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BACKGROUND & AIMS: The coronavirus disease 2019
(COVID-19) pandemic has affected populations, societies, and
lives for more than 2 years. Long-term sequelae of COVID-19,
collectively termed the postacute COVID-19 syndrome, are
rapidly emerging across the globe. Here, we investigated
whether severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) antigen persistence underlies the postacute
COVID-19 syndrome. METHODS: We performed an endos-
copy study with 46 patients with inflammatory bowel dis-
ease (IBD) 219 days (range, 94–257) after a confirmed
COVID-19 infection. SARS-CoV-2 antigen persistence was
assessed in the small and large intestine using quantitative
polymerase chain reaction of 4 viral transcripts, immuno-
fluorescence of viral nucleocapsid, and virus cultivation from
biopsy tissue. Postacute COVID-19 was assessed using a
standardized questionnaire, and a systemic SARS-CoV-2 im-
mune response was evaluated using flow cytometry and
enzyme-linked immunosorbent assay at endoscopy. IBD
activity was evaluated using clinical, biochemical, and
endoscopic means. RESULTS: We report expression of SARS-
CoV-2 RNA in the gut mucosa w7 months after mild acute
COVID-19 in 32 of 46 patients with IBD. Viral nucleocapsid
protein persisted in 24 of 46 patients in gut epithelium and
CD8þ T cells. Expression of SARS-CoV-2 antigens was not
detectable in stool and viral antigen persistence was unre-
lated to severity of acute COVID-19, immunosuppressive
therapy, and gut inflammation. We were unable to culture
FLA 5.6.0 DTD � YGAST65033_proof
SARS-CoV-2 from gut tissue of patients with viral antigen
persistence. Postacute sequelae of COVID-19 were reported
from the majority of patients with viral antigen persistence,
but not from patients without viral antigen persistence.
CONCLUSION: Our results indicate that SARS-CoV-2 antigen
persistence in infected tissues serves as a basis for postacute
COVID-19. The concept that viral antigen persistence in-
stigates immune perturbation and postacute COVID-19 re-
quires validation in controlled clinical trials.
Keywords: SARS-CoV-2; COVID-19; Postacute COVID-19; Viral
Antigen Persistence.
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BACKGROUND AND CONTEXT

Long-term sequelae of coronavirus disease 2019 (COVID-
19), collectively termed the postacute COVID-19
syndrome, reflects a significantly growing health-care
challenge. To date, the pathophysiology of this
debilitating multi-organ disease is poorly understood.
We investigated whether severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) antigen
persistence underlies the postacute COVID-19 syndrome.

NEW FINDINGS

We report that SARS-CoV-2 antigens persist in the gut
mucosa for months after acute COVID-19 in the majority
of patients with inflammatory bowel disease (IBD)
irrespective of immunosuppressive therapy or gut
inflammation. Viral antigen persistence associates with
postacute COVID-19 symptoms.

LIMITATIONS

The concept of viral antigen persistence as driver of
immune perturbation and postacute COVID-19
syndrome should be corroborated in controlled clinical
trials beyond IBD.

IMPACT

Collectively, our findings suggest that viral antigen
persistence is a basis for postacute sequelae of COVID-
19, a rapidly emerging disorder across the globe.
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S(SARS-CoV-2) is a single-stranded positive-sense
RNA virus causing respiratory, gastrointestinal, and central
nervous system infections in humans collectively referred
to as coronavirus disease 2019 (COVID-19).1 Cellular SARS-
CoV-2 infection is mediated by an interaction of membrane-
bound angiotensin-converting enzyme 2 (ACE2) with the
viral spike and is facilitated by the host proteases TMPRSS2,
TMPRSS4, and CatB/L.2 ACE2 is expressed in the brush
border of enterocytes in the gut,3 a site of SARS-CoV-2–
associated inflammation.4 Studies with intestinal epithelial
organoids confirmed that SARS-CoV-2 infects human
epithelium, triggering an interferon (IFN) signature.5

Consequently, SARS-CoV-2 can be detected in anal swabs,
a signal that remains positive long after nasopharyngeal
swabs are negative.6

The postacute COVID-19 syndrome is characterized by
persistent or prolonged symptoms for more than 4 weeks
after acute COVID-19. Considerable disagreement about
definition and, thus, prevalence of postacute COVID-19 exists,
ranging from 10%–87% of patients with COVID-19.7,8 The
syndrome was initially dismissed by many but is now
recognized as a multi-organ disease, which reflects a signifi-
cantly growing health-care challenge.9,10 Postacute COVID-19
typically involves symptoms including severe fatigue, cogni-
tive dysfunction, or pain.11 Poor baseline health status and
severe acute COVID-19 convey risk for the development of
postacute COVID-19, however, also mild COVID-19 (eg, in
nonhospitalized patients) may culminate in postacute
sequelae.12 Although postacute COVID-19 symptoms usually
do not require hospitalization,13 disease burden weighs
heavily on affected individuals.12 Although the pathophysio-
logical mechanisms of acute COVID-19 are well defined (eg,
viral toxicity, microvascular injury, immune dysregulation,
and inflammation),1 postacute COVID-19 sequelae are poorly
understood. It appears plausible that viral immune pertur-
bation and/or inflammatory tissue injury during the acute
infection account for the postacute COVID-19 syndrome.9 For
example, neural accumulation of memory T cells in COVID-19
was observed in postacute COVID-19 neuropsychiatric
sequelae (eg, malaise and depression) and reflects a hallmark
of immune senescence during aging and tissue injury.9

Furthermore, it was shown that postacute COVID-19 was
associated with persistently activated innate immune cells
and hyperactivated T and B cells, along with increased
proinflammatory cytokine expression,14 although the cause
of such prolonged immune perturbation is unknown.

Here, we took advantage of upper and lower gastroin-
testinal endoscopy (and related mucosal tissue availability)
in patients with or without postacute COVID-19 symptoms
who were evaluated in our inflammatory bowel disease
(IBD) outpatient unit to explore whether gut antigen
persistence15 underlies long-term sequelae of COVID-19.

Methods
Study Participants and Endoscopy

In a cohort of 46 patients with IBD with polymerase chain
reaction (PCR)-confirmed SARS-CoV-2 infection, we phenotyped
FLA 5.6.0 DTD � YGAST65033_proof
gut tissue retrieved using upper and lower endoscopy 94–257
days (average, 7.3 months) after infection. A significant pro-
portion of the study participants became infected in the second
wave in Austria between October 2020 and February 2021
(possibly reflecting infection with the wild-type alpha and beta
variant).16 QA detailed characterization of the study population is
provided in Tables 1 and 2. All patients underwent endoscopy
by clinical means according to IBD guidelines, and provided a
negative SARS-CoV-2 PCR test at the day of endoscopic exam-
ination. We obtained biopsy specimen from the duodenum,
terminal ileum, and colon (Figure 1A). Biopsy specimens were
collected in formalin, RNAlater, or RPMI Qsupplemented with
10% fetal calf serum (Sigma, Missouri Q). Tissue samples were
further processed using SARS-CoV-2 PCR, immunofluorescence,
and viral culture to analyze SARS-CoV-2 antigen persistence. All
participants received a routine laboratory test and quantifica-
tion of fecal calprotectin at endoscopy. Furthermore, we
investigated the systemic humoral and cellular SARS-CoV-2
immune responses at time of endoscopy. Additionally, pa-
tients completed a questionnaire that recorded symptoms of
the acute episode of COVID-19 and postacute COVID-19
symptoms, similar to COVID-19 vaccination status. This study
was approved by the ethics committee of the Medical University
Innsbruck (EK-No. 1005/2019) and informed consent was ob-
tained from all study subjects.
SARS-CoV-2 PCR From Intestinal Biopsies
To decipher SARS-CoV-2 RNA persistence in the gastroin-

testinal tract, we isolated RNA as described previously.17 In
brief, RNAlater (Qiagen, Hilden, Germany)–preserved biopsy
� 26 May 2022 � 10:29 am � ce
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Table 1.General Characteristics of the Study Population at Recruitment

