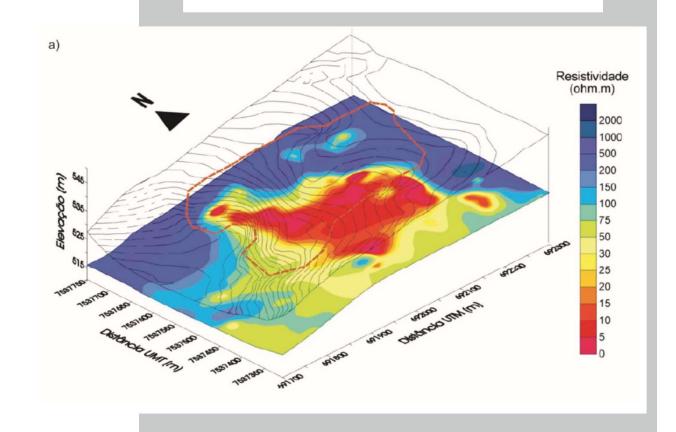

Exercício individual 4 (entrega 01/07/22)


• (1) Avaliar as análises químicas de água subterrânea do Aterro Sanitário de Bauru, usando a ferramenta dos mapas de contorno das concentrações de Cl, Fe, K e Ca.

• (2) Avaliar as análises químicas de água subterrânea do Aterro Sanitário de Bauru, usando a ferramenta dos mapas de contorno da razão DBO/DQO.

Exercício individual 5 (entrega 15/07/22)


Tendo em mente as análises químicas avaliadas nos exercícios anteriores, avalie agora a contaminação gerada pelo Aterro Sanitário de Bauru, usando a ferramenta dos mapas de contorno da resistividade medida em superfície (geofísica).

Exercício individual 6 (entrega 23/07/22)

Discutir vantagens e limitações das análises apresentadas nos exercícios 3, 4 e 5, quanto a avaliação e/ou caracterização da contaminação gerada por áreas de disposição de resíduos.

Well	GWL (m)	$\frac{ ho}{(\Omega m)}$	Chloride (mg/L)	Sulfate (mg/L)	Nitrate (mg/L)	Nitrite (mg/L)	COD (mg/L)	BOD (mg/L)	Total coliforms (UFC/100 mL)	E. Coli (UFC/100 mL)	Total Fe (mg/L)
P1	9.4	63.3	12.5	<1	0.25	0.002	16	2	2,200	230	2.98
P2	8.5	20.5	30.5	<1	0.19	0.002	32	4	900	4	1.64
P3	10.7	79.4	3.3	<1	1.2	0.002	14	2	1,400	10	0.27
P4	33.5	21.5	1.5	<1	0.97	0.004	21	4	4,600	116	0.62
P5A	7.2	32.2	4.2	9	0.88	0.44	21	4	13,400	30	0.27
P5B	8.0	44.8	4.2	<0	5.27	0.005	6	1	4,600	20	0.02
P7	8.5	39.5	19.3	<1	0.17	0.001	32	3	2,700	130	4.61
P8	8.0	39.1	15.2	<1	0.43	0.002	13	2	270	10	0.19
P9	8.0	62.5	2.2	<1	0.86	0.003	15	3	580	32	0.42

Metais tóxicos no ambiente

Andréa Teixeira Ustra

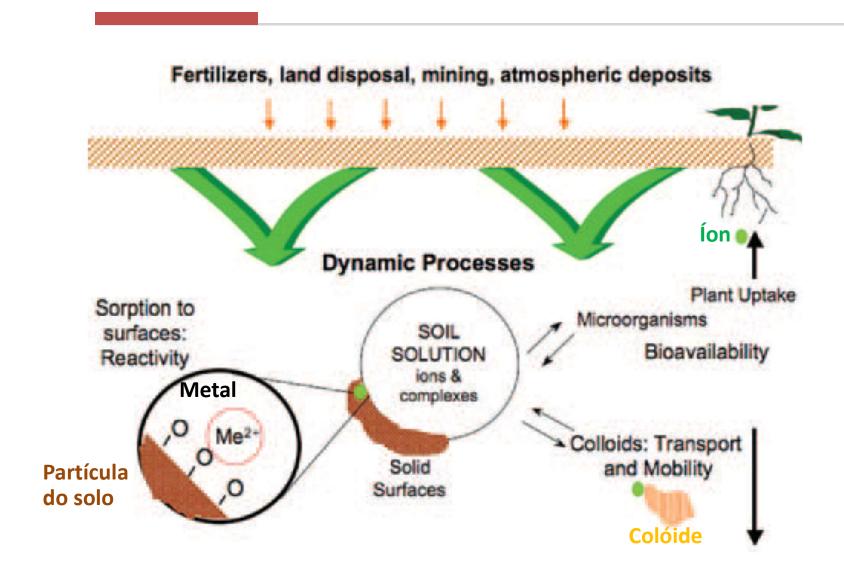
AGG 0201 Geoquímica de Ambientes Superficiais

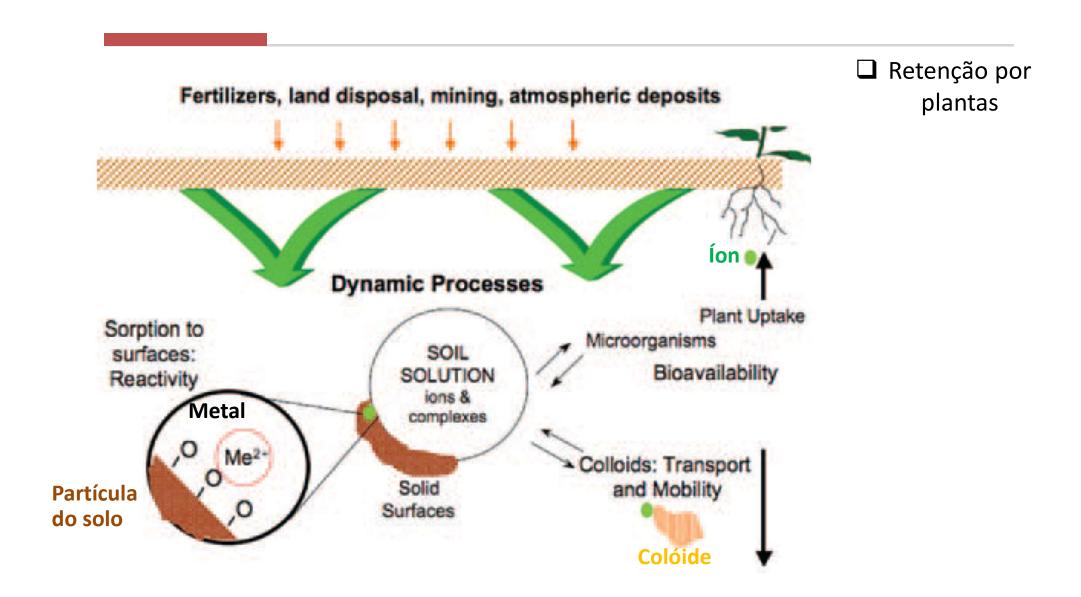
Metais no ambiente

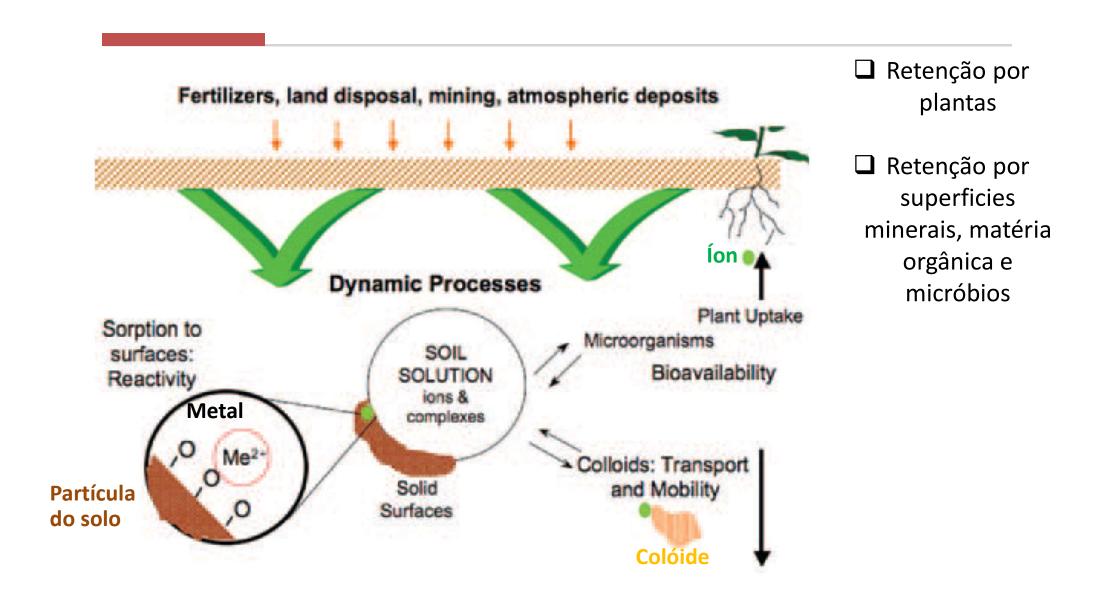
- Fundações da civilização (Au, Cu, Ag, Pb, Sn, Fe e Hg)
- Era industrial emissão e disposição de metais no ambiente
- Acúmulo em ambientes terrestres e aquáticos em altas concentrações – nocivo aos animais e humanos (ingestão via solo, alimento, água e ar)

