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A B S T R A C T

The exposome concept refers to the totality of exposures from a variety of external and internal sources including
chemical agents, biological agents, or radiation, from conception onward, over a complete lifetime. It en-
compasses also “psychosocial components” including the impact of social relations and socio-economic position
on health. In this review we provide examples of recent contributions from exposome research, where we believe
their application will be of the greatest value for moving forward. So far, environmental epidemiology has
mainly focused on hard outcomes, such as mortality, disease exacerbation and hospitalizations. However, there
are many subtle outcomes that can be related to environmental exposures, and investigations can be facilitated
by an improved understanding of internal biomarkers of exposure and response, through the application of omic
technologies. Second, though we have a wealth of studies on environmental pollutants, the assessment of
causality is often difficult because of confounding, reverse causation and other uncertainties. Biomarkers and
omic technologies may allow better causal attribution, for example using instrumental variables in triangulation,
as we discuss here. Even more complex is the understanding of how social relationships (in particular socio-
economic differences) influence health and imprint on the fundamental biology of the individual. The identi-
fication of molecular changes that are intermediate between social determinants and disease status is a way to
fill the gap. Another field in which biomarkers and omics are relevant is the study of mixtures. Epidemiology
often deals with complex mixtures (e.g. ambient air pollution, food, smoking) without fully disentangling the
compositional complexity of the mixture, or with rudimentary approaches to reflect the overall effect of multiple
exposures or components.

From the point of view of disease mechanisms, most models hypothesize that several stages need to be
transitioned through health to the induction of disease, but very little is known about the characteristics and
temporal sequence of such stages. Exposome models reinforce the idea of a biography-to-biology transition, in that
everyone’s disease is the product of the individual history of exposures, superimposed on their underlying ge-
netic susceptibilities. Finally, exposome research is facilitated by technological developments that complement
traditional epidemiological study designs. We describe in depth one such new tools, adductomics. In general, the
development of high-resolution and high-throughput technologies interrogating multiple -omics (such as epi-
genomics, transcriptomics, proteomics, adductomics and metabolomics) yields an unprecedented perspective
into the impact of the environment in its widest sense on disease.

The world of the exposome is rapidly evolving, though a huge gap still needs to be filled between the original
expectations and the concrete achievements. Perhaps the most urgent need is for the establishment of a new
generation of cohort studies with appropriately specified biosample collection, improved questionnaire data
(including social variables), and the deployment of novel technologies that allow better characterization of
individual environmental exposures, ranging from personal monitoring to satellite based observations.
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1. What is the exposome?

According to several definitions, the exposome concept refers to the
totality of exposures from a variety of external and internal sources
including chemical agents, biological agents, radiation, and more gen-
eral exposures and determinants from conception onward, over a
complete lifetime (Wild, 2005, 2012; Rappaport and Smith, 2010;
Vineis et al., 2017; Miller Gary and Jones, 2014; Dagnino, 2019). Under
this definition, the exposome includes biologically active chemicals
induced in response to both external environmental stimuli, as well as
the internal chemical environment, and is considered to offer a con-
ceptual leap in studying the role of the environment in human diseases.
It encompasses also “psychosocial components” including the impact of
social relations and socio-economic position on both specific exposures
and directly on health.

After the first wave of demonstrator projects, the utility of ex-
posomic approaches to environmental research has become clearer. In
this review we provide examples of recent contributions from exposome
research, which demonstrate where we believe their application will be
of the greatest value for moving forward.

2. Six good reasons to conduct exposome research

1. Beyond hard and rare outcomes - Epidemiological research on the
health effects of environmental stressors has mainly focused on hard
outcomes, such as mortality, disease exacerbation and hospitaliza-
tions. However, as Fig. 1 shows, there are many more outcomes
(including clinical and sub-clinical symptoms) that can be related to
environmental exposures, such as air pollution. Investigations in
these areas are facilitated by an improved understanding of internal
biomarkers of exposure and response, through the application of
omic technologies.

2. Where causality is uncertain. Though we have a wealth of studies on
environmental pollutants, the assessment of causality is often diffi-
cult because of confounding, reverse causation and other un-
certainties. For example, an International Agency for Research on
Cancer Working Group classified ambient air pollution as carcino-
genic to humans (IARC, 2016), but for other exposures such as many
pesticides epidemiological studies are limited, both quantitatively
and qualitatively. Biomarkers and omic technologies allow better
causal attribution, for example using instrumental variables in tri-
angulation, as we will discuss below.

3. Time matters – All models of disease imply a temporal sequence of
events, from disease induction to death. For most non-communic-
able diseases, models have been proposed in which latent genetic

susceptibilities present at birth are influenced by multiple beha-
vioural and environmental exposures, inducing acquired suscept-
ibility that modulates the risk of disease: for example, in cancer via
toxicant induced mutations, epigenetic events, and the other “hall-
marks of cancer”. Most models hypothesize that several stages need
to be transitioned through health to the induction of disease, but
very little is known about the characteristics and temporal sequence
of such stages. These models reinforce the idea of a biography-to-
biology transition, in that everyone’s disease is the product of their
individual history of exposures, superimposed on their underlying
genetic susceptibilities.

4. Social-to-biological interactions. Even more complex is the under-
standing of how social relationships (particularly socio-economic
differences) influence health and imprint on the fundamental
biology of the individual. The importance of socio-economic factors
to exposome research has been previously highlighted (Smith et al.,
2015; Juarez et al., 2014), particularly with regard to exposure
distributions and individual susceptibility. However, the identifica-
tion of molecular changes that are intermediate between social de-
terminants and disease status is a way to fill the gaps in the me-
chanisms of biological embodiment (Vineis et al., 2009),
particularly for less tangible pathways such as psychological and
social stress.

