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Curran-Everett D. Explorations in statistics: hypothesis tests
and P values. Adv Physiol Educ 33: 81–86, 2009; doi:10.1152/
advan.90218.2008.—Learning about statistics is a lot like learning
about science: the learning is more meaningful if you can actively
explore. This second installment of Explorations in Statistics delves
into test statistics and P values, two concepts fundamental to the test
of a scientific null hypothesis. The essence of a test statistic is that it
compares what we observe in the experiment to what we expect to see
if the null hypothesis is true. The P value associated with the
magnitude of that test statistic answers this question: if the null
hypothesis is true, what proportion of possible values of the test
statistic are at least as extreme as the one I got? Although statisticians
continue to stress the limitations of hypothesis tests, there are two
realities we must acknowledge: hypothesis tests are ingrained within
science, and the simple test of a null hypothesis can be useful. As a
result, it behooves us to explore the notions of hypothesis tests, test
statistics, and P values.
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THIS SECOND ARTICLE in Explorations in Statistics (see Ref. 8)
provides an opportunity to explore test statistics and P values,
two concepts integral to the test of a scientific hypothesis.
What is a scientific hypothesis? An idea that can be tested. By
tradition, this hypothesis is called the null hypothesis. The
adjective null can be misleading: this hypothesis need not be
one of no difference. In order to test a null hypothesis, we must
first define the hypothesis. Using data from the subsequent
experiment, we then compute the value of some test statistic
and compare that observed value T to some critical value T*
chosen from the distribution of the test statistic that is based on
the null hypothesis. If T is more extreme than T*, that is
unusual if the null hypothesis is true, and we are entitled–on
statistical grounds–to question the null hypothesis.

Hypothesis tests pervade science, but statisticians have long
stressed their limitations (1, 2, 5–7, 15–17, 19–24, 26–29, 31,
32, 42, 45, 49, 50). Despite these limitations, there are two
practical considerations that have persisted: the simple test of
a null hypothesis can be useful (10, 44), and hypothesis tests
are ingrained within science. Before we explore the notions of
hypothesis tests, test statistics, and P values, it behooves us to
understand why hypothesis tests pervade science.

A Brief History of Hypothesis Tests

The earliest known hypothesis test was the Trial of the Pyx,
a periodic ritual1 of the Royal Mint (London) that had become
established by 1279 (47). Each time the Mint made coins, a

small number of them went into the Pyx, a wooden box. When
a Trial was convened, an independent jury of goldsmiths
compared these select coins to standards in order to assess
whether the coins were within prescribed tolerances for weight
and composition. In each Trial of the Pyx, the implicit null and
alternative hypotheses, H0 and H1, were

H0: The coins are within the prescribed tolerances.

H1: The coins are outside the prescribed tolerances.

By the 1700s, astronomers routinely used hypothesis tests to
decide if discrepant celestial measurements should be dis-
carded (18, 46). At issue: precise information about the posi-
tion of the moon for purposes of navigation (46). To do one of
these hypothesis tests, an astronomer compared the discrepant
value to the law of errors, the distribution of errors about the
true lunar position (18).2 For each questionable measurement,
the implicit null and alternative hypotheses were

H0: The measurement is within the limits of error.

H1: The measurement is outside the limits of error.

As in the Trial of the Pyx, each astronomical hypothesis test
had a binary outcome: the measurement either was or was not
within some allowable deviation.

From the 1800s through the early 1900s, when a mathema-
tician or physicist wrote about whether some event could be
attributed to chance alone, he wrote about the odds of that
event (18, 36, 46). The greater the odds, the more likely the
event was due to something other than chance–random varia-
tion–alone (Fig. 1). Table 1 lists odds that were sufficient to
pique scientific interest between 1837 and 1908.

In his landmark The Probable Error of a Mean (48), Wil-
liam Sealy Gosset, a chemist who wrote under the pseudonym
Student because he worked for the Guinness brewery (40),
outlined a procedure that would evolve into the one-sample
t-test. To illustrate this procedure, Gosset used data from a
paper published by Cushny and Peebles (11) in The Journal of
Physiology:

First let us see what is the probability that [drug A] will on
the average give increase of sleep. [Looking up the ratio of the
sample mean to the sample standard deviation] in the table for
ten experiments we find by interpolating. . .the odds are �887 to
�113 that the mean is positive.