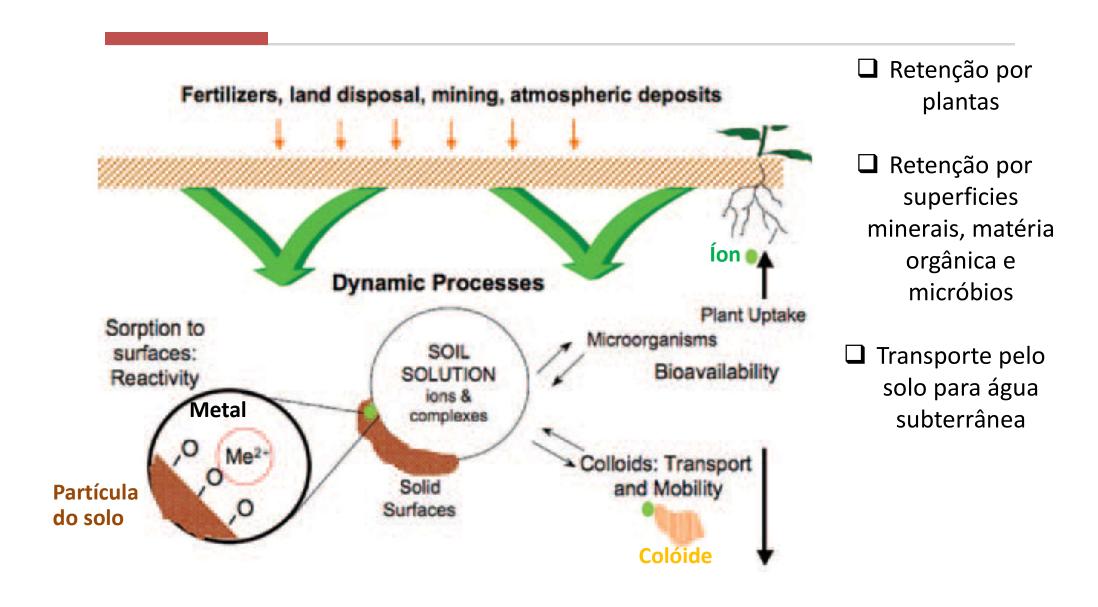
Element	Natural source or metallic minerals	Anthropogenic sources	Common forms in wastes	
Ag	Free metal (Ag), chlorargyrite (AgCl), acanthite (Ag ₂ S), copper, lead, zinc ores	Mining, photographic industry	Ag metal, Ag-CN complexes, Ag halides, Ag thiosulfates	
As	Metal arsenides and arsenates, sulfide ores (arsenopyrite), arsenolite (As ₂ O ₃), volcanic gases, geothermal springs	Pyrometallurgical industry, spoil heaps and tailings, smelting, wood preserving, fossil fuel combustion, poultry manure, pesticides, landfills	As oxides (oxyanions), organo-metallic forms, H ₂ AsO ₃ CH ₃ (methylarsinic acid), (CH ₃) ₂ -AsO ₂ H (dimethylarsinic acid)	
Ве	Beryl (Be ₃ Al ₂ Si ₆ O ₁₈), phenakite (Be ₂ SiO ₄)	Nuclear industry, electronics industry	Be alloys, Be metal, Be(OH) ₂	
Cd	Zinc carbonate and sulfide ores, copper carbonate and sulfide	Mining and smelting, metal finishing, plastic industry, microlectronics, battery manufacture, landfills and refuse disposal, phosphate fertilizer, sewage sludge, metal scrapheaps	Cd ²⁺ ions, Cd halides and oxides, Cd–CN complexes, Cd(OH) ₂ sludge	
Cr	Chromite (FeCr ₂ O ₄), eskolaite (Cr ₂ O ₃)	Metal finishing, plastic industry, wood treatment refineries, pyrometallurgical industry, landfills, scrapheaps	Cr metal, Cr oxides (oxyanions), Cr ³⁺ complexes with organic/inorganic ligands	
Cu	Native metal (Cu), chalcocite (Cu ₂ S), chalcopyrite (CuFeS ₂),	Mining and smelting, metal finishing, microelectronics, wood treatment, refuse disposal and landfills, pyrometallurgical industry, swine manure, pesticides, scrapheaps, mine drainage	Cu metal, Cu oxides, Cu humic complexes, alloys, Cu ions	
Hg	Native metal (Hg), cinnabar (HgS), degassed from Earth's crust and oceans	Mining and smelting, electrolysis industry, plastic industry, refuse disposal/landfills, paper/pulp industry, fungicides	Organo-Hg complexes, Hg halides and oxides, Hg ²⁺ , (Hg ₂) ²⁺ , Hg ⁰	

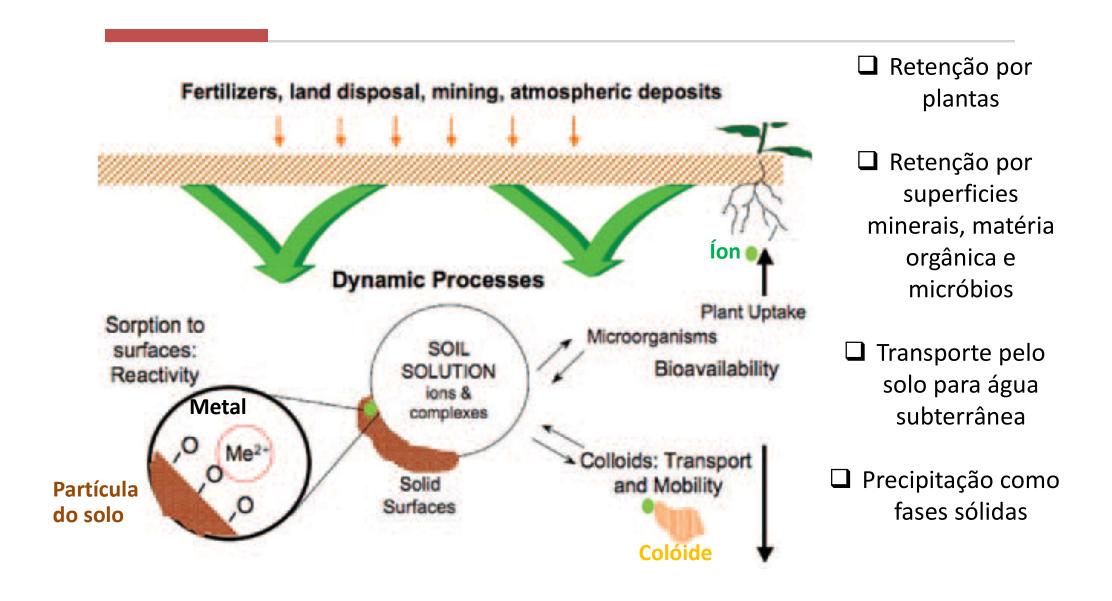
Element	Natural source or metallic minerals	Anthropogenic sources	Common forms in wastes	
Ni	Ferromagnesian minerals, ferrous sulfide ores, pentlandite	Iron and steel industry, mining and smelting, metal finishing, microelectronics, battery manufacture	Ni metal, Ni ²⁺ ions, Ni amines, alloys	
Pb	Galena (PbS)	Mining and smelting, iron and steel industry, refineries, paint industry, automobile exhaust, plumbing, battery manufacture, sewage sludge, refuse disposal and landfills, pesticides, scrapheaps	Pb metal, Pb oxides and carbonates, Pb-metal-oxyanion complexes	
Sb	Stibnite (Sb ₂ S ₃), geothermal springs	Microelectronics, pyrometallurgical industry, smelting, mine drainage	Sb ³⁺ ions, Sb oxides and halides	
Se	Free element (Se), ferroselite (FeSe ₂), uranium deposits, black shales, chalcopyrite– pentlandite–pyrrhotite deposits	Smelting, fossil fuel combustion, irrigation waters	Se oxides (oxyanions), Se-organic complexes	
TI	Copper, lead, silver residues	Pyrometallurgical industry, microelectronics, cement industry	TI halides, TI-CN complexes	
Zn	Sphalerite (ZnS), willemite (Zn ₂ SiO ₄), smithsonite (ZnCO ₃)	Mining and smelting, metal finishing, textile, microelectronics, refuse disposal and landfills, pyrometallurgical industry, sewage sludge, pesticides, scrapheaps	Zn metal, Zn ²⁺ ions, Zn oxides and carbonates, alloys	

