, also called ecologic studies, 
employ measures that represent characteristics of 
entire populations to describe a given disease in 
relation to some variable of interest (e.g. medication 
use, age, healthcare utilization). A correlation 
coefficient (i.e. Pearson’s “r”; Spearman’s “T”; or 
Kendall’s “K”) quantifies the extent to which there is 
a linear relationship between the exposure of interest 
or “predictor” and the disease or “outcome” being 
studied. The value of the coefficient ranges between 
positive 1 and negative 1. Positive 1 reflects a perfect 
correlation where as the predictor increases, the 
outcome (or risk of outcome) increases. Negative 1 
reflects a perfect inverse correlation where as the 
predictor increases the outcome (or risk of outcome) 
decreases. An example of a correlation study would 
be that of St Leger and colleagues who studied 
the relationship between mean wine consumption 
and ischemic heart disease mortality (7). Across 18 
developed countries, a strong inverse relationship 
was present. Specifically, countries with higher wine 
consumption had lower rates of ischemic heart 
disease and countries with lower wine consumption 
had higher rates of ischemic heart disease. Although 
correlation studies provide an indication of a 
relationship between an exposure and an outcome, 
this study design does not tell us whether people 
who consume high quantities of wine are protected 
from heart disease. Thus, inferences from correlation 
studies are limited.
	 Case reports and case series are commonly 
published and describe the experience of a unique 
patient or series of patients with similar diagnoses. 
A key limitation of the case report and case series 
study design is the lack of a comparison group. 
Nonetheless, these study designs are often useful 
in the recognition of new diseases and formulation 
of hypotheses concerning possible risk factors. In a 
case series study reported by Kwon and colleagues 
(8), 47 patients were examined who developed new 
or worsening heart failure during treatment with 
tumor necrosis factor (TNF) antagonist therapy for 
inflammatory bowel disease or rheumatoid arthritis. 
After TNF antagonist therapy, 38 patients (of which 
50% had no identifiable risk factors) developed new-
onset heart failure and 9 experienced heart failure 
exacerbation. From this descriptive study, the authors 
concluded that TNF antagonist might induce new-
onset heart failure or exacerbate existing disease (8).
	 Cross-sectional surveys are also known as 
prevalence surveys. In this type of study, both 
exposure and disease status are assessed at 

 Table 1: Outline of Study Design Strategies for 
Descriptive and Analytic Studies.

Descriptive Studies
   •  Case Reports
   •  Case Series
   •  Cross-sectional Surveys
   •  Correlational Studies

Analytic Studies
   •  Observational Studies
         -  Case-control
         -  Cohort
   •  Intervention/Clinical Trials
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Table 2: Strengths and Limitations of Descriptive and Analytic Study Designs*

STUDY DESIGN      STRENGTHS LIMITATIONS

DESCRIPTIVE STUDIES

Correlational Studies • Can be done quickly • Not able to link exposure with
• Can be inexpensive   disease in particular individuals
• Often use existent data • Not able to control for the effects
• Consider whole populations   of potential confounding

• Data represent average exposure
  levels rather than actual individual
  values

Case Reports/Case Series • May lead to formulation of • Cannot be used to test for valid
  a new hypothesis concerning   statistical association
  possible risk factors for a disease • Case reports/series reflect experience
• Hypotheses formed from case studies   of one patient/group of patients
   are most likely to be clinically relevant • Case series lack an appropriate
   (relevant to clinical practice)   comparison group which can lead
        to erroneous conclusions

Cross-sectional • Provide a snapshot of the • Cannot determine if exposure
     Surveys   healthcare experience   preceded or resulted from the

• Assess exposure and disease   disease
   status at the same time • Consider prevalent not incident

• Provide information on              cases; therefore data reflect
    prevalence of disease/outcomes   determinants of survival as well
   in certain occupations   as etiology

ANALYTIC STUDIES

Case-control • Relatively quick and inexpensive • Prone to selection and recall bias
• Well suited to evaluation of diseases • Temporal relationships between
   with long latent periods      exposure and diseases are sometimes
• Optimal for assessment of rare diseases    difficult to establish
• Able to examine multiple etiologic • Typically inefficient for evaluation
   factors for a single disease      of rare exposures

• Unless study is population based, not
  able to directly compute incidence
   rates of disease

Cohort • Optimal for assessment of rare exposures • Prospective studies can be time-
• Allow evaluation of multiple effects of   consuming and expensive
  a single exposure • Retrospective studies are dependent
• Allow direct measurement of incidence of    on availability of adequate records
  disease • Losses to follow-up can seriously
• Prospective studies minimize bias in the   impact validity of the results
  ascertainment of exposure • Typically inefficient for evaluation
• Temporal relationships between exposure   of rare diseases
   and disease can be established

Intervention
Studies • Can provide the strongest and most direct • Ethical considerations preclude the
(Clinical Trials)    epidemiologic evidence about existence of   evaluation of many treatments or

   a cause-effect relationship, if properly done     procedures in intervention studies
• Randomization minimizes potential bias and • May not be feasible to find a
   confounding   sufficient population for a given
• Often considered the “gold standard” of   study
   epidemiologic research • May be costly/expensive

* Information presented in this table is adapted from Hennekens and Buring, 1987 (5).
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the same time among persons in a well-defined 
population. These types of studies have become 
more common recently with the development and 
validation of survey tools such as the Short Form 
36 (SF 36) functional status questionnaire and the 
Kansas City Cardiomyopathy Questionnaire (KCCQ) 
functional status survey. Cross-sectional studies are 
especially useful for estimating the population burden 
of disease. The prevalence of many chronic diseases 
in the United States is calculated using the National 
Health and Nutrition Examination Survey, an interview 
and physical examination study including thousands 
of non-institutionalized citizens of the United States. 
For example, Ford and colleagues estimated that 47 
million Americans have the metabolic syndrome using 
the Third National Health and Nutrition Examination 
Survey (9). Of note, in special circumstances where one 
can easily deduce an exposure variable preceding the 
outcome or disease, cross sectional surveys can be 
used to test epidemiologic hypotheses and thus can 
be used as an analytic study. For example, Bazzano 
and colleagues used data collected from a cross-
sectional study to conclude that cigarette smoking may 
raise levels of serum C-reactive protein (10). A cross-
sectional study is useful in this situation because it is 
unlikely that having high levels of C-reactive protein 
would cause one to smoke cigarettes. 

