
PGF5003: Classical Electrodynamics I

Problem Set 5
Professor: Luis Raul Weber Abramo

Monitor: Natalí Soler Matubaro de Santi
(Due to June 22, 2021)

Guidelines: write down the most relevant passages in your calculations, not only the �nal results.

Do not forget to write the mathematical expressions that you are using in order to solve the questions.

We strongly recommended the use of the International System of Units.

1 Question (1 point)

Use the electric stress tensor formalism to prove that no isolated charge distribution ρ(r) can exert a net

force on itself. Distinguish the cases when ρ(r) has a net charge and when it does not.

1.1 Solution

Being E(r) the electric �eld produced by this charge density ρ(r), the force exerted on itself (ρ(r))
can be computed as

F =

∫
d3rρ(r)E(r). (1)

Now, converting this expression to the formalism of the electric stress tensor, we have the compo-
nents of the force given by

Fj =

∫
d3r∂iTij(E) =

∫
dsn̂iTij(E) (2)

Tij(E) = ε0

(
EiEj −

1

2
δijE

2

)
, (3)
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in the way that the net force on the charge inside the closed surface s is

F =

∫
dsn̂ ·T(E) (4)

= ε0

∫
ds

[
(n̂ · E)E− 1

2
(E · E) n̂

]
= 0, (5)

for any ρ(r):

• There is net charge: implies that the distribution behaves like punctual charges, i.e., E ∝
1/r2⇒ dsE2 ∝ 1/r2. In the limit where r →∞, the integral is zero!

• There is NO net charge: means that the �eld goes to zero;

Therefore, no charge distribution is able to produce a net force on itself.

2 Question (1 point)

The charge and current densities for a single point charge q can be written formally as

ρ(x′, t′) = qδ [x′ − r(t′)] (6)

J(x′, t′) = qv(t′)δ [x′ − r(t′)] (7)

where r(t′) is the charge’s position at time t′ and v(t′) is its velocity. In evaluating expressions involving

the retarded time, one must put t′ = t−R(t′)/c, where R = x− r(t′) (but R = x− x′(t′) inside the

delta functions).

a) As a preliminary to deriving the Heaviside-Feynman expression for the electric and magnetic

�elds of a point charge, show that ∫
d3x′δ [x′ − r(tret)] =

1

κ
, (8)

where κ = 1− v · R̂/c. Note that κ is evaluated at the retarded time.

b) Starting with the Je�menko generalizations of the Coulomb and Biot-Savart laws, use the ex-

pressions for the charge and current densities for a point charge and the result of part a to obtain the
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Heaviside-Feynman expressions for the electric and magnetic �elds of a point charge,

E =
q

4πε0

{[
R̂

κR2

]
ret

+
∂

c∂t

[
R̂

κR

]
ret

− ∂

c2∂t

[ v

κR

]
ret

}
(9)

B =
µ0q

4π

{[
v × R̂
κR2

]
ret

+
∂

c∂t

[
v × R̂
κR

]
ret

}
. (10)

2.1 Solution

a) To show the Heaviside-Feynman expression we could use the identity

δ[f(x)] =
δ(x− x0)
∂f/∂x|x=x0

, (11)

where x0 is a root of f(x). Here we need to set f(x′) = [x′ − r(t)], considering the root x0 = r(tret)

in the way that

δ [x′ − r(tret)] = δ [f(x′)] = δ (x′ − x0)

{
∂

∂x′
[x′ − r(tret)]

}−1
x′=x0

(12)

= δ (x′ − x0)

{
1− ∂r(tret)

∂x′

}−1
x′=x0

= δ (x′ − x0)

{
1− ∂r

∂t

∂t

∂x′

}−1
x′=x0

(13)

= δ (x′ − x0)

{
1− ∂r

∂t

∂

∂x′

[
t− |x− x′|

c

]}−1
x′=x0

(14)

= δ (x′ − x0)

{
1− ∂r

∂t

[
x− x′

c|x− x′|

]}−1
x′=x0

(15)

= δ (x′ − x0)

{
1− ∂r

∂t

[
R

c|R|

]}−1
x′=x0

= δ (x′ − x0)

[
1− v · R̂

c

]−1
(16)

=
δ (x′ − x0)[

1− v·R̂
c

] =
δ (x′ − x0)

κ
. (17)

Therefore, that is why ∫
d3x′δ [x′ − r(tret)] =

∫
d3x′

δ (x′ − x0)

κ
=

1

κ
� (18)

b) The Je�menko generalizations for the �elds E and B are written as

E =
1

4πε0

∫
d3x′

{
R̂

R2
[ρ (x′, t′)]ret +

R̂

cR

[
∂ρ(x′, t′)

∂t′

]
ret

− 1

c2R

[
∂J(x′, t′)

∂t′

]
ret

}
, (19)

B =
µ0

4π

∫
d3x′

{
[J (x′, t′)]ret ×

R̂

R2
+

[
∂J(x′, t′)

∂t′

]
ret

× R̂

cR

}
. (20)
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To compute the �elds for a punctual electrical charge let’s de�ne:

[ρ (x′, t′)]ret = qδ [x′ − r(t′)]ret , (21)

[J(x′, t′)]ret = qv(t′)δ [x′ − r(t′)]ret . (22)

Then, computing E we have:

E =
1

4πε0

∫
d3x′

{
R̂

R2
[ρ (x′, t′)]ret +

R̂

cR

[
∂ρ(x′, t′)

∂t′

]
ret

− 1

c2R

[
∂J(x′, t′)

∂t′

]
ret

}
(23)

=
1

4πε0

∫
d3x′

{
R̂

R2
qδ [x′ − r(t′)]ret +

R̂

cR

[
∂qδ [x′ − r(t′)]

∂t′

]
ret

− 1

c2R

[
∂qv(t′)δ [x′ − r(t′)]

∂t′

]
ret

}

=
q

4πε0

{∫
d3x′

[
R̂

R2
δ [x′ − r(t′)]

]
ret

+
∂

∂t

∫
d3x′

[
R̂

cR
δ [x′ − r(t′)]

]
ret

− ∂

∂t

∫
d3x′

[
1

c2R
v(t′)δ [x′ − r(t′)]

