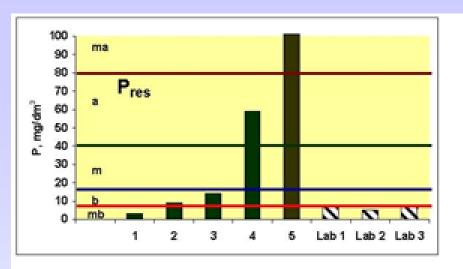
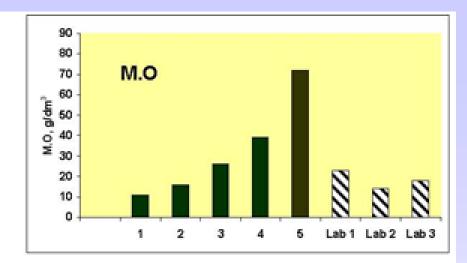
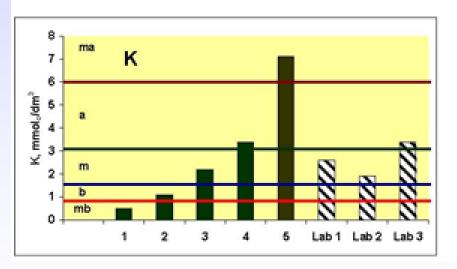
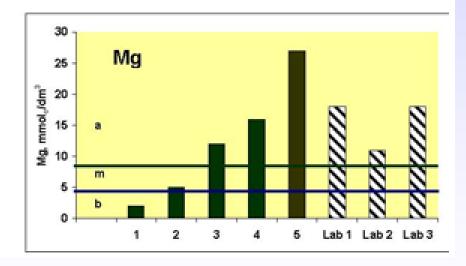
CEN 05715 – Avaliação do Estado Nutricional e da Fertilidade do Solo

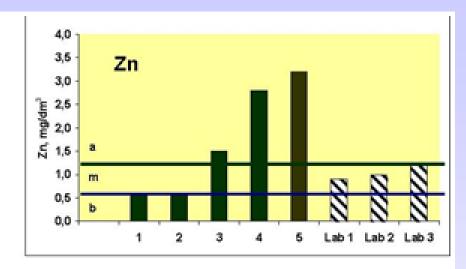


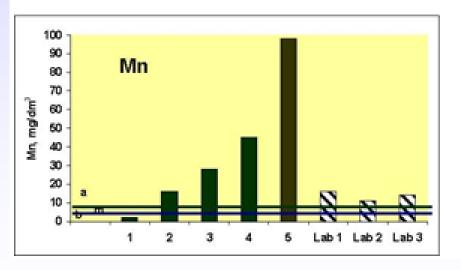


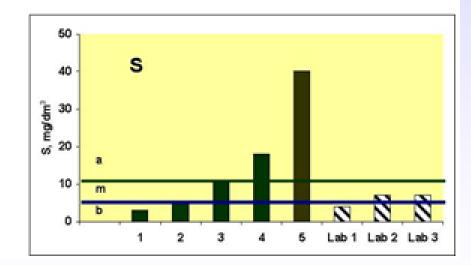

LABORATÓRIOS QUALIFICADOS


Diferenças aceitáveis ou erros de laboratórios?

