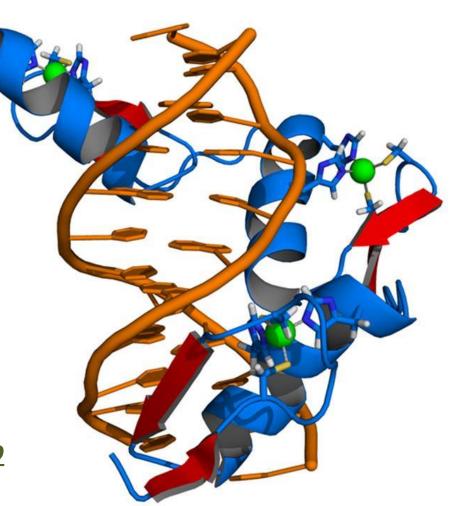
Íons metálicos em sistemas biológicos

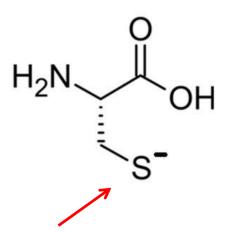
Shriver & Atikins , pag 733-790 (Capítulo 26)

Concentração aproximada de alguns elementos (na forma de íons metálicos) no exterior e interior das células

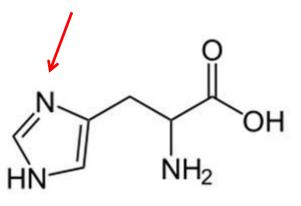
Elemento	água do mar	plasma sanguíneo	citoplasma
Na	> 10-1 1	10-1	< 10⁻² ↓
K	10-2 ↓	10-3	< 10-1
Mg	> 10-2	10-3	10-3
Ca	> 10-3 ↑	10-3	10-7 ↓
Fe	$10^{-17} \downarrow (\text{Fe}^{3+})$	10 ⁻¹⁶ (Fe ³⁺)	$10^{-2} \uparrow (\text{Fe}^{2+})$
Zn	10-8	10-9	10-11 ↓
Cu	$10^{-10} (Cu^{2+})$	10-12	$< 10^{-15} \downarrow (Cu^{2+})$
Mn	10-9 ↓		10-6

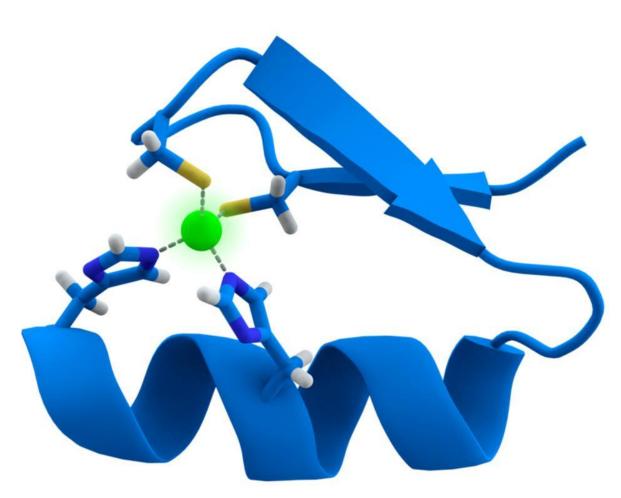

O Zn2+ em proteínas que controlam o início da transcrição (DNA>>RNA)

Função biológica: definição estrutural em proteínas


- Fatores de transcrição

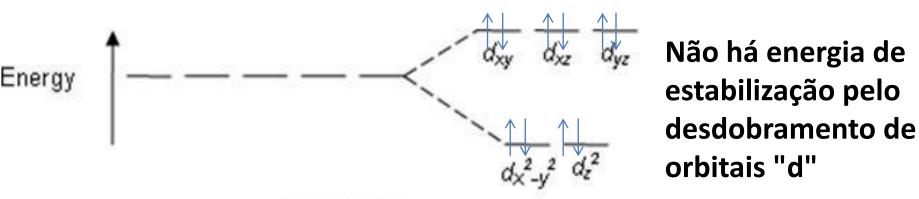
Os fatores de transcrição são proteínas que, ao se ligarem ao DNA, controlam o início do processo de "abertura" do DNA para culminar na transcrição da fita em uma nova molécula de RNA