5. Complex, multiple and concurrent exposures – Epidemiology has
mainly dealt with single exposures (treating others as confounders
or effect modifiers), or with complex mixtures (e.g. ambient air
pollution, food, smoking). In the latter case this was often done
without (a) fully disentangling the compositional complexity of the
pollutant aerosol, or diet, and (b) with rudimentary approaches to
reflect the overall effect of multiple exposures or components.

6. New tools – Exposome research is facilitated by technological de-
velopments (e.g. array technology) and provides new tools for better
exposure assessment and for the investigation of the early molecular
initiating events that precede disease onset, and sequential changes
in biology that determine disease severity and outcome. These tools
and the identification of molecular fingerprints of exposure and
response complement traditional epidemiological study designs.

Within this review we will focus on the integration of omic markers
in epidemiological studies. The development of high-resolution and
high-throughput technologies interrogating multiple -omics (such as
epigenomics, transcriptomics, proteomics, adductomics and metabo-
lomics) yields an unprecedented perspective into the impact of the
environment in its widest sense on disease, for example by identifying
biomarkers of exposure, or early molecular events in the pathways
leading to disease. Incorporation of validated biomarkers in population
studies has the potential to strengthen causal inferences by offering
multi-level evidence, whilst highlighting the importance of exposure
timing, duration, intensity, the reversibility of the observed changes
and the influence of individual susceptibility. More generally, features
of an exposome approach include combining experimental studies with
epidemiological observations, and interdisciplinarity.

The review has two limitations: it is mainly focused on research that
took place in Europe in recent years, and thus does not incorporate new
international initiatives that are still on-going. For this we refer to other
review papers (Vermeulen et al., 2020). And, second, it does not fully
address all the new tools for the measurement of the external exposome
(including sensors), being more focused on molecular approaches.

3. Beyond hard and rare outcomes: Molecular changes as
outcomes

So far epidemiology has dealt with hard and relatively rare out-
comes like cancer or cardiovascular diseases (CVD), that occur in later
life, but non-communicable diseases (NCD) have very long latency
periods (decades), which makes classical epidemiological studies

Fig. 1. Pyramid of Ambient Air Pollution Adverse Human Health Effects
(courtesy of George Thurston, NYU).
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unsuitable for early preventive measures. However, the population is
affected at younger ages by a multiplicity of health problems that go far
beyond hard outcomes, but which themselves may contribute to
chronic disease progression (Fig. 1). These range from exposures to air
pollution during childhood, or poor diet resulting in sub-optimal de-
velopment, to the impacts of stress on young or very young workers.
The latter may be due to changes in the job market, such as the evo-
lution of the “gig economy”, with its associated job instability and shift
work. These external environmental stresses may be associated with
altered immune status and oxidative stress, manifesting metabolic and
transcriptional responses in adverse outcome pathways linked to dis-
ease, or features of accelerated ageing (as will be discussed later).
Identification of these early molecular changes by ‘omic technologies
offers the possibility of identifying novel response biomarkers that can
be employed much earlier in the population surveillance for hazard
identification and risk assessment (National Academies of Sciences
Engineering and Medicine, 2017). For example, epidemiological case-
control studies have suggested an association between exposure disin-
fection by-products (DBP), present in drinking water and swimming
pools, and cancers of the colon and bladder, but causality is difficult to
establish because of misclassification of exposures and confounding
(Grellier et al., 2015). As proof-of-principle, we performed metabo-
lomics on blood samples and examined RNA changes in an experi-
mental setting involving a group of swimmers, in which exposure levels
of DBPs were measured in exhaled breath (van Veldhoven et al., 2018).
In this study a total of 6471 metabolic features were detected in blood,
with 293 features associated with at least one DBP detected in the
swimmers exhaled breath. From the 293 significant features, the mo-
lecular identity of 20 features was established, corresponding to 13
metabolites including compounds in the tryptophan metabolism
pathway (after adjustment for physical activity). When we measured
RNA transcripts and miRNA expression, we identified 1778 genes and
23 microRNAs that were significantly associated with exposure to at
least one DBP. After eliminating previously reported transcripts asso-
ciated with physical activity, many hits remained associated with DBP
exposure. Among these, 9 had been previously linked with bladder and
31 with colon cancer. Concordant microRNA/mRNA expressions were
identified in association with DBP exposure for target genes RCOR1 and
TLR4 (Espín-Pérez et al., 2018a). Other examples of this approach can
be found in the literature, such as metabolic profiling of tri-
chloroethylene exposure (Walker et al., 2016) and multiple pollutants
(Maitre et al., 2018). Whether these early molecular changes are pre-
dictive of later disease still needs to be confirmed, but the early findings
are encouraging, clearly demonstrating that environmental exposures
can leave molecular marks that are detectable for application in epi-
demiological studies. Other examples of the use of molecular targets of
exposure in experimental settings are described below in relation to air

pollution. Later we will expand on the “meet-in-the-middle” principle
that has been proposed to enhance the association of early molecular
signatures of adverse responses to environmental stressor to the de-
velopment of chronic disease.