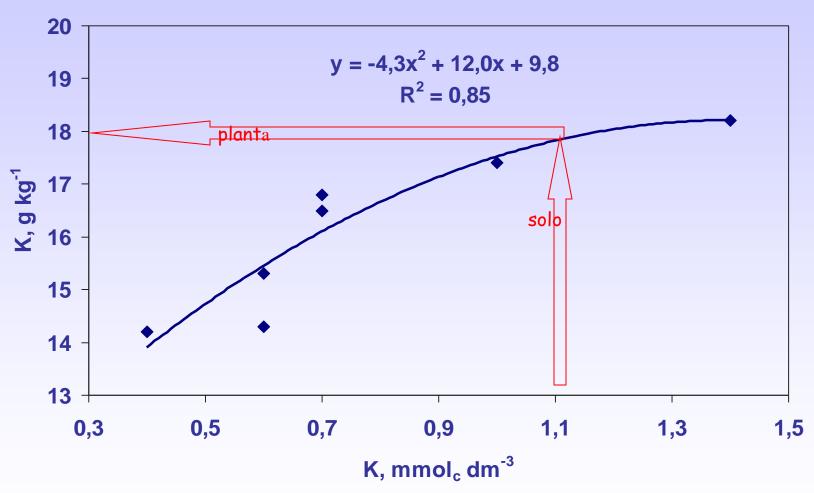
Determinação	Lab 1	Lab 2	Variação	Lab 3	Variação
			%		%
MO (g/dm ³)	23	14	-39	18	-22
pH	5,8	5,7	-2	5,7	-2
P (mg/dm ³)	7	5	-28	8	+14
K (mmol _c /dm ³)	2,6	1,9	-27	3,4	+31
Ca (mmol _c /dm ³)	31	28	-10	34	+10
Mg (mmol _c /dm ³)	18	11	-39	18	12
S (mg/dm ³)	4	7	+75	7	+75
B (mg/dm ³)	0,21	0,32	+52	0,27	+29
Cu (mg/dm ³)	1,3	1,2	-8	1,5	+15
Fé (mg/dm³)	24	28	+17	20	-17
Mn (mg/dm ³)	16,3	11,0	-33	13,9	-15
Zn (mg/dm ³)	0,9	1.0	+11	1,2	+33





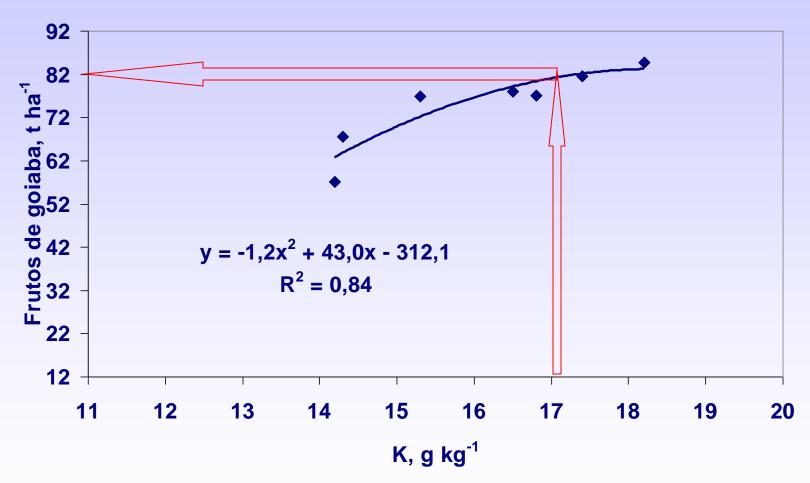

Comparação de resultados de análise de solo Uma mesma amostra feita por três laboratórios (barras listradas). As barras escuras mostram resultados de cinco amostras diferentes

