

EESC · USP

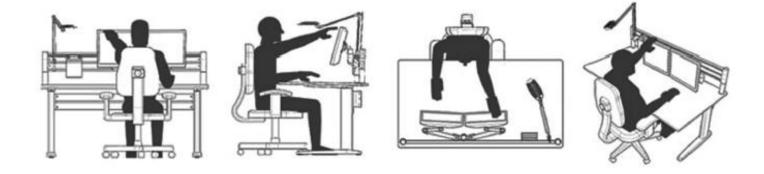
Sumário

- Engenharia antropométrica
- Transtornos de traumas cumulativos
- Ferramentas manuais
- Manuseio de materiais
- Projeto do ambiente de trabalho
- Iluminação
- Ruído
- Vibração
- Conforto térmico e qualidade do ar
- Hipóxia
- Estresse

FESC • USP

Sumário

- Engenharia antropométrica
- Transtornos de traumas cumulativos
- Ferramentas manuais
- Manuseio de materiais
- Projeto do ambiente de trabalho
- Iluminação
- Ruído
- Vibração
- Conforto térmico e qualidade do ar
- Hipóxia
- Estresse



• Definição clássica de antropometria: estudo das medidas do corpo humano

 Engenharia antropométrica: Se refere ao projeto de espaços compatíveis com a antropometria

Disponibilizado: estudo antropométrica da ANAC (2009)

Engenhar

Tabela antropométrica de civis dos EUA mulheres/homens. Percentis 5%, 50%, 95%

Em aviação, os ambientes devem ser projetados para todos dentro do percentil 95%

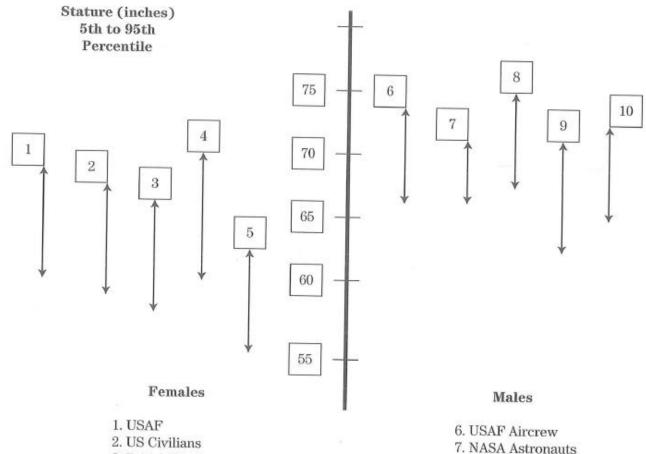
Se algo deve estar fora do alcance (para evitar acionamento indesejado, o conceito é revertido)

U.S. Civilian Body Dimensions. Female/Male. In Centimeters for Ages 20-60 Years.

Percentiles

har		5th	50th	95th	Standard Deviation
IIai	Heights				
	Stature (height)f	149.5/161.8	160.5/173.6	171.3/184.4	6.6/6.9
	Eye height ^f	136.3/151.1	148.9/162.4	159.3/172.7	6.4/6.6
	Shoulder (acromion) height ^f	121.1/132.3	131.1/142.8	141.9/152.4	6.1/6.1
S	Elbow height ^f	93.6/100.0	101.2/109.9	108.8/119.0	4.6/5.8
3	Knuckle heightf	64.3/69.8	70.2/75.4	75.9/80.4	3.5/3.2
	Height, sitting ^x	78.6/84.2	85.0/90.6	90.7/96.7	3.5/3.7
	Eye height, sitting ^a	67.5/72.6	73.3/78.6	78.5/84.4	3.3/3.6
	Shoulder height, sitting ^a	49.2/52.7	55.7/59.4	61.7/65.8	3.8/4.0
	Elbow rest height, sitting*	18.1/19.0	23.3/24.3	28.1/29.4	29/3.0
	Knee height, sittingf	45.2/49.3	49.8/54.3	54.5/59.3	2.7/2.9
	Popliteal height, sittingf	35.5/39.2	39.8/44.2	44.3/48.8	2.6/2.8
	Thigh clearance heightf	10.6/11.4	13.7/14.4	17.5/17.7	1.8/1.7
	Depths				
	Chest depth	21.4/21.4	24.2/24.2	29.7/27.6	2.5/1.9
	Elbow-fingertip distance	38.5/44.1	42.1/47.9	56.0/51.4	2.2/2.2
	Buttock-knee distance, sitting	51.8/54.0	56.9/59.4	62.5/64.2	3.1/3.0
ser	Buttock-popliteal distance, sitting	43.0/44.2	48.1/49.5	53.5/54.8	3.1/3.0
CI	Forward reach, functional	64.0/76.3	71.0/82.5	79.0/88.3	4.5/50
	Breadths				
	Elbow to elbow breadth	31.5/35.0	38.4/41.7	49.1/50.6	5.4/4.6
	Hip breadth, sitting	31.2/30.8	36.4/35.4	43.7/40.6	3.7/2.8
	Head dimensions				
	Head breadth	13.6/14.4	14.54/15.42	15.5/16.4	0.57/0.59
	Head circumference	52.3/53.8	54.9/56.8	57.7/59.3	1.63/1.68
	Interpupillary distance	5.1/5.5	5.83/6.20	6,5/6,8	0.44/0.39
	Foot dimensions				
	Foot length	22.3/24.8	24.1/26.9	26.2/29.0	1.19/1.28
	Foot breadth	8.1/9.0	8.84/9.79	9.7/10.7	0.50/0.53
	Lateral malleolus height	5.8/6.2	6.78/7.03	7.8/8.0	0.59/0.54
	Hand dimensions				
	Hand length	16.4/17.6	17.95/19.05	19.8/20.6	1.04/0.93
	Breadth, metacarpal	7.0/8.2	7.66/8.88	8.4/9.8	0.41/0.47
do,	Circumference, metacarpal	16.9/19.9	18.36/21.55	19.9/23.5	0.69/1.09
J. J	Thickness, meta III	2.5/2.4	2.77/2.76	3.1/3.1	0.18/0.21
	Digit 1: Breadth of interphalangeal	1.7/2.1	1.98/2.29	2.1/2.5	0.12/0.21
	Crotch-tip length	4.7/5.1	5.36/5.88	6.1/6.6	0.44/0.45
	Digit 2: Breadth of distal joint	1.4/1.7	1.55/1.85	1.7/2.0	0.10/0.12
	Crotch-tip length	6.1/6.8	6.88/7.52	7.8/8.2	0.52/0.46
	Digit 3: Breadth of distal joint	1.4/1.7	1.53/1.85	1.7/2.0	0.09/0.12
	Crotch-tip length	7.0/7.8	7.77/8.53	8.7/9.5	0.51/0.51
	Digit 4: Breadth of distal joint	1.3/1.6	1.42/1.70	1.6/1.9	0.09/0.11
	Crotch-tip length	6.5/7.4	7.29/7.99	8.2/8.9	0.53/0.47
	Digit 5: Breadth of distal joint	1.2/1.4	1.32/1.57	1.5/1.8	0.09/0.12
	Crotch-tip length	4.8/5.4	5.44/6.08	6.2/6.99	0.44/0.47
	Weight (in kg)	46.2/56.2	61.1/74.0	89.9/97.1	13.8/12.6
atores I	rreight (in kg)	40.2/30.2	01.1//430	09.9191.1	1.5.0/12.0

f Above floor.