Mucosal SARS-CoV-2
RNA–negative

Mucosal SARS-CoV-2
RNA–positive Overall P

n 14 32 46

Sex (%) .36
Female 8/14 (57.1) 12/32 (37.5) 20/46 (43.5)
Male 6/14 (42.9) 20/32 (62.5) 26/46 (56.5)

Disease (%) .52
Crohn’s disease 9/14 (64.3) 22/32 (68.8) 31/46 (67.4)
Ulcerative colitis 5/14 (35.7) 8/32 (25.0) 13/46 (28.3)
IBD unclassified 0/14 (0.0) 2/32 (6.2) 2/46 (4.3)

Metrics
Age (y) 45.28 (40.93, 54.48) 44.67 (25.45, 50.58) 44.67 (28.11, 51.95) .21
Age at IBD diagnosis (y) 11.05 (6.84, 14.28) 8.60 (4.99, 20.84) 9.92 (5.30, 17.38) ,75
Duration of IBD (y) 35.51 (28.21, 43.57) 24.96 (17.80, 37.00) 28.60 (18.49, 40.60) .02

IBD severity (%)a .13
Remission 7/14 (50.0) 20/32 (62.5) 27/46 (58.7)
Mild 4/14 (28.6) 11/32 (34.4) 15/46 (32.6)
Moderate 3/14 (21.4) 1/32 (3.1) 4/46 (8.7)
Severe 0/14 (0.0) 0/32 (0.0) 0/46 (0.0)

Crohn’s disease: age at diagnosis (Montreal A) (%)b .17
<16 y (A1) 0/9 (0.0) 6/22 (27.3) 6/31 (19.4)
17-40 y (A2) 7/9 (77.8) 14/22 (63.6) 21/31 (67.7)
>40 y (A3) 2/9 (22.2) 2/22 (9.1) 4/31 (12.9)

Crohn’s disease: behaviour (Montreal B) (%)b .37
Nonconstricting & nonpenetrating (B1) 6/9 (66.7) 13/22 (59.1) 19/31 (61.3)
Stricturing (B2) 1/9 (11.1) 7/22 (31.8) 8/31 (25.8)
Penetrating (B3) 2/9 (22.2) 2/22 (9.1) 4/31 (12.9)

Crohn’s disease: disease location (Montreal L) (%)b .25
Ileum (L1) 1/9 (11.1) 6/22 (30.0) 7/31 (22.6)
Colon (L2) 2/9 (22.2) 1/22 (5.0) 3/31 (9.7)
Ileum þ colon (L3) 6/9 (66.7) 15/22 (68.2) 21/31 (67.7)
Upper GI (L4) 0/9 (0.0) 0/15 (0.0) 0/31 (0.0)

Ulcerative colitis: age at diagnosis (Montreal A) (%)b .46
<16 y (A1) 0/5 (0.0) 1/8 (14.3) 1/13 (7.7)
17-40 y (A2) 3/5 (60.0) 5/8 (71.4) 8/13 (61.5)
> 40 y (A3) 2/5 (40.0) 1/8 (14.3) 3/13 (23.1)

Ulcerative colitis: disease extent (Montreal E) (%)b .50
Proctitis (E1) 0/5 (0.0) 0/8 (0.0) 0/13 (0.0)
Left-sided colitis (E2) 2/5 (40.0) 6/8 (75.0) 8/13 (61.5)
Pancolitis (E3) 3/5 (60.0) 2/8 (25.0) 5/13 (38.5)

Risk factors and other diseases
BMI 26.20 (21.80, 31.80) 24.50 (22.25, 26.80) 24.95 (22.20, 28.10) .31
Smoker (%) 3/14 (21.4) 8/32 (25.0) 11/46 (23.9) .99
Abnormality in chest x-ray (%) 4/14 (33.3) 7/32 (24.1) 11/46 (26.8) .83
Heart disease (%) 0/14 (0.0) 2/32 (6.2) 2/46 (4.3) .86
Diabetes (%) 1/14 (7.1) 2/32 (6.2) 3/46 (6.5) .99
Lung disease (%) 1/14 (7.1) 1/32 (3.1) 2/46 (4.3) .99
Kidney disease (%) 0/14 (0.0) 0/32 (100.0) 0/46 (100.0) NA

Medication (%)
Steroid use in last year 1/14 (7.1) 1/32 (3.1) 2/46 (4.3) .99
Anti-TNF at endoscopy 2/14 (14.3) 12/32 (37.5) 14/46 (30.4) .22
Ustekinumab at endoscopy 1/14 (7.1) 1/32 (3.1) 2/46 (4.3) .99
Vedolizumab at endoscopy 1/14 (7.1) 2/32 (6.2) 3/46 (6.5) .99
Azathioprine at endoscopy 0/14 (0.0) 4/32 (12.5) 4/46 (8.7) .41
JAK-inhibitor at endoscopy 1/14 (7.1) 0/32 (0.0) 1/46 (2.2) .67
5-ASA at endoscopy 4/14 (28.6) 5/32 (15.6) 9/46 (19.6) .53
Study medication at endoscopy 2/14 (14.3) 0/32 (0.0) 2/46 (4.3) .03

Q1- 2022 Postacute COVID-19 and IBD 3
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Table 1.Continued

Mucosal SARS-CoV-2
RNA–negative

Mucosal SARS-CoV-2
RNA–positive Overall P

Medication history (%)
History of anti-TNF 6/14 (42.9) 5/32 (15.6) 11/46 (23.9) .11
History of Vedolizumab 3/14 (21.4) 1/32 (3.1) 4/46 (8.7) .15
History of Ustekinumab 2/14 (14.3) 0/32 (0.0) 2/46 (4.3) .16
History of Azathioprine 6/14 (42.9) 9/32 (28.1) 15/46 (32.6) .53
History of JAK-inhibitor 1/14 (7.1) 0/32 (0.0) 1/46 (2.2) .67