CEN 5715

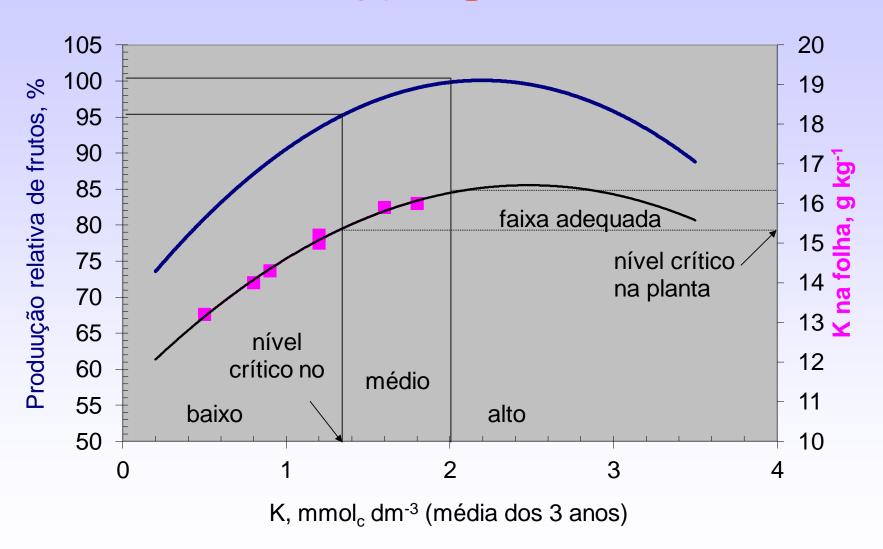


INTERPRETAÇÃO DOS RESULTADOS DA ANÁLISE QUÍMICA DE TERRA

- Análise
- Resultado ← → Calibração


PRINCÍPIO

GOIABEIRA


NATALE, 1993

GOIABEIRA

NATALE, 1993

GOIABEIRA

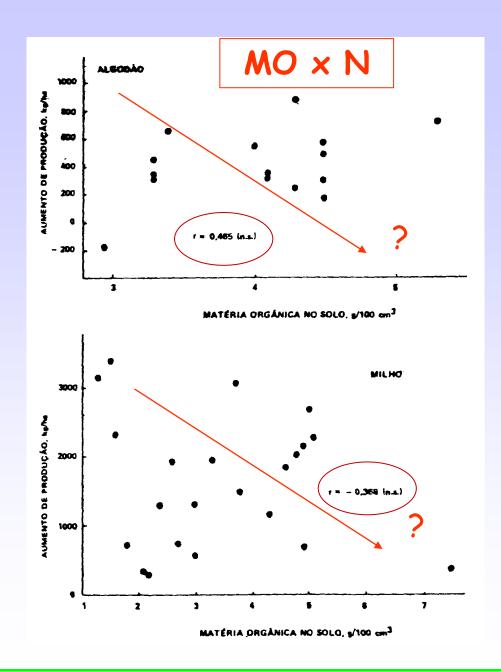
MATÉRIA ORGÂNICA

<u>humus</u> - 85% <u>não humificada</u> - 15%

- M.O x Atributos dos solos
 - M.O. x CTC
 - M.O x N

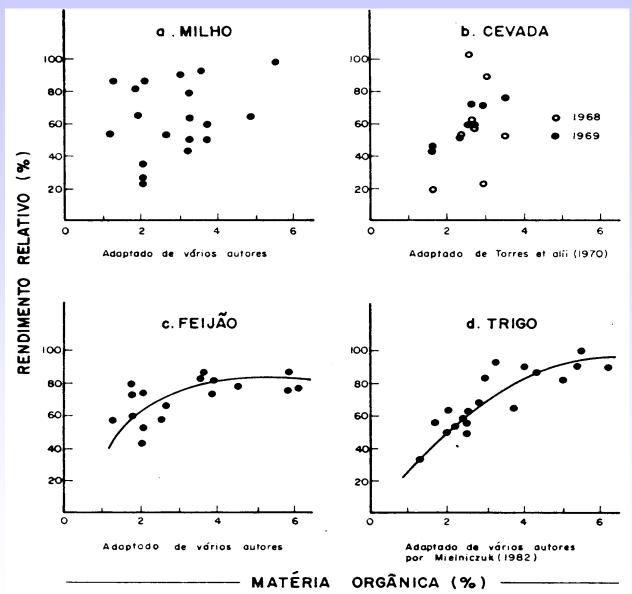
MO x atributos do solo

Características	Coeficiente de correlação (r)		
	B Textural	B Latossólico	
Da (g cm ³)	-0,73**	-0,82**	
N (%)	0,96**	0,96**	
areia total (%)	-0,58**	-	
limo (%)	0,59**	-	
argila (%)	0,55**	-	
umidade equivalente (%)	0,75**	-	
$H^++Al^{3+} (meq/100 g)$	-	0,,86**	
Ca^{2+} (meq /100 g)	0,74**	-	
Mg^{2+} (meq /100 g)	0,77**	-	
S (meq /100 g de terra)	0,78**	-	
CTC (meq /100 g)	0,88**	0,84**	


Substâncias húmicas RCOOH + OH \rightarrow RCOO + H₂O ROH + OH \rightarrow RO + H₂O

