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Preface

‘When you can measure what you are speaking about
and express it in numbers, you know something about
it; but when you cannot express it in numbers, your
knowledge is of a meagre and unsatisfactory kind � � � ’

William Thomson (Lord Kelvin), Lecture to the
Institution of Civil Engineers, 3 May 1883.

The discipline devoted to careful measurement of specific
properties of the universe around us is known as
metrology. The famous statement by William Thomson,
quoted above, summarizes the importance of quantita-
tive measurements for the testing of scientific hypotheses;
indeed, without such quantitative testing, it is fair to say
that hypotheses can not be regarded as scientific at all.
Missing from Thomson’s comment, however, is a mention
of the importance of careful evaluation of the uncertain-
ties that are present in any quantitative measurements and
the resulting degree of confidence that can be placed in
them and any conclusions drawn from them. These uncer-
tainties are just as important as the ‘best’ quantitative
measured value itself.

This book is devoted to the science and art of chemical
metrology, taken here to mean the quantitative measure-
ment of amounts of specific (known) chemical compounds

present at trace levels (roughly defined as one part
in 106−1012) in complex matrices. Examples are drugs
and their metabolites in body fluids, pesticide residues
in foodstuffs, contaminants in drinking water etc. Such
measurements are extremely demanding, and involve the
use of a wide range of apparatus and of experimental
procedures and methods of data evaluation, all of which
must be used properly if reliable estimates of chemical
concentrations and their associated uncertainties are to
be obtained. While this is true of any chemical analysis,
the modern advances in trace-level analysis are critically
dependent on developments in mass spectrometry.

For several decades before its application to chemical
analysis, mass spectrometry was a major tool in funda-
mental physics. The invention of mass spectrometry is
usually attributed to Joseph John Thomson, no relative to
William Thomson (Lord Kelvin) whose picture appears
above. In 1897 J.J. Thomson measured the ratio of the
charge of an electron to its mass, thus confirming for the
first time that this then-mysterious entity possessed prop-
erties characteristic of a particle. (It is interesting that his
son G.P. Thomson later emulated his father by winning a
Nobel Prize, but for demonstrating that the electron also
possesses properties characteristic of a wave!). An account
of the life and work of J.J. Thomson was published (Grif-
fiths 1997) to commemorate the centenary of the first
measurement of mass-to-charge of an elementary particle.

F.W. Aston, a student of Thomson, won a Nobel Prize
for using mass spectrometry to demonstrate the exis-
tence of the isotopes of the elements (Aston 1919), and
for developing a higher resolution mass spectrometer
that permitted measurement of atomic masses with suffi-
cient accuracy and precision for the first reliable esti-
mates of so-called mass defects, i.e., deviations of actual
(measured) atomic masses from those predicted from the
sums of the masses of the constituent elementary parti-
cles (protons, neutrons and electrons). Later, this work
was extended by K.T. Bainbridge whose measurements of
mass defects (Bainbridge 1932, 1936) were of sufficient
accuracy and precision to confirm for the first time the
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famous relationship derived by Albert Einstein concerning
the equivalence of mass (in this case the mass defect) and
energy (in this case the binding energy of protons and
neutrons within an atomic nucleus).

The first analysis of positive ions is attributed to Wien,
who used a magnetic field to separate ions of different
mass-to-charge ratios (Wien 1898), but the first appreci-
ation of the potential of the new technique in chemical
analysis appears to have again resulted from the work of
Thomson in his famous book Rays of Positive Electricity
and Their Application to Chemical Analysis (Thomson
1913). The present book is intended as an introduction
to the use of mass spectrometry for quantitative measure-
ments of the amounts of specific (known) chemical
compounds (so-called ‘target analytes’) present at trace
levels in complex matrices. This modern day meaning
of ‘quantitative mass spectrometry’ is rather different
from its much more specialized historical meaning in the
earliest days of application of the technique to chemistry.