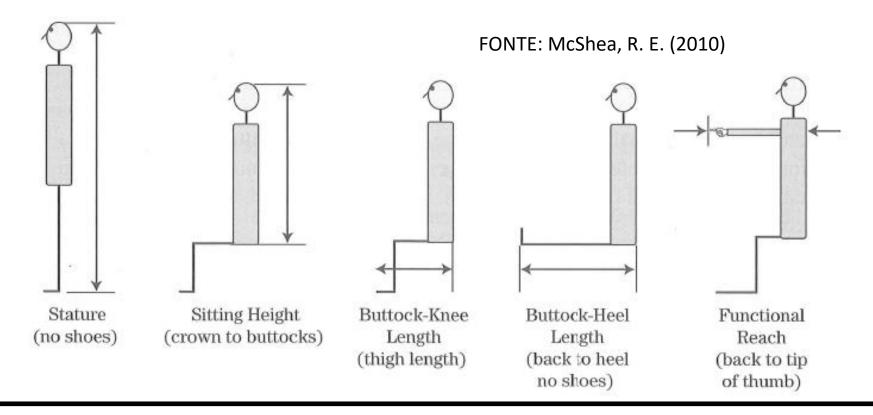


Above seat.

Tabelas desse tipo mudam muito em diferentes partes do mundo

FONTE: McShea, R. E. (2010)

- 3. British Civilians
- 4. Swedish Civilians
- 5. Japanese Civilians


- 8. British Aircrew
- 9. Italian Aircrew
- 10. French Aircrew

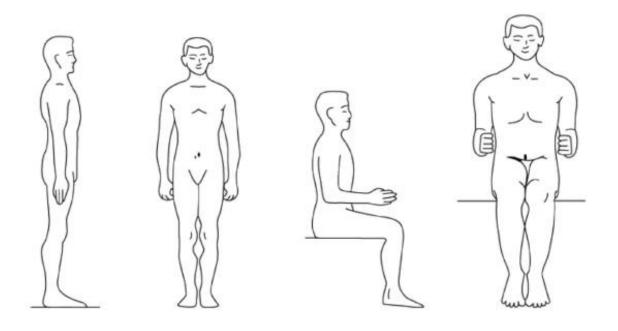
Medidas importantes a serem consideradas em projetos de engenharia antropométrica

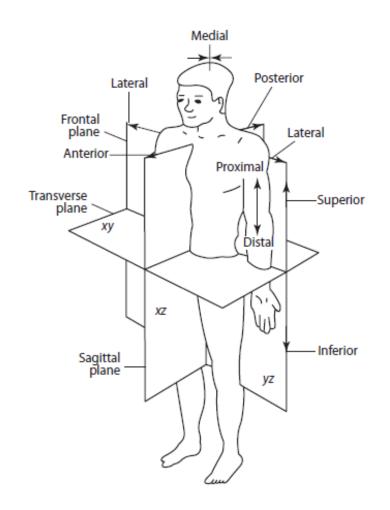
Problema: as proporções não se mantêm para todas as pessoas

Medição antropométrica

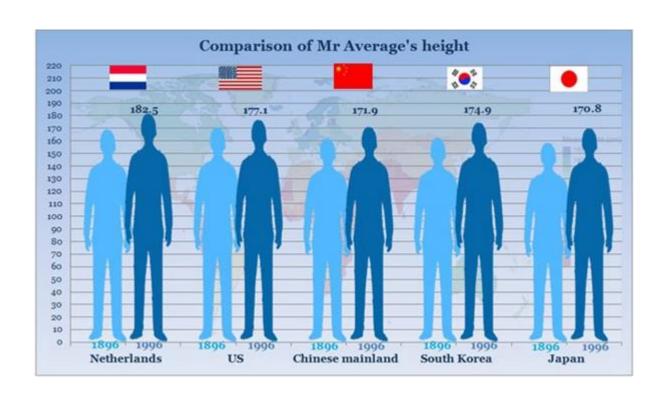
Medidas estáticas: alcance medido com a pessoa parada em uma mesma postura

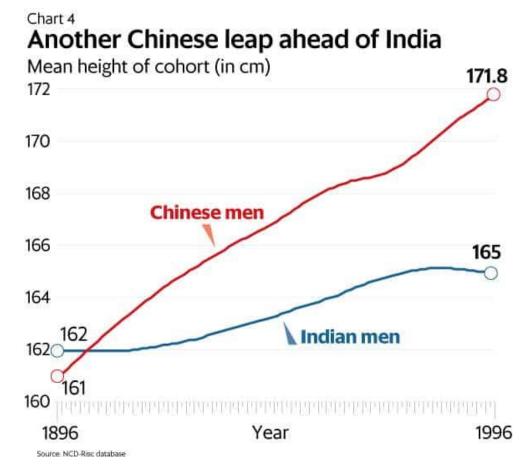
- Medidas dinâmicas:
 - Usam restrições biomecânicas
 - Levam em conta diferentes posturas




- Medição antropométrica
- Altura é uma medida vertical ponto a ponto em linha reta
- <u>Largura</u> é uma medição horizontal ponto a ponto em linha reta que atravessa o corpo ou um segmento
- <u>Profundidade</u> é uma medição horizontal ponto a ponto em linha reta que vai da frente até a parte de trás do corpo
- <u>Distância</u> é uma medida em linha reta ponto a ponto entre pontos de referência no corpo
- <u>Curvatura</u> é uma medição ponto a ponto seguindo um contorno; esta medição não é nem fechado nem geralmente circular
- <u>Circunferência</u> é uma medida fechada que segue o contorno do corpo; portanto, esta medição geralmente não é circular
- Alcance é uma medida ponto a ponto seguindo o longo eixo de um braço ou perna

- Medição antropométrica
- Planos posturais de medição


Medição antropométrica


- Medições antigas utilizavam fita métrica, compassos calibrados e escalas. Hoje em dia se utilizam scanners dinâmicos
- Projeto CAESAR (Civilian American and European Surface Anthropometry Resource): EUA, UE
 e Canadá iniciaram um projeto com medida de 6000 civis de cada território
 - Medidas desse tipo devem ter a aleatoriedade cuidadosamente escolhida
 - Trabalhos como esse geram um importante banco de dados para projetos variados a serem realizados no futuro
 - Medições como essa devem ser periodicamente repetidas, pois o perfil da população muda com o tempo
 - Outra medida muito importante a ser feita é de força (estática e dinâmica) para projetos de acionamento)

- Medição antropométrica
- Mudança de estatura populações ao longo dos anos

- Fontes de dados antropométricos
- Existem fontes de dados governamentais a respeito de dados antropométricos da população

No Brasil, um estudo da ANAC de 2009 fez um importante levantamento de tripulantes

 Bases de dados desse tipo devem atentar se a parcela da população medida atende aos interesses da pesquisa

• Um desafio importante é a geração de bases de dados de populações específicas, como gestantes, deficientes, idosos, etc.