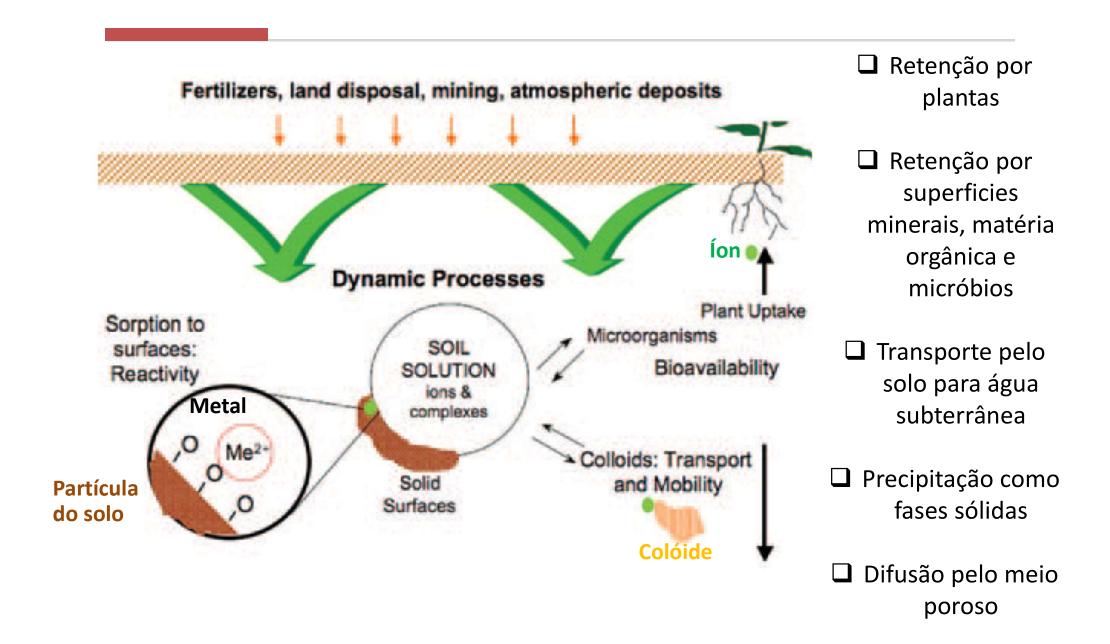

Metais no ambiente

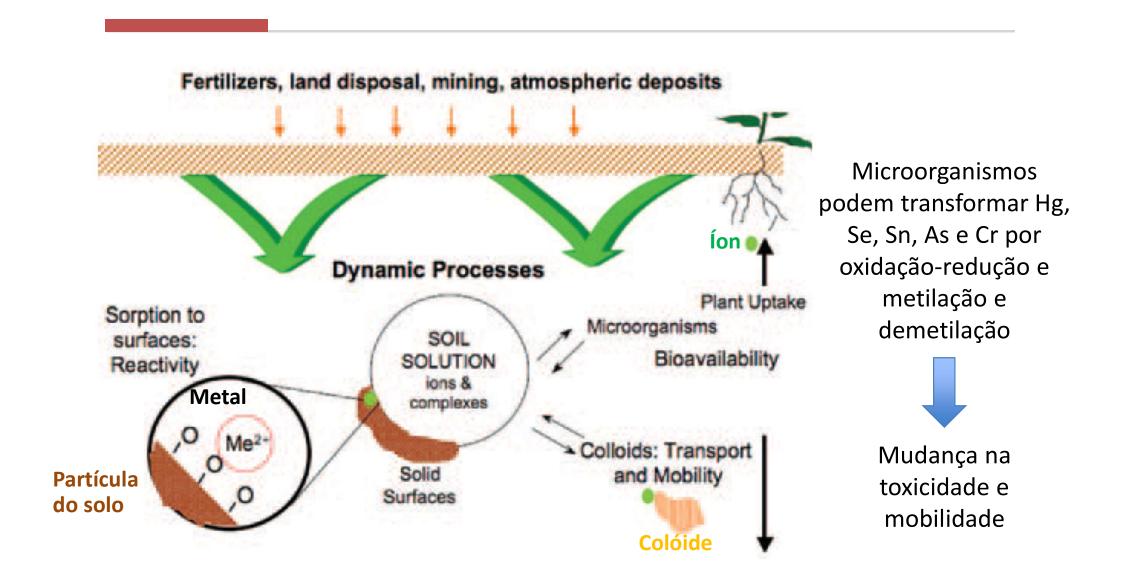

 Diversos processos biogeoquímicos envolvendo argilas, óxidos e hidróxidos metálicos, raízes, micróbios, substâncias húmicas

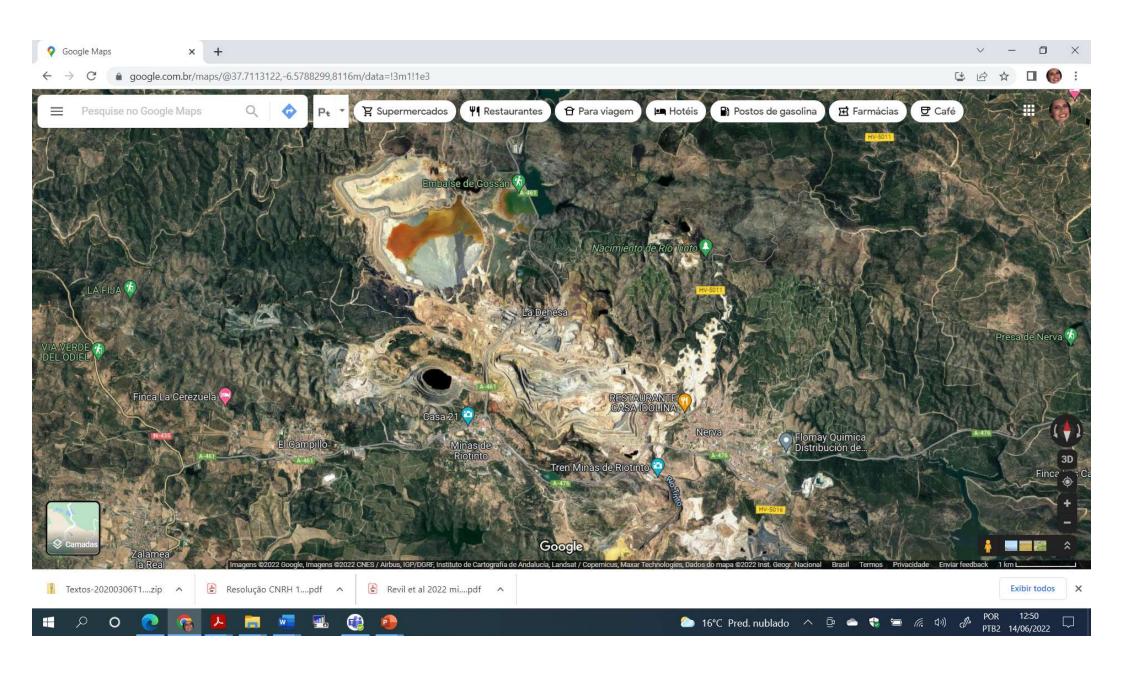

 Esses processos controlam sua solubilidade, mobilidade, biodisponibilidade e toxicidade no ambiente