In the two decades spanning about 1940–1960, the
petroleum industry was the major proponent of mass
spectrometry as a tool of analytical chemistry, and
indeed the first few issues of Advances in Mass Spec-
trometry (essentially the proceedings of the International
Conferences on Mass Spectrometry) were sponsored and
published by the Petroleum Institute. Raw petroleum and
its distillate fractions are incredibly complex mixtures
of chemical compounds, mainly corresponding to chem-
ical compositions CcHhNnOoSs, and it is impossible to
devise a complete chemical analysis of such an extremely
large number of components at concentrations covering
a dynamic range of many orders of magnitude. However,
some knowledge of chemical composition is required
by chemical engineers for optimization of the indus-
trial processes required to produce end products with
the desired properties. To this end petroleum chemists
devised the concepts of compound class, i.e., compounds
with a specified composition with respect to heteroatoms
only (NnOoSs), and compound type, i.e., compounds with
a specified value of Z when the composition is expressed
as CcH2c+ZNnOoSs. Clearly the parameter Z is related
to the degree of unsaturation. Reviews of this applica-
tion of mass spectrometry have been published (Grayson
2002; Roussis 1999). The earliest methods yielded infor-
mation on relative amounts of hydrocarbon compounds
in a distillate, i.e. type analyses for the compound class
with n = o = s = zero. A high resolution adaptation of
the original low resolution mass spectral methods was
first published in 1967, and permitted determinations of
18 saturated- and aromatic-hydrocarbon types and four
aromatic types containing sulfur.

Essentially, the general approach first identified
specific mass-to-charge ratio (m/z) values in the elec-
tron ionization mass spectra that are characteristic of each
compound type, and obtained a calibration based on anal-
ysis of mixtures of known composition:

S = R�C

where S is a vector containing the appropriate sums of
signal intensities at the m/z values that are characteristic
for each compound type, C is a vector whose elements
are the concentrations of these compound types, and R is
the (square) matrix of mass spectrometric response factors
determined from the calibration experiments (average
response coefficients for each type are on the diag-
onal of the matrix and the off-diagonal elements take
into account inter-type contributions to signal intensi-
ties at the characteristic m/z values). Quantitative analysis
of an unknown thus requires inversion of the response
matrix:

C = R−1�S

An example of such a type analysis for the class
CcH2c+ZS, for both a raw petroleum feedstock and one of
its products from a refinery process designed to remove
the sulfur content, is shown in Figure P.1 (here the carbon
number c is replaced by n). Modern developments in
quantitative petroleum analysis incorporate new advances
in separation science as well as in mass spectrometric
technologies, especially ionization techniques and ultra-
high resolving power (Marshall 2004) and improved cali-
bration of the response matrix (Fafet 1999).

This early and narrow interpretation of the phrase
‘quantitative mass spectrometry’ is now badly outdated,
although petroleum analysis is still an important branch
of analytical chemistry that is still being developed.
However, apart from its historical importance it intro-
duced important concepts, including calibration and
response factor, that will appear throughout this book.
Nowadays, quantitation by mass spectrometry gener-
ally refers to determination of target analytes (known
and specified chemical species, rather than groups of
compounds defined within ‘classes’ or ‘types’ as in
the petroleum case), present in a complex matrix at
trace levels. This book is intended as an introduction
to this demanding branch of measurement science, one
that is crucial for meaningful studies of a wide range
of phenomena including environmental, pharmacological
and biomedical studies.

The approach adopted throughout the book is to
emphasize the fundamentals underlying the scientific
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Figure P.1 Type analysis of a petroleum feedstock and its hydrocracked product for compound class CnH2n+ZS. Reproduced with
permission from S. Roussis, Rapid Commun. Mass Spectrom. 13, 1031–1051 (1999).

instruments and methodologies, illustrated by historically
important developments as well as innovations that were
current at the time of completing the manuscript (late
summer 2007). Hopefully this will prove to be of more
lasting value for the reader. However, a discussion of
‘fundamentals’ without any description of how ‘the funda-
mental things apply’ (see text box) to real-world prob-
lems is unlikely to be of much use to anyone, so the
final chapter discusses some illustrative examples from
the literature.

