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Abstract
One key factor in the design of enzymatic cocktails for the lignocellulosic biomass breakdown is the performance of bacte-
ria. Bosea sp. FBZP-16, a high-performing bacterium strain producing different types of cellulases and hemicellulases, was 
evaluated for production of global (hemi)cellulolytic enzymes under different growth conditions. Different (hemi)cellulases 
were predominantly produced. On Sigmacell 101 and newspaper, the highest specific cellobiohydrolase activity was found 
with 830.8 U/mg and 1341.2 U/mg, respectively. Beechwood xylan revealed the highest β-xylosidase activity (1625.3 U/
mg) consistent with the highest xylose release. Cultivation temperature of 30 and 35 °C produced most (hemi)cellulolytic 
enzymes between the 3rd and the 9th days of incubation at shaking frequencies from 150 up to 300 rpm, while the highest 
glucose and xylose yields were observed at 150 rpm. Respiration activity monitoring system analysis confirmed the potential 
of Bosea sp. FBPZ-16 to grow on xylan. The production of cellobiohydrolase and endoxylanase was further investigated 
using response surface methodology (RSM) and Box-Behnken matrix. The optimal conditions of the tested parameters were 
carbon source concentration (10 g/L), nitrogen source concentration (3 g/L), inoculum size (3 mL inoculum/100 mL media), 
and pH 7.0, where the maximal cellobiohydrolase production was found to be 2797 U/mg, which was close to the predicted 
activity of 2275.37 U/mg. The maximal endoxylanase production reached 60 U/mg, with a predicted value of 49.75 U/mg.
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1 Introduction

Cellulose and hemicellulose derived from plant biomass, the 
most abundant polymers on Earth, are renewable resources 
obtained by carbon dioxide fixation via photosynthesis 
[46]. Access to the energy stored in these polymers is often 
achieved by simple combustion, which pollutes the envi-
ronment. In contrast, the bioconversion using microbial 
enzymes enables to exploit the energy content of lignocel-
lulosic biomass as alternative fuel source and, thereby, to 
reduce the dependence on fossil fuels.

Commercially available lignocellulose degrading 
enzymes mostly originate from fungi due to their high spe-
cific activity. Biomass-degrading enzymes from bacterial 
origin can supplement these existing fungal enzyme sys-
tems [12]. The corresponding conversion of lignocellulosic 
raw material to energy, fuel, and green chemical building 
blocks must be first developed and optimized on a small 
scale, starting with improving the enzymes for the conver-
sion of lignocellulose to fermentable sugars. To this end, it is 
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crucial to understand the parameters influencing enzymatic 
biomass breakdown.

To study cell wall fractionation of lignocellulosic plant 
cells by microorganisms, the combined cellulase and hemi-
cellulase production is relevant. The function of these 
enzymes is closely related [60]. Several studies focused on 
optimizing one individual enzyme involved in either cel-
lulose or hemicellulose breakdown [13, 17]. Furthermore, 
improving enzymatic hydrolysis of both cellulose and 
hemicellulose using various substrates is an efficient strat-
egy for the development of enzymatic cocktails [24]. Cel-
lulose is degraded by the synergistic action of four enzymes 
(endoglucanase, exoglucanase, β-glucosidase, and lytic 
polysaccharide monooxygenase). Hemicellulose is mostly 
represented by xylan, which is mainly degraded by endo-1,4-
β-xylanase and β-xylosidase acting on internal and terminal 
β-1,4 bonds in xylan, respectively. The internal cleavage by 
endo-1,4-β-xylanase releases shorter xylose oligomers and 
xylobiose. This last is cleaved by β-xylosidase into two sepa-
rate D-xylose sugars [69].

Response surface methodology (RSM) has been widely 
used to determine optimal fermentation conditions in differ-
ent areas of biotechnological interest including antimicrobial 
production [23, 53, 65, 66], drug delivery [10], antioxidant 
capacity [7, 11, 51], as well as enzymes activities [5, 6, 20, 
26, 50, 67]. RSM combines individual, square, and interac-
tion effects between variables [63]. The Box-Behnken design 
(BBD) was applied in the current study.

We report simultaneous production of cellobiohydrolase 
and endoxylanase using RSM in submerged fermentation 
(SmF). Many commercially produced microbial enzymes 

are produced using SmF [64], which is particularly suitable 
for bacteria that require high humidity levels [47].

To determine (hemi)cellulosic enzymes activities, a broad 
range of methods and assays is used, including colorimet-
ric, fluorometric assays, and chromatography-based meth-
ods [33]. The hydrolysis and degradation products need to 
be identified for a full characterization of biomass and a 
complete understanding of biomass degradation. Therefore, 
high-performance anion exchange chromatography with 
pulsed amperometric detection (HPAEC-PAD) is particu-
larly suitable, since it may reveal a broad range of hydrolysis 
products.

The aim of this study was to exploit the diversity and 
specificity of bacterial enzymes involved in the degradation 
of (hemi)cellulose. Emphasizing variations in decomposi-
tion of cellulose and hemicellulose with different param-
eters, one-factor-at-a-time (OFAT) approach can assist us 
pinpoint particular catalytic features that are distinctive of 
Bosea sp. FBZP-16. This bacterium was screened on our 
previous genomic study in examining glycoside hydrolases 
(GH) among other isolated bacteria from the same environ-
ment. In fact, the genome of Bosea sp. FBZP-16 comprises 
161 CAZymes, including 43 GH, 58 glycosyl transferases 
(GT), 4 polysaccharide lyases (PLs), 38 CEs, 15 AA, and 3 
CBM, showing the strong potential of Bosea sp. FBZP-16 
to degrade vegetable cell wall materials [35]. On the long 
term, the purification of various enzymes from the optimized 
cultivation conditions may facilitate the design of enzyme 
cocktails for the development of biorefineries using lignocel-
lulosic biomass.