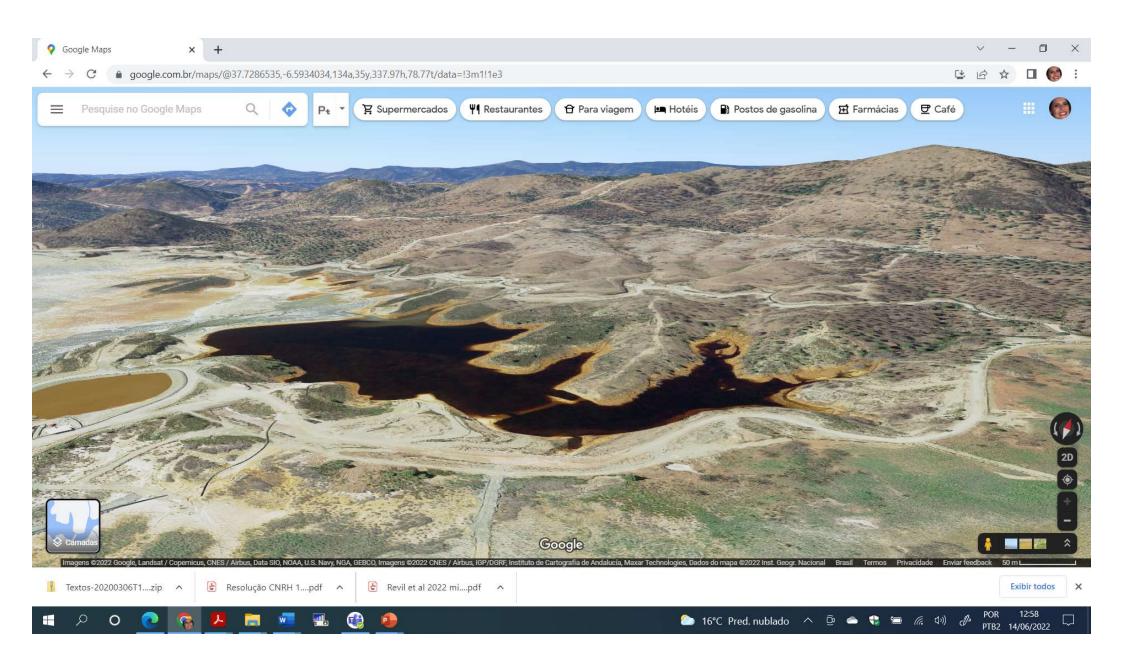

Metais nos sistemas biológicos

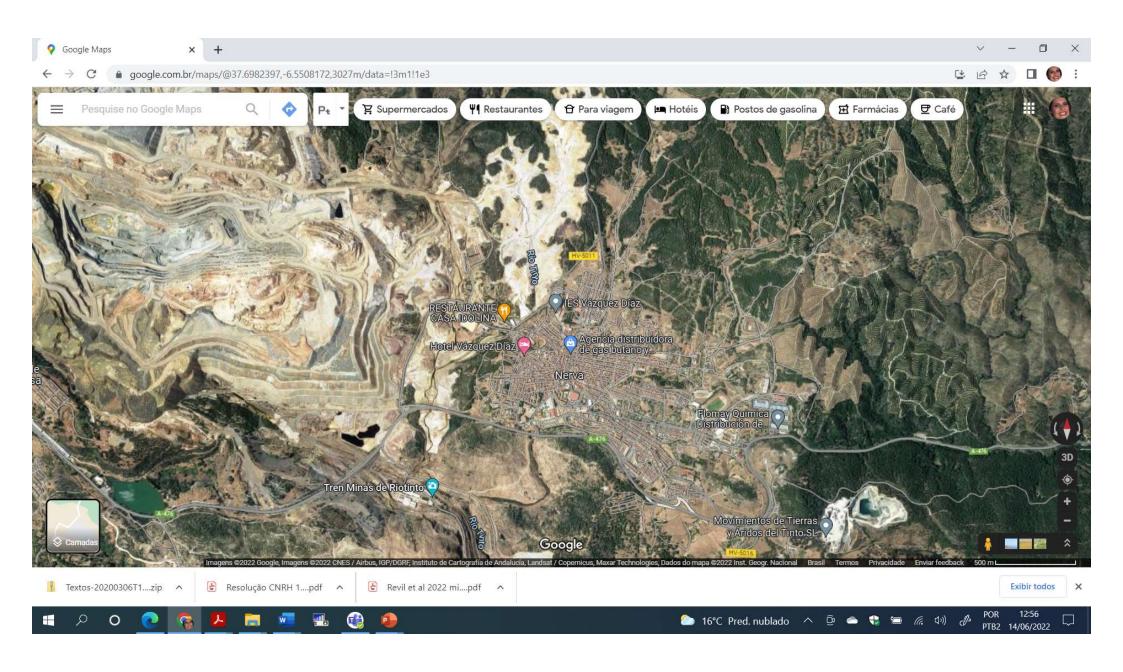

- Alguns metais são esenciais para plantas, animais e humanos
- Micronutrientes para plantas (B, Cu, Fe, Zn, Mn e Mo)
- Nutrição animal (As, Co, Cr, Ni, Se, Sn e V)
- Micronutrientes pouca quantidade (diferentemente de N, P e K)
- Tóxicos em excesso
- Limitante em deficiência