CTC (M.O.) = $1000 - 2000 \text{ mmol}_c \text{ dm}^{-3}$

 $10 \text{ g kg} -----> 15 \text{ mmol}_c \text{ dm}^{-3}$


30-60% da CTC

SP: MO Não é parâmetro para recomendação

solos arenosos: < 15 g dm⁻³ textura média: 16 a 30 g dm⁻³ solos argilosos: 31 a 60 q dm⁻³

ROLAS: RS - SC

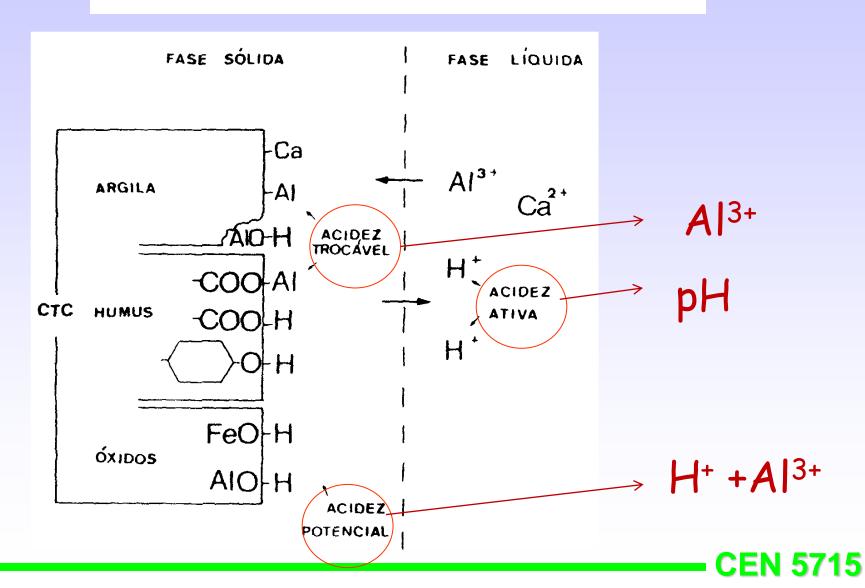
Arroz Aveia Canola Centeio Cevada Feijão Girassol Linho Milho Nabo Painço Sorgo Trigo Triticale Forrageiras Hortaliças Banaeira Citros Videira

CERRADO

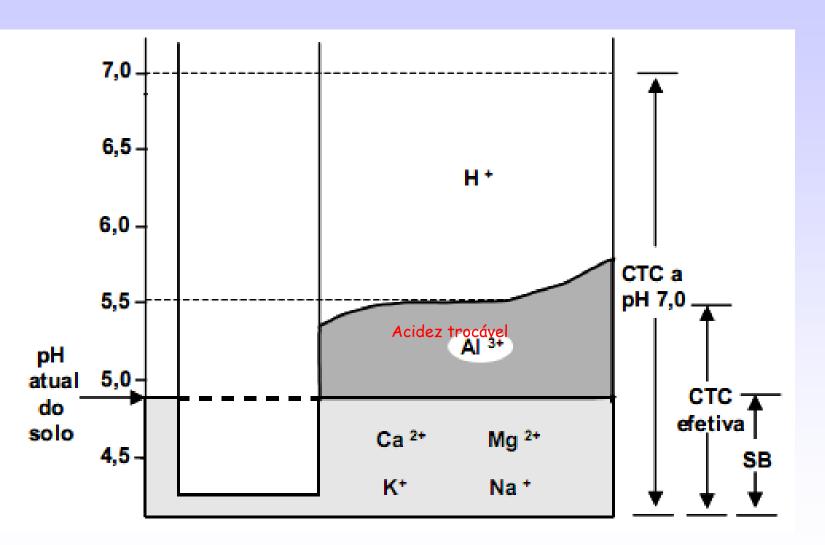
$$N_f = (N_y - N_s) / E_f$$

Qde

requerida


Qde exigida

Qde de N suprida (solo, MO)