NOTE. Data are reported as number of subjects with percentages in Q36parentheses or as median with interquartile range in
parentheses.
5-ASA, 5-aminosalicylic acid; BMI, body mass index; JAK, Januskinase.
aIBD disease activity was assessed according to the simple endoscopic score for Crohn’s disease and the Mayo Endoscopic
Score for ulcerative colitis.
bAssessment of disease extent, disease location, and disease behavior by using the Montreal classification.30
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specimens were homogenized in lysing buffer using a Precellys
24 Homogenisator and a Precellys Tissue RNA kit (both Bertin,
Montigny-le-Bretonneux, France). Lysates were applied on
RNAeasy columns (Qiagen, Hilden, Germany) and RNA extrac-
tion was carried out according to the manufacturer’s in-
structions. Total RNA concentration was quantified at 260 nm
right after isolation, using a nanodrop 1000 (Peqlab, Erlan-
gen, Germany). RNA was stored at -80�C. RNA was tran-
scribed to complementary DNA using an M-MLV reverse
transcriptase in combination with hexamer primers (Thermo
Fisher Scientific, Waltham, MA). Complementary DNA se-
quences were amplified using PCR using gene-specific
primers in combination with SYBR-green chemistry to
detect RNA polymerase (RNA-dependent RNA polymerase
[RdRP]), nucleocapsid phosphoprotein (Nucleocapsid), sur-
face glycoprotein (Spike), and envelope protein RNA. Addi-
tionally, b-actin served as a control to validate isolation and
transcription efficiency. SARS-CoV-2–specific primers were
validated and extensively analyzed by Park et al18 and are
summarized in Supplementary Table 1.
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Immunofluorescence
Intestinal biopsy specimens were collected in RPMI and

immediately transferred in cryomolds, covered with OCT
embedding medium, and immersed in cold isopentane with
liquid nitrogen until snap-frozen. Cryomolds were stored at
-20�C until cryo-sectioning. For downstream immunofluores-
cence 4-mm cryostat sections were cut from the samples and
subsequently stained for SARS-CoV-2 nucleocapsid
(#PA5114448, Thermo Scientific, Waltham, MA), epithelial
CK18 (#LS-B11232, LifeSpan Biosciences, WA), CD8 (#14-
0008-80, Thermo Fisher Scientific, Waltham, MA), or LGR5
(#MA5-25644, Thermo Fisher Scientific, Waltham, MA), ac-
cording to a standardized immunofluorescence protocol (see
Supplementary Methods). Targets were visualized with
secondary fluorophore conjugated antibodies. Images were
acquired on a Zeiss Axioobserver Z1 microscope in combination
with a LSM700 confocal laser scanning system containing 4 la-
sers with 405, 488, 555, and 654 nanometre wavelengths
(Zeiss, Oberkochen, Germany).
FLA 5.6.0 DTD � YGAST65033_proof
Virus Cultivation
Biopsy specimens stored in RPMI supplemented with 10%

fetal calf serum at -80�C were homogenized using a Precellys
24 Homogenisator (Bertin, Montigny-le-Bretonneux, France).
After homogenization the lysate was sterile filtrated and used
to infect ACE-2 and TMPRSS2 overexpressing Vero cells19

(Vero-TMPRSS2/ACE2). Three days after infection, wells were
analyzed for cytopathic effect. Samples with absent cytopathic
effect after 2 passages were regarded negative for infectious
virus. Further details are available in the Supplementary
Methods section.

Anti-SARS-CoV-2 Enzyme-Linked
Immunosorbent Assays

SARS-CoV-2 spike and nucleocapsid protein specific im-
munoglobulins (Ig) were quantified using an anti-SARS-CoV-2
QuantiVac enzyme-linked immunosorbent assay (ELISA) (IgG)
and an anti-SARS-CoV-2-NCP-ELISA (IgG) (both Euroimmun,
Luebeck, Germany) according to the manufacturer’s in-
structions. Anti-nucleocapsid Igs are categorically reported as
negative, borderline, and positive, and antispike receptor
binding domain antibody concentrations are reported as
binding antibody units/mL.20

Cellular SARS-CoV-2 Immunity: Interferon
Gamma Release Assays and Flow Cytometry

The presence of SARS-CoV-2–specific T cells directed
against the spike and nucleocapsid proteins were assessed
using interferon gamma release assays (IGRA) and validated
with intracellular flow cytometry (ICFC).21 To specifically
stimulate SARS-CoV-2–specific T cells, lithium heparin whole
blood or isolated peripheral blood mononuclear cells were
coincubated with peptide pools (Miltenyi Biotech, Bergisch-
Gladbach, Germany) consisting of 15-mer peptides with
11 amino acids overlap covering the entire sequence of the
spike glycoprotein (pepS) and the complete sequence of the
nucleocapsid phosphoprotein (pepN).

Cellular SARS-CoV-2 immunity was quantitatively analyzed
using a whole blood spike IGRA and nucleocapsid IGRA,
� 26 May 2022 � 10:29 am � ce
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Table 2.SARS-CoV-2–Specific Characteristics of the Study Population

Mucosal SARS-CoV-2
RNA–negative

Mucosal SARS-CoV-2
RNA–positive Overall P

n 14 32 46

Metrics
Days between COVID-19 and biopsy sampling 122.00 (72.75, 236.25) 229.50 (107.25, 263.00) 218.50 (94.50, 256.75) .17

Lung capacity
FVC (z score) -0.55 (-1.17, 0.55) -0.64 (-1.08, -0.08) -0.63 (-1.14, 0.32) .97
FEV1 (z score) 0.54 (-0.44, 0.92) -0.64 (-1.38, -0.03) -0.41 (-1.17, 0.57) .04

COVID-19 severity (%)a .36
Asymptomatic 0/14 (0.0) 1/32 (3.1) 1/46 (2.2)
Ambulatory: mild disease 12/14 (85.7) 30/32 (93.8) 42/46 (91.3)
Hospitalized: moderate disease 1/14 (7.1) 1/32 (3.1) 2/46 (4.3)
Hospitalized: severe disease 1/14 (7.1) 0/32 (0.0) 1/46 (2.2)

Postacute COVID-19 symptoms (%)d Q37

Any postacute COVID symptom 0/14 (0.0) 21/32 (65.6) 21/46 (45.7) .001
Fatigue 0/14 (0.0) 18/32 (56.3) 18/46 (39.1)
Memory issues 0/14 (0.0) 14/32 (43.8) 14/46 (30.4)
Loss of smell 0/14 (0.0) 11/32 (34.4) 11/46 (23.9)
Abdominal pain 0/14 (0.0) 10/32 (28.1) 10/46 (21.7)
Headache 0/14 (0.0) 9/32 (28.1) 9/46 (19.6)
Sleeping disorders 0/14 (0.0) 8/32 (25.0) 8/46 (17.4)
Diarrhoea 0/14 (0.0) 7/32 (21.9) 7/46 (15.2)
Persistent cough 0/14 (0.0) 7/32 (21.9) 7/46 (15.2)
Shortness of breath 0/14 (0.0) 6/32 (18.8) 6/46 (13.0)
Depression 0/14 (0.0) 3/32 (9.4) 3/46 (6.5)
Palpitations 0/14 (0.0) 2/32 (6.3) 2/46 (4.3)
Muscle pain 0/14 (0.0) 2/32 (6.3) 2/46 (4.3)
Chest pain 0/14 (0.0) 1/32 (3.1) 1/46 (2.2)
Rash 0/14 (0.0) 0/32 (0.0) 0/46 (0.0)
Recurrent fever 0/14 (0.0) 0/32 (0.0) 0/46 (0.0)