As mentioned above, although this book is devoted
to quantitative analysis of specified ‘target’ analytes, the
analyst must have a degree of confidence that the signals
being measured do indeed arise from the presence of that
target analyte (confirmation of analyte identity), and only
from that analyte (signal purity). Therefore, even quanti-
tative analyses inevitably involve some degree of confir-
mation of analyte structure and identity, and also a check
for potential contributions to the recorded instrumental
signals from other compounds. The degree to which such
checking of analyte identity and of signal purity is neces-
sary will vary from case to case, e.g., analysis of a
synthetic pharmaceutical drug in blood plasma following
a clinical dose is much less likely to require a high degree
of identity confirmation than that of a chlorinated pollu-
tant in an environmental sample. Determination of the
appropriate degree of such checks is an example of appli-
cation of the concept of ‘Fitness for Purpose’, another
major theme of this book. This principle is discussed
more fully in Chapter 9.2, but will appear in several
intervening chapters so a very brief introduction to the
concept is presented here, based on a discussion (Bethem

2003) of its applicability to mass spectrometric analyses.
The following principles are quotations from this work
(Bethem 2003):

1. Ultimately it is the responsibility of the analyst to
make choices, provide supporting data, and interpret
results according to scientific principles and quali-
fied judgment.

2. Analysts should use methods which are Fit for
Purpose. Analysts should be able to show that their
methods are Fit for Purpose.

3. Fitness for Purpose means that the uncertainty
inherent in a given method is tolerable given the
needs of the application area.

4. Targets for measurement uncertainty describe how
accurate and precise the measurements need to be.
Targets for identification confidence describe how
certain one needs to be that the correct analyte has
been identified.

5. Establishing method fitness consists of showing that
the targets for measurement uncertainty and identi-
fication confidence have been met.

In its simplest terms, the ‘Fitness for Purpose’ principle
corresponds to the commonsense notion that an analyt-
ical method must provide answers with sufficiently low
uncertainties that the requirements of the user of the data
are fully met within specified constraints of time, cost
etc. On the other hand there is no point in developing,
validating and using an analytical method with extremely
low uncertainties in the data (high precision and accuracy)
if a considerably less demanding method (generally less
expensive in terms of money, time and effort) will suffice.
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‘The Fundamental Things Apply —’

with apologies to ‘As time goes by’ by Herman Hupfeld (1931); Warner Bros. Music Corp.

This famous song was featured in the films Casablanca and Sleepless in Seattle, as well as the well-known
British TV comedy series of the same name. This is a long stretch from the subject of this book, but the above
quotation from the lyrics seems appropriate.

A distinction between ‘fundamental’ and ‘applied’ science is drawn by some, including (alas) by some funding
agencies! One of the themes of this book is best expressed by quoting one of the giants of 19th century science:

‘There does not exist a category of science to which one can give the name applied science. There are science
and the applications of science, bound together as the fruit of the tree’. Louis Pasteur, ‘Revue Scientifique,’
Paris, 1871.

Louis Pasteur

It is not essential for an experimental scientist to be familiar with and
understand every detail of the theoretical underpinnings of his/her laboratory
work. However, to be able to properly plan an experimental investigation
so that the results can be meaningfully interpreted, it is essential that he/she
should understand the background of the relevant theory, its basic assumptions,
and the limits of its applicability and the magnitude of the consequences
of the approximations involved. This general theme was a guiding principle
in writing this book, and hopefully this approach will ensure that the book
will have a reasonably long useful lifetime. However, fundamentals without
much discussion of how they apply to real-world problems in trace analytical
chemistry are not of themselves very useful, and discussions of how the
‘fundamental things apply’ will appear later in the book.