Interpretação teor de MO do solo

Estados	Unidade	muito	baixo	médio	Bom ^a	alto
		baixo				(m. bom ^a)
PR ⁽¹⁾	g kg ⁻¹		< 14	14-24		>24
MG ⁽²⁾	dag kg ⁻¹	< 0,71	0,71–2,0	2,01-4,0	4,01-4,0	>7,00
RS e	% (m/v)		< 2,6	2,6-5,0		>5,0
$SC^{(3)}$						

ACIDEZ DO SOLO

Sistema coloidal do solo

pH - Acidez Ativa

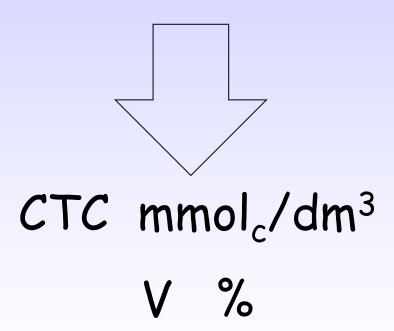
pH (água) =
$$6.0 - 6.5$$

pH(CaCl2) = $5.3 - 5.8$

 $pH_{CaCl2} = 4.0 \rightarrow 0.001$ ions grama/L

Al3+ - Acidez Trocável

Extrator: KCl


SP: mmol_c dm⁻³

$$pH_{CaCl2} = 4.78 - 0.0128 X$$

MG
$$MG = \frac{Al^{3+}}{m\% = 100}$$
 $SB + Al^{3+}$

mx 10% = algodão, etc.
 mx 15% = milho, etc
 mx 20% = soja, etc.
 mx 30% = cana-de-açúcar, etc

H + +Al3+ - Acidez Potencial

H + +Al3+ - Acidez Potencial

MG

Acidez potencial	cmol _c /dm ³
≤ 1,00	Muito baixo
1,01 - 2,50	Baixo
2,51 - 5,00	Médio
5,01 - 9,00	Alta
> 9,00	Muito alta

Ca - Mg - K trocáveis

SP: resina

Outros Estados: Ca, Mg (KCl)

K (Mehlich1)

Extratores: Valores correspondem

Ca trocável

- MINERAIS PRINCIPAIS

Anortita, Hornblenda, Augita, Biotita, Epidoto, Borossilicatos.

$$CaAl_2Si_2O_8+2H_2CO_3+H_2O \longrightarrow H_4Al_2Si_2O_8+Ca(HCO_3)_2$$

 $CaCO_3$ $CaCO_3$ $MgCO_3$ $CaSO_4$ $2H_2O$

- CÁLCIO TROCÁVEL (resina, KCI)
- CÁLCIO SOLÚVEL: Ca²⁺ 136 mg/L

Mg trocável

- MINERAIS PRINCIPAIS

Hornblenda, Augita, Olivina, Talco, Serpentina, Clorita, Biotita, Dolomita, MgSO4

- MAGNÉSIO TROCÁVEL (resina, KCI)
- MAGNÉSIO SOLÚVEL: Mg2+ 46 mg/L

K trocável

-MINERAIS PRINCIPAIS

ortoclasio: KAlSi₃O₈

microclina: KAlSi₃O₈

90-98%

muscovita: KAl₂(OH)₂AlSi₃O₁₀

biotita: K(Mg,Fe)3(OH)2AlSi3O10.