4. Causality

4.1. Exercises in triangulation

Observational biomedical research often struggles to identify gen-
uine causal relationships, especially when exposures to potential causal
agents are highly correlated. One proposal to strengthen causal in-
ference in biomedicine is through “triangulation” (Lawlor et al., 2016;
Munafo and Davey Smith, 2018). This represents the “strategic use of
multiple approaches to address one question”, with each approach
employing unrelated assumptions, and having different strength and
weaknesses. The logic for this method to improve causal inference, is
that if results agree across multiple and contrasting methodologies, they
are less likely to be artefactual (Lawlor et al., 2016). Ideally, results
from more than two approaches, which have different and unrelated
key sources of potential biases, are compared (Lawlor et al., 2016). An
additional feature is the mixing of qualitative and quantitative types of
evidence that bring breadth and depth to the same research question.
Triangulation has become a popular method in epidemiology by using
genetic instrumental variables, i.e. through “Mendelian randomiza-
tion”, which is highlighted in our first example below. In particular, 2-
sample Mendelian randomisation, where the association of genetic
variants with the exposure and outcome can be investigated in separate
populations, has provided an unprecedented opportunity to study
causal effects of variables and clinical outcomes that are not available
in the same data collection. Often, the same investigation in conven-
tional observational settings would have taken years. However, Men-
delian randomization is not the only example of triangulation, and we
propose two others that pertain to exposome research.

4.1.1. First example: Mendelian randomization
Mendelian randomization (MR) is analogous to a randomized trial;

in fact, it is a natural experiment with observational data based on the
use of gene variants as instrumental variables. Gene variants are a
special case of instrumental variables since they are randomly assorted
at meiosis, i.e. they are neither affected by confounders, nor are subject
to reverse causation (genetic information is constant over life), in
contrast with many exposure variables that are not inherited. An as-
sociation between a genetic variant that is tightly correlated with the
risk factor and the outcome could be indicative of a possible causal
effect of the risk factor on the outcome (Fig. 2). An example of MR
applied to the impact of socio-economic status on CVD risk has been

Fig. 2. Schematic representation of mendelian randomization.
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published using a two-stage MR method (Carter et al., 2019). Gene
variants associated with education were used as instrumental variable
(Fig. 3). In this study a high degree of consistency was seen between the
observational study and the MR approach, with around 40% of the
effect of education on CVD explained by three major risk factors com-
bined (smoking, BMI and blood pressure), in both the observational and
mendelian randomisation analyses. This figure is consistent with the
previous investigations on the role of socio-economic position and
health, in particular from the Lifepath consortium (Stringhini et al.,
2017).

In addition to Mendelian randomization based on exposures and
outcomes (plus genetic instrumental variables), future exposome re-
search can also exploit the results of GWAS done with metabolomics,
proteomics (Sun et al, 2019), microRNAs (Nikpay et al., 2019) and
eQTL data in GTeX, all resources that can be used in MR analysis.

4.1.2. Second example: Environmental genomics
The second example is again taken from genomics, but this time

refers to acquired mutational spectra, not inherited variants. There is no
doubt that tobacco smoke is carcinogenic to humans. What is striking
about the vast body of research on the adverse effects of tobacco is the
great consistency across layers of evidence: from toxicity observed in
cell culture to in vivo effects in experimental animals (including pet
animals exposed to second-hand smoke), to human biomarker and
epidemiological studies. Fig. 4 (Alexandrov et al., 2016) shows that the
biopsies of lung or larynx cancer patients who were smokers show a
spectrum of mutations that is different from that observed in other
organs also affected by tobacco carcinogenesis, and that the spectrum in
the lung, in particular, is almost entirely overlapping with the muta-
tions observed in cell cultures in vitro treated with benzo(a)pyrene.
This example serves several purposes: (a) it demonstrates the triangu-
lation of evidence on mutational spectra in the lung and larynx cancers

Fig. 3. Effect of education on CVD explained by the risk factors. Around 40% of the effect of education on CVD is explained by the three risk factors combined, both in
observational and mendelian randomisation analyses. Over half of the effects of education remain unexplained in these analyses.
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in smokers with evidence obtained in vitro in cells treated with benzo
(a)pyrene, demonstrating the same mutational signature; (b) it suggests
that benzo(a)pyrene is involved in some cancer sites associated with
smoking, but not in all of them (in fact, there is evidence that aromatic
amines are involved in bladder cancer); and finally (c) it provides a nice
example of how biomarkers (in this case derived from genomic in-
vestigations) can contribute to the understanding of mechanisms, since
the mutational signature complements a wealth of information on the
ability of benzo(a)pyrene to induce cancer in animals, and its ability to
form DNA adducts.

4.1.3. Third example: multi-layered approach to social inequalities in health
Causality is difficult to assess in biological sciences and even more

so in social sciences, especially when attempting to address biography-
to-biology transition. From the Lifepath consortium we have reported
the association of socio-economic disadvantage with: (a) long-term
health outcomes, before and after taking risk factors into account; (b)
biological intermediaries that increase susceptibility to disease, such as
childhood obesity; (c) intermediate circulating biomarkers and omic-
based measurements (transcriptomics, DNA methylation, inflammatory
proteins, allostatic load); and (d) immunity (Vineis et al., 2019). These
analyses have been performed in several cohort studies, countries, and

at different stages of the life course in up to 1.7 million subjects. This
approach was taken to test the assumption that each layer is char-
acterized by different types of bias and confounding, and that con-
sistency across layers reinforces causality. The findings from this study
showed associations of social disparities with unfavourable health
outcomes at all levels, spanning inflammatory biomarkers, DNA or
RNA-based markers, infection, indicators of physical functioning and
mortality. Although each of these associations was subject to a different
set of confounders, a dose-response relationship was nevertheless con-
sistently observed, thus showing the power of the multi-layered ap-
proach adopted for this work (Vineis et al., 2019).