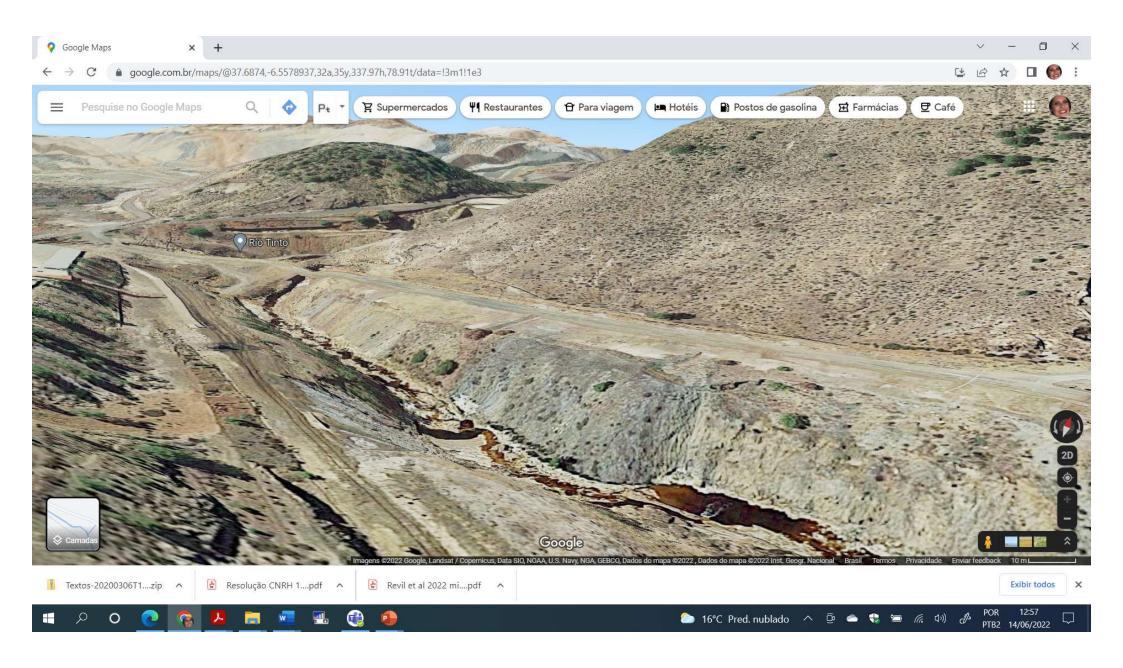


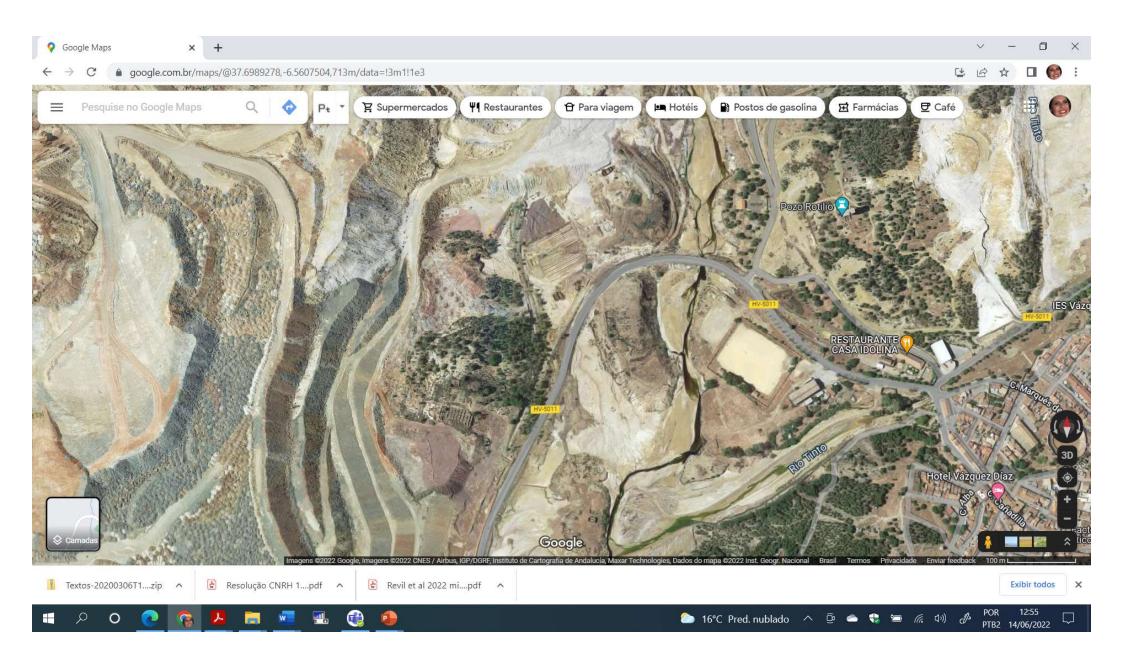


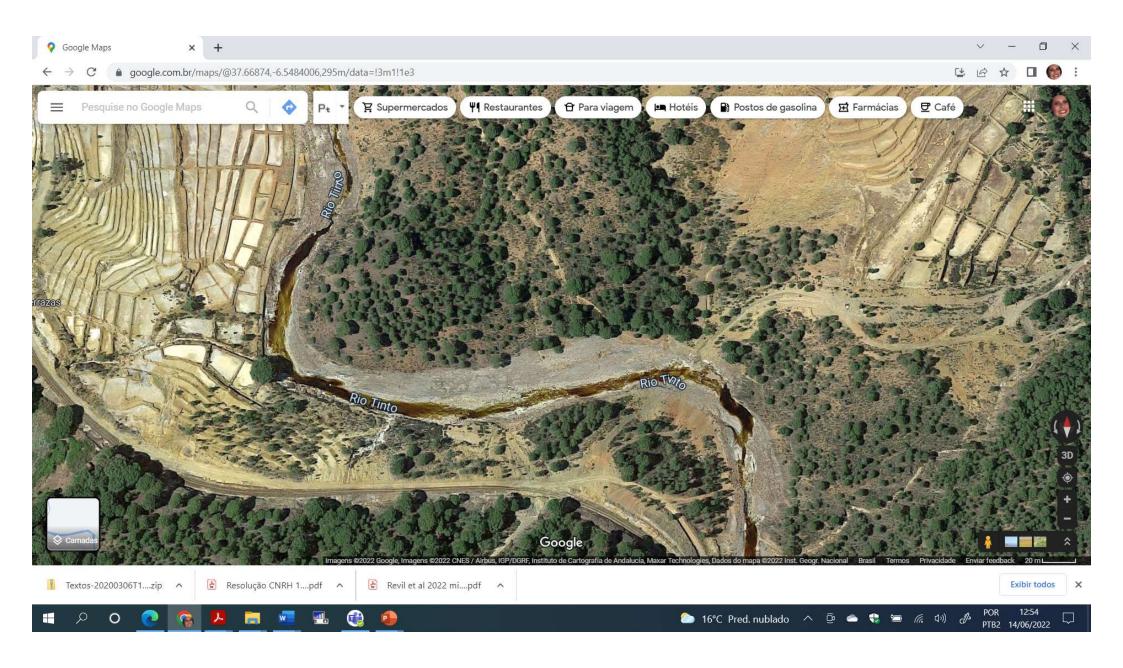


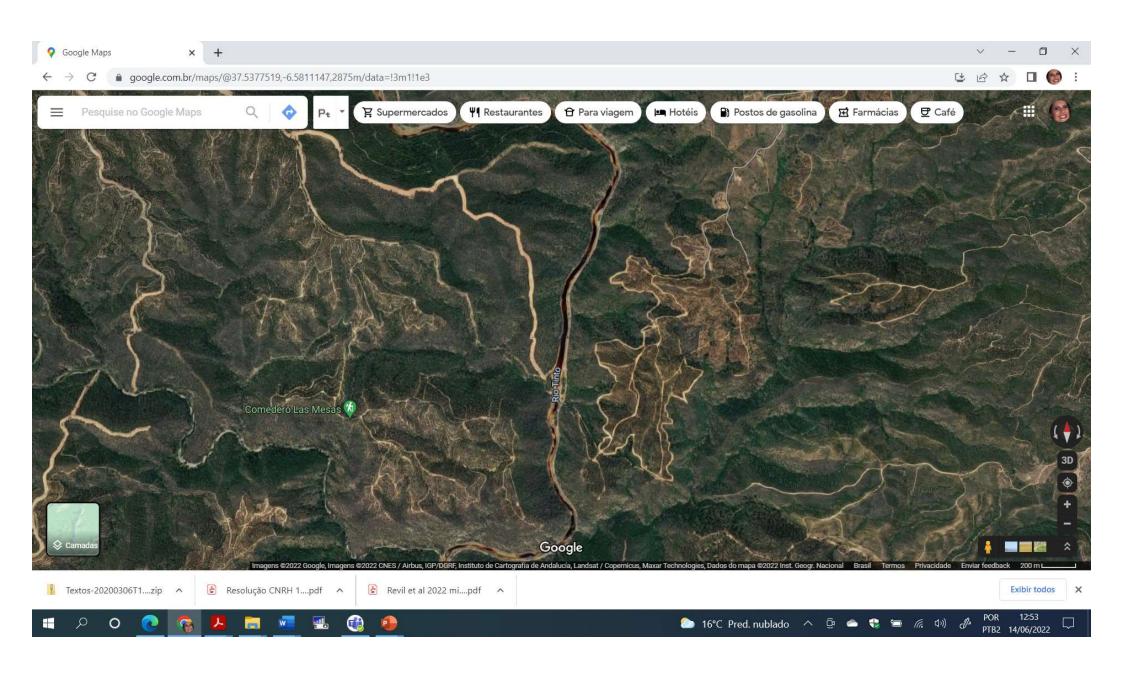


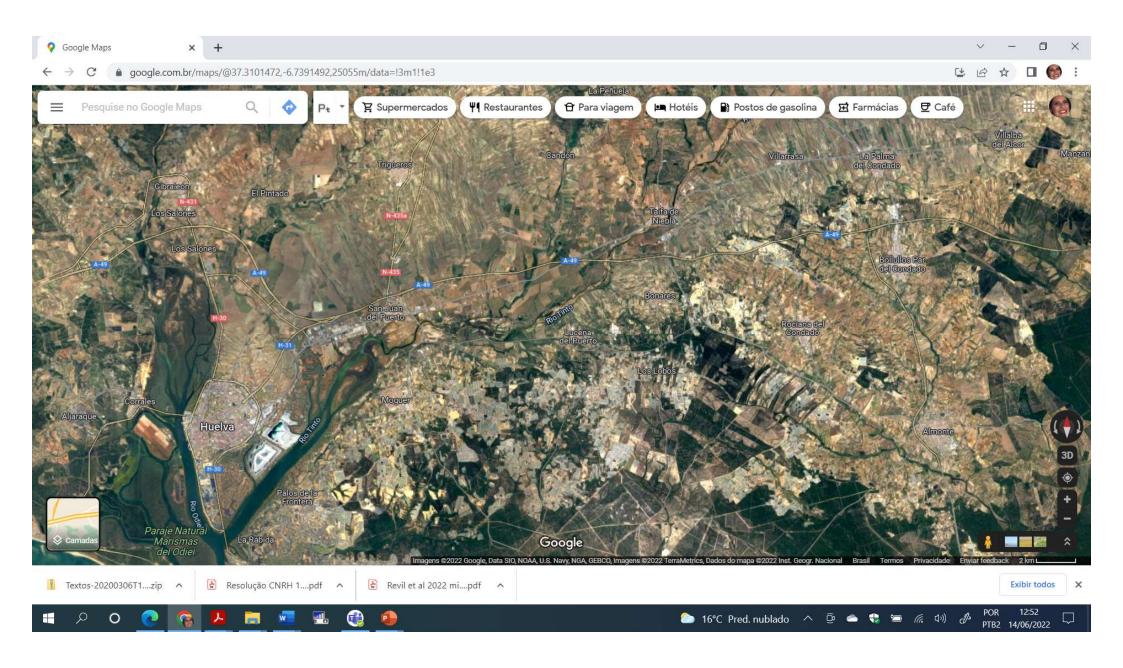



E quanto as fontes de metais

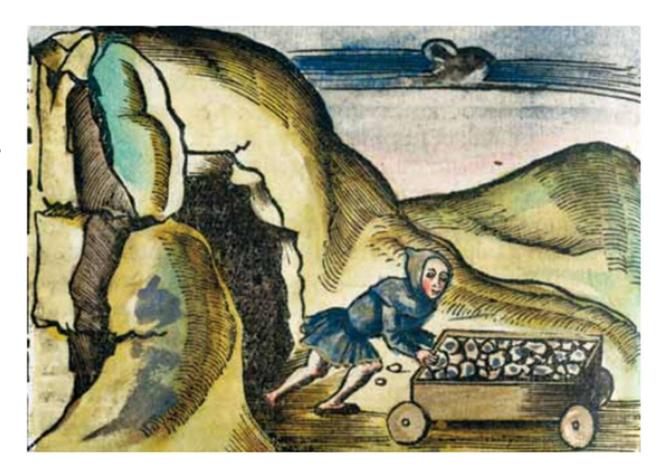

- Exemplo: Minas Riotinto
- Intemperismo natural e pelo menos 5000 anos de mineração de depósitos de sulfetos → natural acid rock drainage (NARD) e AMD → rio vermelho e ácido (pH = ~1.7-2) → 60 km a jusante da área
- Input constante de rejeitos mantem o pH tão baixo, além de microrganismos oxidam a pirita (FeS) e dissolução de sulfatos







Rejeitos de minas: Passado, presente e futuro


Materias que não tem mais valor econômico

 Volumes grandes, frequentemente com alta concentração dos elementos e compostos nocivos ao meio ambiente

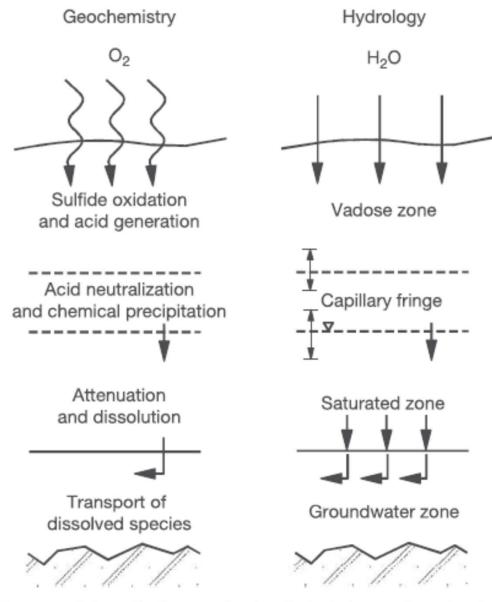
Passado

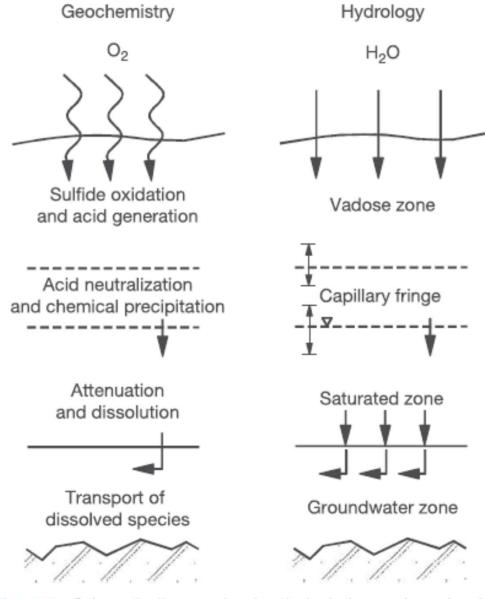
- Humanidade sempre explorou metais para uso, energia e construção
- Exploração de metais
 → riquezas . Ex "Idade
 do ouro" da espanha
 nos séculos 16 e 17 foi
 construída pela
 extração de ouro e
 prata de minas nas
 Americas