Table 1  Tested commercial cellulosic substrates and their characteristics

CrI crystallinity index, DPw polymerization degree estimated by molecular weight of the anhydroglucose unit (AGU)
a Antonov et al. [4]
b Jäger et al. [37]
c Supplier information
d Percival Zhang et al. [57]; vom Stein et al. [70],Grande et al. [30]

Cellulosic substrate Solubility in water Purity CrI (%) DPw (AGU) Particle size (µm) Supplier

α-cellulose Insolubleb Impure:  xylaneb 41.5a 2140–2420b 68.77a Sigma-Aldrich
Avicel PH101 Insolubleb Pureb 82b 200–240b  ~  50c Fluka
CMC-4 M Partially  solublec 99.5c -  ~  1000c - Megazyme
Cellobiose Solubled  ≥ 98%c Amorphous 2 - Carl Roth
Cellulose acetate Insolubled  ≥ 97.0%c - - - Sigma-Aldrich
OrganoCat Cellulose Insolubled - 0.4–0.7d 400–1000d - ITMC (RWTH 

Aachen Univer-
sity)

Sigmacell cellulose 20 Insolubled Pured 52.6a - 20c Sigma-Aldrich
Sigmacell cellulose 50 Insolubled Pured 56.1a - 50c Sigma-Aldrich
Sigmacell cellulose 101 Insolubleb Pureb Amorphousa,b 1590–1960b 15.86b Sigma-Aldrich
Filter paper Whatman no. 1 Insolubled Pured ∼0.45d 750–2800d - GE Healthcare
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2  Material and methods

2.1  Carbon sources

Various simple and complex celluloses derived from lig-
nocellulose with different physical properties were used as 
carbon source for cultivation (Table 1). The hemicellulosic 
carbon sources beechwood xylan, carob galactomannan, and 
wheat flour arabinoxylan were purchased from Megazyme 
(Wicklow, Ireland). In addition, pectin (Sigma-Aldrich, 
St. Louis, USA) and other mono- and disugar arabinose 
(Carl Roth GmbH, Karlsruhe, Germany), mannose (Carl 
Roth GmbH, Karlsruhe, Germany), galactose (AppliChem 
GmbH, Darmstadt, Germany), glucose (VWR International, 
Radnor, PA, USA), sucrose (Fluka, Buchs, Switzerland), and 
xylose (Biochem Chemopharma, France) were also tested 
as carbon sources. α-cellulose (Sigma-Aldrich, St. Louis, 
USA) and/or xylan from beechwood (Megazyme, Wicklow, 
Ireland) were also used for cellulolytic and hemicellulolytic 
activity determination, respectively. Furthermore, several 
complex biomasses were studied either with or without pre-
treatment. Physical pretreatment of lignocellulosic biomass 
by mechanical disintegration (milling, grinding, and sieving) 
and/or chemical pretreatments (Organosolv and lime) were 
performed prior to biological hydrolysis during cultivation 

(Table 2). Composition of these carbon sources were previ-
ously described [34].

2.2  Organism and standard cultivation conditions

Bosea sp. FBZP-16 (GenBank KT868785) was obtained 
from the Laboratory of Applied Microbiology (University 
of Bejaia) collection.

Bosea sp. FBZP-16 preculture was used to inoculate 
250-mL shake flasks with baffles with a filling volume of 
40 mL standard medium, containing 5 g/L alpha-cellulose 
(Sigma-Aldrich) and 5 g/L beechwood xylan (Megazyme), 
7 g/L  KH2PO4 (Carl Roth),, 2 g/L  K2HPO4 (Carl Roth), 
0.5 g/L  MgSO4 ×  7H2O (Carl Roth), 1 g/L  (NH4)2SO4 (Carl 
Roth), and 0.6 g/L yeast extract (Sigma-Aldrich), with pH 
adjusted to 7.0 [29]. Batch experiments were conducted in 
three independent biological replicates for 10 days at 30 °C 
and 200 rpm with a shaking diameter of 50 mm in a Kuhner 
shaker ISF1-X (Kühner AG, Birsfelden, Switzerland).

2.3  Analysis of bacterial growth on cellulose 
and hemicellulose

Bosea sp. growth on carbon sources was monitored by meas-
uring the respiratory activity with an in-house constructed 
respiration activity monitoring system (RAMOS). The 

Table 2  Pretreatment of tested lignocellulosic biomass

Type of biomass Raw material Pretreatment Reference

Cereal by-products Barley awn Drying at 105 °C for 24 h before and after Soxhlet extraction 
with 99.8% ethanol for 24 h

Anders et al. [3]
Barely straw
Oat flakes
Wheat straw Mechanical disruption using a screw press Yan et al. [75]

Peels Banana
Honeymelon

Drying at 105 °C for 24 h before and after Soxhlet extraction 
with 99.8% ethanol for 24 h

Anders et al. [3]

Lime
Orange
Watermelon

Shells Coconut
Peanut
Pistachio

Woods Sawdust Milling, sieving < 100 μm Authors’ laboratory collection
Beechwood
Spruce wood

Acid pretreatment:  H2SO4 0,05 M, 170 °C/5 min JRS J. Rettenmaier & Söhne 
GmbH + Co. KG, Rosen-
berg, Germany

Organosolv pretreatment: EtOH/Water 50/50 (v/v), 
30 °C/30 min, 160 °C/30 min, 160 °C/5 h

Lime pretreatment:  CaCO3 ~ 0,09 M, 6 °C/min, 
120 °C/60 min

Miscellaneous biomass Lawn grass Drying at 105 °C for 24 h before and after Soxhlet extraction 
with 99.8% ethanol for 24 h

Anders et al. [3]

Newspaper Paper discs ~ 3 mm using a hole-punch (Leitz, Germany)
Olive pomace Drying at room temperature, 3 weeks ≤ 1 mm Medouni-Haroune et al. [52]
Silphium perfoliatum Milling, sieving ≤ 1 mm Lunze et al. [48]
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RAMOS system monitors the metabolic activity of aerobic 
microorganisms. The system is equipped with sensors for 
measuring the oxygen transfer rate (OTR) and the carbon 
dioxide transfer rate (CTR). The OTR describes the transfer 
of oxygen from the gas phase into the medium, whereby 
the kLa value (volumetric mass transfer coefficient) can be 
regarded as a measure of efficiency. The DOT (dissolved 
oxygen concentration) describes the dissolved oxygen ten-
sion in the medium. The uptake of dissolved oxygen by the 
microorganism is described by the OUR (oxygen uptake 
rate). In an aerobic cultivation, it is assumed that the OTR 
is very close to the OUR. Since the OTR is measured or 
calculated, the oxygen uptake of the microorganisms over 
the cultivation time is known. The OTR can be calculated 
with the following formula:

kL  oxygen transfer coefficient (cm/h).
a  gas–liquid interfacial area per unit vol.  (cm2/cm3).
kLa  volumetric oxygen transfer coefficient (1/h).
C*  saturated oxygen concentration (mg/L).
CL  oxygen concentration in the broth (mg/L).

The kLa value is a key figure for the transport of oxygen 
from the gaseous phase to the medium of a RAMOS flask. 
It is assumed that the transport of oxygen through the gas/
liquid interface is the rate-determining step. The following 
relationship applies: d C/ d t = kLa ⋅ ( C∗  − CL), where CL 
is the dissolved gas concentration and C* is the equilibrium 
concentration at the phase interface or, in other words, the 
maximum solubility [1, 2].