]
ret

}
(24)

=
q

4πε0

{[
R̂

R2κ

]
ret

+
∂

∂t

[
R̂

cRκ

]
ret

− ∂

∂t

[
v(t′)

c2Rκ

]
ret

}

=
q

4πε0

{[
R̂

κR2

]
ret

+
∂

c∂t

[
R̂

κR

]
ret

− ∂

c2∂t

[ v

κR

]
ret

}
� (25)

And the same follows for B:

B =
µ0

4π

∫
d3x′

{
[J (x′, t′)]ret ×

R̂

R2
+

[
∂J(x′, t′)

∂t′

]
ret

× R̂

cR

}
(26)

=
µ0

4π

∫
d3x′

{
qv(t′)δ [x′ − r(t′)]ret ×

R̂

R2
+

[
∂qv(t′)δ [x′ − r(t′)]

∂t′

]
ret

× R̂

cR

}
(27)

=
µ0q

4π

{∫
d3x′

[
v(t′)× R̂

R2
δ [x′ − r(t′)]

]
ret

+
∂

∂t

∫
d3x′

[
v(t′)× R̂

cR
δ [x′ − r(t′)]

]
ret

}
(28)

=
µ0q

4π

{[
v(t′)× R̂

R2κ

]
ret

+
∂

∂t

[
v(t′)× R̂

cRκ

]
ret

}
(29)

=
µ0q

4π

{[
v × R̂
κR2

]
ret

+
∂

c∂t

[
v × R̂
κR

]
ret

}
� (30)

3 Question (1 point)

a)When the current density J is independent of the time, the charge density is given by

ρ(r, t) = ρ(r, 0) + ρ̇(r, 0)t. (31)
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In this case, show that the electric �eld is given by

E(r, t) =
1

4πε0

∫
d3r′ρ(r, t)

(r− r′)

|r− r′|3
(32)

where ρ is computed at the time t and not in the retarded time tret, which is identical to the electrostatic

situation. Could you give an example where this situation happens?

b) Show that the Biot-Savart law

B(r, t) =
µ0

4π

∫
d3r

J(r′, t)× (r− r′)

|r− r′|3
(33)

is still valid even in the case the the density current J changes with time, being the time variation

su�ciently small to use the �rst approximation order

J(tret) = J(t) + (tret − t)J̇(t) (34)

what leads to this quantity be calculated in the time t and not in the retarded one.

3.1 Solution

a) To compute the electrical �eld we can start from the Je�menko equation for it

E =
1

4πε0

∫
d3r′

{
R̂

R2
[ρ (r′, t′)]ret +

R̂

cR

[
∂ρ(r′, t′)

∂t′

]
ret

− 1

c2R

[
∂J(r′, t′)

∂t′

]
ret

}
. (35)

The quantities are then

∂J(r′, t′)

∂t′
= 0, (36)

∂ρ(r′, t′)

∂t′
= ρ̇(r, 0) (37)

and
tret = t− |r− r′|

c
. (38)
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Putting it on the �eld

E(r, t) =
1

4πε0

∫
d3r′

{
R̂

R2
[ρ (r′, t′)]ret +

R̂

cR

[
∂ρ(r′, t′)

∂t′

]
ret

− 1

c2R

[
∂J(r′, t′)

∂t′

]
ret

}
(39)

=
1

4πε0

∫
d3r′

{
R̂

R2
[ρ(r, 0) + ρ̇(r, 0)t]ret +

R̂

cR
[ρ̇(r, 0)]ret

}
(40)

=
1

4πε0

∫
d3r′

{
R̂

R2

[
ρ(r, 0) + ρ̇(r, 0)

(
t− R

c

)]
+

R̂

cR
ρ̇(r, 0)

}
(41)

=
1

4πε0

[∫
d3r′

R̂

R2
ρ(r, 0) +

∫
d3r′

R̂

R2
ρ̇(r, 0)t−

���������∫
d3r′

R̂

cR
ρ̇(r, 0) +

���������∫
d3r′

R̂

cR
ρ̇(r, 0)

]

=
1

4πε0

∫
d3r′

R̂

R2
[ρ(r, 0) + ρ̇(r, 0)t] =

1

4πε0

∫
d3r′

R̂

R2
ρ(r, t) (42)

=
1

4πε0

∫
d3r′ρ(r, t)

(r− r′)

|r− r′|3
� (43)

This behavior occurs, for example, in the charge of a capacitor.

b) The Je�menko equation for the magnetic �eld is

B(r, t) =
µ0

4π

∫
d3x′

{
[J (r′, t′)]ret ×

R̂

R2
+

[
∂J(r′, t′)

∂t′

]
ret

× R̂

cR

}
. (44)

As we have J we need

∂J(tret)

∂t
=
∂J(tret)

∂tret

∂tret
∂t

=
∂J(tret)

∂tret
(45)

tret − t = −R
c
. (46)

Then, we got

B(r, t) =
µ0

4π

∫
d3x′

{
[J (r′, t′)]ret ×

R̂

R2
+

[
∂J(r′, t′)

∂t′

]
ret

× R̂

cR

}
(47)

=
µ0

4π

∫
d3x′

{[
J(r′, t) + (tret − t)J̇(r′, t)

]
× R̂

R2
+ J̇(r′, t)× R̂

cR

}
(48)

=
µ0

4π

{∫
d3x′

J(r′, t)× R̂
R2

−
����������∫
d3x′

J̇(r′, t)× R̂
cR

+
����������∫
d3x′

J̇(r′, t)× R̂
cR

}
(49)

=
µ0

4π

∫
d3r

J(r′, t)× (r− r′)

|r− r′|3
� (50)

This is exactly the Biot-Savart law, valid to magneto-statics. This shows that, up to the �rst order
in the approximation the magneto-statics approach is very good.
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4 Question (1.5 point)

Two halves of a spherical metallic shell of radius R and in�nite conductivity are separated by a very

small insulating gap. An alternating potentials is applied between the two halves of the sphere, so that

the potentials are ±V cos(ωt). Find:

a) the electrical potential (inside and outside the sphere) when the voltages are in their peak. It is

just other way to ask you to solve the static version of this problem using Legendre polynomials;

b) the momentum of dipole (extending the previous result for the time dependent potential and doing

the comparison with the potential due to an electric dipole);

c) the �rst and second derivative in time of the moment of dipole;

d) the potential vectorA, the electric �eld E and the magnetic �eld B using dipole approximation;

Hint: you can use:

A =
µ0

4π

ṗ(tret)

r
, B = ~∇×A =

µ0

4πc

p̈× r̂
r

and E = cB× r̂. (51)

e) Find the Poynting vector and the radiated power from the sphere.