SARS-CoV-2 vaccination status (%)
Unvaccinated 9/14 (64.3) 10/32 (31.2) 19/46 (41.3) .08
1 dose Vaxzevria (ChAdOx1) 0/14 (0.0) 1/32 (3.1) 1/46 (2.2)
1 dose Janssen COVID-19 Vaccine 0/14 (0.0) 1/32 (3.1) 1/46 (2.2)
1 dose Comirnaty (BNT162b2) 0/14 (0.0) 5/32 (15.6) 5/46 (10.9)
2 doses Vaxzevria (ChAdOx1) 0/14 (0.0) 1/32 (3.1) 1/46 (2.2)
2 doses Spikevax (mRNA-1273) 1/14 (7.1) 6/32 (18.8) 7/46 (15.2)
2 doses Comirnaty (BNT162b2) 2/14 (14.3) 6/32 (18.8) 8/46 (17.4)
3 doses Comirnaty (BNT162b2) 2/14 (14.3) 2/32 (6.2) 4/46 (8.7)

Positive PCR in medical history (%) 14/14 (100) 32/32 (100.0) 46/46 (100.0) .99

Anti-Nucleocapsid antibodies (%) .18
Negative 1/14 (7.1) 3/32 (9.4) 4/46 (8.7)
Borderline 1/14 (7.1) 10/32 (31.2) 11/46 (23.9)
Positive 12/14 (85.7) 19/32 (59.4) 31/46 (67.4)

Anti-RBD antibodies (%) .99
Negative 0/10 (0.0) 0/32 (0.0) 0/46 (0.0)
Borderline 0/10 (0.0) 0/32 (0.0) 0/46 (0.0)
Positive 14/14 (100.0) 32/32 (100.0) 46/46 (100.0)

Nucleocapsid-specific T cells (Nucleocapsid IGRA) (%) .75
Negative 6/14 (42.9) 17/32 (53.1) 23/46 (50.0)
Positive 8/14 (57.1) 15/32 (46.9) 23/46 (50.0)

Spike-specific T cells (Nucleocapsid IGRA) (%) .99
Negative 3/14 (21.4) 7/14 (21.9) 10/46 (21.7)
Positive 11/14 (78.6) 25/14 (78.1) 36/46 (78.3)

Quantitative SARS-CoV-2 immunity
Anti-RBD antibodies (BAU/mL) 274.60 (43.60, 2053.10) 809.90 (203.65, 1862.60) 658.45 (171.43, 2060.15) .32
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Table 2.Continued

Mucosal SARS-CoV-2
RNA–negative

Mucosal SARS-CoV-2
RNA–positive Overall P

Spike-IGRA (pg/mL) 1329.05 (60.22, 2018.88) 1922.99 (299.61, 3633.77) 1707.19 (239.56, 3293.65) .31
Nucleocapsid-IGRA (pg/mL) 45.79 (3.28, 170.75) 23.65 (0.10, 618.01) 40.38 (0.10, 455.96) .96

Nucleocapsid immunofluorescence signal (%) .001
Negative 14/14 (100.0) 8/32 (25) 22/46 (47.8)
Positive 0/14 (0.0) 24/32 (75.0) 24/46 (52.2)

NOTE. Data are reported as number of subjects with percentages in parentheses or as median with interquartile range in
parentheses.
RBD, receptor binding domain.
aCOVID-19 severity was stratified according to the World Health Organization COVID-19 clinical progression scale31 and
defined as follows: Mild, ambulatory and oxygen saturation always >90%; Moderate, hospitalization and/or decrease in
oxygen saturation <90%, but no oxygen supply necessary; Severe, hospitalized and oxygen supplementation or high-flow
oxygen or intubation.

6 Zollner et al Gastroenterology Vol. -, No. -

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

BASIC
AND

TRANSLATIONAL
AT
respectively. Spike and nucleocapsid specific IFN-g values were
analysed using ELISA. SARS-CoV-2–specific T cells were
expanded and analyzed using ICFC in a subset of patients (n ¼
5 without immunosuppressive therapy and n ¼ 5 with anti-TNF
therapy). As in the IGRA, T cells were stimulated with pepS or
pepN and analyzed on a CytoFLEX S flow cytometer (Beckman
Coulter, CA) after combined surface (CD45, CD4, CD8, CD45RO,
CD69) and intracellular cytokine staining (IFN–g, TNFa, inter-
leukin [IL]17A, granzyme B). In the IGRA and ICFC, mock- and
PMA/Ionomycin–treated cells served as negative or positive
control, respectively. Both IGRA and ICFC are further described
in the Supplementary Methods section.

Statistics
Statistical significance was assumed at P < .05 with an

unpaired 2-tailed Student t test, a Mann-Whitney U-test, or
analysis of variance and multiple comparisons were corrected
using the Sidak multiple comparison test, where appropriate.
Categorical variables were analyzed using the Fisher exact test.
Analysis was conducted using Prism V9 (Graphpad, San Diego,
CA) and R version 4.1.0 (R Project for Statistical Computing,
Vienna, Austria).
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Results
SARS-CoV-2 Antigen Persistence Frequently
Occurs in the Gut Mucosa

Patients recruited in this study had acute COVID-19
(PCR-confirmed SARS-CoV-2 infection) 219 days (range,
94–257) before endoscopy, which was performed to eval-
uate disease activity of an established IBD (ie, we did not
select for patients with postacute COVID-19). At endoscopy,
patients were evaluated for postacute COVID-19 symptoms
(using a questionnaire) and viral antigen persistence in the
gut. We included 46 patients with characteristics, comor-
bidities, risk factors, and medical history summarized in
Table 1, and COVID-19–related clinical and biochemical
characteristics shown in Table 2. Briefly, 91% (42/46) of
patients had experienced mild acute COVID-19, and 45%
(21/46) of patients reported at least 1 postacute COVID-19
FLA 5.6.0 DTD � YGAST65033_proof
symptom (Table 2). On the day of endoscopic examination,
all patients provided a negative COVID-19 nasal or
pharyngeal PCR test and did not display clinical signs of a
respiratory infection. Endoscopy revealed that the majority
of patients with IBD (59%) were in remission. We evaluated
viral antigen persistence by analysing biopsy specimens
from the small and large intestine with quantitative poly-
merase chain reaction (qPCR), immunofluorescence, and
viral culture from gut tissue. Moreover, we evaluated a
systemic SARS CoV-2–directed immune response and gut
inflammation (indicated by fecal calprotectin; Figure 1A).
Notably, 70% (32/46) of patients displayed a positive qPCR
signal in at least 1 segment of the gut (ie, duodenum, ileum,
or colon) (Figure 1B). We detected viral RNA in 31% of
biopsy specimens, with expression of the RdRP in 13.6% of
biopsy specimens, the surface glycoprotein (Spike) in 11.4%
of biopsy specimens, the nucleocapsid phosphoprotein
(Nucleocapsid) in 10.6% of biopsy specimens, and the en-
velope protein in 6.1% of biopsy specimens (Figure 1C).
Detection using qPCR was unrelated to the intestinal loca-
tion, the time from COVID-19 diagnosis to endoscopy, and
IBD activity (Figure 1B and Table 2). SARS-CoV-2 expression
was not detectable in stool from patients in this cohort
(Supplementary Figure 1).

