Geometria Analítica

O plano

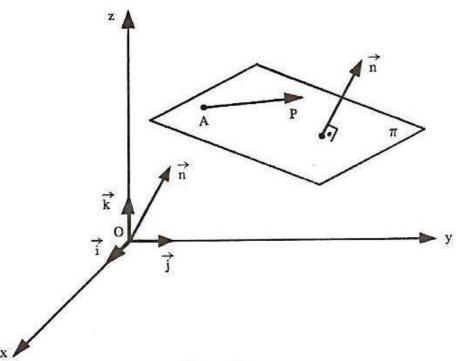
Prof. Dr. Lucas Barboza Sarno da Silva

Equação geral do Plano

Seja $A(x_0, y_0, z_0)$ um ponto pertencente a um plano π e $\vec{n} = a\vec{i} + b\vec{j} + c\vec{k} \neq (0,0,0)$ um vetor normal (ortogonal) ao plano. O plano π pode ser definido como sendo o conjunto de todos os pontos P(x, y, z) do espaço tais que o vetor \overrightarrow{AP} é ortogonal a \overrightarrow{n} .

O ponto P pertence a π se, e somente se:

$$\vec{n} \cdot \overrightarrow{AP} = 0$$



Equação geral ou cartesiana do plano π :

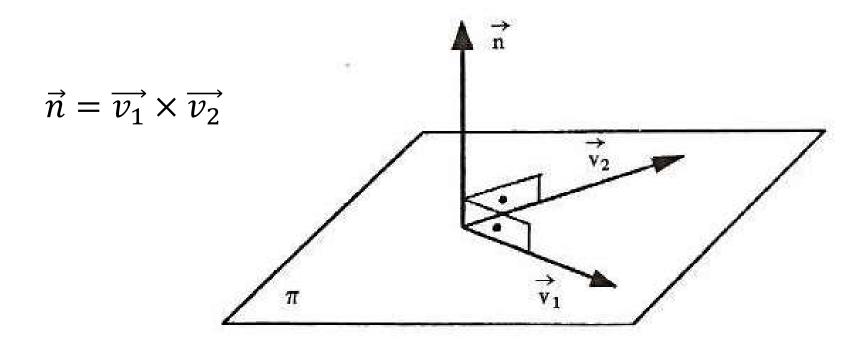
$$ax + by + cz + d = 0$$

Observações:

a) O plano π é definido por: um ponto no plano e por vetor normal a π .

 $k\vec{n}$, $k \neq 0$, é também vetor normal ao plano.

b) Sendo \vec{n} um vetor ortogonal ao plano π , ele será ortogonal a qualquer vetor representado neste plano.



c) Como o vetor \vec{n} é um vetor normal ao plano, \vec{n} também é normal a qualquer plano paralelo a π .

Assim, todos os infinitos planos paralelos a π têm a equação geral do tipo:

$$ax + by + cz + d = 0$$

na qual d é o elemento que diferencia um plano de outro.

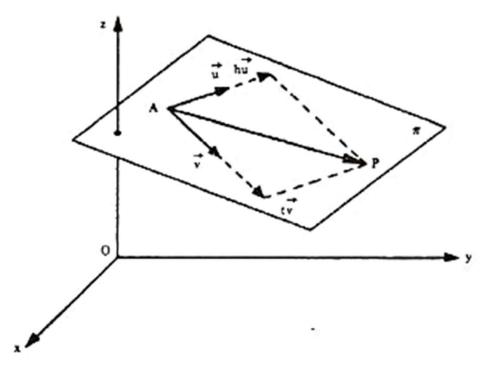
Exercício

Determinar a equação geral do plano π que passa pelo ponto A(2, -1, 3), sendo $\vec{n} = (3, 2, -4)$ um vetor normal a π .

Equações paramétricas do plano

Seja $A(x_0, y_0, z_0)$ um ponto de um plano π e $\vec{u} = (a_1, b_1, c_1)$ e $\vec{v} = (a_2, b_2, c_2)$ dois vetores não colineares. Um ponto P(x, y, z) pertence ao plano π que passa por A e é paralelo aos vetores \vec{u} e \vec{v} se, e somente se, existem números reais h e t tais que:

$$\overrightarrow{AP} = h\overrightarrow{u} + t\overrightarrow{v}$$



$$\overrightarrow{AP} = h\overrightarrow{u} + t\overrightarrow{v}$$

$$(x-x_0, y-y_0, z-z_0) = h(a_1, b_1, c_1) + t(a_2, b_2, c_2)$$

$$x = x_0 + a_1 h + a_2 t$$

$$y = y_0 + b_1 h + b_2 t$$

$$z = z_0 + c_1 h + c_2 t$$

Estas são as equações paramétricas do plano.

Quando h e t, denominados parâmetros, variam de $-\infty$ a $+\infty$, o ponto P percorre o plano π .