- Fontes de dados antropométricos
- Em geral, a variabilidade de medidas, postura, força, etc., aumenta com a idade (variabilidade de idosos é muito maior que a de jovens adultos)

 Fatores dinâmicos também variam muito, principalmente na população mais idosa, por fatores como osteoporose, artrite, etc.

Fatores biomecânicos

- Definições:
 - Biomecânica ocupacional é o estudo da interação física dos trabalhadores com suas ferramentas, máquinas e materiais, de modo a melhorar o desempenho do trabalhador enquanto minimiza o risco de distúrbios musculoesqueléticos
 - Tolerância ao trabalho: um estado em que o trabalhador individual desempenha a taxas economicamente aceitáveis, enquanto desfruta de altos níveis de bem-estar emocional e fisiológico

Fatores biomecânicos

• Fatores para maximizar a tolerância ao trabalho biomecânico

Posturais		De Engenharia		Cinesiológicos	
P1	Mantenha os cotovelos abaixados	E1	Evite isquemia de compressão	K1	Mantenha alcance curto
P2	Minimize os movimentos na coluna	E2	Evite vibrações críticas	K2	Evite a insuficiência muscular
Р3	Considere as diferenças de gênero	E3	Personalize o design da cadeira	КЗ	Evite movimentos em linha reta
P4	Otimize a configuração do esqueleto	E4	Evite concentração de estresse	K4	Considere o uso de luvas de trabalho
P5	Evite movimentos de cabeça	E5	Mantenha o pulso reto	K5	Evite a fadiga do antagonista

FESC • USP

Sumário

- Engenharia antropométrica
- Transtornos de traumas cumulativos
- Ferramentas manuais
- Manuseio de materiais
- Projeto do ambiente de trabalho
- Iluminação
- Ruído
- Vibração
- Conforto térmico e qualidade do ar
- Hipóxia
- Estresse

Transtornos de traumas cumulativos

- Definição:
 - síndromes caracterizadas por desconforto, deficiência ou dor persistente nas articulações, músculos, tendões e outros tecidos moles, com ou sem manifestações físicas

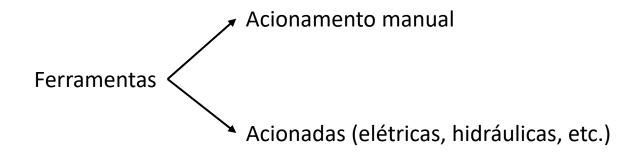
 Tipo de problema que custa muito dinheiro a companhias, por processos trabalhistas ou afastamentos

• Exemplos: Lesão por Esforços Repetitivos (L.E.R.), Tendinite, Síndrome do túnel do carpo, etc.

 Normalmente devido a atividades repetitivas. Mais de 60% dos casos acontecem na mão ou punhos

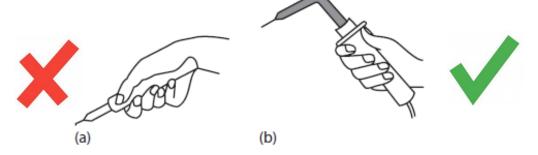
FEST - JISP

Sumário

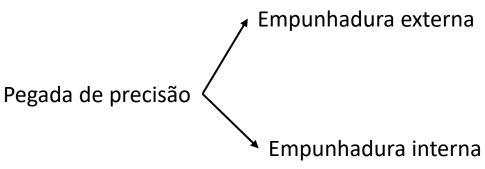


- Engenharia antropométrica
- Transtornos de traumas cumulativos
- Ferramentas manuais
- Manuseio de materiais
- Projeto do ambiente de trabalho
- Iluminação
- Ruído
- Vibração
- Conforto térmico e qualidade do ar
- Hipóxia
- Estresse

• Tipos:



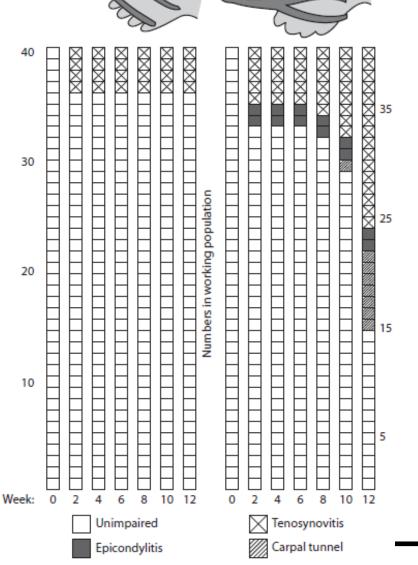
- Devem atender a certos requisitos:
 - Efetivamente desempenhar a função para a qual se destina
 - Ser proporcionado para se ajustar ao corpo do usuário
 - Ser ajustado à força e capacidade de trabalho do usuário
 - Minimizar a fadiga
 - Ser adaptada para as capacidades sensoriais do usuário
 - Ser barata e fácil de manter


- Ferramentas de acionamento manual
- Alguns princípios importantes de projeto:
- Dobre a alça, e não o pulso

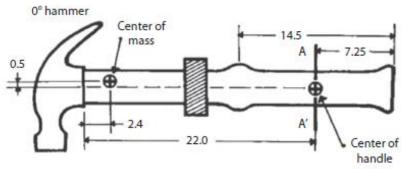
Preocupação com manuseio

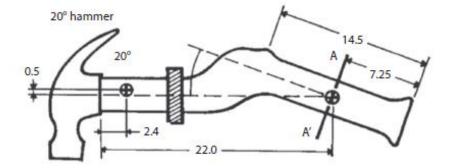
- Ferramentas de acionamento manual
- Alguns princípios importantes de projeto:
- Preocupação com o cabo: diâmetro, formato e não deve conduzir calor ou eletricidade

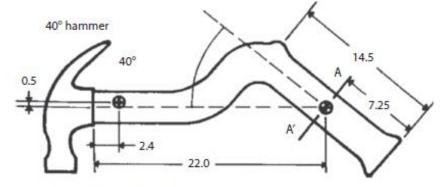
Recommended Handle Diameters as a Function of Grip and Handle Type


	Single Handle	Double Handle
Power grip	3.8-5.1 cm	5.1 cm (closed)-8.9 cm (open)
Precision grip	0.6-1.3 cm	2.5 cm (closed)-7.6 cm (open)