4.2. The meet-in-the-middle concept

Investigations on the effects of air pollution and other environ-
mental pollutants in the past either considered biomarkers as an out-
come of exposure (usually only reflective of relatively short-term ex-
posure periods), or – alternatively - examined chronic health outcomes
in relation to long-term exposures. None has used the “meet-in-the-
middle” (MITM) approach we have proposed to bridge the gulf between
early biomarkers of response to the development of chronic disease.
The MITM approach consists in measuring intermediate biomarkers

Fig. 4. Environmental genomics: mutational fingerprints of smoking suggest that lung cancer and larynx cancer biopsies from smokers have a mutational fingerprint
that is very similar to that left in calls in culture by benzo(a)pyrene (Alexandrov et al., 2016).
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(often in agnostic ‘omic investigations) and relating them retro-
spectively to measurements of external exposure, and prospectively to
the ultimate health outcome. In this way we create a potential pathway
to disease that can be further validated. In addition, this approach re-
fines one of Bradford Hill’s guidelines for causality assessment in epi-
demiology, i.e. biological plausibility. MITM is only feasible now
through parallel technological developments in omics, improved
methods for exposure assessment, and by the existence of long-term
longitudinal population cohorts with biological samples stored over
many years.

An example of the application of the MITM approach is the work on
cerebro-cardiovascular disease (CCVD) performed as part of the
EXPOsOMICs network. All newly diagnosed cases of CCVD and re-
vascularization, that arose during 12.2 years of follow-up on average
were identified in a large cohort, with biomarker analyses (in-
flammatory proteins, genome-wide DNA methylation, metabolites)
performed using prospectively collected and archived blood samples.
Using these samples, we demonstrated enrichment of altered DNA
methylation in “reactive oxygen species/Glutathione/Cytotoxic gran-
ules” and “Cytokine signalling” pathways related genes, associated with
both air pollution and CCVD risk. Interleukin-17 was associated with
higher exposure to NO2, NOx, and CCVD risk (OR = 1.79; CI 1.04–3.11,
when comparing extreme tertiles) (Fiorito et al., 2018). In the sub-
sequent metabolomics investigation, that was extended to asthma
(Jeong et al., 2018), we observed perturbation of the linoleate meta-
bolism pathway, that was associated with both air pollution exposure
and the two disease outcomes, CCVD and asthma. Linoleate is involved
in the modulation of IL-8, and thus also in the immune response. In
summary, we identified both epigenetic and metabolomic signals that
were intermediate between air pollution exposure and disease out-
comes, an example of MITM and of pathways to disease that deserve
further exploration.

5. Time matters: Establishing temporality in pathways leading to
disease

In the EXPOsOMICs consortium we also tried to agnostically iden-
tify specific molecular changes associated with air pollution exposures.
Table 1 shows the main results, for single omic signals identified to
date. Several signals replicated across studies: IL-8 in three studies
(including linoleate, that is involved in IL-8 activation), the carnitine
shuttle in three studies, and phosphatidylcholines in two studies. These
signals suggest that pathways commonly perturbed after exposure to air
pollution involve immunity, inflammation and oxidative stress. In
contrast, DNA methylation results did not replicate across studies. Only
few genes have been found so far to be consistently hypo- or hyper-
methylated in relation to environmental exposures, except for tobacco
smoke (notably hypomethylation of the aryl-hydrocarbon receptor re-
pressor, Guida et al., 2015).

It is likely that the pathways associated with disease aetiology and
progression involve multiple molecules, and that perturbations in these
response biomarkers are organized in a temporal sequence. A research
program within the exposome community is currently trying to re-
concile the exposure-associated pathways with “hallmarks” of disease
or toxicant exposures. For example, Lopez-Otin et al. (2013) have
proposed nine ‘hallmarks of ageing’. Similarly, hallmarks of cancer have
been put forward, displaying a partial overlap with those for ageing
(Hanahan and Weinberg, 2011), and also similar “key characteristics of
carcinogens” have been proposed (Smith et al, 2016c). When we ex-
amined signals corresponding to hallmarks of cancer or key char-
acteristics of carcinogens in the EXPOsOMICs project (Table 1), we
detected significant perturbation of the following response categories:
miRNA expression; cytokine signalling; reactive oxygen species (oxi-
dative stress); glycosphingolipids (apoptosis, cell growth, senescence,
cell cycle control); NOTCH1 (cell cycle control); and carnitine shuttle
and acylcarnitines (implicates as a response to oxidative stress).

Immunity, inflammation, oxidative stress and miRNA are also involved
in respiratory and cardiovascular diseases. Oxidative stress pathways
are compatible with our observations on the oxidative potential of air
pollutants as measured on filter associated particulate matter (Gulliver
et al., 2018).

However, the concept of hallmarks remains inadequate because it
does not specify their temporal sequence. For example, hallmarks of
cancer in the original concept put forward by Hanahan and Weinberg
are cross-sectional, i.e. they are a description of the cancer phenotype
rather than a reconstruction of the causal sequence of events
(Demetriou et al., 2018).