"Mining for Metal"

Presente

- Exploração mineral → produção de grandes quantidades de resíduos sólidos e liquídos → legado ambiental global
- Resíduos podem conter As, Pb, Cn em concentrações de risco ambiental
- Acid mine drainage (AMD) = resíduos líduidos ácidos, tem grande impacto ambiental – um dos maiores desafios ambientais da industria de mineração




Figure 9 Schematic diagram showing the hydrology and geochemistry of a decommissioned min-tailings impoundment. Reproduced with permission from Blowes DW and Ptacek CJ (1994) Acid-neutralization mechanisms in inactive mine tailings. In: Blowes DW and Jambor JL (eds.) The Environmental Geochemistry of Sulfide Mine-Wastes, vol. 22, pp. 271–292. Nepean, ON: Mineralogical Association of Canada.

Drenagem Ácida de Mina (DAM)

Solução ácida enriquecida em íons dissolvidos, especialmente em metais, cuja redução do pH ocorre em função da oxidação de minerais sulfetados e posterior formação de ácido sulfúrico

Processo natural - equilíbrio entre os sistemas hidrológico e geológico

Mineração – intensifica a oxidação dos sulfetos pela maior disponibilidade de oxigênio e infiltração de água em pilhas de rejeito

Figure 9 Schematic diagram showing the hydrology and geochemistry of a decommissioned min-tailings impoundment. Reproduced with permission from Blowes DW and Ptacek CJ (1994) Acid-neutralization mechanisms in inactive mine tailings. In: Blowes DW and Jambor JL (eds.) *The Environmental Geochemistry of Sulfide Mine-Wastes*, vol. 22, pp. 271–292. Nepean, ON: Mineralogical Association of Canada.

$$FeS_2(s) + \frac{7}{2}O_2 + H_2O \rightarrow Fe^{2+} + 2SO_4^{2-} + 2H^+$$
 [1] Oxidação da pirita

$$Fe^{2+} + \frac{1}{4}O_2 + H^+ \rightarrow Fe^{3+} + \frac{1}{2}H_2O$$
 [2]

Fe(III) oxyhydroxides such as ferrihydrite (nominally $5\text{Fe}_2\text{O}_3\cdot 9\text{H}_2\text{O}$) may precipitate:

$$Fe^{3+} + 3H_2O \rightarrow Fe(OH)_3 + 3H^+$$
 [3]

where $Fe(OH)_3$ is a surrogate for ferrihydrite. Adding eqns [1]–[3] yields the overall reaction:

$$FeS_{2}(s) + \frac{15}{4}O_{2(aq)} + \frac{7}{2}H_{2}O_{(aq)}$$

$$\rightarrow 2SO_{4}^{2-} + Fe(OH)_{3(s)} + 4H^{+}_{(aq)}$$
[4]

This overall reaction results in the release of four moles of H⁺ for each mole of pyrite oxidized.

$$4\text{FeAsS} + 11\text{O}_2 + 6\text{H}_2\text{O} \Rightarrow 4\text{Fe}^{2+} + 4\text{H}_3\text{AsO}_3 + 4\text{SO}_4^{2-}$$
 [18]

$$2H_3AsO_3 + O_2 = 2HAsO_4^{2-} + 4H^+$$
 [19]

$$2H_3AsO_3 + O_2 = 2H_2AsO_4^- + 2H^+$$
 [20]

In natural oxygenated environments, galena will weather to anglesite, which is weakly soluble below pH 6 (Lin, 1997; Shapter et al., 2000):

$$PbS_{(s)} + 2O_{2(aq)} \Rightarrow Pb_{(aq)}^{2+} + SO_4^{2-}{}_{(aq)}$$
 [13]

$$Pb_{(aq)}^{2+} + SO_4^{2-}{}_{(aq)} \Rightarrow PbSO_{4(s)}$$
 [14]

$$PbS + 8Fe^{3+} + 4H_2O \Rightarrow 8H^+ + SO_4^{2-} + Pb^{2+} + 8Fe^{2+}$$
 [15]

$$FeS_2(s) + \frac{7}{2}O_2 + H_2O + Fe^{2+} + 2SO_4^{2-} + 2H^+$$
 [1]

$$Fe^{2+} + \frac{1}{4}O_2 + H^+ \to Fe^{3+} + \frac{1}{2}H_2O$$
 [2]

Fe(III) oxyhydroxides such as ferrihydrite (nominally $5\text{Fe}_2\text{O}_3\cdot 9\text{H}_2\text{O}$) may precipitate:

$$Fe^{3+} + 3H_2O \rightarrow Fe(OH)_3 + 3H^+$$
 [3]

where $Fe(OH)_3$ is a surrogate for ferrihydrite. Adding eqns [1]–[3] yields the overall reaction:

$$FeS_{2}(s) + \frac{15}{4}O_{2(aq)} + \frac{7}{2}H_{2}O_{(aq)}$$

$$\rightarrow 2SO_{4}^{2-} + Fe(OH)_{3(s)} + 4H^{+}_{(aq)}$$
[4]

This overall reaction results in the release of four moles of H⁺ for each mole of pyrite oxidized.

$$4\text{FeAsS} + 11\text{O}_2 + 6\text{H}_2\text{O} \Rightarrow 4\text{Fe}^{2+} + 4\text{H}_3\text{AsO}_3 + 4\text{SO}_4^{2-}$$
 [18]

$$2H_3AsO_3 + O_2 = 2HAsO_4^{2-} + 4H^+$$
 [19]

$$2H_3AsO_3 + O_2 = 2H_2AsO_4^- + 2H^+$$
 [20]

In natural oxygenated environments, galena will weather to anglesite, which is weakly soluble below pH 6 (Lin, 1997; Shapter et al., 2000):

$$PbS_{(s)} + 2O_{2(aq)} \Rightarrow Pb_{(aq)}^{2+} + SO_4^{2-}{}_{(aq)}$$
 [13]

$$Pb_{(aq)}^{2+} + SO_4^{2-}{}_{(aq)} \Rightarrow PbSO_{4(s)}$$
 [14]

$$PbS + 8Fe^{3+} + 4H_2O \Rightarrow 8H^+ + SO_4^{2-} + Pb^{2+} + 8Fe^{2+}$$
 [15]

$$FeS_2(s) + \frac{7}{2}O_2 + H_2O \rightarrow Fe^{2+} + 2SO_4^{2-} + 2H^+$$
 [1]

$$Fe^{2+} + \frac{1}{4}O_2 + H^+ \rightarrow Fe^{3+} + \frac{1}{2}H_2O$$
 [2] Ação microbiana \rightarrow oxidação do ferro

Fe(III) oxyhydroxides such as ferrihydrite (nominally 5Fe₂O₃·9H₂O) may precipitate: Drenagem ácida

$$Fe^{3+} + 3H_2O \rightarrow Fe(OH)_3 + 3H^+$$
 [3]

where $Fe(OH)_3$ is a surrogate for ferrihydrite. Adding eqns [1]–[3] yields the overall reaction:

$$FeS_{2}(s) + \frac{15}{4}O_{2(aq)} + \frac{7}{2}H_{2}O_{(aq)}$$

$$\rightarrow 2SO_{4}^{2-} + Fe(OH)_{3(s)} + 4H^{+}_{(aq)}$$
[4]

This overall reaction results in the release of four moles of H⁺ for each mole of pyrite oxidized.