That is about 8 to 1 and would correspond to the normal curve
to about 1 �8 times the probable error. It is then very likely that
[drug A] gives an increase of sleep, but would occasion no surprise
if the results were reversed by further experiments.Address for reprint requests and other correspondence: D. Curran-Everett,

Div. of Biostatistics and Bioinformatics, M222, National Jewish Health, 1400
Jackson St., Denver, CO 80206 (e-mail: EverettD@NJHealth.org).

1 In the past, a Trial was announced every 3–4 years. Today, the Trial is
convened every year.

2 The law of errors is just a normal distribution, a probability distribution
developed independently by De Moivre, Laplace, Legendre, and Gauss (18).
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In current jargon, the phrase 1 �8 times the probable error
means that t � 1.8.

Today, when a scientist writes about whether some event
can be attributed to chance, she writes not about the odds but
about the probability of that event if chance alone is at work.
This convention can be traced to Statistical Methods for Re-
search Workers (13), published in 1925 by Sir Ronald Aylmer
Fisher (18, 52).3 In 1919, after 4 years of teaching mathematics
and physics in public schools, Fisher went to work as a
statistician at the Rothamsted Experimental Station, a facility
that conducted research in agronomy and biology (4, 40, 52). It
was during his early tenure at Rothamsted that Fisher, inspired
in part by Gosset’s The Probable Error of the Mean, recog-
nized that scientists needed a practical guide to statistical
methods. Statistical Methods for Research Workers gave them
what they needed (35).

Just as others defined the magnitude of a deviation that they
regarded as beyond chance, so too did Fisher in Statistical
Methods for Research Workers. Fisher opted for 1 in 20: only
5% of possible values of the event are more extreme than this
benchmark. In Statistical Methods for Research Workers,
Fisher cites his 0.05 benchmark three times. The latter two, on
p. 79 and 101–102, allude to this first (p. 46–47):

In practical applications we do not so often want to know the
frequency at any distance from the centre as the total frequency
beyond that distance; this is represented by the area of the tail
of the curve cut off at any point. . . A deviation exceeding the
standard deviation occurs about once in three trials. Twice the
standard deviation is exceeded only about once in 22 trials,
thrice the standard deviation only once in 370 trials. . . The
value for which P � �05, or 1 in 20, is 1 �96 or nearly 2; it is
convenient to take this point as a limit in judging whether a
deviation is to be considered significant or not. Deviations
exceeding twice the standard deviation are thus formally re-

garded as significant.

In our guidelines for reporting statistics (Ref. 9, guideline 2),
Dale Benos and I wrote that most researchers adhere to
tradition and define the critical significance level �–the bench-
mark for the limits of random variation–to be 0.05. It is this
passage in Statistical Methods for Research Workers that was
the genesis of the tradition.

Statistical Methods for Research Workers filled such a void
within the scientific community that two things happened.
First, researchers started to use statistical procedures from the
book, but without fully understanding the underlying concepts,
they sometimes misused the procedures (18, 53). And second,
the notion of a significance level of 0.05 approached the level
of doctrine despite subsequent but less obvious elaborations by
Fisher:

If one in twenty does not seem high enough odds, we may,
if we prefer it, draw the line at one in fifty (the 2 per cent.
point), or one in a hundred (the 1 per cent. point). Personally,
the writer prefers to set a low standard of significance at the 5
per cent. point, and ignore entirely all results which fail to reach
this level. A scientific fact should be regarded as experimen-
tally established only if a properly designed experiment rarely
fails to give this level of significance.

[Ref. 14 (1926)]

The attempts that have been made to explain the cogency of
tests of significance in scientific research. . . seem to miss the
essential nature of such tests. A [person] who ‘rejects’ a
hypothesis provisionally, as a matter of habitual practice, when
the significance is at the 1% level or higher, will certainly be
mistaken in not more than 1% of such decisions. For when the
hypothesis is correct he will be mistaken in just 1% of these
cases, and when it is incorrect he will never be mistaken in
rejection. . . However, the calculation is absurdly academic, for
in fact no scientific worker has a fixed level of significance at
which from year to year, and in all circumstances, he rejects
hypotheses; he rather gives his mind to each particular case in
the light of his evidence and his ideas. Further, the calculation
is based solely on a hypothesis, which, in the light of the
evidence, is often not believed to be true at all, so that the actual
probability of erroneous decision, supposing such a phrase to
have any meaning, may be much less than the frequency
specifying the level of significance.