- Superfícies com agarras compressíveis
 - Borracha ou espuma, por exemplo
 - Melhoram a aderência, resistem a vibrações, e calor


- Ferramentas de acionamento manual
- Alguns princípios importantes de projeto:
- Exemplo: uso de dois tipos diferentes de alicate em uma linha de montagem, por 40 diferentes pessoas, durante 12 semanas





- 9.22 circumference 3.16
- HARIA AUTICA CARLOS

- Ferramentas de acionamento manual
- Alguns princípios importantes de projeto:
- Exemplo: mudanças no cabo de um martelo para acesso curvado 20 e 40 graus

Hammer specifications: Weight = 640 g Wood = Baltic birch 21 ply laminate Hammer heads from stanley 16 oz hammers (51–616)

1 ؛

- Ferramentas de acionamento manual
- Alguns princípios importantes de projeto:
- Exemplo: instrumentos de servir comida, em geral são todos iguais, mas as aplicações são muito diferentes, desde formato até força aplicada (compare servir salada e sorvete, por exemplo)

Ferramentas acionadas

- Vantagens
 - Reduzem a força aplicada
 - Reduzem o número de movimentos repetitivos
- Desvantagens
 - Podem ser menos ergonômicas
 - Mais pesadas
 - Mais difíceis de trabalhar
 - Podem vibrar
 - Podem trazer menos segurança

• Considerações sobre ferramentas

 Levar em consideração quais grupos musculares serão acionados (alguns são mais fortes que os outros)

Considerar ferramentas adaptadas (deficientes, canhotos, etc.)

FESC - USP

Sumário

- Engenharia antropométrica
- Transtornos de traumas cumulativos
- Ferramentas manuais
- Manuseio de materiais
- Projeto do ambiente de trabalho
- Iluminação
- Ruído
- Vibração
- Conforto térmico e qualidade do ar
- Hipóxia
- Estresse

Leva em consideração o transporte e manuseio de cargas em diferentes movientos

- Elevar e abaixar
- Depende de 3 momentos principais:
 - Sagital: inclinação do corpo para frente/trás
 - Lateral: variação do ponto de apoio principal entre pé esquerdo e pé direito
 - Torsional: Movimento de torção dos quadris

Elevar e abaixar

Equação que limita a carga para movimento de elevação:

$$RWL = LC \times HM \times VM \times DM \times AM \times FM \times CM$$

- RWL (Revised Weight Limit) é a carga máxima a ser levantada. Em nenhuma hipótese deve ser ultrapassado o limite $3 \times RWL$
- LC é a carga máxima a ser levantada em condições ideais: 23 kg
- Todos os outros fatores são constantes abaixo de 1, que dependem da condição de elevação da carga, e diminuem a carga máxima permitida
- HM (multiplicador horizontal) depende da distância horizontal entre a pessoa e a carga
- VM (multiplicador vertical) depende da variação vertical do movimento que vai ser executado
- DM (multiplicador de distância) depende da distância que a carga vai ser carregada)

• Elevar e abaixar

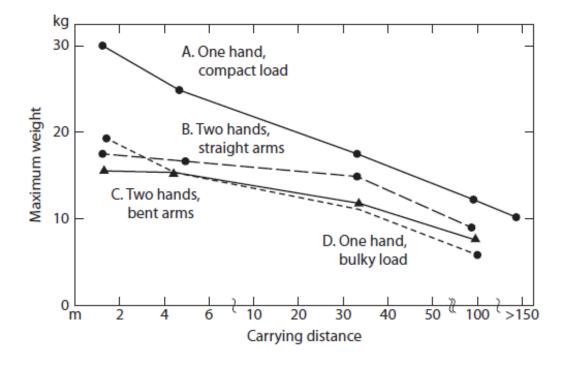
Equação que limita a carga para movimento de elevação:

$$RWL = LC \times HM \times VM \times DM \times AM \times FM \times CM$$

- AM (multiplicador de assimetria) depende do ângulo que a posição do objeto a ser levantado faz com o plano de simetria da pessoa
- FM (multiplicador de frequência) depende da frequência com que o movimento vai ser repetido num intervalo de 15 minutos
- CM (multiplicador de paridade) depende da facilidade com que o objeto pode ser levantado com as duas mãos

- Elevar e abaixar
- Por fim, o RWL pode ser usado para cálculo do índice de elevação (LI):

$$LI = \frac{L}{RWL}$$

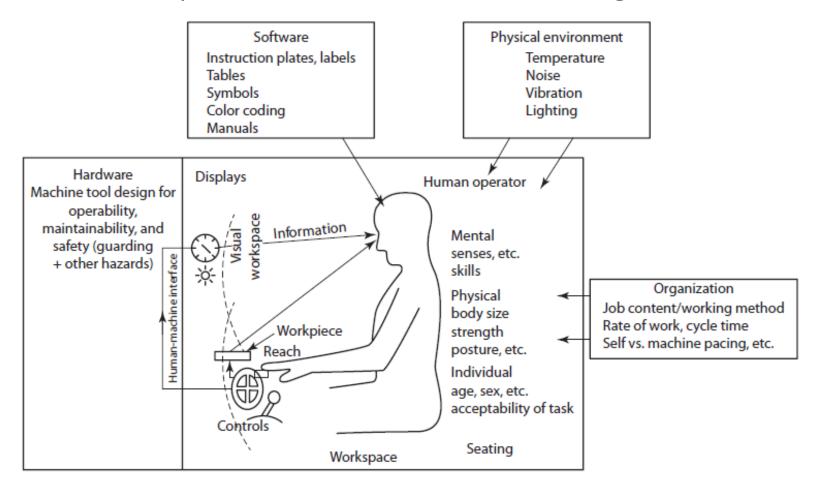

- Onde L é a carga a ser levantada
- LI é um índice entre 0 e 1. Quanto menor, mais baixo o risco de problemas físicos do operador

Carregar e puxar/empurrar

 Depende de vários fatores externos como se é com uma mão ou as duas, posição do corpo, etc. Seus limites são dados de forma gráfica

EESC · USP

Sumário


- Engenharia antropométrica
- Transtornos de traumas cumulativos
- Ferramentas manuais
- Manuseio de materiais
- Projeto do ambiente de trabalho
- Iluminação
- Ruído
- Vibração
- Conforto térmico e qualidade do ar
- Hipóxia
- Estresse

Projeto do ambiente de trabalho

O projeto do ambiente depende de vários fatores listados na figura

Projeto do ambiente de trabalho

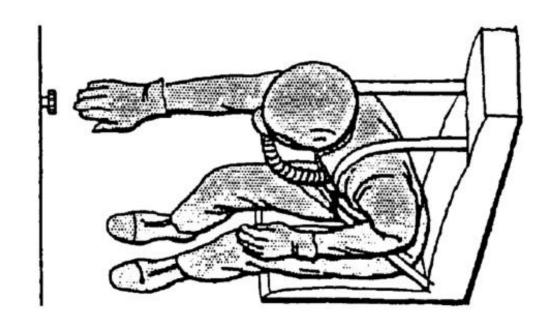
- Trabalho sentado/em pé
 - Depende de espaço disponível (vertical e horizontal)
 - Se o trabalhador deve se deslocar durante o trabalho
 - Precisão
 - Força aplicada