 $4\text{FeAsS} + 11\text{O}_2 + 6\text{H}_2\text{O} \Rightarrow 4\text{Fe}^{2+} + 4\text{H}_3\text{AsO}_3 + 4\text{SO}_4^{2-}$ [18]

$$2H_3AsO_3 + O_2 = 2HAsO_4^{2-} + 4H^+$$
 [19]

$$2H_3AsO_3 + O_2 = 2H_2AsO_4^- + 2H^+$$
 [20]

In natural oxygenated environments, galena will weather to anglesite, which is weakly soluble below pH 6 (Lin, 1997; Shapter et al., 2000):

$$PbS_{(s)} + 2O_{2(aq)} \Rightarrow Pb_{(aq)}^{2+} + SO_4^{2-}{}_{(aq)}$$
 [13]

$$Pb_{(aq)}^{2+} + SO_4^{2-}{}_{(aq)} \Rightarrow PbSO_{4(s)}$$
 [14]

$$PbS + 8Fe^{3+} + 4H_2O \Rightarrow 8H^+ + SO_4^{2-} + Pb^{2+} + 8Fe^{2+}$$
 [15]

$$FeS_2(s) + \frac{7}{2}O_2 + H_2O \rightarrow Fe^{2+} + 2SO_4^{2-} + 2H^+$$
 [1] Oxidação da pirita

$$Fe^{2+} + \frac{1}{4}O_2 + H^+ \rightarrow Fe^{3+} + \frac{1}{2}H_2O$$
 [2]

Fe(III) oxyhydroxides such as ferrihydrite (nominally $5\text{Fe}_2\text{O}_3\cdot 9\text{H}_2\text{O}$) may precipitate:

$$Fe^{3+} + 3H_2O \rightarrow Fe(OH)_3 + 3H^+$$
 [3]

where $Fe(OH)_3$ is a surrogate for ferrihydrite. Adding eqns [1]–[3] yields the overall reaction:

$$FeS_2(s) + \frac{15}{4}O_{2(aq)} + \frac{7}{2}H_2O_{(aq)}$$
 Intensificação da
 $\rightarrow 2SO_4^{2-} + Fe(OH)_{3(s)} + 4H^+_{(aq)}$ [4]

This overall reaction results in the release of four moles of H⁺ for each mole of pyrite oxidized.

$$2H_3AsO_3 + O_2 = 2HAsO_4^{2-} + 4H^+$$
 [19]

$$2H_3AsO_3 + O_2 = 2H_2AsO_4^- + 2H^+$$
 [20]

In natural oxygenated environments, galena will weather to anglesite, which is weakly soluble below pH 6 (Lin, 1997; Shapter et al., 2000):

$$PbS_{(s)} + 2O_{2(aq)} \Rightarrow Pb_{(aq)}^{2+} + SO_4^{2-}{}_{(aq)}$$
 [13]

$$Pb_{(aq)}^{2+} + SO_4^{2-}{}_{(aq)} \Rightarrow PbSO_{4(s)}$$
 [14]

$$PbS + 8Fe^{3+} + 4H_2O \Rightarrow 8H^+ + SO_4^{2-} + Pb^{2+} + 8Fe^{2+}$$
 [15]

$$FeS_2(s) + \frac{7}{2}O_2 + H_2O \rightarrow Fe^{2+} + 2SO_4^{2-} + 2H^+$$
 [1]

$$Fe^{2+} + \frac{1}{4}O_2 + H^+ \to Fe^{3+} + \frac{1}{2}H_2O$$
 [2]

Fe(III) oxyhydroxides such as ferrihydrite (nominally $5Fe_2O_3\cdot 9H_2O$) may precipitate:

$$Fe^{3+} + 3H_2O \rightarrow Fe(OH)_3 + 3H^+$$
 [3]

where $Fe(OH)_3$ is a surrogate for ferrihydrite. Adding eqns [1]–[3] yields the overall reaction:

$$FeS_{2}(s) + \frac{15}{4}O_{2(aq)} + \frac{7}{2}H_{2}O_{(aq)}$$

$$\rightarrow 2SO_{4}^{2-} + Fe(OH)_{3(s)} + 4H^{+}_{(aq)}$$
[4]

This overall reaction results in the release of four moles of H⁺ for each mole of pyrite oxidized.

Arsênio acompanha

$$4\text{FeAsS} + 11\text{O}_2 + 6\text{H}_2\text{O} \Rightarrow 4\text{Fe}^{2+} + 4\text{H}_3\text{AsO}_3 + 4\text{SO}_4^{2-}$$
 [18]

$$2H_3AsO_3 + O_2 = 2HAsO_4^{2-} + 4H^+$$
 [19]

$$2H_3AsO_3 + O_2 = 2H_2AsO_4^- + 2H^+$$
 [20]

Chumbo também

In natural oxygenated environments, galena will weather to anglesite, which is weakly soluble below pH 6 (Lin, 1997; Shapter et al., 2000):

$$PbS_{(s)} + 2O_{2(aq)} \Rightarrow Pb_{(aq)}^{2+} + SO_4^{2-}{}_{(aq)}$$
 [13]

$$Pb_{(aq)}^{2+} + SO_4^{2-}{}_{(aq)} \Rightarrow PbSO_{4(s)}$$
 [14]

$$PbS + 8Fe^{3+} + 4H_2O \Rightarrow 8H^+ + SO_4^{2-} + Pb^{2+} + 8Fe^{2+}$$
 [15]

Associação dos elementos

Licht, 1998. Prospecção geoquímica: Princípios, técnicas e métodos. CPRM

Associações Plutônicas
Rochas ultramáficas
Cr, Co, Ni, Cu
Rochas máficas
Ti, V, Sc

Rochas alcalinas Ti, Nb, Ta, Zr, ETR, F, P
Carbonatitos ETR, Ti, Nb, Ta, P, F

Rochas graníticas Ba, Li, W, Mn, Sn, Zr, Hf, U, Th, Ti Pegmatitos Li, Rb, Cs, Be, ETR, Nb, Ta, U, Th, Zr, Hf

Mineralizações Hidrotermais

Depósitos de Cu-pórfiro Cu, Mo, Re

Sulfetos complexos Hg, As, Sb, Se, Ag, Zn, Cd, Pb

Sulfetos de baixa temperatura

Bi, Sb, As

Metais básicos

Pb, Zn, Cd, Ba

Metais preciosos

Au, Ag, Cu, Co, As

Metais preciosos (ultramáficas)

Ni, Cu, Pt, Co

Metamorfismo de Contato

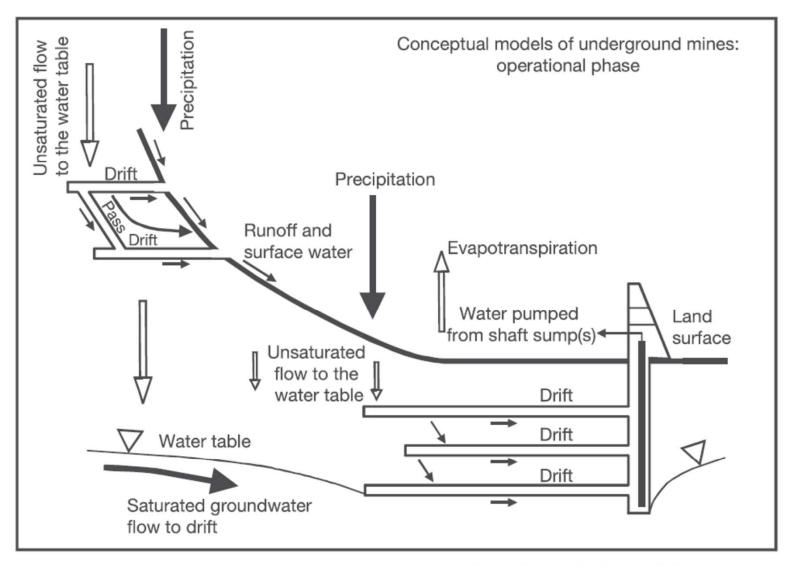
Scheelita-cassiterita W, Sn, Mo Fluorita-helvita Be, F, B

Associações Sedimentares

Folhelhos negros U, Cu, Pb, Zn, Cd, Ag, Au, V, Mo, Ni, As

Fosforitas U, V, Mo, Ni, Ag, Pb, F, ETR Evaporitos Li, Rb, Cs, Sr, Br, I, B

Lateritas Ni, Cr, óxidos de Mn, Co, W, As, Ba, P, Nb, Ti, ETR


Red beds continentais

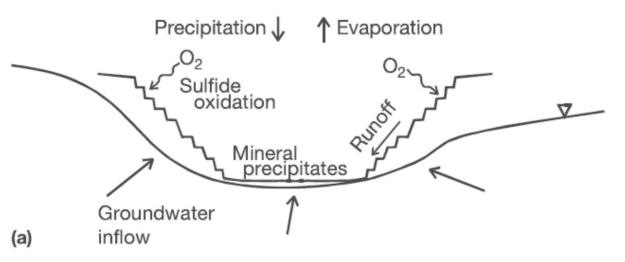
U, V, Se, As, Mo, Cu, Pb
Red beds vulcanogênicos

Cu, Pb, Zn, Ag, V, Se
Bauxita

Nb, Ti, Ga, Be, Zn

Minas subterrâneas

Figure 4 Schematic diagram showing underground mine workings. Modified from Morin KA and Hutt NM (1997) *Environmental Geochemistry of Minesite Drainage: Practical Theory and Case Studies.* Vancouver, BC: MDAG Publishing.