[Ref. 16 (1956)]

In contrast to Fisher who defined a null hypothesis but no
alternative hypothesis (18), Jerzy Neyman and Egon Pearson
advocated a paradigm of hypothesis testing that involved
making a decision about competing null and alternative hy-
potheses (18, 33, 38, 39). In this paradigm, power, the proba-
bility that we reject some null hypothesis given that it is false,
plays a prominent role. Neyman and Pearson argued that the

3 The impact of Fisher on statistics and science is legendary (3, 18, 25, 30,
34, 35, 43, 51–53). His collected papers are posted at http://www.adelaide.
edu.au/library/special/digital/fisherj/.

Table 1. Significance levels between 1837 and 1908

Year Person 1 � � � Odds Reference

1837 Poisson 0.9953 0.0047 212 Matthews (36)
1874 Hirschberg 0.916 0.084 11
1877 Liebermeister 0.8333 0.1667 5
1885 Edgeworth 0.93 0.07 13 Edgeworth (12)

Edgeworth 0.997 0.003 332
1908 Gosset 0.9801 0.0199 49 Student (48)

Gosset 0.887 0.113 8

The odds against rejecting a true null hypothesis is (1 � �)/� (see Fig. 1).

Fig. 1. Normal distribution. The critical significance level � (gray area) is the
probability we reject a null hypothesis when it is true. The ratio of 1 � � to
� is the odds against rejecting a true null hypothesis. Table 1 lists some critical
significance levels and odds reported since 1837.
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selection of the critical significance level �, the probability that
we reject a true null hypothesis, and �, the probability that we
fail to reject a false null hypothesis, depended on the costs
associated with committing each kind of error (18, 33).

Although the philosophical differences between the
Fisher and Neyman-Pearson strategies led to some fierce
exchanges between the protagonists, from a practical per-
spective, the strategies are complementary (18, 33). In fact,
in science, these strategies have been blended (18). Despite
their philosophical difference, it is fitting that Fisher, Ney-
man, and Pearson all believed that statistics provided a
means by which to learn (33).

With this brief history, we are ready to begin our explora-
tions of contemporary hypothesis tests, test statistics, and P
values.

The Null Hypothesis: Controlling Mistakes

When we make an inference about a null hypothesis, we can
make a mistake. We can reject a true null hypothesis, an error
of the first kind, or we can fail to reject a false null hypothesis,
an error of the second kind (37, 38).4 Our challenge is to
balance two conflicting objectives: reduce the risk that we find
an experimental effect when it does not exist but maintain the
likelihood that we detect an experimental effect when it does
exist.

The chance that we make an error of the first kind is just the
probability that we reject the null hypothesis H0 given that H0
is true:

Pr{reject H0 � H0 is true} .

We control the chance that we make this kind of error when we
define the critical significance level � because

� � Pr{reject H0 � H0 is true} .

When we define �, we declare that we are willing to reject a
true null hypothesis 100�% of the time. Guideline 2 (9)
discusses the choice of � so it is appropriate to the goals of
your study.

The chance that we make an error of the second kind is the
probability that we fail to reject H0 given that H0 is false:

Pr{fail to reject H0 � H0 is false} .

We control the chance that we make this kind of error when we
define the error rate �:

� � Pr{fail to reject H0 � H0 is false} .

Rather than define � per se, we usually define power, the
probability that we reject H0 given that H0 is false:

power � 1 � � � Pr{reject H0 � H0 is false} .

In general, four things affect power: the critical significance
level �, the standard deviation � of the underlying population,

the sample size n, and the magnitude of the difference that we
want to be able to detect.5

Before we begin our actual exploration of test statistics and
P values, we need to review the software we will use to help us
learn about these concepts.

R: Basic Operations

In the inaugural article (8) of this series, I summarized R
(41) and outlined its installation. The APPENDIX here reviews
this process. For this exploration, there is just one additional
step: download the script Advances_Statistics_Code_P.R6 to
your Advances folder.

If you use a Mac, highlight the commands in Advances_
Statistics_Code_P.R you want to submit and then press .
If you use a PC, highlight the commands you want to submit,
right-click, and then click Run line or selection. Or, highlight the
commands you want to submit and then press Ctrl�R.

The Simulation: Observations and Sample Statistics

When we explored the distinction between standard devia-
tion and standard error (8) we drew a total of 1000 random
samples–each with 9 observations–from our population, a
standard normal distribution with mean � � 0 and standard
deviation � � 1 (Fig. 2). These were the observations–the
data–for samples 1, 2, and 1000:

� # Sample Observations

[1] 0.422 1.103 1.006 1.034 0.285 �0.647 1.235 0.912 1.825
[2] 0.154 �0.654 �0.147 1.715 0.720 0.804 0.256 1.155 0.646
:

[1000] 0.560 �1.138 0.485 �0.864 �0.277 2.198 0.050 0.500 0.587

Each time we drew a random sample, we calculated the sample
statistics listed in Table 2. These were the statistics for samples
1, 2, and 1000:

4 Errors of the first kind and second kind are known also as type I and type
II errors.

5 In light of its importance to hypothesis testing and grant applications, we
will explore power in a future installment of Explorations.