For determination of growth in the presence of cellu-
lose and hemicellulose, the cultivation was carried out in 
the presence of 10 g/L α-cellulose and 10 g/L beechwood 
xylan, respectively. Eight parallel RAMOS 250-mL shake 
flasks were used with a filling volume of 30 mL and a shak-
ing frequency of 250 rpm, with all other conditions as out-
lined above (Section 2.2). The culture was performed in 
duplicates.

2.4  Variation of cultivation conditions for enzyme 
production

The cultivation conditions were studied by the OFAT 
approach. The effect of carbon and nitrogen sources, temper-
ature, incubation time, and agitation was varied by maintain-
ing all factors constant, as outlined above, using the standard 
cultivation conditions except the one being studied. All cul-
tivation experiments were performed in triplicates.

OTR = kLa
(

C
∗ − CL

)

OTR =
[

mgO2∕L∕h
]

– The effect of the listed carbon and energy sources were 
studied at a concentration of 10 g/L instead of cellulose/
beechwood xylan (Table 1).

– The effect of organic (malt extract, tryptone-peptone-
casein, and yeast extract) and inorganic nitrogen sources 
 (KNO3,  NaNO3,  NH4NO3, and  (NH4)2SO4) was investi-
gated at a concentration of 2 g/L.

– To determine the optimum temperature, the strain was 
cultivated at temperatures ranging from 25 to 40 °C.

– The effect of incubation period was studied by carrying 
a fermentation experiment for up to 10 days, where the 
enzyme production was measured at 24 h intervals.

– To study the effect of agitation, cultivations were 
performed at shaking frequencies ranging from 0 to 
300 rpm.

2.4.1  RSM

Experiment-based optimization using the BBD is performed 
with 27 experiments designed in Design Expert 10 (Stat-
Ease, Minneapolis, MN) to determine the optimum of four 
culture medium parameters (Table 3). The following param-
eters were studied: carbon source concentration (1, 10, 19 
(g/L)), nitrogen source concentration (1, 2, 3 (g/L)), pH 
(6.5, 7, and 7.5), and inoculum size (i.e., inoculum volume: 
1%, 2%, and 3% (v/v)). The four parameters were chosen in 
such a way to reduce experimental efforts and as strongly 
affecting parameters in (hemi)cellulase production. Design 
Expert 10 (Stat-Ease, Minneapolis, MN) software was used 
for graphical analysis of interaction effects between tested 
parameters and statistical analysis.

2.5  Enzyme assays

Endo-1,4-ß-glucanase and endo-1,4-ß-xylanase activi-
ties produced in liquid or submerged culture were assayed 
using liquid Azo-CMC 2% w/v and Azo-Xylan 1% w/v sub-
strates (Megazyme, Ireland), respectively, following sup-
plier’s instructions with some modifications as previously 
described [8], and determined by referring to a standard 
curve. Crude supernatant (0.15 mL) to be tested was added 
to 0.15 mL of azo-substrate reagent and mixed by vortex-
ing. The mixture was incubated at 40 °C for 30 min in a 
microbiological incubator (Binder, Germany). The reaction 
was stopped by the addition of 750 µL of absolute ethanol 
for endoglucanase and endoxylanase assays, respectively. 
The reaction was vortexed and centrifuged at 14,000 g for 
10 min. The absorbance of the crude supernatant was deter-
mined at 595 nm in sterile cell culture microplates reference 
677102 (Greiner Bio-One GmbH, Germany). In a Synergy 4 
Microplate Reader (BioTek, Winooski, VT, USA) using dis-
tilled water as blank in triplicate. Based on standard curves 
correlating dye release with reducing sugar release, enzyme 
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activity was calculated, where one unit of enzyme activity 
corresponded to 1 nmol of reducing sugar released per min-
ute by the enzyme.

Measurement of cellulase activities (cellobiohydrolase 
and β-glucosidase) and xylanase activities (β-xylosidase, 
β-mannosidase,  β-galactosidase,  arabinosidase, 
α-glucuronidase, and α-glucosidase) was performed with 
4-methylumbelliferone (MUF)-linked substrates (Glyco-
synth, UK). Enzymatic assays were performed in triplicate 
on a flat-bottomed non-binding  96-well microplate with 
flat bottom, black color with transparent bottom reference 
655087 (Kisker Biotech, Germany). The test was performed 
with 200 µL of substrate (2.50–2.75 mM, solubilized in 
DMSO) and 40 µL of enzymatic extract [8]. The reaction 
mixtures were incubated at 40 °C in the dark in a micro-
biological incubator (Binder, Germany). Fluorescence was 
read using the Infinite Microplate Reader (TECAN, Austria) 
after 5 min and 125 min at 355 nm excitation and 460 nm 
emission. The enzymatic activities were determined on a 

standard curve of MUF and expressed in nanomoles per 
minute per milliliter.

The protein concentration in the culture crude supernatant 
was determined using the Pierce BCA Protein Assay Kit 
(Thermo Fisher Scientific, USA) and was performed accord-
ing to the supplier instructions for microtiter plates. Bovine 
serum albumin (BSA) in a concentration range between 
25 and 2000 µg/mL was used for the standard curve. The 
absorption after the assay reaction of the calibration stand-
ards and the enzyme solutions after incubation at 37 °C for 
30 min was measured at 562 nm in a 96-well microtiter plate 
(MTP) using the Synergy 4 Microplate Reader (BioTek, 
USA) with Gen5 2 Data Analyses software. The specific 
enzymatic activity was calculated by referring the volumet-
ric enzymatic activity results to the protein concentration.

Two-way ANOVA and Tukey’s test were used for multi-
ple comparison between the enzymatic activities obtained 
under various conditions. Differences were considered sig-
nificant when the p-values < 0.05.

Table 3  Experimental matrix by 
coding unit and obtained actual 
values of the Box-Behnken 
design

High level (+ 1), medium level (0), low level (− 1)

Run Carbon source 
concentration (A)

Nitrogen source 
concentration (B)

Inoculum 
size (C)

pH (D) Cellobiohydro-
lase (U/mg)

Endoxy-
lanase (U/
mg)

1 0 0  − 1  − 1 2.49 21.14
2 0 0 1  − 1 3.70 5.85
3 0 0  − 1 1 42.13 27.77
4 0 0 1 1 3.15 30.71
5  − 1  − 1 0 0 1328.01 38.02
6  − 1 1 0 0 1117.56 18.42
7 1  − 1 0 0 37.81 26.86
8 1 1 0 0 31.95 2.32
9 0  − 1 0  − 1 23.81 26.35
10 0 1 0  − 1 73.25 19.03
11 0  − 1 0 1 18.55 22.73
12 0 1 0 1 18.26 10.22
13  − 1 0  − 1 0 51.62 4.10
14 1 0  − 1 0 433.25 12.75
15  − 1 0 1 0 233.91 2.15
16 1 0 1 0 587.49 30.14
17  − 1 0 0  − 1 348.42 54.30
18 1 0 0  − 1 333.17 4.13
19  − 1 0 0 1 64.76 6.45
20 1 0 0 1 113.86 31.02
21 0  − 1  − 1 0 607.66 60.00
22 0 1  − 1 0 532.55 4.45
23 0  − 1 1 0 360.36 11.98
24 0 1 1 0 2796.59 7.56
25 0 0 0 0 35.18 5.89
26 0 0 0 0 71.51 12.71
27 0 0 0 0 4.93 57.45
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2.6  Photometric sugar analysis