4.1 Solution

a) When the voltages are in their peaks we have the analogous problem of a sphere with ±V on it
surface in the static version. Then, we solve

∇2Φ = 0, (52)

which, due to azimuthal and spherical symmetry has the general solution given by

Φ(r, θ) =

{ ∑
`A`r

`P`(cos θ), r < R∑
`
B`
r`+1P`(cos θ), r > R

. (53)

Using the continuity of the potential

Φr<(R) = Φr>(R) (54)∑
`

A`R
`P`(cos θ) =

∑
`

B`

R`+1
P`(cos θ) (55)

A`R
` =

B`

R`+1
. (56)
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Using Dirichlet condition

Φ(R, θ) =

{
V, θ ∈ [0, π/2]

−V, θ ∈ [π/2, π]
, (57)

for the �rst we have

Φr<(R) =
∑
`

A`r
`P`(cos θ) (58)∫ π

0

dθ sin θP`′(cos θ)Φr<(R) =
∑
`

∫ π

0

dθ sin θP`′(cos θ)A`R
`P`(cos θ) (59)

and for the second

Φr>(R) =
∑
`

B`

r`+1
P`(cos θ) (60)

−
∫ π

0

dθ sin θP`′(cos θ)Φr>(R) =
∑
`

∫ π

0

dθ sin θP`′(cos θ)
B`

R`+1
P`(cos θ). (61)

Using the property ∫ π

0

dθ sin θP`(cos θ)P`′(cos θ) =
2δ`,`′

(2`+ 1)
, (62)

the values for the potential on the sphere surface and changing variables x→ cos θ we get

A` =
(2`+ 1)V

2R`

[∫ 1

0

dxP`(x)−
∫ 0

−1
dxP`(x)

]
(63)

=
(2`+ 1)V

2R`

[∫ 1

0

dxP`(x)− (−1)`
∫ 1

0

dxP`(x)

]
(64)

=
(2`+ 1)V

R`

[∫ 1

0

dxP`(x)

]
, for odd `, (65)

B` =
(2`+ 1)V

2
R`+1

[∫ 1

0

dxP`(x)−
∫ 0

−1
dxP`(x)

]
(66)

= (2`+ 1)V R`+1

[∫ 1

0

dxP`(x)

]
, for odd `. (67)

Otherwise, even `, the above expressions are zero. Noticing here that∫ 1

0

dxP`(x) =

[
P(`−1)(0)− P(`+1)(0)

]
(2`+ 1)

, for ` ≥ 1, (68)
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and keeping only the terms with ` = 1

A` =
V

R`

[
P(`−1)(0)− P(`+1)(0)

]
⇒ A1 =

V

R

[
1− (3x2 − 1)

2

]
x=0

=
3V

2R
, (69)

B` = V R`+1
[
P(`−1)(0)− P(`+1)(0)

]
⇒ B1 = V R2

[
1− (3x2 − 1)

2

]
x=0

=
3V R2

2
. (70)

in the way that the potential stay as

Φ(r, θ) =

{
3V
2R
rP1(cos θ) = 3V

2R
r cos θ, r ≤ R

3
2
V R2

r2
P1(cos θ) = 3

2
V R2

r2
cos θ, r ≥ R

. (71)

b) We know that an electric dipole, pointing in the z direction should look like

Φ =
1

4πε0

p

r2
cos θ. (72)

Thus, when it is equal to the previous potential (for r > R), taking the case where V → V cos(ωt),
we have

1

4πε0

p

r2
cos θ =

3

2
V cos(ωt)

R2

r2
P1(cos θ) (73)

1

4πε0

p

r2
cos θ =

3

2
V cos(ωt)

R2

r2
cos θ (74)

p = 6πε0R
2V cos(ωt)ẑ. (75)

c) Doing the derivative, we have

ṗ = −ω6πε0R
2V sin(ωt)ẑ (76)

p̈ = −ω26πε0R
2V cos(ωt)ẑ (77)
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d) Using the hints, we have

A =
µ0

4π

ṗ(tret)

r
=
µ0

4π

−ω6πε0R
2V sin(ωtret)ẑ

r
= −3

2

ωµ0ε0R
2V sin(ωt− kR)

r
ẑ (78)

= −3

2

ωµ0ε0R
2V sin(ωt− kr)

r
ẑ (79)

B =
µ0

4πc

p̈× r̂
r

=
µ0

4πc

(−ω26πε0R
2V cos(ωtret)ẑ)× r̂

r
(80)

=
µ0

4πc

[
−ω26πε0R

2V cos(ωtret)(cos θr̂ − sin θθ̂)
]
× r̂

r
= −3µ0ε0

2c

ω2R2V cos(ωtret) sin θ

r
φ̂

(81)

= − 3

2c

k2R2V cos[ωt− kR] sin θ

r
φ̂ = − 3

2c

k2R2V cos[ωt− kr] sin θ

r
φ̂ (82)

E = cB× r̂ = cBθ̂ (83)

= − 3

2c2
ω2R2V cos(ωtret) sin θ

r
θ̂ = −3

2

k2R2V cos[ωt− kr] sin θ

r
θ̂, (84)

where I have used ω = kc, c2 = 1/(µ0ε0), R = r − r′ and the approach that r � r′.

e) The Poyinting vector is as follows

S =
1

µ0

E×B =
EB

µ0

θ̂ × φ̂ =
EB

µ0

r̂ (85)

=
1

µ0

(
3

2

k2R2V cos(ωt− kr) sin θ

r

)(
3

2c

k2R2V cos(ωt− kr) sin θ

r

)
r̂ (86)

=
9k4R4V 2 cos2(ωt− kr) sin2 θ

4cµ0r2
r̂. (87)

Therefore, the radiated power is

P =

∮
S

ds · S =

∫ 2π

0

dφ

∫ π

0

dθ sin θ��r
2 9k4R4V 2 cos2(ωt− kr) sin2 θ

4cµ0��r
2

(88)

= 2π
�4

�3

�9k4R4V 2 cos2(ωt)

�4cµ0

=
6πk4R4V 2 cos2(ωt− kr)

cµ0

. (89)

And the time-averaged gives 1/2, the time-averaged power radiatedis then

P =
3πk4R4V 2

cµ0

. (90)

5 Question (1 point)

A spherical shell of radius R uniformly charged has sinusoidal oscillations purely in the radial axis.
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What is the radiated power?