Assento

- Medidas ergonômicas para cada pessoa/tipo de trabalho
- Pequenas mudanças geral grandes diferenças
- Projetos ruins geralmente só causam danos a longo prazo, e por isso não são causa de reclamação

Projeto do ambiente de trabalho

Posição do display visual


Horizontal line of sight Head and eyes in tense position	0°	Horizontal line of sight
Horizontal line of sight related to the head Head relaxed, eyes in a tense position	10°-15° 0° -10°-15°	Horizontal line of sight related to the head
Normal line of sight Head and eyes in a relaxed position	15°-110° 0° -10°-15° 25°-35°	Normal line of sight

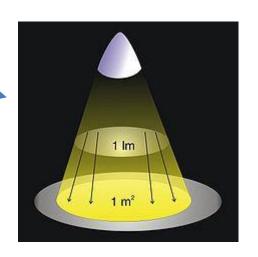
Projeto do ambiente de trabalho

- Posição dos controles e objetos
 - Projeto considerando posicionamento 2D e 3D
 - Em aviação, deve atender ao percentil 95%
 - Considerar o volume de trabalho e o alcance do operador

FESC - USP

Sumário

- Engenharia antropométrica
- Transtornos de traumas cumulativos
- Ferramentas manuais
- Manuseio de materiais
- Projeto do ambiente de trabalho
- Iluminação
- Ruído
- Vibração
- Conforto térmico e qualidade do ar
- Hipóxia
- Estresse


- Influencia diretamente fatores importantes, como:
 - Capacidade de uma pessoa de realizar uma tarefa
 - Velocidade e precisão na realização da tarefa
 - Conforto
 - Impressões subjetivas devido à qualidade da iluminação

- Medição da iluminação
- Conceito importante:
 - Iluminância: quantidade de luz que incide sobre uma superfície
 - Luminância: quantidade de luz gerada pela superfície (fonte ou reflexo)

- Instrumento para medição: fotômetro
 - Iluminância: mede a quantidade de luz na incidência. Depende da distância entre a fonte de luz e a superfície. Medida em lúmens/m² $[lm/m^2 \text{ ou lux}]$
 - Luminância: mede a quantidade de luz em diferentes comprimentos de onda. Medida em candelas/m2 $[cd/m^2]$

- Fontes de luz
- A precisão da percepção das cores (renderização das cores), depende da fonte de luz

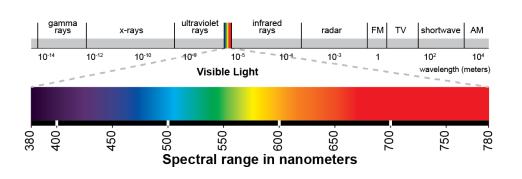
- Luz Natural
- Baixo custo
- Tem distribuição quase uniforme dos comprimentos de onda (mais concentrado na faixa do vermelho)
- Não é muito confiável, pois varia com as horas do dia e a época do ano

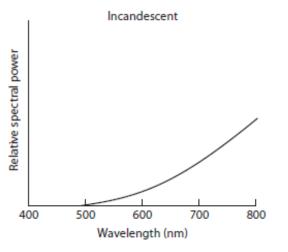
- Fontes de luz
- Luz Artificial
- Lâmpadas incandescentes:
 - Funcionam com filamento de tungstênio
 - Boa iluminação e boa distinção de cores
 - Baixíssimo rendimento energético

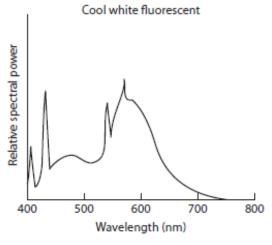
- Fontes de luz
- Luz Artificial
- Lâmpadas fluorescentes:
 - A lâmpada possui um gás inerte que, na presença de corrente elétrica, se ilumina
 - A lâmpada pisca na mesma frequência da corrente elétrica (60Hz)
 - Sua distribuição de comprimentos de onda é diferente da solar, dificultando a distinção de certas cores
 - Com o tempo, a capacidade de gerar luz diminui

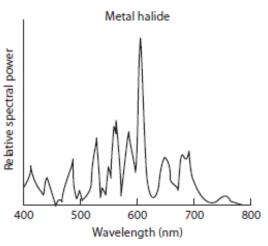
- Melhor aproveitamento energético que a incandescente
- Sua tecnologia tem melhorado com o tempo, com novos modelos

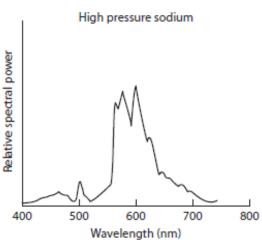
- Fontes de luz
- <u>Luz Artificial</u>
- Lâmpadas de metal halógeno:
 - Semelhante ao funcionamento da fluorescente, mas com outro tipo de gás
 - Usada em refletores

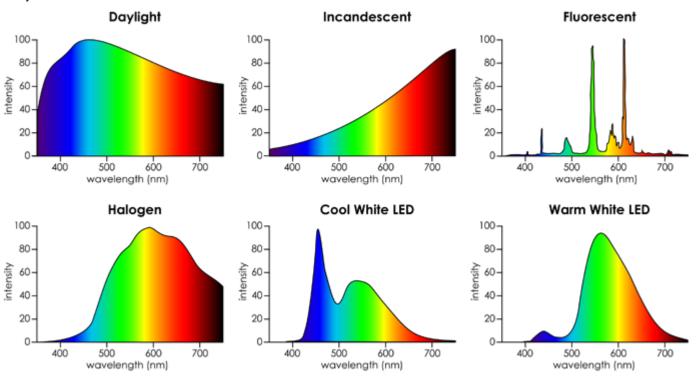

- Lâmpadas de vapor de sódio
 - Semelhante ao funcionamento da fluorescente, mas com outro tipo de gás
 - Ruim para distinção de cores
 - Usada em postes de luz





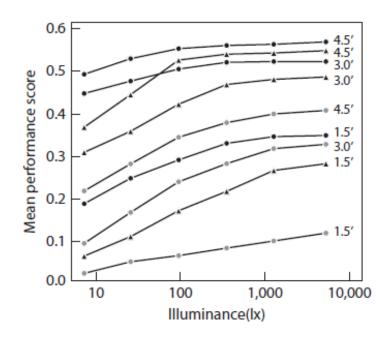



- Fontes de luz
- Luz Artificial
- Distribuição de comprimentos de onda



- Fontes de luz
- Luz Artificial
- Lâmpadas de estado sólido (bulbos de LED):
 - Bom rendimento, mas são caras e não possuem boa iluminação em certos comprimentos de onda