Analytic Studies:
	 Analytic studies can be observational or 
experimental. In observational studies, the researchers 
record participants’ exposures (e.g., smoking status, 
cholesterol level) and outcomes (e.g., having a 
myocardial infarction). In contrast, an experimental 
study involves assigning one group of patients to one 
treatment and another group of patients to a different 
or no treatment. There are two fundamental types 
of observational studies: case control and cohort. A 
case control study is one in which participants are 
chosen based on whether they do (cases) or do not 
(controls) have the disease of interest. Ideally, cases 
should be representative of all persons developing 
the disease and controls representative of all persons 
without the disease. The cases and controls are 
then compared as to whether or not they have the 
exposure of interest. The difference in the prevalence 
of exposure between the disease/no disease groups 
can be tested. In these types of studies, the odds ratio 
is the appropriate statistical measure that reflects the 
differences in exposure between the groups.
	 The defining characteristic of a cohort study, also 
known as a follow-up study, is the observation of a 
group of participants over a period of time during 

which outcomes (e.g., disease or death) develop. 
Participants must be free from the disease of interest 
at the initiation of the study. Subsequently, eligible 
participants are followed over a period of time to 
assess the occurrence of the disease or outcome. 
These studies may be classified as non-concurrent/
retrospective or concurrent/prospective. 
	 Retrospective cohort studies refer to those 
in which all pertinent events (both exposure and 
disease) have already occurred at the time the study 
has begun. The study investigators rely on previously 
collected data on exposure and disease. An example 
of a non-concurrent/retrospective cohort study would 
be that of Vupputuri and colleagues (11), who in 
1999-2000 abstracted data on blood pressure and 
renal function from charts for all patients seen at 
the Veterans Administration Medical Center of New 
Orleans Hypertension Clinic from 1976 through 1999. 
They analyzed the data to see if blood pressure at 
each patient’s first hypertension clinic encounter was 
associated with a subsequent deterioration in renal 
function. 
	 In prospective studies, the disease/outcome 
has not yet occurred. The study investigator must 
follow participants into the future to assess any 
difference in the incidence of the disease/outcome 
between the types of exposure. The incidence of the 
disease/outcome is compared between the exposed 
and unexposed groups using a relative risk (RR) 
calculation. The advantages of retrospective cohort 
studies, relative to prospective, include reduced 
cost and time expenditures as all outcomes have 
already occurred. In contrast, the major disadvantage 
of the non-concurrent/retrospective studies is the 
reliance on available data that were collected for 
clinical purposes and, generally, not following a 
carefully designed protocol. There are two additional 
sub-classifications for cohort studies. First, cohort 
studies may include a random sample of the general 
population, e.g., Framingham and Atherosclerosis 
Risk in Communities (12-16) or a random sample of 
a high-risk population (17). In these latter studies, a 
sample of all individuals or individuals with a specific 
demographic, geographic, or clinical characteristic 
is included. Second, cohort studies may begin by 
identifying a group of persons with an exposure and a 
comparison group without the exposure. This type of 
cohort study is usually performed in the situation of a 
rare exposure.
	 Experimental or intervention studies are commonly 
referred to as clinical trials. In these studies, participants 
are randomly assigned to an exposure (such as a 
drug, device, or procedure). “The primary advantage 
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Table 3: Advantages and Disadvantages of Measures of Central Tendency and Dispersion*

     Measure Advantages Disadvantages

CENTRAL TENDENCY

Mean • Theoretic properties that • Sensitive to extreme
  allow it to be used as the     values or outliers
  basis for statistical tests

• Preferable for statistical
  analysis and tests of significance

Median • Unaffected by extreme values •  Less amenable (than the mean)
or outliers to tests of  statistical  significance

• If distribution of the dataset is
  skewed, median may be a more
  informative descriptive measure
  than the mean

Mode • Can provide insights into • Even less amenable to possible
   etiology of disease    than median

• Positively skewed distributions
  can be misinterpreted as
  bimodal

DISPERSION

Range • Simple to calculate • Not a stable estimate because
• Easy to understand    it tends to increase as sample

     size increases

• Not amenable to statistical
   procedures and testing

• Sensitive to extreme values
   or outliers

Variance • Provide a summary of • Sensitive to outliers
       individual observations    

  around the mean   

Standard • When distributions are • Cannot directly compare
Deviation (SD)      approximately normal,    the standard deviation for

  the SD and mean describe       samples with means of
  the distribution totally    different magnitudes

Coefficient • Used to compare 2 or • Does not vary with the
of    more distributions that    magnitude of the mean
Variation    have different means

Standard Error • Used to compare means of • Misused when substituted
of Mean   different populations   for SD simply for the Appearance

    of increased precision

• Describes the interval within
   which the true sample population
   mean lies

*Information provided in this table is modified and adapted from Hennekens Buring, 1987 (5).
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of this feature (ed: randomized controlled trials) is that 
if the treatments are allocated at random in a sample 
of sufficiently large size, intervention studies have 
the potential to provide a degree of assurance about 
the validity of a result that is simply not possible with 
any observational design option” (5). Experimental 
studies are generally considered either therapeutic 
or preventive. Therapeutic trials target patients with 
a particular disease to determine the ability of a 
treatment to reduce symptoms, prevent recurrence or 
decrease risk of death from the disorder. Prevention 
trials involve the assessment of particular therapies on 
reducing the development of disease in participants 
without the disease at the time of enrollment. One 
such prevention trial is the Drugs and Evidence Based 
Medicine in the Elderly (DEBATE) Study, which has as 
its primary aim “ to assess the effect of multi-factorial 
prevention on composite major cardiovascular events 
in elderly patients with atherosclerotic diseases” (18).