The para-hydroxybenzoic acid hydrazide (PAHBAH) assay 
was used for quantifying the total amount of reducing sug-
ars (glucose and xylose) released in the fermentation broth 
[45]. For PAHBAH reagent A, 5 g 4-hydroxybenzoic acid 
hydrazide, 30 mL  H2O (dist.), and 5 mL HCl (37%) are 
mixed and filled up to 100 mL with  H2O (dist.). For reagent 
B, 12.5 g trisodium citrate, 1.1 g  CaCl2, and 20 g NaOH 
are dissolved in 500 mL  H2O (dist.) and filled up to 1 L 
with  H2O (dist.). The PAHBAH working solution was pre-
pared immediately before performing the assay by mixing 
one part of reagent A and ten parts of reagent B. Samples 
(75 μL) were mixed with 150 μL working reagent in a 2-mL 
tube and incubated for 10 min at 900 rpm and 100 °C on 
a thermo mixer (MHR23, HLC Biotech, Germany). After 
cooling to room temperature, samples were transferred to a 
flat-bottom MTP (9293.1, Roth, Germany), and absorbance 
was measured at 410 nm (Synergy 4 Microplate Reader, 
BioTek, USA). Product concentrations were calculated from 
a calibration with glucose and xylose with a concentration 
of 0–0.5 g/L.

2.7  SDS‑PAGE

Polyacrylamide gel electrophoresis treated with sodium 
dodecyl sulfate (SDS-PAGE) was applied to the cultiva-
tion crude supernatants obtained by centrifuging the fer-
mentation broth at 4000 rpm, 4 °C for 20 min. NuPAGE 
Novex 12% Bis–Tris Mini Gel gels (Invitrogen, USA) and 
samples were prepared according to the manufacturer’s pro-
tocol and the method described previously [36]. Proteins 
were stained with Roti®-Blue 5 × concentrate molecular 
weight marker (Carl Roth, Germany). Electrophoresis was 
performed according to the manufacturer’s protocol (Invit-
rogen, USA). The gels were scanned using the Perfection 
V700 scanner (Epson, Japan).

2.8  Chromatographic sugar analysis (HPAEC‑PAD)

An adapted online automatic method using high-perfor-
mance anion exchange chromatography with pulsed amper-
ometric detection (HPAEC-PAD) was used for simultane-
ous determination of mono- and oligosaccharides resulting 
from both cellulose (glucose, cellobiose, cellotriose, and 
5-hydroxymethylfurfural (5-HMF) and hemicellulose (ara-
binose, galactose, mannose, rhamnose, xylose, xylobiose, 
and xylotriose) decomposition released in the fermentation 
broth. HPAEC-PAD analysis of cellulose and hemicellulose 
degradation products is generally performed as described by 
Anders et al. [3] and Cürten et al. [21]. The HPAEC-PAD 
system was an ICS-5000 + system purchased from Thermo 

Scientific equipped with an AS-AP autosampler as described 
in [39–41]. The flow was 1.0 mL/min of 100 mMol sodium 
hydroxide with a column temperature of 30 °C. The injection 
volume was 5 µL. The software used for measurement and 
data calculation was Chromeleon with a calibration range 
according to Anders et al. [3]. Average retention time for all 
measurement was 3.415 min.

3  Result

3.1  Characterization of (hemi)cellulases 
under various cultivation conditions

No significant difference in endoglucanase activity between 
the tested cellulosic substrates was determined by using 
the Tukey’s multiple comparison test (Fig. 1a). However, 
cellobiohydrolase activity was significantly the highest 
on newspaper (Table 4). CMC-4 M enabled the highest 
β-glucosidase production. PAHBAH assay showed higher 
glucose release on cellobiose, followed by CMC-4 M (Fig. 
S-1a). With HPAEC-PAD analysis, the hydrolysis products 
of the tested substrates showed that glucose was the main 
component of sugar products, with a concentration to a max-
imum of 54.5 mg/L on CMC-4 M, followed by a concentra-
tion of 42.1 mg/L on cellobiose.

There was no significant difference in endoxylanase, 
β-mannosidase, and α-glucuronidase activities between 
the tested hemicellulosic substrates (Fig.  1b, c). How-
ever, beechwood xylan revealed the best activities of 
β-xylosidases, arabinosidases, and α-glucosidases. Apart 
from that, β-galactosidases were higher with carob galac-
tomannan followed by beechwood xylan, but without a 
significant difference. Both preliminary PAHBAH test 
(1120.5 mg/L) and HPAEC-PAD (21.3 mg/L) showed the 
highest xylose release on beechwood xylan.

The culture crude supernatant showed that there were 
no significant differences in endoglucanase activities. 
The highest cellobiohydrolase activities were observed 
with newspaper, while those from β-glucosidase on olive 
pomace and pistachio shell (Fig. S-2). There was no sig-
nificant difference between the activities of endoxylanase 
and α-glucuronidase among the tested lignocellulosic sub-
strates (Fig. S-3). Sawdust showed maximum activities of 
β-xylosidase, β-mannosidase, and α-glucosidase. The activi-
ties of arabinosidase and β-galactosidase were higher with 
banana peels and oat flakes.

The PAHBAH test revealed a higher glucose level with 
oat flakes (617.2 mg/L), followed by grass (505.2 mg/L) 
while HPAEC-PAD analysis indicated a higher glucose 
yield with pistachio shell (91.0 mg/L) and xylose yield with 
sawdust (31.0 mg/L) (Fig. 2).
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When other simple carbon sources were used (Fig. S-4), 
endoglucanases were higher in the presence of galactose. 
Cellobiohydrolase activities were maximal in the presence of 
xylose. Mannose induced β-xylosidases and β-mannosidases. 
β-glucosidases were also higher with mannose compared to 
glucose, arabinose, galactose, and xylose. Sucrose induced 
arabinosidases and β-galactosidases. Endoxylanases were 
also higher in the presence of sucrose with a significant dif-
ference only with respect to arabinose. There was no signifi-
cant difference between the other carbon sources tested to 
produce α-glucosidases and α-glucuronidases.