Mais sobre isso em bioquímica e biologia molecular Nosso foco agora é o <u>íon metálico</u>



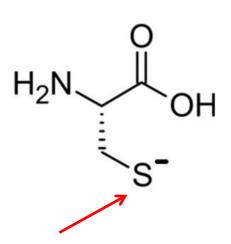
Um "dedo de zinco" típico apresenta o íon Zn²⁺ envolto por 4 aminoácidos ligantes: 2 Histidinas e 2 Cisteínas

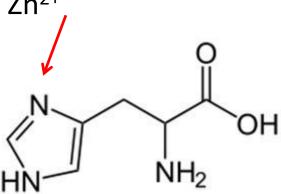
Centros ligantes (elétron doadores) do Zn²⁺

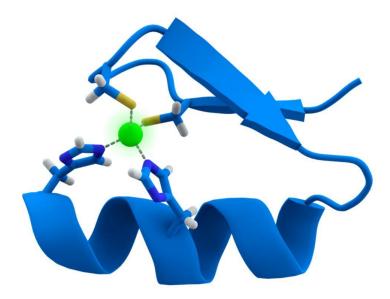


Pense: Porque o Zn²⁺ está numa estrutura tetraédrica?

O metal Zn


Zn >> 30 elétrons
$$1s^2$$
 $2s^2$ $2p^6$ $3s^2$ $3p^6$ $3d^{10}$ $4s^2$ $4p^0$ No $Zn^{2+} >> 3d^{10}$ $4s^0$


Tetrahedral


4 ligantes (tetraédrico) são melhor acomodados do que 6 (octaédrico), devido a menor repulsão elétron-elétron entre os ligantes

Um "dedo de zinco" típico apresenta o íon Zn²⁺ envolto por 4 aminoácidos ligantes: 2 Histidinas e 2 Cisteínas

Centros ligantes (elétron doadores) para o Zn²⁺,

Pense: Recupere os conceitos sobre ácido e base e preveja o que aconteceria com um fator de transcrição do tipo Cys₂His₂Zn se o pH for: 7, 6 e 3?

O que precisamos saber??

O que acontece com um fator de transcrição do tipo Cys₂His₂Zn se o

- T T

pH for: 7, 6 e 3?

	pH	Cisteina	Histiaina	
II	7,0	Cis-S-	His-N:	
H_2N OH				

Ciataina

Centros ligantes (elétron doadores) do Zn²⁺

Pense: Recupere os conceitos pKa aprox. 5.5 sobre ácido e base e preveja o que aconteceria com um fator de transcrição do tipo Cys₂His₂Zn se o pH for: 7, 6 e 3?

TT: 4: 1:40

pKa aprox. 6.1

O que acontece com um fator de transcrição do tipo Cys₂His₂Zn se o

pH for: 7, 6 e 3?

	pН	Cisteina	Histidina
O II	7,0	Cis-S-	His-N:
H_2N OH	6,0	Cis-S-	His-N:
- s-			

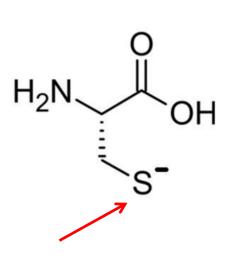
Centros ligantes (elétron doadores) do Zn²⁺

Pense: Recupere os conceitos pKa aprox. 5.5 sobre ácido e base e preveja o que aconteceria com um fator de transcrição do tipo Cys₂His₂Zn se o pH for: 7, 6 e 3?