5.1 Solution

Here we have a spherical shell uniformly charged that has oscillations in the radial axis. This means
that the current density could be written as

J(r′, t′) = J0(r
′, t′)r̂. (91)

Using this current, the potential vector follow as

A(r, t) =
µ0

4π
e−iωt

∫
d3r′

J(r′)eik|r−r
′|

|r− r′|
∝ A0(r, t)r̂. (92)

Therefore, as the magnetic �eld is B = ~∇×A = 0, the emitted radiation, which is P ∝ S ∝ B = 0.
So, there is no emission of radiation in this case!

6 Question (1.5 point)

A thin linear antenna of length d is excited in such a way that the sinusoidal current makes a full wave-

length of oscillation as shown in the Figure.

Figure 1: Figure for the exercise.

a) Calculate exactly the power radiated per unit of solid angle. Hint: compute the potential vector,

�nd the electrical and magnetic �eld, compute the Poyinting vector and then, the radiated power.

b) Plot the angular distribution of radiation from item (a). Show your code to me!

c) Determine the total power radiated and �nd a numerical value for the radiation resistance. Hint:
you may need the following result: I =

∫ π
0
dx sin2(π cosx)

sinx
= 1.55718.
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6.1 Solution

a) To compute the radiated power, �rst we need to write the current density of it. Choosing the
z-axis along the antenna and, for simplicity, let z = 0 be the center of it, we can write

J(r, t) = I0 sin (kz) e−iωtδ(x)δ(y)ẑ = I0 sin

(
2πz

d

)
e−iωtδ(x)δ(y)ẑ. (93)

The potential vector is

A(r, t) =
µ0

4π

∫
d3r′

∫
dt′

J(r′, t′)

|r− r′|
δ

(
t′ +
|r− r′|
c
− t
)
. (94)

The sinusoidal time dependence leads to

A(r, t) =
µ0

4π
e−iωt

∫
d3r′

J(r′)eik|r−r
′|

|r− r′|
(95)

and the radiation zone approximates eik|x−x′|

|x−x′| '
eikx

x
e−ikz

′ cos θ in the way that we get

A(r, t) =
µ0

4π
e−iωt

∫
d3r′

J(r′)eik|r−r
′|

|r− r′|
(96)

=
µ0

4π
e−iωt

eikr

r

∫ −∞
−∞

dx′
∫ −∞
−∞

dy′
∫ d/2

−d/2
dz′I0 sin (kz′) δ(x′)δ(y′)e−ikz

′ cos θẑ (97)

=
µ0

4π
e−iωtI0

eikr

r

∫ d/2

−d/2
dz′ sin (kz′) e−ikz

′ cos θẑ. (98)

The integral can be written as

I =

∫ d/2

−d/2
dz′ sin(kz′)e−ikz

′
=

{
−csc2 θe−ikz cos θ [cos(kz) + i cos θ sin(kz)]

k

}d/2
−d/2

(99)

=
csc2 θ

k
2i sin

(
k

2
d cos θ

)
cos

(
kd

2

)
=
−id sin (π cos θ)

π sin2 θ
, (100)

where I have used that k = 2π/d.
Then, coming back to the potential vector, we have

A(r, t) =
µ0

4π
e−iωtI0

eikr

r

∫ d/2

−d/2
dz′ sin (kz′) e−ikz

′ cos θẑ (101)

= −idµ0

4π2
e−iωtI0

eikr

r

sin(π cos θ)

sin2 θ
ẑ. (102)
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Finally, we can compute the �elds

B = ~∇×A = ikr̂ ×A = −ikA sin θφ̂ = −kdµ0

4π2
e−iωtI0

eikr

r

sin(π cos θ)

sin θ
φ̂ (103)

E = cB× r̂ = cBθ̂ = −kdµ0c

4π2
e−iωtI0

eikr

r

sin(π cos θ)

sin θ
θ̂. (104)

Then, the Poyinting vector becomes

S =
1

µ0

E×B∗ =
EB

µ0

r̂ (105)

=
k2d2µ0c

42π4

I20
r2

sin2(π cos θ)

sin2 θ
r̂. (106)

The radiated power per unit solid angle (not taking the mean over time) is

dP

dΩ
= r2Re[|S|] =

k2d2µ0c

24π4
I20

sin2(π cos θ)

sin2 θ
(107)

=
µ0c

22π2
I20

sin2(π cos θ)

sin2 θ
. (108)

b) To plot the radiated power per unit of solid angle I have plotted

f(θ) =
sin2(π cos θ)

sin2 θ
(109)

in polar coordinates in Python. See the �gure bellow:

Figure 2: Radiated power (per solid angle) for the antenna: polar plot (on the left) and Cartesian plot
(on the right).