Ângulo entre dois planos

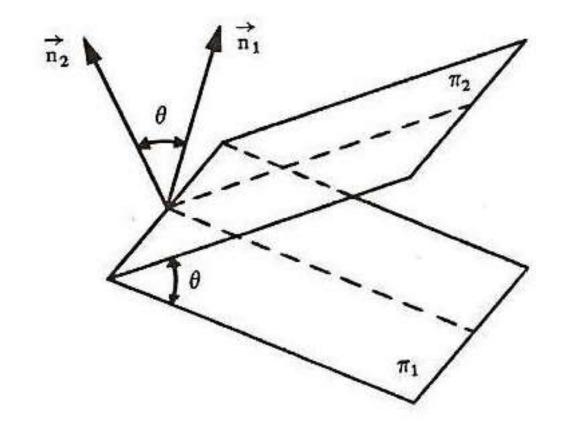
Sejam os planos:

$$\pi_1: a_1x + b_1y + c_1z + d_1 = 0$$

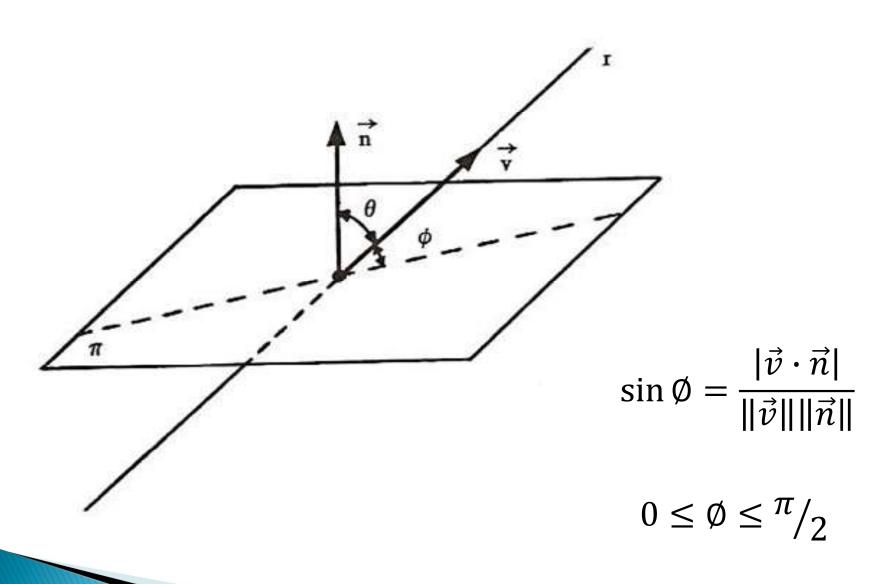
$$\pi_2$$
: $a_2x + b_2y + c_2z + d_2 = 0$

$$\cos \theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{\|\overrightarrow{n_1}\| \|\overrightarrow{n_2}\|}$$

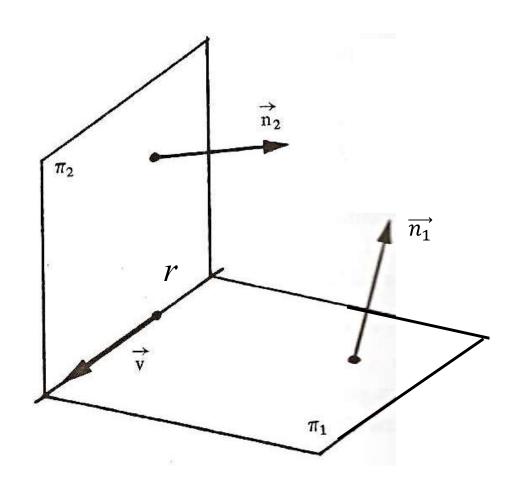
$$0 \le \theta \le \pi/2$$



Ângulo de uma reta com um plano



Interseção de dois planos



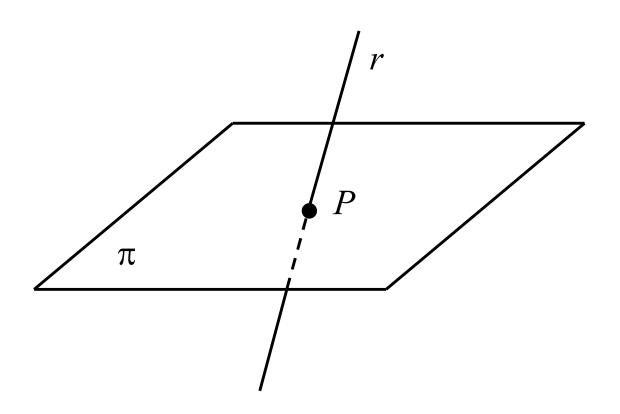
O conjunto de pontos formados pela interseção de dois planos, não paralelos, resulta em uma reta.

Exemplo:

$$\pi_1$$
: $5x-2y+z+7=0$

$$\pi_2$$
: $3x-3y+z+4=0$

Interseção de reta com plano



Exemplo:

$$\begin{array}{c}
 y = 2x + 3 \\
 z = 3x - 4
\end{array}$$

$$\pi$$
: $3x + 5y - 2z - 9 = 0$