To confirm long-term viral antigen persistence in the
mucosa and to confine the cellular localization in the gut, we
performed immunofluorescence of intestinal biopsy speci-
mens targeting the nucleocapsid phosphoprotein. The
specificity of the immunofluorescence signal was confirmed
in ACE2 and TMPRSS2 overexpressing vero cells infected
with SARS-CoV-2 (positive control) and mucosal biopsy
specimens collected in 2017, ie, before the pandemic
(negative control; Supplementary Figure 2). In 52% (24/46)
of patients from our cohort, we detected immunoreactivity
against the viral nucleocapsid phosphoprotein in intestinal
epithelial cells and immune cells in the lamina propria in the
small and large intestine (Figure 2A and Supplementary
Figure 2 and 3). Notably, all patients with a positive
nucleocapsid qPCR signal (n ¼ 13) also displayed nucleo-
capsid immunoreactivity in at least 1 of 3 analyzed gut
� 26 May 2022 � 10:29 am � ce
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Figure 1. SARS-CoV-2 antigen persistence frequently occurs in the gut mucosa. (A) Study design. In a cohort of 46 patients
with IBD with history of COVID-19, 219 days (range, 94–257) after the first positive PCR test endoscopy was performed and
biopsy-derived tissue was phenotyped for SARS-CoV-2 mucosal antigen persistence and IBD activity. Patients were also
evaluated for symptoms compatible with postacute COVID-19 sequelae using a questionnaire. The questionnaire was adapted
according to the AWMF Q26Post-Covid/long-Covid S1 guidelines32, and systemic SARS-CoV-2–directed immune responses were
analyzed. (B) SARS-CoV-2 RNA was detected in 32/46 patients using qPCR. Viral RNA was detected in 1 biopsy in 19 patients,
in 2 biopsies in 9 patients, and in all 3 biopsies collected in 4 patients. Detection was unrelated to the intestinal location and
viral RNA was detected in 15/46 duodenal, 10/46 ileal, and 13/46 colonic samples. (C) Biopsies were analysed for 4 viral
transcripts using qPCR (ie, RNA polymerase [RdRP], nucleocapsid phosphoprotein [Nucleocapsid], surface glycoprotein
[Spike], and envelope protein). The red bar (left) indicates the proportion of biopsies with at least 1 positive qPCR signal, the
blue bars illustrate the proportions for the respective transcript.
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segments (Figure 2B). In addition, 11 patients who were
RdRP-, spike-, or envelope-positive in qPCR (but without a
nucleocapsid qPCR signal) displayed nucleocapsid immu-
noreactivity (Figure 2B and Table 2), indicating a patchy
FLA 5.6.0 DTD � YGAST65033_proof
expression pattern as previously reported.15 Nucleocapsid
immunoreactivity specifically localized to epithelial cells
(Figure 2A, Supplementary Figures 2 and 3), and possibly
stem cells (Supplementary Figure 4), and to a lesser extent
� 26 May 2022 � 10:29 am � ce
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Figure 2. SARS-CoV-2 nucleocapsid immunofluorescence in the intestine. (A) Representative confocal microscopy images of
viral nucleocapsid (red) in the duodenum, ileum, and colon from patients with IBD w219 days after acute COVID-19. Cyto-
keratin 18 (blue) visualizes the epithelial cytoskeleton and DAPI Q27(yellow) depicts the nucleus. Scale bar indicates 50 mm.
(B) Association between viral qPCR positivity and antinucleocapsid immunoreactivity based on immunofluorescence. SARS-
CoV-2 RNA was detected in 32/46 patients with RdRP in 16 patients, the surface glycoprotein (Spike) in 12 patients, the
nucleocapsid phosphoprotein (Nucleocapsid) in 13 patients, and the envelope protein in 7 patients. All patients with a positive
nucleocapsid qPCR displayed nucleocapsid immunoreactivity based on immunofluorescence in at least 1 of 3 gut segments.
(C) Representative confocal microscopy images of viral nucleocapsid (red) colabelled with anti-CD8 (blue) in the duodenum,
ileum, and colon. Cytokeratin 18 (yellow) visualizes the cytoskeleton and DAPI (grey) depicts the nucleus. Scale bar indicates
50 mm.
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to CD8þ T cells in the epithelium and lamina propria
(Figure 2C).

These observations led us to explore whether viral an-
tigen persistence in the gut mucosa could be explained by
SARS-CoV-2 replication. We homogenized biopsy-derived
mucosal tissue from each of the 46 patients and cocul-
tured the lysate with ACE2 and TMPRSS2 overexpressing
vero cells. Although this model system showed strong
replication of SARS-CoV-2 with lysates from nasal swabs of
patients with symptomatic acute COVID-19, intestinal bi-
opsy lysates from our cohort did not show evidence of
replication (Supplementary Figure 5). Collectively, these
data demonstrated that SARS-CoV-2 viral antigen persis-
tence frequently occurs in the gut mucosa even months
after acute COVID-19, but was not detectable in stool and
appeared unrelated to viral replication.
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SARS-CoV-2 Antigen Persistence Links to
Postacute Sequelae of COVID-19

In a next step, we hypothesized that gut mucosal SARS-
CoV-2 antigen persistence links to postacute sequelae of
COVID-19. We stratified patients into 2 groups based on a
positive SARS-CoV-2 qPCR result along the gut. Patients
with a positive qPCR result were compared with patients
who displayed no evidence for viral antigen persistence
based on qPCR. Time from and disease characteristics of
acute COVID-19 and IBD were comparable between both
groups as shown in Tables 1 and 2 and Supplementary
Table 2. Notably, only patients who displayed viral RNA
expression in the gut reported symptoms compatible with
postacute COVID-19 sequelae (Figure 3A). Patients without
evidence for viral antigen persistence in our cohort (n ¼ 14)
did not display postacute COVID-19 symptoms (Figure 3A).
We confirmed this observation by stratifying patients
according to nucleocapsid immunoreactivity assessed
using immunofluorescence (rather than qPCR positivity)
(Figure 3B). Viral antigen persistence occurred in patients
with and without immunosuppressive therapy (ie, azathio-
prine, anti-TNF therapy, or vedolizumab; Figure 3C) and
was unrelated to gut inflammation indicated using fecal
calprotectin (Figure 3D and Supplementary Table 2).