6. A new solution for an old problem: Biological ageing and socio-
economic position

Anecdotal evidence has been put forward on the discrepancy be-
tween chronological age and biological age, i.e. how individuals of the
same age look and perform differently. The problem was already de-
scribed by Benjamin (1947) who proposed a list of early indicators of
biological age based on his work. The list is a mixed bag of suscept-
ibility factors (including metabolism), plus disease outcomes. It’s now
possible to deploy a much larger number of indicators to understand the
discrepancy between chronological age and biological age, including
the availability of large cohorts and a broad array of biomarkers. Once
again, omic approaches are particularly useful to develop new biolo-
gical age markers because they allow agnostic, i.e. hypothesis-free in-
vestigations. One marker that has been extensively investigated in re-
lation to ageing is telomere length. Telomeres are the repetitive
nucleotide sequences capping the ends of eukaryotic chromosomes that
maintain chromosomal integrity. Telomere length decreases with aging,
resulting from the rounds of cell division, but it is also impacted by the
biochemical environment. Telomere shortening has important func-
tional consequences: short telomeres lead to genomic instability and
cellular senescence (e.g. short telomeres in leukocytes lead to the se-
cretion of pro-inflammatory cytokines). The evidence on the ability of
TL to predict non-communicable diseases is equivocal, and TL itself is
hard to measure, with substantial technical variability. The studies on
socio-economic position and TL tend to show an association between
telomere shortening and a low SE position, but there are still relatively
few investigations in this area (Robertson et al., 2013).

Several studies have been published on another omic marker, epi-
genetic ageing. The recent literature describes two different mechan-
isms contributing to age-related DNA methylation (DNAm) changes:
‘epigenetic drift’ and ‘epigenetic clock’, that sometimes are used as
synonyms even if they describe different molecular mechanisms
(Gentilini et al., 2015). Although both are related to aging, epigenetic
drift represents the trend of increasing global DNAm variability over
time not involving specific DNA regions. On the contrary, the epigenetic
clock refers to specific CpG sites whose DNAm levels constantly in-
crease or decrease during aging and can be used to predict chron-
ological age with high accuracy (Jylhävä et al., 2017). Accordingly, two
popular measures of epigenetic clocks have been developed, and the
concept of epigenetic aging acceleration (EAA) has been introduced as
the difference between predicted DNAm age and chronological age
through Horvath EAA (Horvath, 2013) and Hannum EAA (Hannum
et al., 2013) clocks. Epigenetic AA has been associated with all-cause
mortality, cancer risk/incidence and neurodegenerative disorders, as
well as non-communicable disease risk factors like obesity, poor phy-
sical activity, unhealthy diet, cumulative lifetime stress and infections
(Declerck and Vanden Berghe, 2018). Recently, Levine and colleagues
introduced a ‘next generation epigenetic clock’ that is based on a set of
CpGs associated with a complex of clinical measures of individuals’
“phenotypic age” (Levine et al., 2018), which is thought to represent
the physical manifestation of one’s biological age (Ferrucci et al., 2018).
Levine EAA strongly outperforms previous measures with regard to
prediction of a variety of aging outcomes, including all-cause mortality,
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cancers, disease-free survival and physical functioning. Fig. 5 shows
results from a study performed within the Lifepath consortium in which
we meta-analyzed 18 cohorts with data on risk factors for NCD, socio-
economic position and methylation measurements. Socio-economic
position was associated (with a dose-response gradient) with all of the
age acceleration markers, but particularly with Levine’s. Also, the
strength of association was similar (though generally smaller) to what
has been observed for the main risk factors for NCDs (Fiorito et al.,
2019).

Wild originally proposed aging to form part of the internal domain
of the exposome. Further research in this area, including the continued
development of aging biomarkers (Robinson et al., 2020; Lu et al.,
2019) may elucidate how multiple exposures can act cumulatively to
“accelerate” the aging process and increase risk of a diverse range of
age-associated diseases, and equally how aging may provide the “re-
ceptive environment” required for the onset of environmentally de-
termined disease (Sierra, 2016).

7. Complex, multiple and concurrent exposures

7.1. Improving exposure assessment – The external exposome

While effective chemical biomarkers of internal dose represent the
holy grail of exposure assessment, this is (a) often unavailable at the
population level, (b) not simplistically relatable to commonly employed
pollutant metrics used to interrogate health impacts, such as particulate
mass, or number concentration, and (c) difficult to relate to the impacts
of long-term exposure over many decades. In the current epidemiolo-
gical literature on the health impacts of poor air quality several sepa-
rate, though often complementary approaches have been adopted: (a)
most simplistically using measures of distance from a point source, i.e.
distance to major roads, or some other proxy of traffic exposure; (b)
employing short to long-term measurements of air pollution made at
monitoring sites, usually situated away from point sources to reflect the
average population exposure; (c) enhanced modelling approaches to
estimate exposures over discrete periods and geographical domains;
and (d) increasingly using personal air pollution monitoring devices. In
the ESCAPE project standardized air pollution models for the major
criterion pollutants were produced across the European domain, based
on Land Use Regression techniques (LUR) (de Hoogh et al., 2013),

Table 1
Main findings (FDR significance) of EXPOsOMICs studies by category (Mostafavi et al., 2018, 2015; Vineis et al., 2017; Fiorito et al., 2018; Jeong et al., 2018; Espin-
Perez et al., 2018b; van Veldhoven et al., 2019; Plusquin et al., 2018).

Study and reference Pollutant Omics Approach Molecules

Experimental short term studies
Oxford Street Study Traffic related air

pollution
miRNome 20 miRNA hits in the Oxford Street UK cohort and 73 miRNA hits in the TAPAS cohort.

Common affected miRNAs: Hsa-miR-197-3p, hsa-miR-29a-3p, hsa-miR-15a-5p, hsa-
miR-16-5p and hsa-miR-92a-3p.