Other Classification Schemes:
	 Some other classification schemes in use today are 
based on the use of epidemiology to evaluate health 
services. Epidemiological and statistical principles 
and methodologies are used to assess health care 
outcomes and services and provide the foundation 
for evidence-based medicine. There are different 
ways to classify studies that evaluate health care 
services. One such scheme distinguishes between 
process and outcomes studies. Process studies 
assess whether what is done in the medical care 
encounters constitutes quality care (e.g. number and 
type of laboratory tests ordered, number and type of 
medications prescribed, frequency of blood pressure 
measurement). An example of a process study would 
be one that evaluated the percentage of patients with 
chronic heart failure in a given population who have 
filled prescriptions for angiotensin converting enzyme 
inhibitors (ACE – Inhibitors). A criticism of process 
studies is that although they document whether or not 
appropriate processes were done, they don’t indicate 
if the patient actually benefited or had a positive 
outcome as a result of the medical processes.
	 Outcomes studies assess the actual effect on the 
patient (e.g. morbidity, mortality, functional ability, 
satisfaction, return to work or school) over time, as a 
result of their encounter(s) with health care processes 
and systems. An example of this type of study would 
be one that assessed the percentage of patients with 
a myocardial infarction (MI) who were placed on a beta 
blocker medication and subsequently had another MI. 
For some diseases, there may be a significant time 
lag between the process event and the outcome of 

interest. This often results in some patients being lost 
to follow-up, which may lead to erroneous conclusions 
unless methods that “censor” or otherwise adjust for 
missing time-dependent covariates are used.
	 In reviewing the medical literature, one often 
encounters other terms that deal with the evaluation of 
medical services: efficacy, effectiveness, or efficiency. 
Efficacy evaluates how well a test, medication, 
program or procedure works in an experimental 
or “ideal” situation. Efficacy is determined with 
randomized controlled clinical trials where the 
eligible study participants are randomly assigned 
to a treatment or non-treatment, or treatment 1 
versus treatment 2, group. Effectiveness assesses 
how well a test, medication, program or procedure 
works under usual circumstances. In other words, 
effectiveness determines to what extent a specific 
healthcare intervention does what it is intended to do 
when applied to the general population.  For example, 
although certain anti-retroviral therapies work well 
using direct observed therapy in the controlled setting 
of a clinical trial (i.e., they are efficacious), once 
applied to a free-living population, the drug dosing 
regimen may be too difficult for patients to follow in 
order to be effective.  Finally, efficiency evaluates the 
costs and benefits of a medical intervention.

What Are the Appropriate Statistical Tests?
	 Once the appropriate design is determined for a 
particular study question, it is important to consider 
the appropriate statistical tests that must be (or 
have been) performed on the data collected. This is 
relevant whether one is reviewing a scientific article or 
planning a clinical study. To begin, we will look at terms 
and calculations that are used primarily to describe 
measures of central tendency and dispersion. These 
measures are important in understanding key aspects 
of any given dataset.

Measures of Central Tendency
	 There are three commonly referred to measures 
of central location: mean, median, and mode. The 
arithmetic mean or average is calculated by summing 
the values of the observations in the sample and then 
dividing the sum by the number of observations in 
the sample. This measure is frequently reported for 
continuous variables: age, blood pressure, pulse, 
body mass index (BMI), to name a few. The median 
is the value of the central observation after all of 
the observations have been ordered from least to 
greatest. It is most useful for ordinal or non-normally 
distributed data. For data sets with an odd number 
of observations, we would determine the central 
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observation with the following formula:

	    
 		

where n = number of observations
		
	 For datasets with an even number of observations, 
we would select the case that was the average of the 
following observations’ values:

	  	 and    +1 where n = number of observations
    
The mode is the most commonly occurring value 
among all the observations in the dataset. There can 
be more than one mode. The mode is most useful in 
nominal or categorical data. Typically no more than 
two (bimodal) are described for any given dataset.

Example 1: A patient records his systolic blood 
pressure every day for one week. The values he 
records are as follows: Day 1: 98 mmHg, Day 2: 140 
mmHg, Day 3: 130 mmHg, Day 4: 120 mmHg, Day 5: 
130 mmHg, Day 6: 102 mmHg, Day 7: 160 mmHg.
	 The arithmetic mean or average for these 7 
observations is calculated as follows:

	   					   
	 (where n = number of observations)

	 In calculating the median, the values must be 
ordered from least to greatest: 98, 102, 120, 130, 
130, 140, 160. There are 7 observations in this 
dataset, an odd number. Therefore, the       formula  
is used to determine that the fourth observation will 
be the median. The value of the fourth observation 
is 130 mmHg. Therefore, the median is 130 mmHg. 
In the example, the mode is also 130 mmHg. This is 
the only value that occurs more than once; hence it 
is the most commonly occurring value. Investigators 
and practitioners are often confused which measure 
of centrality is most relevant to a given dataset. Table 
3 outlines key advantages and disadvantages to the 
choice of measure of central location. It is interesting 
to note that if the dataset consists of continuous 
variables with unimodal and symmetric distribution, 
then the mean, median, and mode are the same.

Measures of Dispersion
	 Measures of dispersion or variability provide 
information regarding the relative position of other 
data points in the sample. Such measures include 
the following: range, inter-quartile range, standard 
deviation, standard error of the mean (SEM), and the 
coefficient of variation.