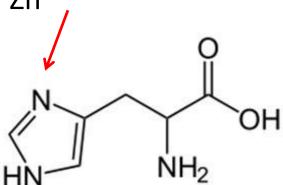
pKa aprox. 6.1

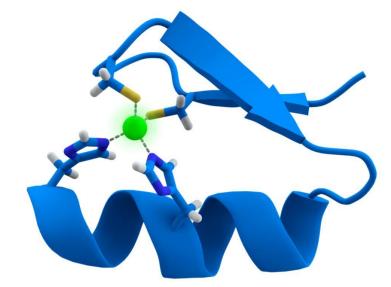
O que acontece com um fator de transcrição do tipo Cys₂His₂Zn se o

pH for: 7, 6 e 3?


	pH	Cisteína	Histidina
H ₂ N OH	7,0	Cis-S-	His-N:
	6,0	Cis-S-	His-N:
	3,0	Cis-SH	His-NH ⁺
O 💺		•	

Centros ligantes (elétron doadores) do Zn²⁺


Pense: Recupere os conceitos pKa aprox. 5.5 sobre ácido e base e preveja o que aconteceria com um fator de transcrição do tipo Cys₂His₂Zn se o pH for: 7, 6 e 3?


pKa aprox. 6.1

Um "dedo de zinco" típico apresenta o íon Zn²⁺ envolto por 4 aminoácidos ligantes: 2 Histidinas e 2 Cisteínas

Centros ligantes (elétron doadores) para o Zn²⁺,

рН	Cisteína	Histidina	Quelante ???
7,0	Cis-S-	His-N:	sim, sim
6,0	Cis-S-	His-N:	sim, sim
3,0	Cis-SH	His-NH ⁺	não, não

Concentração aproximada de alguns elementos (na forma de íons metálicos) no exterior e interior das células -

sistemas de transporte de íons metálicos

Elemento	água do mar	plasma sanguíneo	citoplasma
Na	> 10-1 1	10-1	< 10⁻² ↓
K	10-2 ↓	10-3	< 10-1 1
Mg	> 10-2	10-3	10-3
Ca	> 10-3 1	10-3	10-7 ↓
Fe	$10^{-17} \downarrow (\text{Fe}^{3+})$	10 ⁻¹⁶ (Fe ³⁺)	$10^{-2} \uparrow (\text{Fe}^{2+})$
Zn	10-8	10-9	10-11 ↓
Cu	$10^{-10} (Cu^{2+})$	10-12	$< 10^{-15} \downarrow (Cu^{2+})$
Mn	10-9 ↓		10-6

Íons metálicos em sistemas biológicos

Shriver & Atikins, pag 733-790 (Capítulo 26)

No interior de uma célula as concentrações de íons metálicos são significativamente diferentes daquelas observadas no meio externo aonde a célula está inserida

Também a concentração de alguns ânions são diferentes nos ambientes internos e externos. Em alguns casos, por exemplo, íons fosfato (PO_4^{3-}), a concentração externa na célula é relativamente elevada (da ordem de 10^{-3} mol/L).

Pense: o que ocorreria se íons Ca²⁺ (muito abundantes no meio extracelular, da ordem de 10⁻³ mol/L) ocorressem nas mesmas concentrações dentro da célula ?? (de fato, Ca²⁺ no interior da célula é da ordem de 10⁻⁷ mol/L)

Kps do $Ca_3(PO_4)_2 = 2.1 \times 10^{-33}$ (equilíbrio químico é muito importante em sistemas biológicos)

Fosfato importante em sistemas biológicos

adenosine triphosphate (ATP)

Pense: o que ocorreria se íons Ca²⁺ (muito abundantes no meio extracelular, da ordem de 10⁻³ mol/L) ocorressem nas mesmas concentrações dentro da célula ??

$$Ca_3(PO_4)_2 = 3Ca^{2+} + 2PO_4^{3-}$$

Kps do $Ca_3(PO_4)_2 = 2.1 \times 10^{-33}$

$$2.1 \times 10^{-33} = [10^{-3}]^3 \times [(PO_4)^{3-}]^2 >> [(PO_4)^{3-}]^2 = 2.1 \times 10^{-33} / 10^{-9}$$

$$[(PO_4)^{3-}]^2 = 2.1 \times 10^{-24} >> [(PO_4)^{3-}] = 2.1 \times 10^{-12} \text{ mol/L}$$