The separation of cultures grown on cellulosic and hemi-
cellulosic substrates gave molecular masses ranging around 
28 to 78 kDa (Fig. S-5). The analysis of Sigmacell cellulose 
type 20 revealed three bands with molecular masses of about 
28, 41, and 70 kDa, while no bands were detected in Sig-
macell cellulose type 50 and 101 (Fig. S-5a.). The 70-kDa 
protein was also detected on cellobiose and OrganoCat 

cellulose. A similar band of about 60 kDa appeared both 
on Avicel and CMC. Furthermore, Avicel had an addi-
tional band of about 50 kDa. The other cellulosic substrates 
α-cellulose, cellulose acetate, and filter paper Whatman no. 
1 do not show any protein formation in the SDS-PAGE. On 
beechwood xylan, four protein bands of about 33, 41, 44, 
and 60 kDa were detected. This latter was also detected on 
wheat arabinoxylan in addition to the highest molecular 
weight protein band of about 78 kDa. Carob galactomannan 
showed a single protein band of about 56 kDa. The protein 
bands of ∼ 41 and 60 kDa were detected on both cellulosic 
(Sigmacell cellulose 20, Avicel, CMC) and hemicellulosic 
substrates (beechwood xylan, wheat flour arabinoxylan).

There was no significant difference between the tested 
nitrogen sources for the activity of endoglucanases and 
β-glucosidases (Fig. S-6). However, better cellobiohydro-
lase activities and high glucose yields (PAHBAH test) were 
observed with malt extract. The maximum production of 

Fig. 1  Effect of different (hemi)
cellulosic carbon sources on 
cellulases (a), depolymerization 
hemicellulases (b), and acces-
sory hemicellulases (c)
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endoxylanases was obtained with yeast extract. The yeast 
extract also induced a better production of β-galactosidases. 
The production of β-xylosidases was optimal with 
 (NH4)2SO4 as a nitrogen source. No significant differ-
ence was observed in the production of arabinosidases, 
α-glucosidases, and α-glucuronidases. The β-mannosidases 
were higher in the presence of  KNO3. However, no sig-
nificant difference was observed with malt extract and 
 (NH4)2SO4. Using  KNO3, the highest yield of xylose with 
PAHBAH-analysis was determined. HPAEC-PAD analysis 
showed a higher glucose yield with tryptone-peptone-casein 
(3.66 mg/L).

The optimal temperature for endoglucanase, endoxyla-
nase, and β-xylosidase production was 30 °C (Fig. S-7). 
PAHBAH assay revealed higher glucose and xylose release 
at 30 °C. β-glucosidase was quite similarly produced from 25 
to 35 °C and decreased at 40 °C. Extremely low activity of 
α-glucuronidase was only produced at 30 °C. At 35 °C, there 
was better production of cellobiohydrolase, β-mannosidase, 
arabinosidase, β-galactosidase, and α-glucosidase. 

HPAEC-PAD analysis revealed higher xylose, xylobiose, 
and cellotriose yield at 30 °C. A decline in enzyme produc-
tion beyond 35 °C was also observed. However, glucose and 
5-HMF were higher at 40 °C. Most of the enzymes were 
produced at 30 °C or 35 °C, whereas enzyme production 
decreased at 40 °C.

The optimal shaking frequency for endoglucanase 
and cellobiohydrolase occurred at 200 rpm (Fig. S-8). 
Extremely low activity of α-glucuronidase was only pro-
duced at 200 rpm. The highest β-glucosidase was pro-
duced at 250 rpm. The highest activities of endoxylanase, 
β-xylosidase, β-galactosidase, and α-glucosidase were pro-
duced at 150 rpm. Both PAHBAH and HPAEC-PAD anal-
yses showed higher glucose and xylose yield at 150 rpm. 
At 300 rpm, there was better recovery of β-mannosidase 
and α-glucosidase.

The maximum production of β-xylosidases (87.28 
U/mg), arabinosidases (86.35 U/mg), β-galactosidases 
(582.80  U/mg), and α-glucuronidases (42.14 U/mg) 
was reached at the 5th day of incubation (Fig. S-9). The 

Table 4  Best carbon and nitrogen sources for obtaining enzyme activity

ns not significant

Enzyme Optimized condition

Carbon sources Nitrogen sources

Best Specific enzyme 
activity (U/mg)

p value Best Specific enzyme 
activity (U/mg)

p value

Cellulases
Endoglucanases Galactose 329.6  = 0.0023 vs xylose

 < 0.0001 vs others
NaNO3 20.4 ns

Cellobiohydrolases Newspaper 1341.2  < 0.0001 Malt extract 889.3  < 0.0001
β-glucosidases CMC-4 M 607.7  < 0.0001 Yeast extract 203.8
Hemicellulases
Endoxylanases Newspaper 105.7 ns Yeast extract 39.8 ns
β-xylosidases Newspaper 1625.3  < 0.0001 vs B. xylan and sawdust

 = 0.0012 vs Pistachio ns vs others
(NH4)2SO4 110.5  < 0.0001

β-mannosidases Sawdust 386.4 ns vs olive pomace
0.0361 vs lime peel
0.001 vs wheat straw
0,0008 vs mannose
0.0005 vs Barely awn
0.0003 vs Banana peel
0.0001 vs Barely straw, S. perfolia-

tum and sucrose
 < 0.0001 vs others

KNO3 33.2 ns vs malt 
extract and 
 (NH4)2SO4

0.0127 vs 
 NH4NO3

0.01 vs tryptone-
peptone-casein

0.0095 vs 
 NaNO3

0.0015 vs yeast 
extract

Arabinosidases Sucrose 1360.2 ns vs banana peel
 < 0.0001 vs others

Yeast extract 131.8 ns

β-galactosidases Oat flakes 2290.0 p = 0.0032 vs sucrose
 < 0.0001 vs others

Yeast extract 690.4  < 0.0001

α-glucosidases Wheat straw 1140.4  < 0.0001 Yeast extract 37.4 ns
α-glucuronidases Mannose 73.6 ns Malt extract 2.04 ns
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optimal activities of endoglucanases (40.04 U/mg) and 
endoxylanases (30.36 U/mg) were observed at day 6, that 
of β-glucosidases (348.7 U/mg) at day 7, and cellobio-
hydrolases on the 9th day of incubation. β-mannosidases 
were produced only during the first 3  days, and no 
α-glucosidase activity was detected.
3.2  Response surface methodology

The RSM experiments using BDD were conducted to 
determine the optimal values and effect of four variables 
A (carbon source concentration), B (nitrogen source con-
centration), C (inoculum size), and D (pH). The results of 

experimental cellobiohydrolase and endoxylanase produc-
tion experiments of the BDD are shown in Table 3. The 
p-values were used to identify the effect of each factor on 
enzymatic production. The optimization of both cellobio-
hydrolase and endoxylanase-specific activities indicated 
that the model was significant (p < 0.05), with no signifi-
cant lack of fit. The best pH value for optimal releasing of 
cellulases lies in 7.0.