	 Range is a simple descriptive measure of variability. 
It is calculated by subtracting the lowest observed 
value from the highest. Using the blood pressure data 
in example 1, the range of blood pressure would be 
160 mmHg minus 98 mmHg or 62 mmHg. Often given 
with the median (i.e., for non-normally distributed data) 
is the interquartile range, which reflects the values for 
the observations at the 25th and 75th percentiles of a 
distribution.
	 The most commonly used measures of dispersion 
include variance and its related function, standard 
deviation, both of which provide a summary of 
variability around the mean. Variance is calculated as 
the sum of the squared deviations divided by the total 
number of observations minus one:

	 	 	 S = Summation sign
			   where:
 			   x = value of observation
			   x = mean
			   n = number of observations
			   V = Variance	

	 The standard deviation is the square root of the 
variance. Table 4 presents calculations of variance and 
standard deviation for the systolic blood pressures 
given in example 1.

n + 1
2

n + 1
2

 Table 4: Example of a Standard Deviation Calculation

			 
Systolic Blood Pressure    
	 (mmHg)

	   98	  -28	  784
	14 0	   14	1 96
	13 0	  4	1 6
	1 20	 -6	3 6
	13 0	4	1  6
	1 02	 -24	 576
	1 60	  34	 1156
			   2780

The mean was calculated in example 1 to be 126 mmHg.

Variance:      

Standard deviations: 	

For this sample of systolic blood pressure, the following could be
noted:  mean ± standard deviation = 126 mmHg ± 21.5 mmHg.

n
2

n
2

Sum 
n

98+140+130+120+130+102+160
7

880
7

= = = 126 mmHg

S (x - x)2

n - 1
V =

S (x - x)2

n - 1
V =  = 2780

6
= 463.3 mmHg

SD = √V = √463.3 = 21.5 mmHg

x - x (x - x)2

Clinicians’ Guide to Statistics for Medical Practice and Research: Part I
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	 The coefficient of variation (CV) is a measure that 
expresses the SD as a proportion of the mean:
			 
 			   where:	
			   CV = coefficient of variation
			   SD = standard deviation
 			      x = mean

  		    	  
	 This measure is useful if the clinician wants to 
compare 2 distributions that have means of very 
different magnitudes. From the data provided in 
example 1, the coefficient of variation would be 
calculated as follows:
		    

	 The standard error of the mean (SEM) measures 
the dispersion of the mean of a sample as an estimate 
of the true value of the population mean from which the 
sample was drawn. It is related to, but different from, 
the standard deviation. The formula is as follows:

 		  where:	
		  SE = standard error
 		    x = mean
	             SD = standard deviation
		    n = sample size

Using the data from example 1, the SEM would be:

	

 	 SEM can be used to describe an interval within 
which the true sample population mean lies, with a 
given level of certainty. Which measure of dispersion 

to use is dependent on the study purpose. Table 3 
provides some information which may facilitate the 
selection of the appropriate measure or measures.

Comparing Central Tendencies with Respect to 
Dispersions (Error Terms)
	 Once central tendency and dispersion are 
measured, it follows that a comparison between various 
groups (e.g., level of systolic blood pressure among 
persons taking ACE-Inhibitors versus beta-blockers) 
is desired. If working with continuous variables that 
are normally distributed, the comparison is between 
means. The first step is to simply look at the means 
and see which is larger (or smaller) and how much 
difference lies between the two. This step is the basis 
of deductive inference. In comparing the means, 
and, preferably before calculating any p-values, the 
clinician or investigator must answer the question: 
is the observed difference clinically important? If the 
magnitude of the observed difference is not clinically 
important, then the statistical significance becomes 
irrelevant in most cases. If the observed difference 
is clinically important, even without statistical 
significance, the finding may be important and should 
be pursued (perhaps with a larger and better powered 
study; Table 5).
	 Once a deductive inference is made on the 
magnitude of the observed differences, statistical 
inference follows to validate or invalidate the 
conclusion from the deductive inference. To illustrate: 
if two people each threw one dart at a dartboard, 
would one conclude that whoever landed closer to 
the center was the more skilled dart thrower? No. 
Such a conclusion would not be reasonable even after 
one game or one match as the result may be due to 
chance. Concluding who is a better player would have 
to be based on many games, against many players, 
and over a period of time. There are many reasons for 

Table 5. Clinical Versus Statistical Significance and Possible Conclusions

				                              Clinically Significant

		           Yes				   No

Statistically 	 Yes	 Typically assume the groups, 		 Consider that the sample size may be too large
Significant		  outcomes, or treatments are different	

	 No	 Consider that the sample size 		 Typically assume the groups, outcomes, or treatments
		  may be too small			  are not different

CV =
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CV =
x
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x 100 = 21.5

126
x 100 = 17.06 mmHg 

 =

 =
SD

√n 
SE (x) =

21.5
 = 8.1 mmHg 

21.5
2.65=

SD

√n 

SE (x)

Wood, MA

√n 



76 The Ochsner JournalThe Ochsner Journal

inconsistencies (good day, bad day, etc.), but they all 
boil down to variance. For a player to be classified as 
a “good player,” he/she has to be consistently good 
over time. 
	 Because in clinical research we rely on a 
sample of the patient population, variance is a 
key consideration in the evaluation of observed 
differences. The observed difference between 
exposed and unexposed groups can be large, 
but one must consider how it stands next to the 
variation in the data. Since these parameters are 
highly quantifiable, the probability that the means are 
different (or similar) can be calculated. This process 
takes place in a statistical method called analysis 
of variance (ANOVA). The details of this process 
are beyond the scope of this chapter; nevertheless, 
ANOVA is a fundamental statistical methodology 
and is found in many texts and is performed by many 
statistical software packages. In essence, the ANOVA 
answers the question: are differences between the 
study groups’ mean values substantial relative to the 
overall variance (all groups together)? It is important 
to note that even though ANOVA reveals statistically 
significant differences, the ANOVA does not indicate 
between which groups the difference exists. 
Therefore, further analysis with multiple comparison 
tests must be performed to determine which means 
are significantly different. Portney and Watkins (19) 
provide a good overview of these procedures.
	 In the special case where one and only one 
comparison can be made, the t-test can be done. It 
was developed to be a shortcut comparison of only 
two means between groups with small sample sizes 
(less than 30). If used for more than one comparison 
or when more than one comparison is possible, the 
t-tests do not protect against Type 1 error at the 
assumed level of tolerance for Type 1 error (usually a 
= 0.05).