And the code that I have used is as following:
1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 #Function
5 theta = np.linspace(0.0001, 2.*np.pi - 0.0001, 100)
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6 r = (np.sin(np.pi*np.cos(theta))/np.sin(theta))**2
7
8 #Plot in polar space
9 fig, ax = plt.subplots(subplot_kw={’projection’: ’polar’})

10 ax.plot(theta, r)
11 ax.set_rmax(1.5)
12 ax.set_rticks([0.5, 1, 1.5])
13 ax.set_rlabel_position(-22.5)
14 ax.grid(True)
15 plt.savefig(’polar-power_antenna.png’)
16
17 #Plot in cartesian space
18 fig, ax = plt.subplots(subplot_kw={’projection’: ’polar’})
19 plt.axis(’off’)
20 ax.plot(theta, r)
21 new_axis = fig.add_axes(ax.get_position(), frameon = False)
22 new_axis.plot()
23 new_axis.grid(True)
24 plt.savefig(’cartesian-power_antenna.png’)

c) The total power radiated (not time averaged) is given by

P =

∫
dΩ

dP

dΩ
=

∫ 2π

0

dφ

∫ π

0

dθ sin θ
µ0c

22π2
I20

sin2(π cos θ)

sin2 θ
(110)

=
µ0I

2
0c

2π

∫ π

0

dθ
sin2(π cos θ)

sin θ
=
µ0cI

2
0

2π
1.55718. (111)

The resistance could be computed using that P = I2R, then

R =
P

I20
=
µ0c

2π
1.55718 ' 90Ω. (112)

7 Question (1 point)

Consider the electric dipole radiation �elds. Hint: see, e.g., Jackson, Ch. 9.2 and 9.3.

a)What are these dipole �elds in terms of the Transverse Electric and Transverse Magnetic radiation

�elds?

b) Assume that an oscillating electric dipole is aligned along the z direction. Express the electric

dipole radiation �eld in terms of the scalar and vector spherical harmonics.

14



7.1 Solution

a) Here, we want to write the dipole radiation in terms of the transverse �elds. The de�nition of the
transverse �elds comes from the solution of the Helmholtz equations written as

(
∇2 + k2

)
· E = 0, with ~∇×H = −ikE/Z0, (113)(

∇2 + k2
)
·H = 0, with E =

iZ0

k
~∇×H, (114)

in the way that they obey

(
∇2 + k2

)
(r · E) = 0, (115)(

∇2 + k2
)

(r ·H) = 0. (116)

Then, this de�nes the transverse �elds according to

(r · E) = 0 and (r ·H) 6= 0⇒ Transverse Magnetic (TM), (117)

(r ·H) = 0 and (r · E) 6= 0⇒ Transverse Electric (TE), (118)

(119)

in the way that we can write the electric and the magnetic �eld for the electric dipole andmagnetic
dipole as function of the transverse magnetic and electric �elds as

Edip = EE + EM (120)

Hdip = HE + HM. (121)

To obtain these �elds we can use the multipole expansion: the Transverse Eletric (TE) is given by

HE = e−iωt
∑
`,m

aE`,mh
(1)
` (kr)X`,m(x) (122)

EE = e−iωt
i

k

∑
`,m

aE`,m∇×
[
h
(1)
` (kr)X`,m(x)

]
. (123)

and the same follows to the Transverse Magnetic (TM)

EM = e−iωtZ0

∑
`,m

aM`,mh
(1)
` (kr)X`,m(x) (124)

HM = −e−iωt i
k

∑
`,m

aM`,m∇×
[
h
(1)
` (kr)X`,m(x)

]
. (125)
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Then, the coe�cients are given by

aE`,m = −i k2c

`(`+ 1)

∫
d3xY ?

`,m(x̂)

{
∂ [rj`(kr)]

∂r
ρ(x) + i

ω

c2
j`(kr)r · J(x)

}
, (126)

aM`,m = −i k2c

`(`+ 1)

∫
d3xY ?

`,m(x̂)j`(kr)~∇ · [r× J(x)] . (127)

i) Electric Dipole:
We can use the eletric dipole �elds in the near zone as

H =
iω

4π
(r̂ × p)

1

r2
(128)

E =
1

4πε0
[3r̂ (r̂ · p)− p]

1

r3
. (129)

then, as the charge density and the vector current are given by the Maxwell equations

~∇ · E =
ρ

ε0
⇒ ρ = ε0~∇ · E (130)

~∇×H = ε0
∂E

∂t
+ J⇒ J = ~∇×H− ε0

∂E

∂t
(131)

we get

ρ = ε0~∇ ·
{

1

4πε0
[3r̂ (r̂ · p)− p]

1

r3

}
(132)

=
1

4π

{
1

r3
~∇ · [3r̂ (r̂ · p)− p] + [3r̂ (r̂ · p)− p] ~∇ ·

(
1

r3

)}
(133)

=
1

4π

{
1

r3

[
3~∇ · (r̂ (r̂ · p))− ~∇ · p

]
− [3r̂ (r̂ · p)− p] ·

(
3

r4
r̂

)}
(134)

=
1

4π

{
1

r3

[
3r̂ ·

(
r̂ · ~∇

)
p− ~∇ · p

]
− [9 (r̂ · p)− 3(r̂ · p)]

1

r4

}
(135)

=
1

4π

{
1

r3

[
3
∂

∂r
(r̂ · p)− ~∇ · p

]
− [6 (r̂ · p)]

1

r4

}
(136)

=
1

4πr3

[
3
∂

∂r
(r̂ · p)− ~∇ · p− 6r̂ · p

r

]
(137)

J = ~∇×
[
iω

4π
(r̂ × p)

1

r2

]
− ε0

∂

∂t

{
1

4πε0
[3r̂ (r̂ · p)− p]

1

r3

}
(138)

=
iω

4π

[
1

r2
~∇× (r̂ × p) + ~∇

(
1

r2

)
× (r̂ × p)

]
− 1

4π

{
[3r̂ (r̂ · ṗ)− ṗ]

1

r3

}
(139)

=
iω

4π

{
1

r2

[
r̂
(
~∇ · p

)
−
(
r̂ · ~∇

)
p
]
− 2

r3
r̂ × (r̂ × p)

}
− 1

4π

{
[3r̂ (r̂ · ṗ)− ṗ]

1

r3

}
(140)

=
iω

4π

{
1

r2

[
r̂
(
~∇ · p

)
− ∂p

∂r

]
− 2

r3
[(r̂ · p) r̂ − (r̂ · r̂)p]

}
− 1

4π

{
[3r̂ (r̂ · ṗ)− ṗ]

1

r3

}
=

1

4πr2

{
iω

[
r̂
(
~∇ · p

)
− ∂p

∂r
− 2

r
[(r̂ · p) r̂ − p]

]
− 1

r
[3r̂ (r̂ · ṗ)− ṗ]