RSM was performed to show the interaction between 
variables that significantly affect enzyme production. The 
interactions CD, C2, and D2 were statistically significant for 
cellobiohydrolase production (Table 5), while endoxylanase 

Fig. 2  Different lignocellulosic 
carbon sources effect on hydrol-
ysis products with PAHBAH 
test (a) and HPAEC-PAD (b)
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production was significant with the interactions AD, A2, and 
B2.

In the studied matrix, maximum and minimum cello-
biohydrolase productions of 2796.56 U/mg and 2.49 U/mg 
were obtained in run 24 (pH = 7, inoculum size = 3%, carbon 
source concentration = 10 g/L, and nitrogen source concen-
tration = 3 g/L) and run 1 (pH = 6.5, inoculum size = 1%, 
carbon source concentration = 10 g/L, and nitrogen source 
concentration = 2 g/L), respectively. Maximum endoxy-
lanase production was of 57.45 U/mg in run 27 (pH = 7, 
inoculum size = 2%, carbon source concentration = 10 g/L, 
and nitrogen source concentration = 2 g/L) and minimal pro-
duction of 2.15 U/mg in run 15 (pH = 7, inoculum size = 3%, 
carbon source concentration = 1 g/L, and nitrogen source 
concentration = 2 g/L). Interaction effects between A, B, C, 
and D were identified by 2D and 3D response surfaces of the 
quadratic model in Fig. 3. Perturbation plots are shown in 
Fig. 4. The correlation between predicted values and actual 
values is represented in Fig. 5.

For cellobiohydrolase, the coefficient of determination 
(R2) was found  with a predicted R2 = 0.8544 and an adjusted 
R2 = 0.6845, while for endoxylanase production,   predicted 
R2 = 0.8781 and adjusted R2 = 0.736. The values of adequate 
precision (Adeq precision) measured were 10.4438 and 
8.985, respectively.

3.3  Cultivations carried out in the RAMOS device

Respiration activity monitoring of the bacterium Bosea sp. 
FBZP-16 was performed in RAMOS device for the meas-
urement of OTR, using beechwood xylan and α-cellulose 
as main carbon sources in the presence of minerals and 
yeast extract. Bosea sp. FBPZ-16 was confirmed as xylan 
degrader, since a significant OTR was observed (Fig. S-13a). 
The OTR increased to a maximum of ~ 8 mmol/L/h and then 
started decreasing slowing after 2–3 days of cultivation. 
Xylan degradation occurred in two phases, as shown by the 
double peaks. However, the cellulolytic enzymes of Bosea 
sp. FBZP-16 were not able to degrade cellulose. No signifi-
cant OTR was detected when α-cellulose was used as carbon 
source (Fig. S-13b).

SDS-PAGE (Fig. S-5) showed that there were five protein 
bands of about 28, 42, 50, 54, and 70 kDa in RAMOS sam-
ples when cellulose and xylan in presence of glucose were 
used as carbon sources.

4  Discussion

Bosea sp. FBZP-16 has been previously shown to degrade 
(hemi)cellulose using a combination of enzymatic assays and 
genomic approach [35]. Here, the strain was biochemically 
characterized to determine further insights on the plant bio-
mass degradation capabilities. Varying carbon sources and 
operating conditions (pH, temperature, shaking frequency) 

Table 5  ANOVA of the Box-
Behnken design

Enzyme Cellobiohydrolase Endoxylanase

ANOVA for quadratic model Mean square F-value p-value Mean square F-value p-value

Model 5.67E + 05 5.03 0.004 462.67 6.18 0.0016
A—carbon source concentration 2.54E + 05 2.26 0.159 2317.56 30.94 0.0001
B—nitrogen source concentration 8938.19 0.0793 0.783 3.32 0.0443 0.8368
C—inoculum size 1.03E + 06 9.17 0.0105 43.17 0.5762 0.4624
D—pH 7.36E + 05 6.53 0.0252 65.21 0.8705 0.3692
AB 1.23E + 05 1.09 0.3164 220.81 2.95 0.1117
AC 4.22E + 05 3.75 0.0768 149.68 2.00 0.1829
AD 85,728.32 0.7609 0.4002 399.49 5.33 0.0395
BC 1.09E + 05 0.9696 0.3442 43.34 0.5786 0.4616
BD 22,205,96 0.1971 0.665 36.23 0.4836 0.5000
CD 3.61E + 06 32 0.0001 59.55 0.795 0.3901
A2 28,994.77 0.2573 0.6211 2279.69 30.43 0.0001
B2 51,115.93 0.4537 0.5134 106.33 1.42 0.2565
C2 6.03E + 05 5.35 0.0392 677.47 9.04 0.0109
D2 5.49E + 05 4.87 0.0475 39.03 0.5211 0.4842
Lack of fit 1.29E + 05 4.07 0.2134 86.47 5.05 0.1765
Fit statistics
Adjusted R2 0.6845 0.736
Adeq. precision 10.4438 8.985
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were analyzed for potential impact on the released enzymes 
and sugars in the fermentation supernatant broth.

For an efficient lignocellulosic biomass conversion from 
Bosea sp. FBZP-16, the optimal operation conditions were 
studied to simplify the scale-up to future production scale 
and to determine its potential in purification, by using dif-
ferent lignocellulosic and commercial substrates. Both the 
enzyme activities and the hydrolysis products were investi-
gated in culture crude supernatants of Bosea sp. FBZP-16 
by varying medium composition with respect to carbon and 
nitrogen sources, temperature, shaking frequency, and incu-
bation period. First, various (hemi)cellulosic carbon sources 
were tested for their effect on (hemi)cellulolytic activities 
and released hydrolysis products.

Overall, the degradation and enzyme activities on hemi-
cellulosic substrates were higher in terms of enzyme activi-
ties. Beechwood xylan was the best substrate to produce 
different hemicellulolytic enzymes. This could be due to its 
unbranched structure compared to branched galactomannan 
and arabinoxylan [71]. Improved xylanase activity has also 
been reported in a strain of Flavobacterium sp. in the pres-
ence of beechwood xylan in comparison with wheat and rye 
arabinoxylan [44]. Furthermore, beechwood xylan is more 
amorphous than wheat flour arabinoxylan [25]. In a similar 
conducted study on bacterial xylanases, the bacterial strain 
Bacillus safensis CBLMA18 revealed a xylanase with the 
highest specific activity on beechwood xylan in comparison 
to other xylanolytic substrates (oat spelt xylan, wheat arabi-
noxylan, rye arabinoxylan, and 4-o-methyl glucuronoxylan) 
[18].