Oxford Street Study NO2 Metabolome Phenylalanine
Caffeine
Acyl-carnitine (various molecules): Acyl-carnitine (6:0-OH) (1), Acyl-carnitine (6:0-
OH) (2), Acyl-carnitine (phenyl-acetyl carnitine), Acyl-carnitine (10:3) (1), Acyl-
carnitine (10:2) (2), Acyl-carnitine (11:1),

TAPAS Study (25) PM2.5 Metabolome Phosphatydilcholines: PC(16:0)
PC(20:2)

Personal exposure monitoring panels
Personal exposure monitoring in

EXPOsOMICs
PM2.5 DNA Methylome Methylation of

KNDC1 and FAM50B

Personal exposure monitoring in
EXPOsOMICs

PM2.5 Proteome Increase in CCL22 serum concentration

Personal exposure monitoring in
EXPOsOMICs (unpublished)

PM2.5 miRNome 61 miRNA

Long-term studies
Cerebro-Cardiovascular Disease Risk in EPIC NO2 Proteome IL-8, IL-17, EGF, and eotaxin plasma concentrations
Cerebro-Cardiovascular Disease Risk in EPIC PM2.5 DNA Methylome Enriched pathways:

“Cytokine Signalling” and “Reactive Oxygen Species/Glutathione/Cytotoxic granules”
Cerebro-Cardiovascular Disease Risk in EPIC NO2 DNA Methylome Enriched pathway:

“Cytokine Signalling”
Asthma and Cerebro-Cardiovascular Disease

Risk in EPIC and SAPALDIA
PM2.5 Metabolome Pathways associated to PM2.5 in air pollution in both SAPALDIA and EPIC Italy:

Linoleate metabolism (regulator of IL-8) (confirmed molecule(s): Linoleate)
Fatty acid activation (confirmed molecule(s): Linoleate, Octanoic acid)

Asthma and Cerebro-Cardiovascular Disease
Risk in EPIC and SAPALDIA

UFP Metabolome Pathways associated to UFP in air pollution in both SAPALDIA and EPIC Italy:
Linoleate metabolism (regulator of IL-8) (confirmed molecule(s): Linoleate)
Glycerophospholipid metabolism (confirmed molecule(s): Linoleate)
Glycosphingolipid metabolism (confirmed molecule(s): Sphingosine)

Asthma and Cerebro-Cardiovascular Disease
Risk in EPIC and SAPALDIA

NO2 Metabolome Pathways associated to NO2 in air pollution in both SAPALDIA and EPIC Italy:
Carnitine shuttle (confirmed molecule(s): L-Carnitine)
Pyrimidine metabolism

Children of ALSPAC and EXPOsOMICs Birth
Cohort Consortium

PM10 DNA Methylome Enriched pathways:
GABA-ergic synapse
p53 signaling
NOTCH1signalling

ESCAPE cohorts Traffic related air
pollution (NOx)

Proteome IL-8
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which were then augmented through the EXPOsOMICs project to in-
clude models for PM oxidative potential (a measure of their intrinsic
pro-oxidant characteristics) (Gulliver et al., 2018) and ultrafine parti-
cles (van Nunen et al., 2017), and by others for PM2.5 components
(Jedynska et al., 2014). These models have been enhanced by the in-
corporation of satellite observations and dispersion model estimates to
provide higher resolution (100 × 100 m) and more temporally resolved
exposure estimates for Western Europe (de Hoogh et al., 2018). High
resolution models (at a spatial scale of 20x20m) based on data from
local atmospheric emission inventories, coupled to meteorological and
dispersion models are also available (Beevers et al., 2013), that allow
highly resolved exposure estimation for the population and forward air
pollution scenario evaluation, i.e. the impact of emission mitigation
policies or climate changes actions on projected air quality (Williams
et al., 2018). The coupling of these emission-based models to the
Community Multiscale Air Quality Model (CMAQ) has further enhanced
the estimates to provide more information on a broader range of pol-
lutant species over finer temporal scales (Beevers et al., 2012) and this
model has been further developed to reflect exposures within mobile

populations, by considering data from personal monitoring campaigns
and measurements within discrete transport environments and in the
home (Smith et al., 2016a, 2016b). This later development is highly
relevant to a consideration of the external exposome, as it moves away
from the purely location-based assessment of air pollution exposure, to
an individualized assessment of population groups. This has the po-
tential to take learning gained from personal monitoring campaigns in
relatively small groups of individuals and apply them to the larger
population for epidemiological assessment, providing information to
limit the extent of exposure misclassification for pollutants that vary
markedly over fine spatial scales, such as particle number concentration
and NO2. The assessment of personal exposures themselves remains
highly relevant within the quasi-experimental setting, especially in re-
lating short term physiologic responses and changes in the internal
exposome to the actual exposures experienced by volunteers, as ex-
emplified in the work performed as part of the Oxford Street II study
(Sinharay et al., 2018). Whilst this is a burgeoning area of research it
needs to be acknowledged that all of the technological solutions
available for personalized monitoring are not equal and extreme care

Fig. 5. Meta-analysis of 16,000 people across 18 cohorts), reporting a comparison of effects of leading NCD risk factors on epigenetic ageing. Horvath, 2015 (orange),
Hannum et al., 2013 (green) and Levine et al., 2018 (blue) measures of epigenetic age acceleration and stochastic epigenetic mutations (SEMs) (red) were assessed.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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needs to be taken in presenting results, especially for difficult to mea-
sure, or novel chemical species (Chatzidiakou et al., 2019).