The Deepest Gold Mine in the World: Mponeng Mine

Mais de 4 Km de profundidade Temperatura atinge 65 oC

Cavas abertas

Operational period

Postoperational period

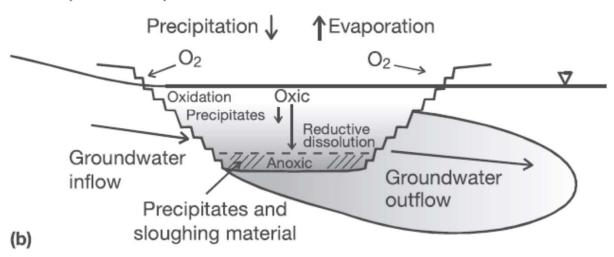
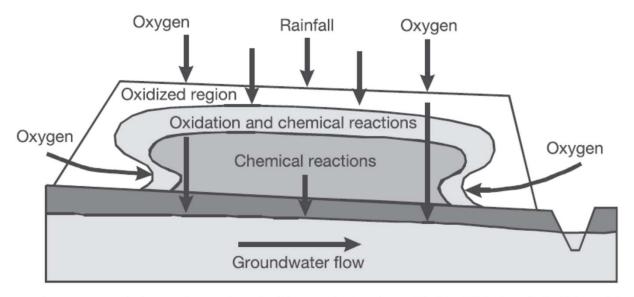
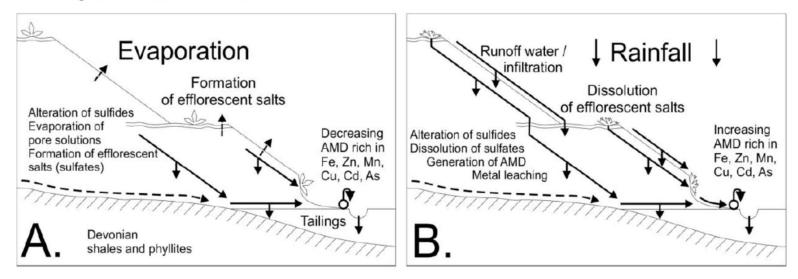



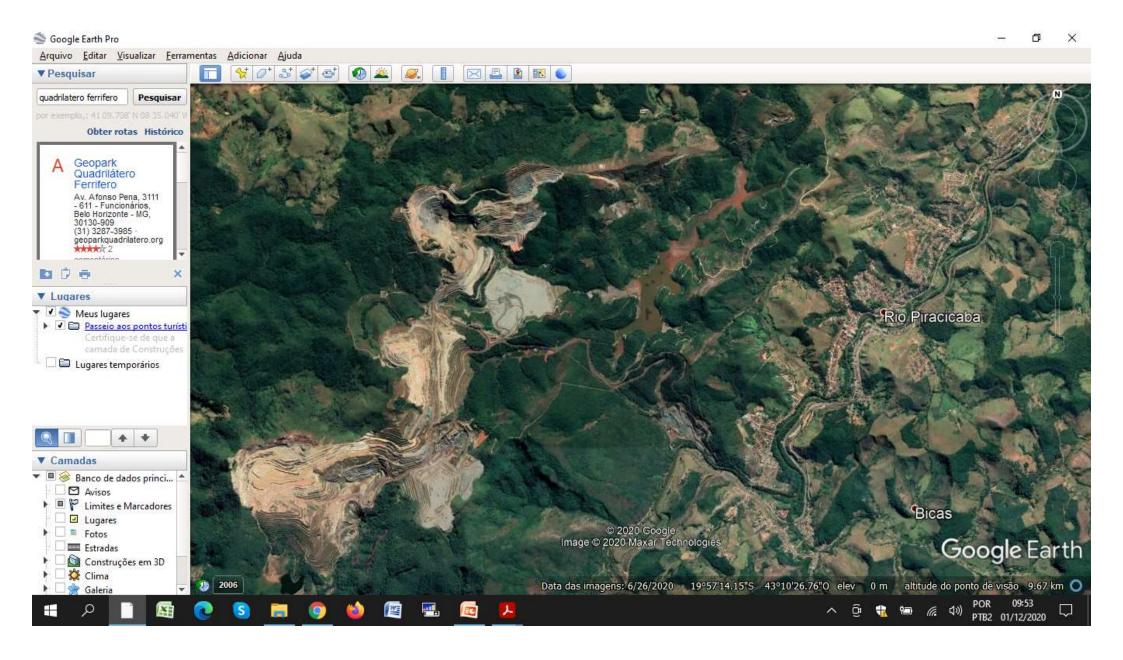
Figure 5 Schematic diagram of an open-pit mine during and after operation. Modified from Eary and Castendyk (1999).


Mina de Cobre - Chuquicamata, Chile

Pilhas de rejeitos

Figure 6 Schematic diagram of a waste-rock dump. Reproduced with permission from Ritchie AIM (1994) Sulfide oxidation mechanisms: Controls and rates of oxygen transport. In: Blowes DW and Jambor JL (eds.) *The Environmental Geochemistry of Sulfide Mine-Wastes*, vol. 22, pp. 201–246. Nepean, ON: Mineralogical Association of Canada.

Figure 2: Element transport at the Excelsior waste rock dump. A: during the dry season; B: during the wet season


Barragens

Quais são os riscos:

Contaminação do ar e solo, águas superficiais e subterrâneas

Rompimento (mais de 70 rompimentos de grande escala desde 1970)

Brasil

2 people clipped this slide

BARRAGEM I CÓRREGO DO FEIJÃO

RESOLUÇÃO CNRH Nº 143

CATEGORIA DE RISCO	DANO POTENCIAL ASSOCIADO		
	ALTO	MEDIO	BAIRO
ALTO	A.	- 6	- 0
MEDIO		C	D
BAIRD	- 0	D	- 1

DN COPAM Nº 87

CLASSE III

Finalidade: Disposição de Rejeitos Localização: Município de Brumadinho

Empresa Projetista: B. Inicial: ChristophErb; 1° e 2° Alteam.: Tecnosan; 3° Alteam.: Riad Chammas; 4" ao 8° Alteam.

Tecnosolo: 9" e 10" Alteam. Geoconsultoria.

Método Construtivo: Alteamento Montante (solo compactado e rejeito)

Data da Construção: 1976 (alteamentos de 1982 à 2013)

Altura da Barragem: 87 m

Comprimento da Crista: 694,0 m Área do reservatório: 258.605,14 m³

Volume do reservatório: 12,7 Mm³ : Volume Remanescente: 735,554 m² (nov/2015)

Vertedouro: Operacional, TR 1,000 anos. Estrutura em torre, com galería de fundo e canal a céu aberto

Tabela 8- Niveis de resposta por situação - PAE

NÍVEL DE RESPOSTA	SITUAÇÃO
VERDE	Situações de incidente declarado ou previsível, com as seguintes características: i) serem estáveis ou que se desenvolvam muito lentamente no tempo; ii)poderem ser controladas pelo Empreendedor; iii) poderem ser ultrapassadas sem consequências nocivas no vale a jusante.
AMARELO	Situações que impõem um estado de atenção na barragem e/ou no vale a jusante, inclusive no caso em que a magnitude da vazão afluente ao reservatório exija a liberação de vazão efluente superior às condições de restrição a jusante (cotas ou vazões limites impostas para evitar inundação de habitações ou infraestruturas importantes). As características principais são: i) a situação tende a progredir lentamente, permitindo a realização de estudos para apoio à tomada de decisão; ii) existe a convicção de ser possível controlar a situação, embora o coordenador do PAE posa vir a necessitar de assistência especial de entidades externas; iii) existe a possibilidade de a situação se agravar e de se desenvolverem efeitos perigosos no vale a jusante sobre pessoas e bens.
LARANJA	Situações que impõem um estado de alerta geram na barragem. As características principais deste nível de resposta são as seguintes: i) a situação tende a progredir rapidamente, podendo não existir tempo disponível para a realização de estudos para apoio à tomada de decisão; ii) admite-se não ser possível controlar o acidente, tornando-se indispensável a intervenção de entidades externas; iii) existe a possibilidade de a situação se agravar com a ocorrência de consequências muito graves no vale a jusante.
VERMELHO	Situação de catástrofe inevitável, incluindo o início da ruptura da barragem.

FONTE: Autor, 2018 (Adaptado do PNSB, 2018)

Brumadinho

Brumadinho

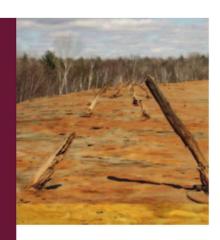
MARIANA

Futuro

Volume de rejeitos apenas cresce

Reciclagem, reuso e reabilitação de rejeitos

 Gordon et al. (2006) – na atual taxa de consumo, as reservas de Cu, Zn e Pl acabarão no futuro "imediato"


Discussão em grupos 5

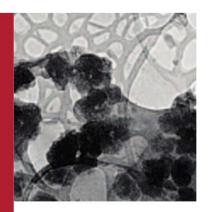
Metais poluentes

Geochemistry and Mineralogy of Solid Mine Waste: Essential Knowledge for Predicting Environmental Impact

Heather E. Jamieson*

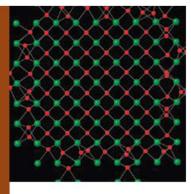
1811-5209/11/0007-0381\$2.50 DOI: 10.2113/gselements.7.6.381

Weathered Pb–Zn tailings from the Calumet Island mine, Ouébec


Mine Waters: Acidic to Circumneutral

D. Kirk Nordstrom*

Drainage water from the Zarshuran arsenic-gold mine in northern Iran.
PHOTO BY SOROUSH
MODABBERI


Uranium Mill Tailings: Geochemistry, Mineralogy, and Environmental Impact

Abdesselam Abdelouas*

Biogenic Uraninite Nanoparticles and Their Importance for Uranium Remediation

John R. Bargar¹, Rizlan Bernier-Latmani², Daniel E. Giammar³, and Bradley M. Tebo⁴

Cross-section through a biogenic uraninite nanoparticle

1811-5209/08/0004-0407\$2.50 DOI: 10.2113/gselements.4.6.407