6 This file is available through the Supplemental Material link for this article
at the Advances in Physiology Education website.

Fig. 2. The population. We can generate a standard normal distribution by
transforming some random variable Y to z by the relationship z � (Y � �)/�,
where z represents the number of standard deviations Y is from the mean �.
[Reprinted from Ref. 8.]
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� # Sample Mean SD SE t LCI UCI
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

1 0.797 0.702 0.234 3.407 0.362 1.232
2 0.517 0.707 0.236 2.193 0.079 0.955
:

1000 0.233 0.975 0.325 0.718 �0.371 0.838

The commands in lines 35–63 of Advances_Statistics_Code_P.R
generate the observations and compute the sample statistics.
These commands are identical to those in the first script (8).

With these 1000 sets of sample statistics, we are ready to
explore hypothesis tests, test statistics, and P values.

Hypothesis Tests: Test Statistics and P Values

When we began our statistical explorations, we wanted in
part to estimate �, the mean of our population (see Ref. 8).
Only because we defined our population do we know that � �
0. Had this been a real experiment, we might have wanted to
learn if some intervention affected the physiological thing7 we
cared about. In this case, we would have constructed the null
and alternative hypotheses, H0 and H1, as

H0: The intervention has no effect.

H1: The intervention has an effect.

More formally, we would have written these hypotheses as

H0: � � 0

H1: � � 0 ,

which translate to these statements: the sample observations
are consistent with having come from a population that has a
mean � of 0, and the sample observations are consistent with
having come from a population that has a mean � other than 0.
This is silly, right? We know that � � 0. We can use our
knowledge that the null hypothesis is true, however, to explore
the concepts behind test statistics and P values.

The basis for some test statistic is a comparison between
what we observe in the experiment and what we expect if the
null hypothesis is true. In our first theoretical experiment, what
we observed was the sample mean y� � 0.797. Now the
question is, what do we expect if the null hypothesis is true?
We already know the answer. When we took 1000 samples
from a population with � � 0, the sample means varied (see
Ref. 8, Fig. 5), but a typical sample mean differed from the

population mean by a distance of 1 SD {y�} , the standard
deviation of the sample means (8). This is identical to the
standard error of the mean SE {y�}. Therefore, if the null
hypothesis is true, we expect the typical variation in the sample
mean to be SE{y�}.

One test statistic with which we can assess whether our
sample observations are consistent with having come from a
population with � � 0 is the familiar t statistic:

t �
y�

SE	y�

, where SE 	y�
 � s/�n ,

s is the sample standard deviation, and n is the number of
observations in the sample.8 In a manner similar to the statistic
z (8), t represents the number of standard deviations the sample
mean y� is from the population mean �. If the sample mean y� is
far enough away from the population mean �, then that is
unusual if the null hypothesis is true.

In our first sample,

t �
y�

SE	y�

�

0.797

0.234
� 3.407 .

That’s fabulous, but exactly how do we interpret a t value of
3.407? We interpret it within the context of a true null hypoth-
esis: if the null hypothesis is true, how usual is this value of t?
If the null hypothesis is true, we expect to observe a value of

7 For example, L-ascorbic acid transport, differential gene expression,
TNF-�, or venous capacitance in trout (see Ref. 8).

8 We can use a t statistic to also assess whether two sets of sample observations
are consistent with having come from the same or different populations. In this
situation, we calculate t in the same manner but replace the single sample mean y�
with the difference between sample means, y�2 � y�1 (see Ref. 44).

Fig. 3. Empirical (black) and theoretical (gray) distributions of t for 9 obser-
vations. The empirical distribution is composed of 1000 values of t. The
commands in lines 89–90 of Advances_Statistics_Code_P.R calculate the
theoretical distribution of t, and the commands in lines 92–101 create this data
graphic. To generate this data graphic, highlight and submit the lines of code
from Figure 3: first line to Figure 3: last line.