- Fontes de luz
- Luz Artificial
- Outro fator importante é se a fonte de luz é direta ou indireta
 - Iluminação direta tem melhor rendimento, mas causa brilho e pode gerar cansaço na vista
 - Iluminação indireta tem desempenho inferior, mas é suportável por mais tempo. É o tipo exigido em cockpits aeronáuticos



• Iluminação e desempenho

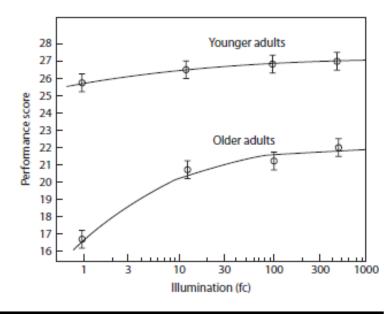
- A iluminação influencia em tarefas que dependem da visão, mas intensidade luminosa não é o único fator
- Contraste, brilho e tamanho dos objetos também impactam no desempenho da atividade

Definição de contraste:

Luminância do objeto Luminância do fundo $C = \frac{L_0 - L_b}{L_b}$

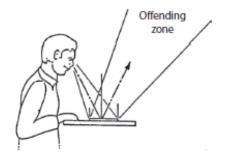
Medição de desempenho em diferentes iluminâncias, contraste e tamanho do objeto:

- Alto contraste
- ▲ Médio contraste
- Baixo contraste



- Iluminação e desempenho
- Vários experimentos com iluminação/produtividade foram realizados no meio industrial, mas não se chegou a conclusões relevantes, já que os fatores externos são muitos

conforto visual, ambiente visual, relações interpessoais, satisfação com o trabalho, efeitos biológicos


- Intensidade luminosa e contraste têm sua importância aumentada para pessoas de idade mais avançada
- Conforto visual é mais importante que intensidade luminosa em atividades de longa duração. Nesse caso, o uso de luz indireta é recomendado

- Brilho
- Consistem em fontes de luz ou reflexos dentro do campo visual

 Afeta negativamente o desempenho, exemplo são carros com faróis na direção contrária quando se dirige

 Brilho direto ou exagerado reduz o desempenho no cumprimento de uma tarefa (dirigir, por exemplo)

Brilho

Uma forma de se modelar o desconforto devido ao brilho é pelo equacionamento abaixo:

Para cada fonte de brilho:

$$M = \frac{L_s Q}{2PF^{0,44}}$$

 L_s É a luminância da fonte de brilho P É o índice que depende da posição da fonte de brilho a partir da linha de visão F É a luminância do campo completo, incluindo a fonte de brilho

$$Q = 20.4\omega_{\rm s} + 1.52\omega_{\rm s}^{0.2} - 0.075$$

 $\omega_{\scriptscriptstyle S}$ É o ângulo visual da fonte de brilho

O desconforto total:

$$DGR = \left[\sum_{i=1}^{n} (M_i)\right]^a$$

n É o número de fontes de brilho

$$a = n^{-0.0914}$$

FESC - USP

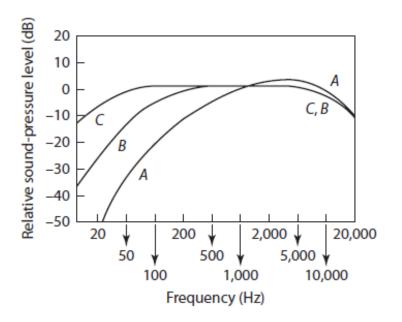
Sumário

- Engenharia antropométrica
- Transtornos de traumas cumulativos
- Ferramentas manuais
- Manuseio de materiais
- Projeto do ambiente de trabalho
- Iluminação
- Ruído
- Vibração
- Conforto térmico e qualidade do ar
- Hipóxia
- Estresse

• Som de fundo, indesejável e irrelevante para a tarefa

• Se dividem em diferentes frequências, cada uma com uma intensidade diferente

As pessoas escutam melhor em algumas frequências do que outras


Medição de ruído

Medidor de ruído mede a amplitude total

Para dividir minimamente, existem 3 diferentes calibrações

 O medidor de ruído fornece a intensidade média do tempo de exposição

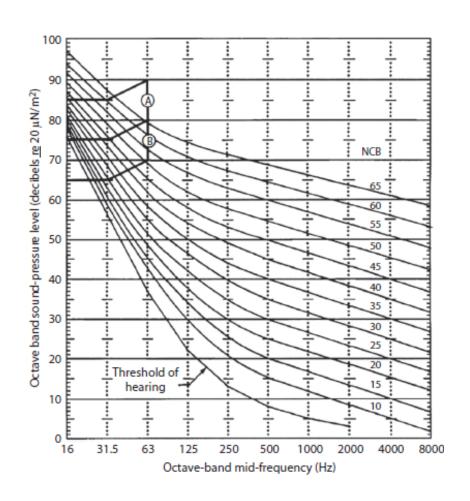
- Nível de ruído e desempenho
- Pessoas expostas a ambientes com muito ruído podem ter seu desempenho afetado de várias maneiras:
 - Perda auditiva
 - Mascaramento de fala
 - Pessoa obrigada a falar mais alto
 - Respostas emocionais (alguns ruídos podem causar respostas prejudiciais, como susto ou arrepios)

 Susto: pessoas expostas a ruídos de estrondo tendem a sofrer menos sustos com o tempo e mais aborrecimento

- Nível de ruído e desempenho
- Nem todas as respostas emocionais são ruins para o desempenho: algumas podem aumentar o estado de vigilância

O nível de aceitação de ruído pode variar com o tipo de tarefa a ser executado

 Para isso foi criado um critério de aceitação baseado em vários fatores importantes como frequência média do som, intensidade sonora e tempo de exposição



Nível de ruído e desempenho

Recommended NCB Curves and Sound-Pressure Levels for Several Categories of Activity

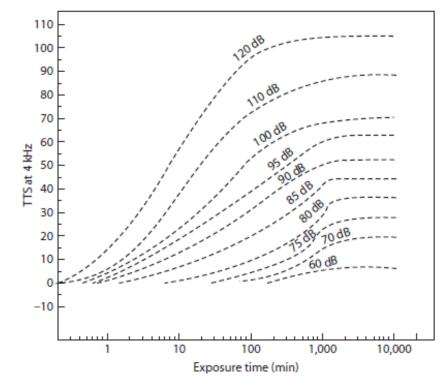
Acoustical Requirements	NCB Curve ^a	Approximateb LA (dBA)	
Listening to faint music or distant microphone pickup used	10-20	21-30	
Excellent listening conditions	Not to exceed 20	Not to exceed 30	
Close microphone pickup only	Not to exceed 25	Not to exceed 34	
Good listening conditions	Not to exceed 35	Not to exceed 42	
Sleeping, resting, and relaxing	25-40	34-47	
Conversing or listening to radio and TV	30-40	38-47	
Moderately good listening conditions	35-45	42-52	
Fair listening conditions	40-50	47-56	
Moderately fair listening conditions	45-55	52-61	
Just acceptable speech and telephone communication	50-60	56-66	
Speech not required but no risk of hearing damage	60-75	66-80	

a NCB curves are used in many installations for establishing noise spectra.