Probability: Fundamental Concepts in Evidence-
Based Medicine
	 Armed with a basic understanding of algebra 
and user-friendly statistical software, most clinicians 
and clinical researchers can follow the cookbook 
method of statistical inference. Problems quickly 
arise because the vast majority of medical research 
is not designed as simply as the examples given in 
basic statistics textbooks nor analyzed as simply as 
the shortcut methods often programmed beneath 
the layers of menus in easy-to-use software. 
Violations of assumptions that are necessary for a 
classic statistical method to be valid are more the 
rule than the exception. However, avoiding the 

misinterpretation of statistical conclusions does 
not require advanced mastery of the mathematics 
of probability at the level of calculus. An effort to 
understand, at least qualitatively, how to measure 
the degree of belief that an event will occur will go 
a long way in allowing non-mathematicians to make 
confident conclusions with valid methods. 
	 Two practical concepts should be understood 
up front: first, understanding that every probability, 
or rate, has a quantifiable uncertainty that is usually 
expressed as a range or confidence interval. Second, 
that comparing different rates observed between 
two populations, or groups, must be done relative 
to the error terms. This is the essence of statistical 
inference. 

Probability Distributions:
	 The final rate of an event that is measured, as the 
size of the sample being measured grows to include 
the entire population, is the probability that any in-
dividual in the population will experience the event. 
For example, one analyzes a database of heart trans-
plant patients who received hearts from donors over 
the age of 35 to determine the rate of cardiac death 
within a 5-year post-transplant follow-up period (20). 
If the first patient in the sample did not survive the 
study period, the sample of this one patient gives an 
estimated cardiac death rate of 100%. No one would 
accept an estimate from a sample of one. However, 
as the sample size increases, the event rate will mi-
grate towards truth. If the next patient in the database 
is a survivor, the cardiac death rate falls to 50%. Once 
the entire population represented in the database is 
included in the sample (n=26), it is observed that 7 
experienced cardiac death for a final cardiac death 
rate of 27%. When written as a probability, one can 
say that the probability is 0.27 that any single par-
ticipant randomly sampled from this database will be 
recorded as having a cardiac death within 5 years of 
receiving a heart transplant. It may be more relevant 
to use the data to predict that the next patient seen 
in clinic and added to the database will have a prob-
ability of 0.27 of experiencing cardiac death within 5 
years. The illustration just described is that of a bino-
mial probability. That is, the outcome is one of two 
possible levels (binary): survival or death.
	 To complete the estimate of a probability of an 
event in this population, a measure of uncertainty must 
be placed around this point estimate. In this case, the 
standard error (SE, not to be confused with the SEM 
described earlier) is calculated with the classic for-
mula SE = √p(I-p)/n. This formula indicates that the 
square root of the function of the probability of event 
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(p), times the probability of no event (1-p), divided by 
the sample size (n) is the standard error (SE) of the 
event rate. The SE multiplied by the Z score of the 
tolerance for Type I error is one-half of the range for 
a confidence interval of the same tolerance for Type I 
error (Note: for information regarding Type I error, see 
section on “Are the results of the study significant?”).
	 For this example, the SE is calculated by: 

	 SE = √0.27(1-0.27/26) = 0.087

The Z score for a two sided 95% confidence interval 
(CI) is 1.96, so the range of the CI is calculated by lower 
95% CI = 0.27 - 1.96 x 0.087 = 0.011 and upper 95% 
CI = 0.27 + 1.96 x 0.087 = 0.440,  respectively. These 
yield the range (.011, .440). Thus, if this observation 
were repeated 100 times in similar populations of the 
same sample size, 95 of the sampled death rates 
would fall between .011 and .440. 

Evaluating Diagnostic and Screening Tests
	 In order to understand disease etiology and 
to provide appropriate and effective health care 
for persons with a given disease, it is essential to 
distinguish between persons in the population who 
do and do not have the disease of interest. Typically, 
we rely on screening and diagnostic tests that are 
available in medical facilities to provide us information 
regarding the disease status of our patients. However, 
it is important to assess the quality of these tests in 
order to make reasonable decisions regarding their 
interpretation and use in clinical decision-making (1). 
In evaluating the quality of diagnostic and screening 
tests, it is important to consider the validity (i.e. 
sensitivity and specificity) as well as the predictive 
value (i.e. positive and negative predictive values) of 
the test. 
	 Sensitivity is the probability (Pr) that a person will 
test positive (T+) given that they have the disease 
(D+). Specificity is the probability (Pr) that a person 
will test negative (T-) given that they do not have the 
disease (D-). These are conditional probabilities. The 
result in question is the accuracy of the test, and 

the condition is the true, yet unknown, presence or 
absence of the disease. Sensitivity and specificity are 
properties of the screening test, and, like physical 
properties, follow the test wherever it is used. They 
can be useful in determining the clinical utility of the 
test (as a screening tool vs. a diagnostic tool) as well 
as comparing new tests to existing tests. They are 
written mathematically as:

Sensitivity = Pr(T+|D+), and Specificity = Pr(T-|D-).