Although xylanase activities are often higher than cel-
lulase activities, the release of fermentable sugars is more 
important following cellulose decomposition. This may 
be probably due to cellulose and hemicellulose structures. 
Indeed, cellulose is a homopolymer, which contains only 
glucose, while hemicellulose is an heteropolymer composed 
of a mixture of sugars [49].

The values obtained with the preliminary PAHBAH test 
were always higher than by chromatographic methods. This 
massive deviation can be explained by the non-distinction 
of PAHBAH test in comparison with HPAEC-PAD for the 
different monomeric and oligomeric sugars [21]. Thus, 
hydrolysis products were analyzed for detailed informa-
tion on monomeric and oligomeric concentration using the 
HPAEC-PAD. Additionally, sugar degradation products can 
interfere and change the correct sugar values.

Different types of lignocellulosic substrates were tested 
including forestry (wood), agricultural (cereals) and domes-
tic residues (fruits peeling). These resources differ in the 
content of cellulose and hemicellulose as reported previ-
ously [33]. Surprisingly, many enzymes were highly pro-
duced on milled woody materials, such as sawdust, which 
indicates a good penetration of these enzymes on lignified 

substrates. Several hemicellulolytic activities were higher on 
sawdust as lignocellulosic natural carbon source. The bacte-
rium Arthrobacter sp. MTCC6915 also displayed xylanase 
activity in sawdust under solid state fermentation [54]. The 
differences of the carbon source used, i.e., complex lignocel-
lulosic vs. pure (hemi)cellulosic substrates and the degree 
of crystallinity of the different available commercial (hemi)
cellulosic substrates, play a major role in enzyme activity. 
Indeed, higher cellulases activities and glucose yield were 
observed on amorphous cellulose, in this case: Sigmacell 
cellulose 101 and CMC-4 M [74]. The later has approxi-
mately 4 carboxymethyl groups per 10 anhydroglucose 
units, resulting in high water solubility that facilitates its 
degradation.

Bosea sp. FBZP-16 was shown to be able to use differ-
ent carbon compounds as substrates for growth that were 
confirmed by bands detection when running electrophoretic 
SDS-PAGE. The presence of certain bands on both cellu-
losic and hemicellulosic substrates might be explained by 
the presence of a bifunctional cellulase-xylanase activity 
[68]. At the genetic level, endo-1,4-β-glucanases in Bosea 
sp. FBZP-16 were affiliated to glycoside hydrolase families 
GH5 and GH8 and hemicellulolytic deconstructing genes 
in families GH2 and G120 [35]. Different glycosidic bonds 
(β-1–4, β-1–6, etc.) are cleaved by endoglucanases for dif-
ferent substrates. Known as endo-1,4-β-glucanases (1,4-β-D-
glucan glucanohydrolase, EC 3.2.1.4), these enzymes more 
commonly cleave β-1–4-glycosidic bonds [59]. The 41-kDa 
band protein was similarly reported on Lysobacter sp. 
IB-9374 to belong to GH8 family [55].

Xylose induced cellobiohydrolase activity during culti-
vation of Bosea sp. FBZP-16. The utilization of cellulose 
and hemicellulose derived monomers is also related to the 
ability of the strain to perform cellulose and hemicellulose 
decomposition, as demonstrated by Schuerg et al. [62] for 
the induction of cellulases with xylose. However, abundant, 
cost-efficient, and renewable carbon source are prioritized 
in industry. Although Bosea sp. has proven to produce cel-
lulases and xylanases in the presence of simple and defined 
carbon sources, such as glucose and xylose, these sources 
are suitable only for enzyme characterization in the lab scale 
but are too expensive to be used in large scale for production 
of enzymes. However, as several biomass pretreatments have 
been developed, the resulting simple sugars can be directly 
explored to provide a stock of the inducer’s monomeric sug-
ars [9].

The presence of different nitrogen sources is beneficial 
for maximum production of the different (hemi)cellulo-
lytic enzymes in Bosea sp. FBZP-16. Indeed, the absence 
of nitrogen inhibits decomposition of cellulose  [32]. Fur-
thermore, malt extract as nitrogen source was efficient in 
increasing cellobiohydrolase activity. Malt extract is rich in 
plant based nutrients that has been shown to be involved in 
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enhancing cellulosic and hemicellulosic enzyme production 
in bacteria [43].

In the context of temperature optimization, Bosea sp. 
FBZP-16 does not withstand high temperatures and would 
be industrially interesting, if the fermentation is carried out 
at average temperatures between 30 and 35 °C. Although 
thermophiles are preferred because of their resistance to 
harsh pretreatment processes, the fermentations most com-
monly used on industrial scales occur at temperatures rang-
ing from 30 to 35 °C (for instance Trichoderma reesei and 
Aspergillus niger) [16]. Industrial facilities that use meso-
philic microorganisms are less expensive than those using 
thermophilic microorganisms [22]. In addition, mesophilic 
cellulolytic bacteria can also be directly associated with 
mesophilic organisms such as Zymomonas mobilis or Sac-
charomyces cerevisiae, which are the most successful bio-
fuel producers.

For the investigated microorganism, the shaking fre-
quency of 150 to 300 rpm seems optimal in the investigated 
range having the best impact on enzyme adsorption/des-
orption on the (hemi)cellulosic substrate and thus highest 
monomeric sugar yield [76].

By applying RSM, the quadratic model had a predicted 
R2 value of 0.8544 and 0.8781 for cellobiohydrolase and 
endoxylanase, respectively, confirming the effectiveness of 
the model, i.e., 85.44% and 87.81% of the total variation 
in the observed results were attributed to the independ-
ent variables. Since the R2 value is greater than 0.75, the 
models explain most of the test result’s variability [72] and 
the adjusted R2 values of 0.684 and 0.736 respectively for 
cellobiohydrolase and endoxylanase validate the proposed 
models. Indeed, the R2 values obtained in these regression 
models indicate good agreement between predicted and 
actual cellobiohydrolase and endoxylanase activities. The 
appropriateness of the obtained regression models is shown 
in Fig. S-12b and Fig. 5b for cellobiohydrolase and endoxy-
lanase, respectively. The Adeq precision compares the range 
of predicted values at the design points to the average predic-
tion error. Adeq precision > 4 represents an adequate signal 
that fit for the studied model [6]. The Adeq precision ratio 
of 10.44 and 8.99 for cellobiohydrolase and endoxylanase, 
respectively, indicates that the models are reliable and repro-
ducible in agreement with previous studies [19, 40].