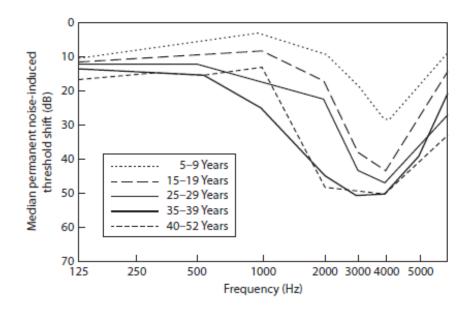


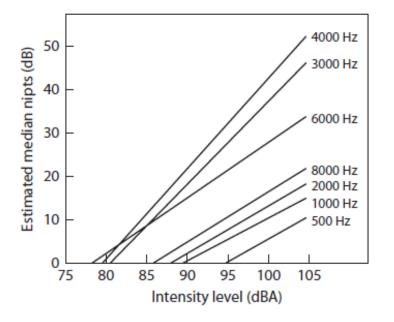
b These levels (LA) are to be used only for approximate estimates, since the overall sound-pressure level does not give an indication of the spectrum.

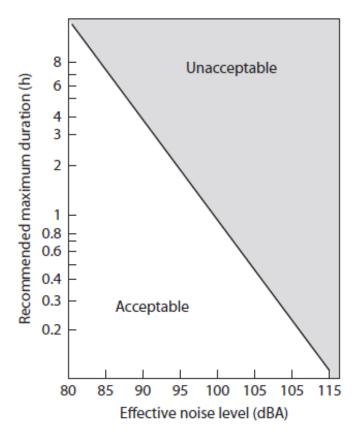
- Nível de ruído e desempenho
- A norma NR-15 fornece o tempo máximo de exposição diário a diferentes níveis de ruído, sem que haja dano ao sistema

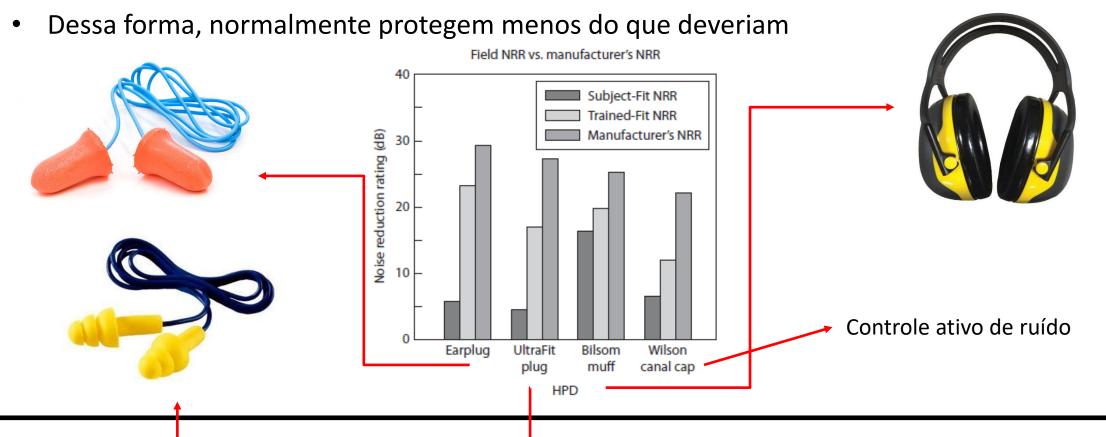


NIVEL DE RUÍDO DB (A)	MÁXIMA EXPOSIÇÃO DIÁRIA PERMISSÍVEL	
85	8 horas	
86	7 horas	
87	6 horas	
88	5 horas	
89	4 horas e 30 minutos	
90	4 horas	
91	3 horas e 30 minutos	
92	3 horas	
93	2 horas e 40 minutos	
94	2 horas e 15 minutos	
95	2 horas	
96	1 hora e 45 minutos	
98	1 hora e 15 minutos	
100	1 hora	
102	45 minutos	
104	35 minutos	
105	30 minutos	
106	25 minutos	
108	20 minutos	
110	15 minutos	
112	10 minutos	
114	8 minutos	
115	7 minutos	


- Perda auditiva
- Atividades de grande intensidade sonora e por pouco tempo podem levar à perda auditiva temporária


- Perda auditiva
- Exposição a ruído por muito tempo pode levar a perda permanente
- Exemplo: trabalhadores expostos a ruídos por vários anos, e tiveram perda principalmente em torno de 4000 Hz


- Perda auditiva
- Exposição a ruído por muito tempo pode levar a perda permanente
- Exemplo: efeitos de exposição a 10 anos de trabalho com ruídos a diferentes frequências e diferentes intensidades


- Perda auditiva
- Exposição a ruído por muito tempo pode levar a perda permanente
- Exemplo: Máxima exposição aceitável por tempo seguido

- Redução de ruído
- Protetores auriculares são eficientes, mas difíceis de serem manuseados, e normalmente os usuários não recebem treinamento adequado

- Redução de ruído
- Protetores auriculares normalmente são mais eficientes para ruídos a partir de 2000 Hz

 Protetores com redução ativa são eficientes, porém caros. Eles detectam o ruído médio ambiente e geram um ruído semelhante, com diferença de fase de 180 graus, cancelando o ruído

São portanto muito eficientes para ruídos constantes

FESC - USP

Sumário

- Engenharia antropométrica
- Transtornos de traumas cumulativos
- Ferramentas manuais
- Manuseio de materiais
- Projeto do ambiente de trabalho
- Iluminação
- Ruído
- Vibração
- Conforto térmico e qualidade do ar
- Hipóxia
- Estresse

• Movimentos oscilatórios transmitidos estruturalmente

Sua intensidade normalmente é medida por RMS (Root Mean Square)

$$RMS = \sqrt{\frac{1}{T} \int_0^T x^2(t) dt}$$

x É o deslocamento em uma direção específica

São medidos por acelerômetros

Devem ser medidos nos diferentes sentidos

- Vibração de corpo inteiro
- Quando o ambiente completo vibra

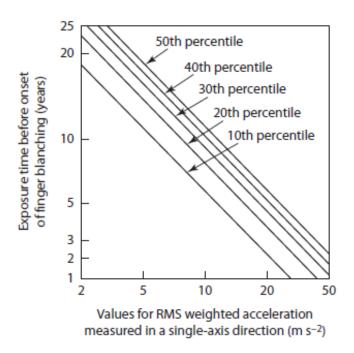
• A vibração é passada pelo assoalho, assento, encosto de costas, etc.