It is more common for sensitivity and specificity to be 
expressed from a 2x2 contingency table (Table 6) as 
follows:

Sensitivity =                   , and Specificity =  
  
		  where:	
		  TP = true positive
		  FN = false negative
		  TN = true negative
		  FP = false positive

	 These parameters quantify the validity of a test 
when it is evaluated in a population that represents 
the spectrum of patients in whom it would be logical 
and clinically useful to use the test. The most obvious 
limitation of evaluating a screening test is identifying 
an optimal gold standard to determine the disease 
status. In the evaluation of new screening tests, 
existing tests are often used as the gold standard. 
Disagreement or poor sensitivity and specificity of the 
new test could mean that the new test does not work 
as well as, or that it is actually superior to, the existing 
test. A histological test from a biopsy is the least 
disputable gold standard. Nonetheless, the limitation 
with regards to the gold standard is unavoidable and 
must be recognized in the continuous evaluation of 
clinical screening and diagnostic testing.
	 In a study to evaluate bedside echocardiography 
by emergency physicians to detect pericardial effusion, 

Table 6: 2x2 Contigency Table – Test Characteristics

		                           Disease

		              +		       -

	 +	 True Positive (TP)	 False Positive (FP)

	 -	 False Negative (FN)	 True Negative (TN)

Table 7: 2x2 Contingency Table for Pericardial Effusion Study

	 Pericardial Effusion Diagnosed

			   +	 -

Pericardial	 +	 99	 8
Effusion
Predicted	 -		4	3  67

Data extracted and modified from Mandavia, et al, 2001 (21).
 

     TP     
     (TP + FN) 

     TN    
     (TN + FP)
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478 eligible patients were evaluated for the condition 
both by the emergency department physician and by the 
cardiologist (who had the clinical responsibility to make 
the diagnosis); the cardiologist’s finding was used as the 
gold standard (21).
	 An excerpt of the results is shown in Table 7. From 
the data presented in the table, the following can be 
calculated:

Sensitivity =                         , and 

Specificity =  

	 Since the sensitivity and specificity are like physical 
properties of the test, we can determine the portion of 
TP and TN regardless of the prevalence of the disease in 
the population studied. For example, if we had recruited 
100 patients with pericardial effusion and 100 matching 
participants without pericardial effusion, the resulting 
table would yield the same rates of TP, TN, and identical 
values for sensitivity and specificity (Table 8).

 (Sensitivity =                  , and Specificity =                  )

	 Positive predictive value (PPV) is the probability 
(Pr) that the disease is truly present (D+) given that the 
test result is positive (T+). Negative predictive value 
(NPV) is the probability that the disease is truly absent 
(D-) given that the test result is negative (T-). Generally 
speaking, patients (and their physicians) are more 
concerned with these probabilities. These are also 
conditional probabilities. These parameters are written 
mathematically as:
PPV = Pr(D+|T+), and NPV = Pr(D-|T-). As with sensitivity 
and specificity, it may be more common to see the 
algebraic expressions:

PPV =             	 , and NPV =   	             

The question is whether or not the individual patient’s 
test result is true. Unlike sensitivity and specificity, 
PPV and NPV are dependent upon the prevalence 
of the disease in the population. The example below 
further illustrates this point.
	 In the study by Mandavia et al, 103 patients were 
diagnosed as having a pericardial effusion out of 478 
eligible patients (21). This study population has a 
prevalence of pericardial effusion of        	
 (Table 7). However, the pericardial effusion example 
(Table 8) using case-matched controls artificially 
fixed the prevalence to 50%. In the original study,         
PPV =          	    ,  and NPV =                  ( Table     	
7). However, in the example using the case-control 
design with 50% of the study population with 
disease, PPV =                    , and NPV =                	
(Table 8). The comparison of these values illustrates 
that PPV increases with prevalence (is directly 
proportional) and NPV decreases with prevalence (is 
inversely proportional).
	 Figure 1 shows PPV and NPV over the entire range 
of possible prevalence with sensitivity and specificity 
fixed at the values in the illustration. PPV and NPV 
are used to make clinical decisions concerning an 
individual patient based on the population from which 
the patient comes.  As prevalence increases, PPV 
increases and NPV decreases. Thus, in populations 
where disease prevalence is high, there will be 
greater confidence that a positive test result is a true 
positive, and increased suspicion that a negative 
test result is a false negative. The reverse is true in 
populations where the disease prevalence is low (e.g. 
rare disease).
	 Diagnostic and screening tests, and their related 
sensitivities, specificities, PPVs and NPVs, facilitate 
the clinician’s classification of a patient with regard 

Table 8: 2x2 Contingency Table for Pericardial Effusion 
Example

		              Pericardial Effusion Diagnosed

		  +	 -

Pericardial 	 +	 96	 2
Effusion
Predicted	 -	4	  98
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    99   
     (99 + 4)   = 0.96

   367   
   (367 + 8)  = 0.98

96
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= 0.96 98
100 

= 0.98

     TP    
    (TP + FP)

103
478 

= 0.215

99
107 = 0.9225 367

371 
= 0.989

96
98 

= 0.979
98

102 
= 0.961
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to a specific disease status. The ultimate goal of the 
diagnostic process is to establish a diagnosis with 
sufficient confidence to justify treatment or to exclude 
a diagnosis with sufficient confidence to justify 
non-treatment (22). In the process of determining a 
diagnosis (or not), the test results for a given disease 
should be kept within the context of the probability 
of disease prior to receiving results. Bayesian logic 
is the understanding of conditional probability which 
is expressed mathematically in Baye’s Theorem. The 
theorem “indicates that the result of any diagnostic 
test alters the probability of disease in the individual 
patient because each successive test result 
reclassifies the population from which the individual 
comes” (22). 