7.2. What is in a mixture

We are all exposed to mixtures, in food, water and air. The con-
tribution of mixtures, either in the round, or in terms of ‘key’ toxic
components, to our exposure history and individual disease biography
remains highly problematic. In the case of food, disentangling the
health effects of single nutrients has always been a challenge, and even
more so for complex effects of dietary patterns or for chemical con-
taminants of food. In the case of air pollution most studies have focused
on the criterion, regulated air pollutants (i.e. PM2.5, PM10, NO2, O3,
benzene, etc), or novel metrics for which there is an emerging literature
suggesting associations with adverse health (Ultrafine Particles, oxi-
dative potential etc). This is already a massive oversimplification as air
pollution is in fact a mixture of thousands of chemicals, many of which
are highly correlated if they are derived from a common source. Whilst
the consensus in the literature is that PM2.5 is the most harmful com-
ponent, it is itself compositionally highly variable and there are on-
going discussions over the most harmful components: the smaller par-
ticle fractions within it (represented by elemental carbon and UFPs),
the primary or secondary organic aerosol, metals such as Nickel or
Cadmium, or indeed (within urban settings with a high proportion of
diesel vehicles) the relative toxicity of PM2.5 versus NO2. Here we will
consider NO2 in particular, as “previous reviews of both the toxicologic and
epidemiologic literature have concluded that the evidence was not sufficient
to infer a causal relationship between long-term exposure to NO2 and
mortality”, due to a “lack of consistency in study findings and concerns
relating to potential confounding by co-pollutants, especially particles in
traffic exhaust” (Atkinson et al., 2018).

Can an exposome approach address this question? In fact, the
question can be decomposed into a few elements: Does NO2 at ambient
levels have any detectable toxicity on the human lung? Which aspects/
components of combustion mixtures are responsible for the adverse
health effects observed in epidemiological studies? Is NO2 able to sy-
nergise with other pollutants e.g. PM/allergens (act as an effect modi-
fier)? Fig. 6 shows theoretical pathways - including different exposures

- that can lead from NO2 exposure to asthma, and can be interpreted as
a source of “Adverse Outcome Pathways (AOP) leading to asthma in
humans. These pathways are only partially known, and their compo-
nents can only be integrated with an exposome approach. In the EX-
POsOMICs study we considered air pollutant exposures in volunteers
exposed in a randomized cross-over trial to a high diesel site (Oxford
Street, London) versus a lower pollution location in Central London
(Hyde Park), with detailed assessment of exposures by personal mon-
itoring (Sinharay et al., 2018). Both circulating RNA (mRNA and
miRNA, the latter involved in post-transcriptional gene expression
modulation) (Espín-Pérez et al., 2018a) and metabolomic profiles (van
Veldhoven et al., 2019) derived from these subjects provided signals
that correlated with different components of air pollution aerosol at
these locations with little apparent overlap, suggesting that each pol-
lutant, though highly correlated in ambient air, may follow a different
metabolic or molecular pathways to exert their effects upon inhalation
(Fig. 7). This is a critical early observation in that it demonstrates that
the acute biologic responses of the individual upon exposure to complex
pollutant mixtures may provide discriminatory signatures for key tox-
icological components in the air. This approach, together with data
from comparative in vitro and in vivo toxicity testing, therefore offers
the potential to identify the most harmful components of the ambient
aerosol, moving beyond the simple reliance on ambient concentrations
of PM, to a more evolved consideration of chemical components, which
will aid in the development of focused policies to protect public health.

Apart from these examples, the issue of mixtures has been addressed
in a more comprehensive way by others, such as a EU report (Bopp
et al., 2019). A further discussion would be on how can the overall
effect of multiple exposures be assessed on a biological system. Un-
fortunately, this aspect is still largely underdeveloped in exposome re-
search.

8. Developing new tools: Advancements in metabolomics and
adductomics

New tools have recently emerged in environmental research. In
general, there has been a rapid development of omic technologies, in-
cluding for example high resolution mass spectrometry-based

Fig. 6. A theoretical pathway linking exposure to NO2 to asthma.
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metabolomics or epigenetic chips. As demonstrated by past and recent
exposome projects, metabolomics has risen as one of the most promi-
nent technologies for exposome research. Current advances in meta-
bolomics are making it possible, not only to detect molecules related to
endogenous processes and metabolism, but also allow the detection of
exogenous compounds as well as their metabolites. Initially based on
targeted approaches, metabolomics is now moving towards the use of
untargeted methods as they do not limit the findings to “a priori” se-
lected targets. The development of new sensitive high-resolution mass
spectrometers and the advancement in computational methods for data
processing have now make it possible to measure over 100,000 mole-
cules in a single sample (Walker et al., 2019), with the potential to go
even further to characterise the “million metabolome” (Uppal et al.,
2016). The current limitation of untargeted metabolomics lies in the
annotation process, which is the bottleneck of data interpretation.
Multiple initiatives are arising to improve annotation of metabolic
features, notably the construction of databases that will facilitate the
identification such as the metabolites database Metlin and the Human
Metabolome Database (Wishart et al., 2007; Guijas et al., 2018). The
Exposome-Explorer database created by IARC is aiming at creating a
database for dietary and pollutant biomarkers that can be measured
with metabolomics, and already includes 908 features (IARC, 2020).
Recent efforts have also focussed on computational approaches to im-
prove annotation such as the Mummichog algorithm which allows
prediction of pathway activity based on untargeted metabolomics data
(Chong and Xia, 2018) or the Rpackage xMSannotator, providing an-
notation by using a multistage clustering algorithm including metabolic
pathway associations in the analysis (Uppal et al., 2017).

Other technical advances are explored within the use of com-
plementary chromatography approaches, such as the analysis by liquid
chromatography and gas chromatography on the same sample. These
platforms provide complementary analytical capabilities which allow
for comprehensive exposome studies (Fiehn, 2016; Walker et al., 2019).