O desconforto depende do RMS, da frequência, do tempo de exposição

 Frequências mais próximas às frequências naturais do corpo humano são mais prejudiciais (uma dessas frequências é 5 Hz)

- Vibração segmentar
- Vibração de apenas parte do corpo

As mais comuns são: mão/braço, cabeça/ombro, cabeça/olho


 A mão é um bom amortecedor, e isola grande parte da vibração, evitando que chegue ao braço ou restante do corpo

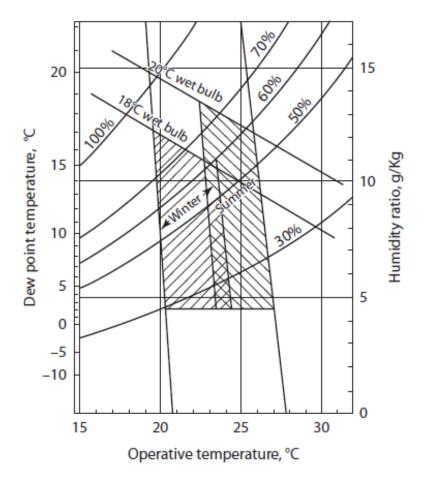
 Vibração segmentar pode levar a perda de sensibilidade e/ou percepção errada de movimentos

- Vibração segmentar
- Exemplo de medição dos efeitos de vibração mão/braço

FESC - USP

Sumário

- Engenharia antropométrica
- Transtornos de traumas cumulativos
- Ferramentas manuais
- Manuseio de materiais
- Projeto do ambiente de trabalho
- Iluminação
- Ruído
- Vibração
- Conforto térmico e qualidade do ar
- Hipóxia
- Estresse


Conforto térmico e qualidade do ar

• Em conforto térmico existe a chamada zona de conforto

• Esta região pode variar com as roupas usadas, tipo de atividade executada, etc.

 Trabalho em temperaturas fora da zona de conforto podem afetar o desempenho

Conforto térmico e qualidade do ar

- A qualidade do ar se preocupa com a presença de:
 - Sólidos particulados (poeira, pólen, mofo, gases, fumaça)
 - Partículas líquidas (névoa ou neblina)
 - Gases não-particulados

• Qualidade do ar ruim pode afetar o desempenho no cumprimento de uma tarefa (tapetes velhos/sujos, mofo, ar condicionado não higienizado, etc.)

FESC - USP

Sumário

- Engenharia antropométrica
- Transtornos de traumas cumulativos
- Ferramentas manuais
- Manuseio de materiais
- Projeto do ambiente de trabalho
- Iluminação
- Ruído
- Vibração
- Conforto térmico e qualidade do ar
- Hipóxia
- Estresse

Hipóxia

• Baixa concentração de oxigênio nos tecidos humanos

Pode ser causada por despressurização de cabine aeronáutica

 Causa efeitos diversos no agente (é importante que um aeronauta reconheça os efeitos em si próprio)

A hipóxia não detectada pode levar a desmaio (Voo Helios Airways 522, 2005)

Será estudado em aula específica sobre fisiologia aeronáutica

FESC - USP

Sumário

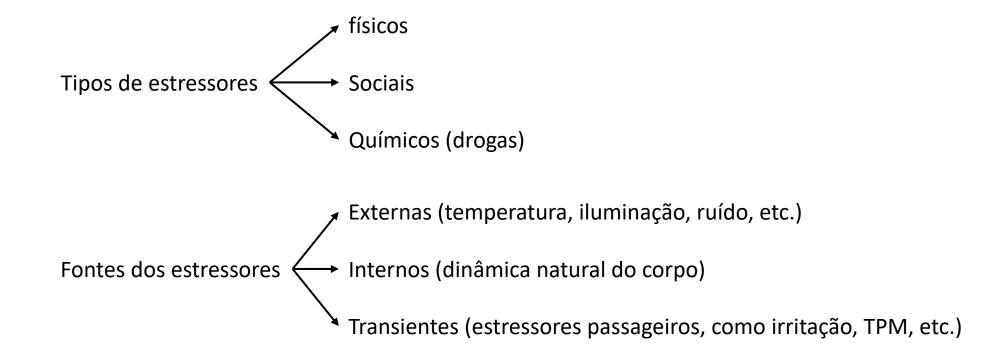
- Engenharia antropométrica
- Transtornos de traumas cumulativos
- Ferramentas manuais
- Manuseio de materiais
- Projeto do ambiente de trabalho
- Iluminação
- Ruído
- Vibração
- Conforto térmico e qualidade do ar
- Hipóxia
- Estresse

• Resposta física e psicológica a condições desagradáveis ou incomuns

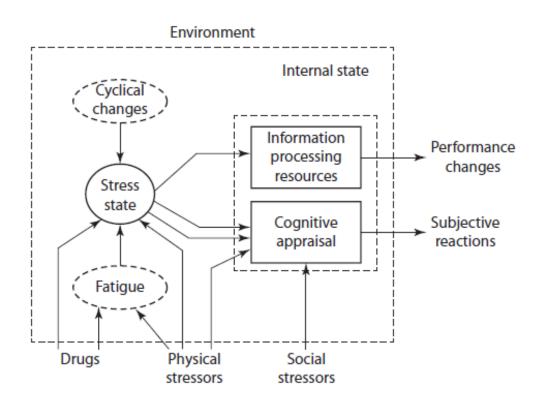
• O estresse é a demanda à adaptação a novas (e indesejadas) condições

• Etapas:

- Resposta imediata às mudanças
- Alta carga de adrenalina


 O corpo age para se adaptar à presença do estressor

 Os recursos se esgotam e levam à perda do controle emocional


- Estresse extremo pode levar à hipervigilância
 - Afeta a capacidade de se tomar decisões conscientes/coerentes

Modelo de efeitos de estresse:

• Classificação dos estressores:

Classe do estressor	Exemplo	Efeito	Variável de interação
Físico	Calor/frio, ruído/vibração, condições de iluminação, condições atmosféricas	Efeito direto no sistema nervoso central, mudanças nos receptores sensoriais	Mudanças de comportamento, tarefa, possibilidade de controle, outro estressores
Social	Ansiedade, incentivos	Mediação cognitiva	Mudanças de comportamento, tipo de tarefa, presença de outros estressores
Drogas	Médicos (tranquilizantes, sociais (cafeína, nicotina, álcool)	Efeito direto no sistema nervoso central	Mudanças de comportamento, tarefa, outros estressores
Fadiga	Tédio, fadiga, privação de sono	Efeitos fisiológicos e mediação cognitiva	Mudanças de comportamento, tipo de tarefa, hora do dia, outros estressores
Cíclico	ciclos de sono, ritmo de temperatura corporal, outros ritmos fisiológicos; geralmente estudadas as perturbações dos ritmos por turnos de trabalho ou voos longos	Alguns são dependentes de mudanças ambientais, outros de fatores internos	Mudanças de comportamento, tarefa, forma de ruptura