The composition of the medium used in online monitored 
shake flasks reflects environmental conditions with a high 
C:N ratio when cellulose and hemicellulose are the major 
substrates and lower amounts of simple carbon sources are 
present. α-cellulose was used as reference, being closest 
to plant-derived cellulose, which is mostly in crystalline 

form and recalcitrant to hydrolysis [31]. α-cellulose was 
demonstrated previously to be a good representative of the 
alkaline-pretreated biomass used in biorefineries [57]. For 
sufficient oxygen supply and to insure maximum increase 
in OTR, the filling volume of RAMOS flask was decreased 
to 30 mL [39, 73]. Higher volume (40 mL) was used in nor-
mal flasks for convenience where evaporation is more likely 
to occur with cotton plugs. Recently, the use of RAMOS 
has yielded promising results for the evaluation of cellulose 
degradation by a strain of Trichoderma reesei, using a cul-
ture medium with cellulose as a carbon source, providing 
an effective means for monitoring the growth of cellulose-
degrading microorganisms [4]. From RAMOS experiment, 
it was also demonstrated that the degradation of cellulose 
can only be enhanced with optimized conditions after the 
modification of cultivation parameters also reflecting prefer-
ential degradation of hemicellulose by Bosea sp. FBZP-16. 
Hemicellulose is easier decomposed than cellulose due to 
its heterogeneity and amorphous composition that confer 
random and non-ordered structure. Bacterial cellulases can 
also be weak as some species lose the capacity to breakdown 
crystalline cellulose [56]. Any variations limiting cellulose 
microaccessibility including transport of cellulases and time 
exposure to the surface of α-cellulose could also affect cel-
lulose hydrolysis [38]. Furthermore, enzymatic hydrolysis 
do not always occur following binding to cellulose with low 
interactions [58].

The two-step degradation of xylan results in two peaks 
between 42 and 54 h culture time of the OTR curve. Later, 
the decrease of OTR might be explained by enzyme limita-
tion or the substrate no longer being as much accessible as 
at the beginning. A small peak appearing at about 9 h (Fig. 
S-13a) might be due to the consumption of yeast extract 
compounds (2 g/L) used as nitrogen source. No OTR was 
detected on α-cellulose which correlates with the results 
from SDS-PAGE and HPAEC-PAD. A band with the same 
molecular weight (∼ 70  kDa) appeared on cellobiose, 
OrganoCat cellulose, cellulose Sigmacell 20, and RAMOS 
crude supernatants suggests a β-glucosidase, especially 
because the band was with higher staining intensity on cel-
lobiose [41, 42]. However, when the bacterium was grown 
on normal shake flasks (30 °C, 200 rpm, and 40 mL fill-
ing volume), the activity of cellobiohydrolases (that targets 
crystalline cellulose) was significantly higher on Sigmacell 
101 cellulose (amorphous) and α-cellulose (less crystalline 
than Avicel, Sigmacell 20 cellulose, and Sigmacell 50 cel-
lulose). In this case, xylan is still easily hydrolyzed in both 
RAMOS and normal shake flask cultivations, but the cellu-
lose hydrolysis needs to be further examined until possible 
detection of rate-limiting factors in OTR. As a result, for a 
different alternative fermentation configuration, further opti-
mization may be required to initiate growth on cellulose. 
Indeed, xylanases of bacterial origin are typically released 

Fig. 3  Contour plots of endoxylanase production from Bosea sp. 
FBZP-16, showing interactions between carbon  source concentra-
tion, nitrogen source concentration, inoculum size, and pH

◂
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alone in contrast to fungal xylanases that are produced all 
together with cellulase.

In conclusion, Bosea sp. FBZP-16 grew well on solu-
ble and insoluble polysaccharide substrates and effectively 
hydrolyzed cellulose whether free insoluble cellulose parti-
cles or cellulose embedded within other cell wall polymers 
of raw and/or pretreated lignocellulosic materials. Sophisti-
cated enzyme assays were relevant in this study. Depending 
on the substrate (cellulosic or hemicellulosic), several pro-
teins with activities can be isolated from Bosea sp. FBZP-16. 
Among the tested lignocellulosic substrates, cellobiohydro-
lase activity was significantly higher on Sigmacell 101 cel-
lulose and newspaper.

Beechwood xylan revealed the best activities of 
β-xylosidases as well as higher release of xylose. Regard-
ing the tested nitrogen sources, the highest cellobiohydrolase 
activities were observed with malt extract. Most enzymes 
showed the highest activity between 30 and 35 °C. The high-
est activities of (hemi)cellulolytic enzymes were observed 
from 150 to 300 rpm with highest yields of glucose and 
xylose at 150 rpm. This difference in glucose yield might be 
explained by inadequate mixing when the shaking speed is 
inferior to 150 rpm and enzyme deactivation due to higher 
shearing force [61]. However, another study reported better 
cellulose conversions without shaking than with a shaking 
speed at 150 rpm [14]. The maximum production of these 
enzymes was reached from the 3rd to the 9th day of incuba-
tion period. This enzymatic profile produced by Bosea sp. 
FBZP-16 during growth showed the potential of different 
parameters that are promising to reproduce for scale-up fer-
mentation conditions and enzyme purification for further 
characterization. In this study, OFAT approach was consid-
ered for the determination of optimal enzymatic hydrolysis 
occurring for each physical and qualitative parameter sepa-
rately. By using statistical methodologies, the fermentation 
was optimized and resulted in the production of maximum 
activity of 2796.56 U/mg for cellobiohydrolase and 57.45 
U/mg of endoxylanase. In the studied model, the optimum 
conditions for both cellobiohydrolase and endoxylanase 
production were successfully and simultaneously identi-
fied using the same quadratic model. Confirmatory tests are 
needed to confirm the validity of the model under the tested 
medium composition and by varying its components. In this 
paper, we identified a promising bacterial enzyme producer 
through the combination of different statistical optimiza-
tion approaches while varying culture growth conditions to 
understand enzyme production. The best conditions to obtain 
a suitable mixture of enzymes would be explored to design 
enzyme cocktails in the context of a biotechnological appli-
cation. For future experiments when conceptualizing and 

designing enzyme applications, it is important to conduct 
a saccharification experiment which employs an enzyme 
preparation obtained under optimal conditions. Aspects of 
enzymatic degradation can also be considered according to 
the amount of released monomeric sugars for saccharifica-
tion technologies needed on the commercial scale. The com-
mercial production of cellulosic ethanol is facing challenges 
of high production costs involved in microbial bioreactors 
and lignocellulosic pretreatment for cellulases [15]. Fur-
thermore, commercial enzyme cocktails continue to be a 
bottleneck in hydrolysis due to their costs [28]. The cost of 
transporting enzymes from a central facility to a biorefinery 
can make a significant difference for local biorefineries [27]. 
Hence, using the in-house produced enzymes would be more 
cost-effective than using commercially available cellulases 
or hemicellulases.
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