A specific example of the continuity between ‘applied’ and ‘fundamental’
research, of direct relevance to the subject of this book (see Chapter 5), is
provided by the direct line of development starting from an electrostatic paint
sprayer designed for industrial use, through attempts by materials scientists
to prepare single molecules of synthetic polymers in the gas phase to enable
fundamental studies, to the eventual award of a Nobel Prize to John B. Fenn

for the invention of electrospray ionization mass spectrometry and its application to biochemistry and molecular
biology.

Figure P.2 shows a generalized procedure for achieving
Fitness for Purpose.

This book is not intended to cover important branches
of mass spectrometry that provide accurate and precise
quantitative measurements of relative concentrations,
e.g., of variations in isotopic ratios of an element by
isotope ratio mass spectrometry (IRMS) and accelerator
mass spectrometry (AMS). Rather, this book is mainly
concerned with determinations of absolute amount of
substance (see Chapter 1 for a definition and expla-
nation), particularly for compounds present at trace
levels in complex matrices. (The only exception is the
inclusion of a brief description of methods used to deter-
mine differences in levels of proteins in living cells or
organisms subjected to different stimuli, e.g., disease
state vs normal state).

The book covers analysis of ‘small’ (< 2000 Da)
organic molecules, in environmental and biomedical
matrices. The first book exclusively devoted to this subject
(Millard 1977) is now rather out of date as a result of
more recent spectacular advances in mass spectrometric
technology. Very recently two excellent introductions
to the subject have appeared (Duncan 2006; Lavagnini
2006). The present book differs from these with regard
to their respective lengths; the present book is much
longer, as a result of the attempt to provide a compre-
hensive introduction to all the many ancillary techniques
and tools that must be coordinated to provide a reli-
able result for a trace-level quantitative analysis by mass
spectrometry. Thus, many of the present chapters discuss
matters that are common to any quantitative analytical
method, not only to those in which mass spectrometry is
the key component providing the final analytical signal
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Figure P.2 Outline of a general recommended process for achieving Fitness for Purpose. Reproduced from Bethem et al., J. Amer.
Soc. Mass Spectrom. 14, 528 (2003), with permission, copyright (2003) Elsevier.

used to estimate the concentration of the target analyte.
The present book is written at a level that presupposes
some basic undergraduate-level knowledge of chemistry,
physics, and mathematics and statistics.

This book also treats the more recent developments
of quantitative analysis of specific proteins in biolog-
ical systems, even though these hardly qualify as ‘small
molecules’. However, it does not cover the important
aspect of analysis of trace level metals by, e.g., ICP–
MS; an excellent book covering this subject has appeared
recently (Nelms 2005).

It must be emphasized that any book such as this can
only be regarded as a preparation for the real learning
process in this demanding practical art, namely, exposure
to working on real-life problems in a real laboratory. The
kinds of measurements that are addressed here really do
push the various technologies involved to their current
limits, and ‘learning by doing’ is the only truly meaningful
method. This principle is well illustrated by a quotation
from what might be described as ‘the older literature’:

Those who are good at archery learnt from the bow
and not from Yi the Archer. Those who know how to
manage boats learnt from boats and not from Wo (the

legendary boatman). Those who can think learned for
themselves and not from the Sages. Kuan Yin Tze,
8th century.

The dangers involved in a sole reliance on ‘learning by
reading’, in a practical discipline like analytical chemistry,
are summarized in the following advice:

Il ne faut pas laisser les intellectuals jouer avec les
allumettes. (Don’t let the intellectuals play with the
matches). Jacques Prévert, 1900–1977.

However, it is hoped that reading this book will
be useful both in providing enough background infor-
mation that the first exposure to the ‘learning by
doing’ process will not seem quite so daunting,
and also will provide a useful reference thereafter.
The book attempts to cover a wide range of sub-
disciplines, and inevitably some errors of both omis-
sion and commission will remain despite extensive
checking. The authors would greatly appreciate assis-
tance from colleagues in identifying and correcting these
errors.

Robert K. Boyd, Cecilia Basic, Robert A. Bethem
October 2007
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