}
. (141)
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Now we need to replace those results into the coe�cients. But, to simplify the computations, let’s
compute the operations on them, separately

r · J = rr̂ · J =
1

4πr

{
iω

[(
~∇ · p

)
− ∂ (r̂ · p)

∂r
− 2

r
[����(r̂ · p) −����(r̂ · p)]

]
− 1

r
[3 (r̂ · ṗ)− (r̂ · ṗ)]

}
= rr̂ · J =

1

4πr

{
iω

[(
~∇ · p

)
− ∂ (r̂ · p)

∂r

]
− 2

r
(r̂ · ṗ)

}
(142)

r× J = rr̂ × J =
1

4πr

{
iω

[
−r̂ × ∂p

∂r
+

2

r
r̂ × p

]
+

1

r
r̂ × ṗ

}
(143)

=
1

4πr

(
1

r
r̂ × ṗ− iωr̂ × ∂p

∂r
+

2iω

r
r̂ × p

)
(144)

~∇ · (r× J) =
1

4π

{
~∇ ·
[(

1

r2

)
r̂ × ṗ

]
− iω~∇ ·

[(
1

r

)
r̂ × ∂p

∂r

]
+ 2iω~∇ ·

[(
1

r2

)
r̂ × p

]}
(145)

=
1

4π

{[
2iω

(
r̂

r3

)
· (r̂ × p) + iω

(
r̂

r2

)
·
(
~∇× p

)]
(146)

+

[
iω

(
r̂

r2

)
· (r̂ × ∂rp) + iω

(
r̂

r

)
·
(
~∇× ∂rp

)]
(147)

+

[
−4iω

(
r̂

r3

)
· (r̂ × p)− 2iω

(
r̂

r2

)
·
(
~∇× p

)]}
(148)

=
1

4π

[
−2iω

(
r̂

r3

)
· (r̂ × p) + iω

(
r̂

r2

)
· (r̂ × ∂rp) (149)

+iω

(
r̂

r

)
·
(
~∇× ∂rp

)
− iω

(
r̂

r2

)
·
(
~∇× p

)]
, (150)

where I have used ṗ = −iωp.
Finally,

aE`,m = −i k2c

`(`+ 1)

∫
d3xY ?

`,m(x̂)

{
∂ [rj`(kr)]

∂r

(
1

4πr3

[
3
∂

∂r
(r̂ · p)− ~∇ · p− 6r̂ · p

r

])
(151)

+i
ω

c2
j`(kr)

(
1

4πr

{
iω

[(
~∇ · p

)
− ∂ (r̂ · p)

∂r

]
− 2

r
(r̂ · ṗ)

})}
, (152)

aM`,m = −i k2c

`(`+ 1)

∫
d3xY ?

`,m(x̂)j`(kr)

{
1

4π

[
−2iω

(
r̂

r3

)
· (r̂ × p) + iω

(
r̂

r2

)
· (r̂ × ∂rp)

+iω

(
r̂

r

)
·
(
~∇× ∂rp

)
− iω

(
r̂

r2

)
·
(
~∇× p

)]}
.

b) Assuming that the dipole is in the direction ẑ, we can write

p = p0e
−iωtẑ = p0e

−iωt
(

cos θr̂ − sin θθ̂
)
. (153)
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Writing the terms in the coe�cients expressions for this dipole we get

r̂ · p = p0e
−iωt cos θ (154)

~∇ · p = p0e
−iωt

[
1

r2
∂

∂r

(
r2 cos θ

)
− 1

r sin θ

∂

∂θ

(
sin2 θ

)]
= 0 (155)

r̂ × p = −p0e−iωt sin θφ̂ (156)

∂rp = 0 (157)

~∇× p =
φ̂

r

[
−∂(r sin θ)

∂r
− ∂ cos θ

∂θ

]
= 0. (158)

In the way that the coe�cients are

aE`,m = −i k2c

`(`+ 1)

∫
d3xY ?

`,m(x̂)

{
∂ [rj`(kr)]

∂r

(
1

4πr3

[
3
�
����∂

∂r
(r̂ · p) −���~∇ · p − 6p0e

−iωt cos θ

r

])
+i

ω

c2
j`(kr)

(
1

4πr

{
iω

[
���

��
(
~∇ · p

)
−

�
�

�
��∂ (r̂ · p)

∂r

]
+

2iωp0e
−iωt cos θ

r

})}
,

= i
k2c

`(`+ 1)

∫
d3xY ?

`,m(x̂)

{
p0e
−iωt cos θ

2πr2

[
3

r2
∂ [rj`(kr)]

∂r
+
ω2

c2
j`(kr)

]}
(159)

= i
k2c

`(`+ 1)

∫ ∞
0

drr2
{
p0e
−iωt

2πr2

[
3

r2
∂ [rj`(kr)]

∂r
+
ω2

c2
j`(kr)

]}∫
dΩY ?

`,m(x̂) cos θ (160)

= i
k2c

2

∫ ∞
0

dr

{
p0e
−iωt

2π

[
3

r2
∂ [rj1(kr)]

∂r
+
ω2

c2
j1(kr)

]}
(161)

aE1,0 = i
k2c

2

∫ ∞
0

dr

{
p0e
−iωt

2π

[
3

r2

[
j1(kr) +

kr

2
(j0(kr)− j2(kr))−

j1(kr)

(2kr)

]
+
ω2

c2
j1(kr)

]}
(162)

aM`,m = −i k2c

`(`+ 1)

∫
d3xY ?

`,m(x̂)j`(kr)

{
1

4π

[
−2iω

��������
(
r̂

r3

)
· (r̂ × p) + iω

(
r̂

r2

)
·�����

(r̂ × ∂rp)

+iω

(
r̂

r

)
·������
(
~∇× ∂rp

)
− iω

(
r̂

r2

)
·
��

���(
~∇× p

)]}
= 0.

So, the �elds for the electric dipole are written as

Edip = EE = e−iωt
i

k
aE1,0∇×

[
h
(1)
1 (kr)X1,0(x)

]
(163)

Hdip = HE = e−iωtaE1,0h
(1)
1 (kr)X1,0(x). (164)

with the scalar and vector spherical harmonics given respectively by

Y1,0 (165)

X1,0(x)
1√
2
LY1,0(r̂). (166)
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8 Question (1 point)

A scalar spherical wave ψ is emitted from a source at the origin in such a way that the Fourier trans-

forms are given by:

ψ̃(t, k, k̂) = A exp (−iωt) exp (−ak) cos θk

a) Show that this is a pure dipole pattern in real and in Fourier space;

b) Show that this corresponds to a pulse of width ∆r = a that propagates from the origin outwards.