Finally, we sought to define potential mechanisms of
viral antigen persistence in the intestine.15 We analyzed
SARS-CoV-2–associated humoral and cellular immune
responses with ELISAs, IGRA, and by surface and ICFC of
peripheral blood cells (using peptide pools mapping the
spike and the nucleocapsid proteins). Blood-derived im-
mune cells from patients with gut antigen persistence
exhibited a comparable IFN-g release on SARS-CoV-2
nucleocapsid exposure as patients without antigen persis-
tence (Figure 3E). We rather noted that patients with gut
viral antigen persistence more frequently lacked evidence of
antinucleocapsid IgG antibodies (Figure 3F) and that anti-
TNF immunosuppressive therapy was associated with
impaired inflammatory T-cell responses on nucleocapsid
peptide stimulation (Figure 3G and Supplementary
Figure 6).
FLA 5.6.0 DTD � YGAST65033_proof
Discussion
SARS-CoV-2 infection causes acute COVID-19, ranging

from asymptomatic to severe cases, partly depending on
immunocompetency of the host.22 We rationed that viral
antigen persistence may underlie Qpostacute sequelae of
COVID-19. Our findings indicate that viral antigens, but not
infectious virions, persist in the gut mucosa long beyond
mild acute COVID-19 in patients with IBD. More specifically,
antigen persistence occurs in 52%–70% of patients after
w7 months in our IBD cohort (dependent on the definition,
ie, a positive nucleocapsid immunofluorescence in any gut
segment, or viral RNA expression of at least 1 of 4 viral
transcripts in any gut segment determined using qPCR).
Viral antigen persistence of the nucleocapsid was detectable
in epithelial cells and CD8þ T cells in the gut. Viral antigen
persistence was observed in patients with and without
immunosuppressive therapy and was unrelated to severity
of acute COVID-19 or gut inflammation in IBD at time of
endoscopy. We argue that viral antigen persistence reflects
incomplete clearance of SARS-CoV-2 rather than subclinical
(latent or persistent) infection because we were unable to
replicate virus from biopsy-derived tissue. In line with this,
we usually detected only some (but not all) viral transcripts
in biopsy specimens from the same patient. Our experi-
mental data rather suggest that immunosuppressive ther-
apy with or without genetic predisposition (affecting the
immune system) may promote incomplete viral clearance.23

Indeed, we find that some patients exhibit a lack of humoral
nucleocapsid IgG antibodies, which is pronounced in those
with gut antigen persistence. In line with this notion, a
previous report demonstrated immune dysregulation, eg, a
decrease of nucleocapsid-specific IFN-g–producing CD8þ

T cells in patients with postacute COVID-19.24

To our knowledge, our study is the largest COVID-19–
related gastrointestinal endoscopy study today and the first
report that links viral antigen persistence with postacute
COVID-19. In our report, only patients with gut antigen
persistence (determined using qPCR) reported postacute
COVID-19 symptoms. In contrast, none of the patients
without evidence for antigen persistence in the gut reported
symptoms of postacute COVID-19. This observation strongly
argues for a role of viral antigen persistence in postacute
COVID-19 and it appears plausible that SARS-CoV-2 antigen
persistence, possibly in infected tissues beyond the gut,
could impact host immune responses underlying the post-
acute COVID-19 syndrome.1 This notion is supported by an
influenza mouse model, demonstrating that ineffective viral
clearance modulates adaptive immune responses and the
formation of memory T cells in draining lymph nodes of the
lung.25 Along these lines, a recent report demonstrated that
patients who survived COVID-19 pneumonia displayed long-
term pulmonary CD8þ T-cell alterations (although pulmo-
nary antigen persistence was not explored).26 Our findings
also appear notable in light of the observation that T-cell
activation is prolonged for 6 months in COVID-19 when
compared with other acute viral infections.27-29 In addition,
a recent study revealed highly activated innate immune cells
and persistent activation of T cells in individuals suffering
� 26 May 2022 � 10:29 am � ce
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from postacute COVID-19, although the origin of this
hyperactivated state remains obscure.14

Limitations of our study are the lack of a replication
cohort and direct proof that SARS-CoV-2 antigen persistence
affects host immune responses. Moreover, we restricted our
FLA 5.6.0 DTD � YGAST65033_proof
studies to patients with IBD because it was initially
conceived that this population may be particularly vulner-
able to COVID-19 infection (with or without an impact on
IBD activity). Our findings could be applicable to patients
without IBD because viral antigen persistence has been
� 26 May 2022 � 10:29 am � ce
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reported in the gut 2 months after COVID-19 in patients
without IBD or immunosuppression.15 Whether the re-
ported link between gut viral antigen persistence and
postacute COVID-19 is applicable to patients without IBD
warrants controlled clinical trials. Our findings are also
consistent with a growing body of evidence showing that
COVID-19 does not affect gut inflammation in IBD.30

Collectively, we provide evidence for SARS-CoV-2 anti-
gen persistence in the gut as a basis for immune perturba-
tion in postacute COVID-19. Whether viral antigen
persistence (in and beyond the gut) underlies the patho-
physiology of postacute COVID-19 warrants further clinical
trials to tackle this rapidly emerging disorder across the
globe.12
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Supplementary Methods

Immunofluorescence
Intestinal biopsy specimens were collected in RPMI and

immediately transferred in cryomolds, covered with OCT
embedding medium, and immersed in cold isopentane with
liquid nitrogen until snap-frozen. Cryomolds were stored at
-20�C until cryosectioning. For downstream immunofluo-
rescence 4-mm cryostat sections were cut from the samples
and subsequently stained for SARS-CoV-2 nucleocapsid and
epithelial CK18, according to a standardized immunofluo-
rescence protocol. In brief endogenous peroxidase was
blocked using Dako peroxidase block (Agilent, CAQ31 ). Slides
were incubated with Image-iT FX signal Enhancer (#I36933,
Thermo Scientific, MA) and subsequently stained using
antinucleocapsid (#PA5114448, Thermo Scientific, MA),
anti-CD8 (#14-0008-80, Thermo Fisher Scientific, Waltham,
MA), anti-LGR5 (#MA5-25644, Thermo Fisher Scientific,
Waltham, MA), and anti-CK18 (#LS-B11232, LifeSpan Bio-
sciences, WA) antibodies. Targets were visualized with
secondary fluorophore conjugated antibodies. Nuclei were
counterstained using ProLong Diamond antifade reagent
with DAPI (Invitrogen, CA); 200-mm � 200-mm images were
acquired on a Zeiss Axioobserver Z1 in combination with a
LSM700 confocal laser scanning system containing 4 lasers
with 405, 488, 555, and 654 nanometre wavelengths (Zeiss,
Oberkochen, Germany).

Virus cultivation
Biopsy specimens stored in RPMI supplemented with

10% FCS at -80�C were homogenized using a Precellys 24
Homogenisator (Bertin, Montigny-le-Bretonneux, France).

The isolation protocol as described as follows has been
established using nasal swabs from symptomatic COVID-19
patients (manuscript in preparation).