As part of the exposome innovations, it is noteworthy to cite another
new technology, that is in its infancy, but might become useful in en-
vironmental studies - adductomics. Its main purpose is to measure very
low levels of electrophiles. Electrophiles are formed via metabolism of
endogenous and exogenous molecules. They are highly reactive species
which have long been suspected of causing cancer and other diseases.
Their reactivity and short half-life make them difficult to measure in
human samples, thus new technologies have exploited their capabilities
to bind with macromolecules such as DNA or Proteins in order to
measure their adducts. Adductomics refers to the systematic measure-
ment of all “adducts” (i.e. products of reaction with macromolecules) of
a certain class. For the characterization of the exposome, two main
technologies have appeared, the measurement of the adducts of human
serum albumin (HSA) and the measurement of DNA-adducts. HSA is the
most abundant protein in serum, and has a relatively longer half-life
compared to electrophiles themselves. Its cysteine 34 site (Cys34) is
highly reactive and acts as a scavenger for small electrophiles.
Therefore, Cys34-albumin adducts can be used as an internal “sensor”
of a multiplicity of external exposures and internal modifications. The
method we have been using recently has been developed by Stephen
Rappaport’s team at UC Berkeley (Li et al., 2011). This new method is
based on the use of high resolution mass spectrometry to agnostically
detect putative HSA-electrophile adducts in (biobanked) human serum
samples, thus obtaining an adductomic profile for each analysed sample
(Grigoryan et al., 2016). This technique has been assimilated to omic
technologies with the terminology of “Cys34-Adductomics”. Promising
results have been detected in early epidemiological studies, where ad-
ductomic profiles revealed differences between smokers and non-smo-
kers as well as the offspring of smoking and non-smoking mothers
(Yano et al., 2019; Grigoryan et al., 2018). In workers occupationally
exposed to benzene, five adducts generated from benzene exposure and
metabolism were significantly higher than in the general population
(Liu et al., 2018) In the EXPOsOMICs project, this technology was

Fig. 7. Associations between metabolic features/compounds in two randomized cross-over studies in the EXPOsOMICs project.
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applied to a subset of the Oxford Street II study (n = 50), where ad-
ductomic profiles revealed a perturbation in the glutathione pathway
for individuals with chronic obstructive pulmonary disease and is-
chemic heart disease exposed to air pollution (Liu et al., 2018; Preston
et al., 2020). More recently, in a study we conducted on lung cancer the
adduct of N-acetyl-cysteine (NAC) was negatively associated to the risk
of cancer, years before diagnosis. Differences in adductomic profiles
suggested an implication of oxidative stress in cancer onset (Dagnino
et al., 2019). This is in line with previous work (including experi-
mental) in humans and animals, suggesting that NAC is a promising
molecule for the prevention of this type of cancer (Van Schooten et al.,
2002). In another study, colon cancer was negatively associated with
albumin adducts formed by products of microflora metabolism
(Grigoryan et al., 2019). In both examples blood was drawn many years
before the onset of cancer, reinforcing the relevance of adducts for
disease prediction. All of these findings indicate the promising appli-
cations that can arise from Cys34 adductomics applied to the exposome.
Improvements in the method will need to focus on increasing sensitivity
to enhance the detection of adducts of environmental exposures present
at lower concentrations, and automation of data analysis allowing to
apply the method to larger sample sizes.

Alternative adductomics technologies are being developed for the
agnostic measure of adducts of DNA and have shown promising results
in recent exposome studies. DNA adducts can lead to mutations and
adverse health outcomes, such as cancer. DNA adducts formation has
long been used to evaluate the genotoxicity and potential carcino-
genicity of compounds or mixtures (Food and Drug Administration
HHS, 2012). Hence, measuring DNA adducts can contribute to the
understanding of the mechanisms involved in the carcinogenic effects
of environmental exposures. Recent developments in the field of high-
resolution mass spectrometry have allowed great progress in the field.
Balbo et al. have developed a new method, which allows the untargeted
detection of DNA adducts in human serum (Balbo et al., 2014). Using
this technique they were able to identify adducts related to exposure to
a chemotherapeutic drug and a bacterial toxin (Stornett et al., 2015;
Wilson et al., 2019). However, this technology is still very time con-
suming and has not yet been applied to a larger exposome concept.
Another very recent approach has focused on the measure of DNA ad-
ducts in urine. This methodology measures targeted and untargeted
DNA adducts in a single urine sample, and, similarly to the Cys34-ad-
ductomics approach, it has the ability to measure DNA adducts of
exogenous and endogenous processes. By applying this method to in
vivo and in vitro studies, Cooke et al. have identified DNA adducts of
specific exposures (Methanesulfonate and 5 N-nitrosamines), as well as
five new DNA adducts of internal processes induced by the exposure
(Chang et al., 2018; Cooke et al., 2018). The use of urine as a mea-
surement matrix and the potential of high-throughput of this method
indicate it as a good candidate for future exposome studies (Cooke
et al., 2019).

Combined use of omic technologies such as metabolomics and ad-
ductomics can provide interesting opportunities to characterize the
exposome (Petrick et al., 2020).

9. Conclusions

As we have tried to suggest, the world of the exposome is rapidly
evolving, though considerable knowledge gaps still need to be filled
between the original expectations and the concrete achievements to
date. Technological advancements in several omic technologies and in
the development of portable sensors will contribute to filling this gap,
though original and thoughtful study designs need to be developed
within large cohort investigations to ensure the appropriate application
of exposomics approaches. Perhaps the most urgent need is currently
the setting up of a new generation of cohort studies with improved (and
repeated) biosample collection, improved questionnaire data (including
social variables), and the deployment of the enhanced exposure

assessment methodologies that allow better characterization of in-
dividual true environmental exposures.
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