Common Measures of Association and Statistical 
Tests
	 Measures of association are summary statistics 
that estimate the risk of an outcome or disease for a 
given exposure between two groups. Two frequently 
reported measures are the odds ratio and the relative 
risk. The odds ratio (OR) is calculated from a case-
control study where the participants were selected by 
their outcome and then studied to determine exposure. 
Because the participants are selected on outcome, the 
case-control study reveals the prevalence of exposure 
among cases and controls. In case-control studies 
we calculate odds ratios because it is often a good 
estimate of the relative risk. Odds are the probability 
of an event occurring divided by the probability of the 
event not occurring. The OR ratio compares the odds 
of being exposed given a participant is a case (Table 
9: a / a+c / c / a+c = a/c) relative to the odds of control 
participants being exposed (b/b+d / d / b+d = b/d). 
Using algebra to re-arrange the formula, the OR can 
be calculated as (Table 9): 

	 In an analysis from the Framingham Heart Study 
of risk factors for syncope, investigators identified 
543 patients with a positive history of syncope (23). 
They then matched two controls (without a history of 
syncope) on age, gender, and follow-up time to ev-
ery one case. (Using a case: control ratio of 1:2 is a 
strategy to increase statistical power of the analysis 
when the number of cases is limited.) Among other 
variables, they compared odds of high blood pres-
sure (BP) between the syncope and non-syncope pa-
tients. Regarding high blood pressure prevalence in 
the two groups, Table 10 shows the findings. The OR 
was calculated to be                          indicating that 
having hypertension makes study participants 1.40 
times more likely to experience syncope (be recorded 
as having a history of syncope) than those having nor-
mal BP. 
	 The relative risk or risk ratio (RR) is calculated 
from a cohort study where exposed and non-exposed 
participants are followed over time and the incidence 
of disease is observed. Because the hallmark of a co-
hort study is following a population over time to iden-
tify incident cases of disease, the cohort is screened 
to assure that no participant enrolled in the study has 
already experienced the outcome or disease event. 

Table 9: Cell Naming Scheme for Doing Calculations
from a 2 x 2 Table

		             Disease/Outcome

		  +	 -

Exposure	 +	 a	 b

	 -	 c	 d

Diagram indicating four possible groups used in calculating measures 
of association between exposures and disease/outcome.

Table 10: Diagram of Observed Frequencies Extracted for 
Odds Ratio Example

	           Syncope (mmHg)

		           +  	 -	         Totals

High BP	 +	33 7	 586	 923
	 -	 206	 500	 706

Totals		  543	1 086	1 629

BP = blood pressure
Data extracted and modified from Chen, et al, 2000 (23).

Table 11: Observed Frequencies Extracted from Relative 
Risk Example*
	
		  CHD Deaths
	
		  +	 -	 Totals

BMI Quartile	4 th	 63	4 98	 561
	1 st	 21	 558	 579

Totals		  84            1056             1140

CHD = coronary heart disease
BMI = body mass index
*Data extracted and modified from Kim, et al, 2000 (24).

a x d
b x c OR =

Wood, MA
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Then, the cohort is followed for a specific period of 
time, and the incidence of events for the exposed and 
unexposed groups is measured. The relative risk can 
also be used to analyze clinical trial data. The rela-
tive risk (RR) is calculated from the labeled 2x2 table 
(Table 9) using the formula:

 
	 In another study from the Framingham Heart 
Study, investigators followed a cohort of 2373 women 
who were classified according to four categories of 
BMI (24). Over 24 years of follow-up, 468 women de-
veloped coronary heart disease (CHD); 150 of those 
women died from CHD (21 and 63 from the 1st and 
4th quartiles of BMI, respectively). Regarding the in-
cidence of CHD death in the 4th quartile of BMI ver-
sus the 1st quartile of BMI, the investigators observed 
the frequencies depicted in Table 11 (which omits the 
middle quartiles of BMI in order to illustrate the use of 
RR to analyze a 2x2 table from a cohort study).  The  	
				       , which means that per-
sons in the 4th quartile BMI group have 3.10 times the 
risk of CHD related death compared to persons in the 
1st quartile BMI group.
	 Both the OR and RR have confidence intervals (CI) 
as a measure of uncertainty. The method is similar to 
the one used for the binomial probability distribution. 
If a 95% CI excludes the value one (1), then the ratio 
is significant at the level of p<0.05. A test of indepen-
dence, as a category of methods, tests the hypoth-
esis that the proportion of an outcome is independent 
of the grouping category. The alternate hypothesis, 
the conclusion made when the p-value is significant 
(p<0.05), is that the disease or outcome is more com-
mon among the exposed or unexposed group.
	 Chi-square tests are used to determine the degree 
of belief that an observed frequency table could have 
occurred randomly by comparing it to an expected 
frequency table. The expected frequency table is de-
rived based on the assumption that the row and col-
umn totals are true as observed and fixed. The most 

commonly used chi-square test is the Pearson’s chi-
square test. This is used to analyze a frequency table 
with two rows and two columns. When the table is 
not symmetrical or is of dimensions other than 2-by-
2, the method is still valid, and when used is called 
the Cochran’s chi-square test. At the very least, the 
largest observed difference is significant if the table 
is significant. If the overall table is significant, this 
global significance can allow stratified sub-analyses 
of the individual comparisons of interest. It can also 
be helpful to look at the contribution to the chi-square 
test statistic by each cell and conclude that the larg-
est of these cells are where the observed frequencies 
most deviated from the expected frequencies.
	 If the chi-square tests on the tables for OR 
and RR result in p-values less than 0.05, then the 
95% CI will also be significant. This being revealed, 
we are ready to illustrate how the chi-square test 
statistic is used to calculate the CI (2). The lower CI 
is calculated by exponentiation of the ratio with the 
value of the formula:   1 - √c2

1,1-a  /   X
2  where  c2

1,1-a   
is the value, from a look-up-table, of the chi-square 
test statistic that would set the maximum tolerance 
for Type 1 error, and X2 is the chi-square test statistic 
from the observed table. The upper CI uses the same 
formula except by adding, rather than subtracting, 
the distance to the ratio: 1 + √c2