After homogenization, the lysate was sterile filtrated
through spin-x columns (Corning Inc, NY) and used to infect
ACE-2 and TMPRSS2 overexpressing Vero cells18 (Vero-
TMPRSS2/ACE2). The inoculum was added to the cells for
1 h at 37�C, after which cells were washed once and main-
tained in high-glucose Dulbecco’s Modified Eagle Medium
(Merck, Darmstadt, Germany) supplemented with 2% FCS,
2% L-Glutamin, and 1% Penicillin-Streptomycin. Three days
after infection, wells were analyzed for cytopathic effect
(CPE). For wells with clear CPE, virus was harvested and
frozen in aliquots at -80�C. For wells with absent or only
partial CPE, a second passage was performed. Fresh
confluent Vero-TMPRSS2/ACE2 cells were infected for 1 h
with supernatant from the first passage. Subsequently, cells
were washed and cultured for 3 days in complete medium
with 2% FCS. Samples with absent CPE after 2 passages
were regarded as negative for infectious virus. All work with
live SARS-CoV-2 was performed in biosafety laboratory level
3 facility.

IGRA
The presence of SARS-CoV-2–specific T cells directed

against the spike (S) and nucleocapsid (N) proteins were
assessed using IGRA and validated with ICFC.19 To specif-
ically stimulate SARS-CoV-2–specific T cells, lithium heparin
whole blood or isolated peripheral blood mononuclear cells
(PBMC), were coincubated with peptide pools (Miltenyi
Biotech, Bergisch-Gladbach, Germany) consisting of 15-mer
peptides with 11 amino acids overlap covering the entire
sequence of the spike glycoprotein (pepS) and the complete
sequence of the nucleocapsid phosphoprotein (pepN).

For the IGRA 600-mL lithium heparin aliquots whole
blood were coincubated with and without SARS-CoV-2 spe-
cific peptides. Four sample preparations were used to
determine IFN-g. One sample was mock treated to determine
the steady state IFN-g expression; in the second and third
sample IFN-g expressions were analyzed on stimulation with
spike or nucleocapsid peptides (PepTivator SARS-CoV-2
ProtS, S1, Sþ & N, Miltenyi, Bergisch Gladbach, Germany).
An additional sample stimulated with PMA/ Q32Ionomycin
served as a positive control. After 24 h on 37�C, the samples
were spun down at 2000g for 15 min and the supernatant
was stored at -80�C. Concentrations of IFN-g were measured
using a human IFN-g ELISA kit (BD OptEIA Set Human IFNg,
BD Biosciences Pharmingen, NJ) according to the manufac-
turer’s instructions. Negative control samples were diluted
1:5. SARS-CoV-2 peptide (pepS and pepN) coincubated sam-
ples were diluted 1:5, 1:10, and 1:15. PMA-stimulated sam-
ples were diluted 1:80 using dilution buffer. Spike and
nucleocapsid reactivity were calculated by subtracting the
untreated response from that of the stimulation

ICFC
To decipher subsets of the T-cell compartment, SARS-

CoV-2–specific T cells were expanded and analyzed using
ICFC. First lithium heparin whole blood was collected and
PBMCs were isolated using a Lymphoprep density gradient
medium (Stemcell, Vancouver, Canada) according to the
manufacturer’s instructions. In brief, 4 mL lithium heparin
blood were diluted with 3 mL PBS Q33, PBMCs were isolated by
layering the 7 mL on 4 mL Lymphoprep and subsequent
density-gradient centrifugation for 30 min at 850g. PBMCs
were collected from the interphase, washed twice, cry-
opreserved in heat-inactivated FCS supplemented with 10%
dimethylsulfoxid (Sigma, MO), and stored in liquid nitrogen
until further use.

To expand SARS-CoV-2–reactive T cells, 2 � 10

ˇ

5 PBMCs
in 200 mL of RPMI medium supplemented with 10% FCS
were pulsed with 0.6 mg/mL spike (pepS, pepS1, and
pepSþ) or nucleocapsid (pepN) peptide pools in the pres-
ence of 10 U/mL interleukin-2 (IL2). Cells were cultured
with IL2 only served as a negative control. After 60 h, cells
were restimulated with or without 1 mg/mL spike or
nucleocapsid peptide pools. Cells stimulated with 4 mg/mL
PHA Q34served as positive controls. After combined surface
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(CD45, CD4, CD8, CD45RO, CD69) and intracellular cytokine
staining (IFN-g, TNFa, IL-17A, granzymeB) specific T-cell
responses were acquired on a CytoFLEX Flow Cytometer
(Beckman Coulter, CA) and analyzed with Flowjo v10.6
(Becton Dickinson, NJ). As in IGRA spike and nucleocapsid

reactivity was Q35calculated by subtracting the untreated
response from that of stimulation. A representative gating
strategy is shown in Supplementary Figure 5. Antibodies
and the respective suppliers are depicted in Supplementary
Table 3.
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Supplementary Figure 1. Stool SARS-CoV-2 PCR. RNA was
isolated from stool of patients before the pandemic (neg. ctrl;
n ¼ 4), from the study cohort (n ¼ 46), and stool from COVID-
19 subjects (pos. ctrl; n ¼ 4). The red bars indicate percent-
ages of samples with positive SARS-CoV-2 PCR. The
blue bars show CT values for the RNA-dependent RNA po-
lymerase (R), the spike (S), the nucleocapsid (N), and the
envelope (E).
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Supplementary Figure 2. SARS-CoV-2 nucleocapsid immunofluorescence of intestinal tissue. Representative confocal mi-
croscopy images of viral nucleocapsid (red) in the duodenum, ileum and colon mucosa from patients with IBDw219 days after
acute COVID-19 (lower panel). Immunostaining of sections from patients with no history of SARS-CoV-2 infection (retrieved
before the pandemic) is shown in the upper panel and serves as a negative control. Cytokeratin 18 (blue) visualizes the
cytoskeleton and DAPI (yellow) depict the nucleus. Scale bar indicates 50 mm.
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Supplementary Figure 3. Additional SARS-CoV-2 nucleocapsid immunofluorescence from intestinal tissue. As in
Supplementary Figure 1, representative confocal microscopy images of viral nucleocapsid (red) in the duodenum, ileum, and
colon mucosa from 5 patients with IBDw219 days after acute COVID-19. Cytokeratin 18 (blue) visualizes the cytoskeleton and
DAPI (yellow) depict the nucleus. Scale bar (bottom left) indicates 50 mm.
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Supplementary Figure 4. Nucleocapsid/Lgr5 immunofluo-
rescence. Representative confocal microscopy image of
costainings of viral nucleocapsid (red) and Lgr5 (green) in
the mucosa from a patient with IBD w219 days after
acute COVID-19. Cytokeratin 18 (blue) visualizes the cyto-
skeleton and DAPI (grey) depicts the nucleus. Scale bar in-
dicates 100 mm.