Plot the spatial dependence of that pulse as it propagates in space and in time.

c) Show that this pulse has a �nite (and �xed) energy at any time. You can interpret the energy

density as |ψ|2.

Hint: For this problem you will need the following integral:∫ ∞
0

dk k2 j1(kx) e−ak = 2x/(x2 + a2)2

8.1 Solution

a) We can expand this spherical wave according to Rayleigh as

Ψ̃(t, k, k̂) =
∞∑
`=0

∑̀
m=−`

f̃`,m(t, k)Y`,m(k̂) (167)

in the way that

f̃`,m(t, k) =

∫
d2kY ?

`,m(k̂)Ψ̃(t, k, k̂) (168)

=

∫
dΩY ?

`,m(k̂)A exp (−iωt) exp (−ak) cos θk (169)

= A exp (−iωt) exp (−ak)

∫
dΩY ?

`,m(k̂) cos θk (170)

= A exp (−iωt) exp (−ak)

∫
dΩY ?

`,m(k̂)2

√
π

3
Y1,0(k̂) (171)

= A exp (−iωt) exp (−ak)δ`,1δm,0, (172)

f̃1,0(t, k) = 2A

√
π

3
exp (−iωt) exp (−ak). (173)

Then, we can use this result in the previous expression, seeing that

Ψ̃(t, k, k̂) = f̃1,0(t, k)Y1,0(k̂) = A exp (−iωt) exp (−ak) cos θ, (174)
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which is, therefore, a dipole in the Fourier space, due to the term cos θ!
Using the same formalism, we can correlate this term with the same (in the real space expansion)

f`,m(t, r) =
4πi`

(2π)3

∫ ∞
0

dkk2f̃`,m(t, k)j`(kr) (175)

f1,0(t, r) =
4πi

(2π)3

∫ ∞
0

dkk2f̃1,0(t, k)j1(kr) (176)

=
4πi

(2π)3
2A

√
π

3

∫ ∞
0

dkk2e−iωt exp (−ak)j1(kr) (177)

=
i

π2
A

√
π

3

∫ ∞
0

dkk2e−ikt/c exp (−ak)j1(kr) (178)

=
i

π2
A

√
π

3

∫ ∞
0

dkk2e−(it/c+a)kj1(kr) (179)

=
i

π2
A

√
π

3

2r[
(ac+it)2

c2
+ r2

]2 , (180)

where we need to use the following integral

I =

∫ ∞
0

dkk2e−αkj1(kr) =
2r

[α2 + r2]2
⇒ α =

(ac+ it)

c
. (181)

As the expansion in the real space is given by

Ψ(t, r, r̂) =
∞∑
`=0

∑̀
m=−`

f`,m(t, r)Y`,m(r̂) (182)

= f1,0(t, r)Y1,0(r̂) (183)

=
i

π2
A

r[
(ac+it)2

c2
+ r2

]2 cos θ, (184)

which, again, has the cos θ in the expansion and, thus, is a pure dipole in the real space as well! An
animation of the real and imaginary parts of this wave, according to time and in function of r, is in
the link.

b) Let’s compute the Fourier transform of this spherical wave, obtaining it in the real space

ψ(t, r, r̂) =

∫
d3k

(2π)3
e−ik̂·r̂ψ̃(t, k, k̂) =

∫
d3k

(2π)3
e−ik̂·r̂A exp (−iωt) exp (−ak) cos θk (185)

=
A

(2π)2

∫ π

0

dθ sin θ

∫ ∞
0

dkk2 exp (−ikt/c)e−ikr cos θe−ak cos θ. (186)

Changing variables using {
u = cos θ

du = − sin θdθ
(187)
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we got

ψ(t, r, r̂) =
A

(2π)2

∫ 1

−1
duu

∫ ∞
0

dkk2 exp (−ikt/c)e−ikrue−ak. (188)

Now, using the Wolfram’s integrals

I =

∫ ∞
0

dkk2 exp (−ikt/c)e−ikrue−ak =
2[

a+ i(t+cru)
c

]3 , (189)

II =

∫ 1

−1
du

2u[
a+ i(t+cru)

c

]3 =
−4ic4r

(iac+ cr − t)2(−iac+ cr + t)2
, (190)

we arrive at

ψ(t, r, r̂) =
A

(2π)2
−4ic4r

(iac+ cr − t)2(−iac+ cr + t)2
. (191)

An animation of this function is in the link. It is a pulse

r2|ψ(t, r, r̂)|2 (192)

of width ∆r = a. An animation for the pulse is in the link.
You can plot this pulse using the following code:

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 def f(t, r):
5 return r**2*abs(1j*r/(r**2 + (1. + 1j*t)**2)**2)**2
6
7 r = np.linspace(0, 10, 200)
8
9 #Plot in polar space

10 plt.figure(dpi = 100)
11 plt.title(’Pulse’)
12 plt.plot(r, f(0, r))
13 plt.ylabel(r’$\Psi (r, t = 0)$’)
14 plt.xlabel(r’$r$’)
15 plt.savefig(’dipole.png’)

The example for the time propagation can be seen in the link. Notice that the animation is for
cos θ = 1 and constants are de�ned to 1.
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c) The pulse has the energy given, in the Fourier space, by

E =

∫
d3k|ψ̃(t, k, k̂)|2 (193)

= A2

∫ 2π

0

dφ

∫ π

0

dθ sin θ cos2 θ

∫ ∞
0

k2 exp (−2ak) (194)

= A2(2π)
2

3

1

4a3
=
πA2

3a3
. (195)

If you compute it in the real space, for t = 0, you get

E =

∫
d3r|ψ̃(t, r, r̂)|2 (196)

=
A2

π4

∫ 2π

0

dφ

∫ π

0

dθ sin θ cos2 θ

∫ ∞
0

r2Abs

[
ir

(a2 + r2)2

]2
(197)