1,1-a  /   X
2. The use of 

chi-square tables is covered in elementary texts on 
statistics, and the method for calculating the test is 
beyond the scope of this article. So as not to detract 
from emphasizing the principle of comparing the 
observed table to one expected, if the correlation 
were merely random we will simply state the values 
so the 95% CI for the OR and RR examples can 
be illustrated (Table 12). Thus, for the OR example, 
1.400.36 = 1.12, and 1.401.64 = 1.73 resulted in an OR 
(95% CI) of 1.40 (1.12, 1.73). The CI range does not 
include 1 so the OR is statistically significant and 
validated the deductive inference that hypertension 
increases the odds of experiencing syncope. Similarly 
for the RR example, 3.10.59 = 1.95, and 3.101.41 = 4.92 

Table 12: Components for Calculating a 95% Confidence Interval Around Measures 
of Association 

	  	  	  	  
OR	3 .84	 9.35	 0.36	1 .64

RR	3 .84	 23.03	 0.59	1 .41

c2
1,1-a 1 - √c2

1,1-a  /   X
2 1 + √c2

1,1-a  /   X
2

  X
2
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Table 13. Measures of Association and Statistical Tests Commonly Used to Analyze Healthcare Data

*The assumption of independence is violated when a single subject is measured multiple times or when a single subject appears as multiple records in the data, especially when the subject is classified differently for each 
appearance. Special methods for repeated measures must be used to adjust for the violation of the assumption of independence.

Wood, MA
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  Table 14: Classification of Random Error

	 Ho True	 Ho False

Reject Ho	 Type I error
	
Accept Ho			      Type II error

Ho = hypothesis

clinical trials are analyzed in much the same manner. 
In clinical trials, patients are followed until some 
outcome is observed in the planned study period; 
these are incidence studies. As incidence studies, 
the RR will be the measure of association tested for 
statistical significance. Additionally, many clinical 
trials lend themselves to straightforward analyses 
with chi-square tests, ANOVA, or other methods that 
result only in a p-value. Table 13 summarizes common 
methods used to analyze healthcare data.
	 For one example, we review the results of a trial 
of the beta-blocker, bucindolol, used in patients with 
advanced chronic heart failure (CHF) (27). While it is 
accepted that beta-blockers reduce morbidity and 
mortality in patients with mild to moderate CHF, these 
investigators enrolled 2708 patients designated as 
New York Heart Association (NYHA) class III or IV 
to test the efficacy of the beta-blocker in reducing 
morbidity and mortality in patients with high baseline 
severity. The primary outcome of interest was all-
cause-mortality, which, being a relatively rare event, 
drove the sample size requirement to 2800 in order to 
statistically detect a clinically significant difference of 
25%. Once enrolled, patients were randomly assigned 
to receive either placebo or the beta-blocker, and 
neither the patient nor the physician knew to which 
treatment the patient was assigned. This study was 
stopped after the seventh interim analysis due to the 
accruing evidence of the usefulness of beta-blockers 
for CHF patients from other studies. At the time the 
study was stopped, there was no difference in mortality 
between the two groups (33% in the placebo group 
vs. 30% in the beta-blocker group, p=0.16). After 
the follow-up data was completed, adjustments for 
varying follow-up time could be made. The adjusted 
difference in mortality rate was still not significant 
(p=0.13). However, a sub-analysis of the secondary 
endpoint of cardiac death did yield a significant 
hazard ratio (HR) of 0.86 with a 95% CI of 0.74 to 
0.99. This HR being less than the value 1 means that 
the beta-blocker was protective against cardiac death 
in the follow-up period. The CI not including the value 
1 leads to the conclusion that this HR is statistically 
significant at the level of p<0.05. This secondary 
analysis is consistent with the decision of the study 
group to stop the trial early.
	 This concludes Part I of the series.  In the next 
issue of The Ochsner Journal, we will present Part 
II which includes discussion of the significance of 
the study results, relevance of the results in clinical 
practice, and study limitations.

resulted in an RR (95% CI) of 3.10 (1.95, 4.92). The 
CI range does not include 1 so the RR is statistically 
significant and validated the deductive inference 
that higher BMI increases the risk of experiencing 
CHD death. Most often, the exposure is under study 
because it is considered harmful, so ratios greater 
than 1 and significant (by not including 1 in the range 
of the CI) are the more familiar result. However, ratios 
less than 1 and significant indicate that exposure is 
protective. An analysis from this viewpoint is helpful 
when the exposure is some behavior or event that is 
hypothesized to be therapeutic or helpful in building 
immunity.
	 Tests of proportional disagreement are for 
paired data, either repeated measures in the same 
participants or participants matched on demographic 
factors then given different exposures and followed 
to compare outcomes. The best known of the tests 
of proportional disagreement is the McNemar’s chi-
square test. The outcome of paired data falls into four 
observations (++, --, +-, -+).   McNemar’s test focuses 
on the discordant cells (+-, -+) and tests the hypothesis 
that the disagreement is proportional between the 
two groups. If when the outcome disagrees, the 
disagreement is more frequently -+ than +-, then we 
know that more pairs are improving or having better 
outcomes. A relatively new application of tests for 
paired data is the Combined Quality Improvement 
Ratio (CQuIR), which uses the McNemar’s chi-square 
test as the basis, but combines participants with 
repeated measures and case-control matched pairs 
into one large database of analyzable pairs. This 
process maximizes the statistical power available 
from the population (25, 26). Additionally, the ratio 
of discordant pairs (-+/+-) shows whether or not the 
disagreement is more often toward improvement. 
Included in the tests of disproportion is the Kappa 
statistic of agreement. The Kappa statistic evaluates 
the concordant cells (++ and --) to conclude whether 
or not the agreement has enough momentum to be 
reproducible.
	 Thus far, we have used examples for analyses 
from observational studies. Experimental studies or 
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