- 2022 Postacute COVID-19 and IBD 12.e5

FLA 5.6.0 DTD � YGAST65033_proof � 26 May 2022 � 10:29 am � ce

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040



w
e
b
4
C
=
F
P
O

Supplementary Figure 5. SARS-CoV-2 cultivation. Lysates
of negative controls (n ¼ 4), the study cohort (n ¼ 46), and
positive controls (n ¼ 4) were used to infect ACE-2 and
TMPRSS2 overexpressing Vero cells (Vero-TMPRSS2/ACE2)
and cytopathic effect was analyzed. The percentages of
samples showing a cytopathic effect are indicated in red.
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Supplementary Figure 6. Representative flow cytometry plots of cellular nucleocapsid reactivity. PBMCs were cocultivated
with peptide pools covering the N protein for 60 h, restimulated, and analyzed using intracellular cytokine staining. Dot plots
show CD4þ and CD8þ T cells that produced IFN-g in response to stimulation nucleocapsid peptides in a patient with IBD
without medication (left) and a patient with anti-TNF therapy (right).
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Supplementary Figure 7. Representative gating strategy. First cells were gated based on FSC and SSC; singlets were
excluded by FSC-A vs FSC-H gate; live CD45þ high leukocytes were gated; live CD45þ high cells were separated in CD4þ and
CD8þ cells. These cell populations were analyzed for intracellular IFN-g, TNFa, IL-17, and GranzymeB. FSC Q30, ; SSC, .
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Supplementary Table 1.SARS-CoV-2 and Human qPCR Primer Pairs

Target gene Forward primer Reverse primer

SARS-CoV-2 genes
Surface glycoprotein GCTGGTGCTGCAGCTTATTA AGGGTCAAGTGCACAGTCTA
Nucleocapsid phosphoprotein CAATGCTGCAATCGTGCTAC GTTGCGACTACGTGATGAGG
RNA-dependent RNA polymerase AGAATAGAGCTCGCACCGTA CTCCTCTAGTGGCGGCTATT
Envelope protein TTCGGAAGAGACAGGTACGTTA AGCAGTACGCACACAATCG

Human gene
b-actin CACCATTGGCAATGAGCGGTTC AGGTCTTTGCGGATGTCCACGT

NOTE. Primers were validated and extensively analyzed by Park et al.17

Supplementary Table 2.General Laboratory Results of the Study Population

Mucosal SARS-CoV-2
RNA–negative

Mucosal SARS-CoV-2
RNA–positive Overall P

N 14 32 46

General laboratory parameters
Urea (mg/dL) 24.05 (21.58, 25.53) 23.05 (18.00, 27.52) 23.90 (19.27, 27.40) .62
Creatinine (mg/dL) 0.81 (0.68, 0.91) 0.90 (0.75, 1.01) 0.86 (0.73, 0.97) .09
Total bilirubin (mg/dL) 0.74 (0.60, 1.08) 0.92 (0.55, 1.14) 0.86 (0.56, 1.13) .75
Sodium (mmol/L) 138.00 (137.00, 140.75) 139.00 (138.00, 140.00) 139.00 (138.00, 140.00) .40
Potassium (mmol/L) 3.70 (3.52, 4.02) 4.00 (3.70, 4.23) 3.90 (3.62, 4.20) .06
Chloride (mmol/L) 102.00 (101.25, 104.75) 103.00 (102.00, 105.00) 103.00 (102.00, 105.00) .49
ASAT (U/L) 21.50 (17.25, 32.25) 24.00 (19.75, 34.25) 22.50 (18.25, 34.75) .63
ALAT (U/L) 21.00 (13.25, 29.50) 23.50 (17.00, 41.00) 23.00 (17.00, 38.75) .31
Gamma GT (U/L) 16.50 (15.00, 28.75) 22.00 (15.75, 31.00) 20.00 (15.00, 31.25) .39
AP (U/L) 81.00 (65.75, 91.00) 78.50 (63.75, 92.00) 78.50 (64.25, 91.75) .83
LDH (U/L) 178.50 (164.75, 191.00) 190.00 (164.25, 201.50) 184.00 (164.25, 198.75) .53
CRP (U/L) 0.11 (0.06, 0.25) 0.10 (0.06, 0.21) 0.10 (0.06, 0.24) .76
Leukocytes (g/L) 6.00 (5.10, 6.27) 6.65 (5.22, 8.85) 6.25 (5.08, 8.45) .17
Erythrocytes (g/L) 4.69 (4.35, 4.94) 4.92 (4.49, 5.31) 4.86 (4.46, 5.18) .17
Hemoglobin (g/L) 136.00 (125.50, 145.50) 146.50 (138.75, 158.50) 144.50 (134.25, 153.00) .02
Hematocrit (%) 0.40 (0.38, 0.44) 0.44 (0.41, 0.46) 0.44 (0.40, 0.46) .02
MCH (pg) 28.80 (27.70, 31.40) 30.60 (29.25, 31.20) 30.25 (28.90, 31.20) .18
MCV (fL) 87.80 (82.55, 92.72) 89.40 (87.53, 92.70) 88.95 (85.95, 92.70) .36
MCHC (g/L) 331.00 (326.75, 339.75) 337.00 (328.00, 343.00) 336.50 (328.00, 343.00) .27
RDW (%) 12.95 (12.75, 13.60) 12.80 (12.47, 13.20) 12.90 (12.50, 13.20) .24
Thrombocytes (gQ28 /L) 242.00 (215.00, 297.25) 267.00 (223.75, 305.25) 262.50 (218.25, 302.75) .50
MPV (fL) 10.90 (10.27, 11.60) 10.65 (9.97, 11.10) 10.75 (10.00, 11.20) .25
Iron (mmol/L) 24.25 (18.52, 33.72) 25.85 (19.62, 32.75) 25.35 (19.28, 33.05) .80
Ferritin (mg/g) 73.00 (46.50, 172.50) 124.00 (73.75, 175.75) 118.50 (60.25, 174.75) .38
Transferrin (mg/dL) 269.50 (248.00, 295.50) 259.00 (236.75, 287.75) 261.50 (238.50, 289.25) .50
Transferrin saturation (%) 36.00 (28.75, 48.75) 37.00 (28.00, 53.00) 36.00 (28.00, 53.00) .96
Folate (mg/L) 8.85 (6.20, 13.30) 8.00 (6.90, 10.00) 8.00 (6.80, 10.30) .57
Vitamin B12 327.00 (308.75, 396.00) 293.00 (234.75, 353.75) 307.00 (237.75, 367.25) .15
Fecal calprotectin (mg/g) 51.45 (32.12, 60.48) 31.60 (16.00, 85.30) 36.95 (16.00, 69.88) .40

NOTE. Data are reported as median with interquartile range in parentheses.
ALAT, ; AP, ; ASAT, ; CRP, ; LDH, ; MCH Q29, ; MCHC, ; MCV, ; MPV, ; RDW, .
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Supplementary Table 3.Antibodies for ICFC

Reactivity Fluorochrome Supplier RRID

CD4 Pe Biolegend AB_1937247

CD8 PerCP Biolegend AB_1575072

CD45 BV785 Biolegend AB_2563128

CD45RO PeDazzle Biolegend AB_2566542

CD69 BV605 Biolegend AB_2562306l

IFN-g BV421 Biolegend AB_2561398

TNFa APC Biolegend AB_315264

IL-17A AF700 Biolegend AB_2280255

GranzymeB FITC Biolegend AB_2114575

Live/Dead V510 Tonbo Biosciences Not available

12.e10 Zollner et al Gastroenterology Vol. -, No. -

FLA 5.6.0 DTD � YGAST65033_proof � 26 May 2022 � 10:29 am � ce

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640