=
A2

π4
(2π)

2

3

π

32a3
=

A2

24π2a3
. (198)

9 Question (1 point)

A particle with massm and charge e moves in a uniform, static, electric �eld E0.

a) Solve the velocity and position of the particle as explicit functions of time. Assume the initial

velocity v0 is perpendicular to the electric �eld.

b) Eliminate the time to obtain the trajectory of the particle in space. Discuss the shape of the path

for short and long times (de�ne what you call as “short” and as “long” times!).
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9.1 Solution

a) The equation of motion for a particle of charge e in external �elds could be written in covariant
form as

dUα

dτ
=

e

mc
FαβUβ, (199)

where m is the mass of the particle, τ is the proper time and Uα = (γc, γu) = pα/m (Attention:
in this notation (Jackson does not use Ei/c, but just Ei). For a constant electric �eld E0 we can split
it into

dU0

dτ
=

e

mc
E0 · u (200)

du

dτ
=

e

mc
E0U

0. (201)

We can solve these equations taking

d

dτ

(
dU0

dτ

)
=
d2U0

dτ 2
=

e

mc
E0 ·

du

dτ
=

(
eE0

mc

)2

U0, (202)

where the general solution is

U0 = Ae(eE0/mc)τ +Be−(eE0/mc)τ (203)

and it take us to
u = u0 +

[
Ae(eE0/mc)τ −Be−(eE0/mc)τ

]
Ê0. (204)

But we know that: E0 · u0 = 0 and we need to satisfy invariant like

UµUµ = −c2 (205)

−(U0)2 + (u)2 = −c2 (206)

−4AB + (u)2 = 0c2. (207)

For reason of simplicity we can chose τ = t = 0 in the way that we need A = B, to have the initial
velocity perpendicular to the electric �eld. Then,

2A =
√
c2 + u20 (208)
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and

U0 = A
[
e(eE0/mc)τ + e−(eE0/mc)τ

]
= 2A cosh

(
eE0τ

c

)
=
√
c2 + u20 cosh

(
eE0τ

mc

)
(209)

u = u0 + A
[
e(eE0/mc)τ − e−(eE0/mc)τ

]
Ê0 = u0 + 2A sinh

(
eE0τ

mc

)
Ê0 (210)

= u0 +
√
c2 + u20 sinh

(
eE0τ

mc

)
Ê0 (211)

As

u0 = γ0v0 (212)

γ0 =
1√

1− v20
c2

(213)

we get the velocity like

U0 = cγ0 cosh

(
eE0τ

mc

)
, (214)

u = γ0v0 + cγ0 sinh

(
eE0τ

mc

)
Ê0. (215)

Now, using the de�nition of the 4-velocity dxµ

dτ
= Uµ we obtain the position integrating it as follow-

ing

x0 = ct =

∫ τ

0

dτ ′U0 =

∫ τ

0

dτ ′cγ0 cosh

(
eE0τ

′

mc

)
(216)

=
mc2γ0
eE0

sinh

(
eE0τ

mc

)
(217)

x =

∫ τ

0

dτ ′u = γ0v0τ +
mc2γ0
eE0

[
cosh

(
eE0τ

mc

)
− 1

]
Ê0, (218)

where, of course, the initial position was de�ned as xµ = (0,~0).
However, all these results are in terms of τ and not t. To obtain it in terms of the time t we need

to invert the �rst of the last expressions, obtaining

τ =
mc

eE0

sinh−1
(
eE0t

mcγ0

)
. (219)
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Replacing this in the expression for U0, by de�nition of Uµ we get γ as

U0 = cγ0 cosh

(
eE0τ

mc

)
= cγ0

√
1 + sinh2

(
eE0τ

mc

)
(220)

= cγ0

√
1 + sinh2

[(
eE0

mc

)
mc

eE0

sinh−1
(
eE0t

mcγ0

)]
(221)

γ =
U0

c
= γ0

√
1 +

(
eE0t

mcγ0

)2

. (222)

Thus, we can replace these in the expressions for velocity and position obtaining them in function
of time

u = γ0v0 + cγ0 sinh

(
eE0τ

mc

)
Ê0 (223)

= γ0v0 + cγ0 sinh

[
eE0τ

mc

mc

eE0

sinh−1
(
eE0t

mcγ0

)]
Ê0 (224)

= γ0

(
v0 +

eE0t

mγ0

)
(225)

v(t) =
u

γ
=

[
1 +

(
eE0t

mcγ0

)2
]−1/2(

v0 +
etE0

mγ0

)
, (226)

x(t) =
mcγ0
eE0

sinh−1
(
eE0t

mcγ0

)
v0 + c

√1 +

(
eE0t

mcγ0

)2

− 1

 Ê0

 . (227)

b) As the direct expressions for the position and velocity have an intricate dependence with the
time t, we can work with the expression with the proper time τ

x = γ0v0τ +
mc2γ0
eE0

[
cosh

(
eE0τ

mc

)
− 1

]
Ê0 (228)

and split the solution in the positions parallel and perpendicular to the electrical �eld as

x⊥ = γ0v0τ (229)

x// =
mc2γ0
eE0

[
cosh

(
eE0τ

mc

)
− 1

]
. (230)

Then, isolating τ , we get

x// =
mc2γ0
eE0

[
cosh

(
eE0x⊥
mcγ0v0

)
− 1

]
. (231)

To say anything about the limits of the above expression we need to recall the de�nition for τ as

τ =
mc

eE0

sinh−1
(
eE0t

mcγ0

)
(232)
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which means

τ =
x⊥
γ0v0

{
� 1, t� mcγ0

eE0
short times

� 1, t� mcγ0
eE0

long times
. (233)

Using the following expansions

cosh(x) ' 1 +
x2

2
+O(x4), x� 1 (234)

lim
x→∞

cosh(x) ' lim
x→∞

ex + e−x

2
=
ex

2
, x� 1, (235)

the solution becomes

x// =


eE0

2mγ0v20
x2⊥, parabolic solution, t� mcγ0

eE0

mc2γ0
2eE0

exp
(

eE0

2mcγ0

x⊥
v0

)
, exponential solution, t� mcγ0

eE0

. (236)
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