Table 2. Sample statistics calculated for each random
sample

Column Heading Sample Statistic

1 Sample Sample number
2 Mean Mean y�
3 SD Standard deviation s
4 SE Standard error of the mean SE {y�} � s/�n
5 t Observed value of t � y�/SE{y�}
6 LCI Lower confidence interval bound
7 UCI Upper confidence interval bound

�Reprinted from Ref. 8.
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�t� at least as big as 3.407 just 1 time in 200 (P � 0.005).9 By
virtue of our simulation, we have 1000 values of t; the mag-
nitudes of 14 values are at least as extreme as 3.407:

� # Sample Mean SD SE t LCI UCI
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

1 0.797 0.702 0.234 3.407 0.362 1.232
28 0.790 0.507 0.169 4.681 0.476 1.104
34 �0.668 0.451 0.150 �4.442 �0.948 �0.389

215 1.100 0.880 0.293 3.751 0.555 1.646
238 0.923 0.736 0.245 3.763 0.467 1.379
283 �0.576 0.387 0.129 �4.465 �0.816 �0.336
536 0.826 0.682 0.227 3.635 0.404 1.249
616 �0.633 0.487 0.162 �3.895 �0.935 �0.331
645 0.671 0.558 0.186 3.607 0.325 1.017
800 �0.981 0.726 0.242 �4.053 �1.431 �0.531
804 1.037 0.707 0.236 4.405 0.599 1.475
880 0.804 0.674 0.225 3.581 0.387 1.222
925 �0.801 0.574 0.191 �4.182 �1.157 �0.445
981 �0.744 0.610 0.203 �3.663 �1.122 �0.366

The commands in lines 81–83 of Advances_Statistics_Code_P.R
print the statistics for the samples in your simulation. Your
number of samples will differ.

If we treat these 1000 values of t as observations, their empir-
ical distribution is centered at �0.04 (median), just less than the
theoretical value of 0 (Fig. 3). Five percent of the 1000 values of
t are less than �1.773 and five percent are greater than 1.979,
close to the theoretical percentiles of �1.860 and 1.860. The
commands in lines 109–110 of Advances_Statistics_Code_P.R
return these values. Your values will differ slightly.

In most experiments, we use a single sample and calculate a
single test statistic in order to make inferences about some null
hypothesis. Suppose we established beforehand a critical sign-
ficance level–a benchmark for uncommonness–of � � 0.10
(9). If the null hypothesis is true, the test statistic t � 3.407
(P � 0.005) from our first sample is more unusual–less likely
to occur–than our benchmark. As a result, we would reject the
null hypothesis and conclude that the sample observations were
consistent with having come from a population that had a mean
� other than 0. And we would be wrong. We know the null
hypothesis is true: we drew our observations from a population
that had a mean of 0 (see Fig. 2).

So how can we make sense of this? By realizing that when
we draw a single random sample from some population–when
we do a single experiment–we can have enough unusual
observations so that it just appears the observations came from
a different population.

Summary

As this exploration has demonstrated, a test statistic com-
pares what we observe in an experiment to what we expect to
see if the null hypothesis is true. The P value associated with
the magnitude of that test statistic answers the question, if the
null hypothesis is true, what proportion of possible values of
the test statistic are at least as extreme as the one I got?
Although the statistical test of a null hypothesis is useful–it
helps guard against an unwarranted conclusion, or it helps
argue for a real experimental effect (7, 44)–the only question it
can answer is a trivial one: is there anything other than random
variation going on here? The answer to this question is a simple
yes or no. Science is less yes-or-no and more how-much.

In the next installment of this series, we will explore confi-
dence intervals. A confidence interval provides the same sta-
tistical information as the P value from a hypothesis test, but it
circumvents the drawbacks inherent to a hypothesis test. In
essence, a confidence interval helps answer the question, is the
experimental effect big enough to be relevant?

APPENDIX

Regardless of whether you use a Mac or a PC, there are two
preliminary steps to perform: first, on your Desktop, create a folder
called Advances, and second, download and install R.

If you use a Mac, download R from

http://cran.us.r-project.org/bin/macosx/ .

After you have installed R, double-click on Advances_Statistics_Code_P.R
to open it.

If you use a PC, download R from

http://cran.us.r-project.org/bin/windows/base/ .

After you have installed R, a shortcut for R will exist on your
Desktop. To simplify the process of starting R from within your
Advances folder, move this shortcut into your Advances folder,
right-click on the shortcut, and then click Properties. Paste the full
address (path) of your Advances folder–this path will vary depending
on the Windows operating system you use–into the Start in: location
(see Ref. 8, Fig. 1) and then click OK. Now double-click on the R
shortcut to open R. To open Advances_Statistics_Code_P.R, click
File � Open script. . . or click the Open script icon , select the script
filename, and then click Open. Advances_Statistics_Code_P.R will
open in the R Editor.
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