- POTÁSIO TROCÁVEL (resina, Mehlich)
- POTÁSSIO SOLÚVEL: K+ 27 mg/L

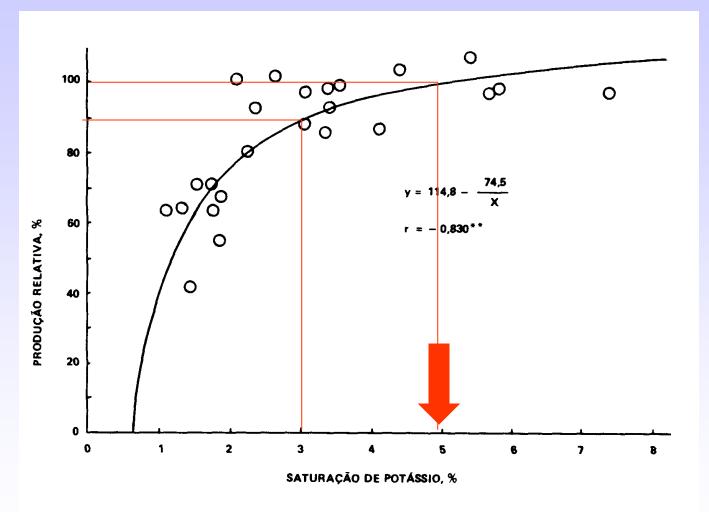
1 - 2%

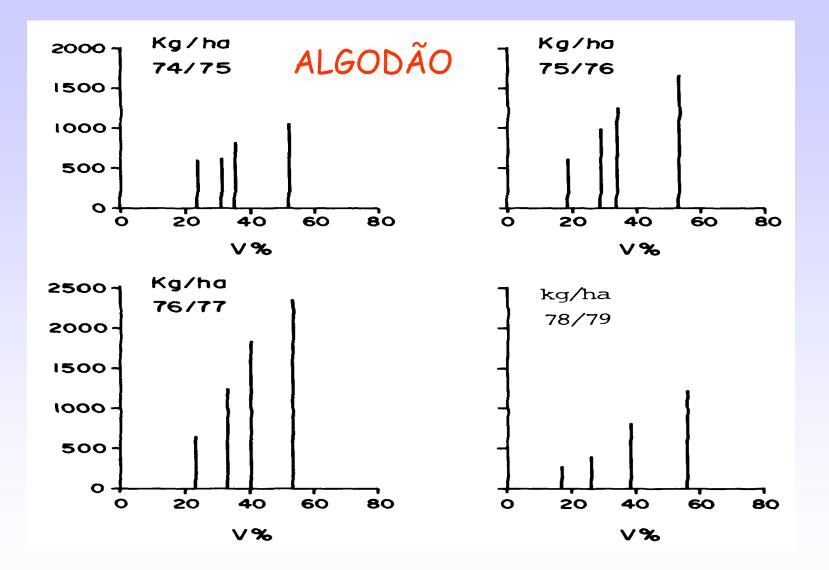
Interpretação —

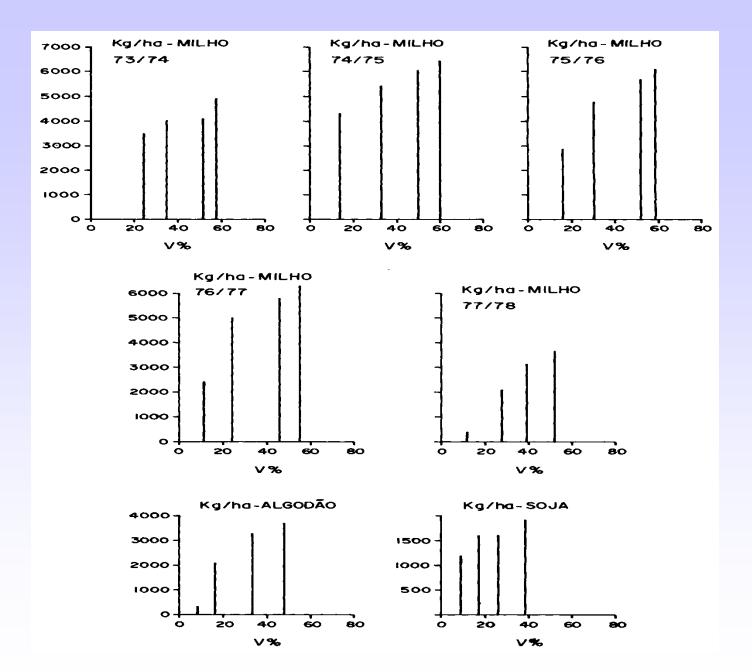
(Padrão!!!)

Ca-Mg-K trocáveis

1 - Proporção de base na saturação do cc


2 - Nível de suficiência


1 - Proporção de bases na saturação do complexo coloidal


65-85% Ca - 6 a 12% Mg - 2 a 5% K 20% H++Al3+

$$% M = (M / CTC) 100$$

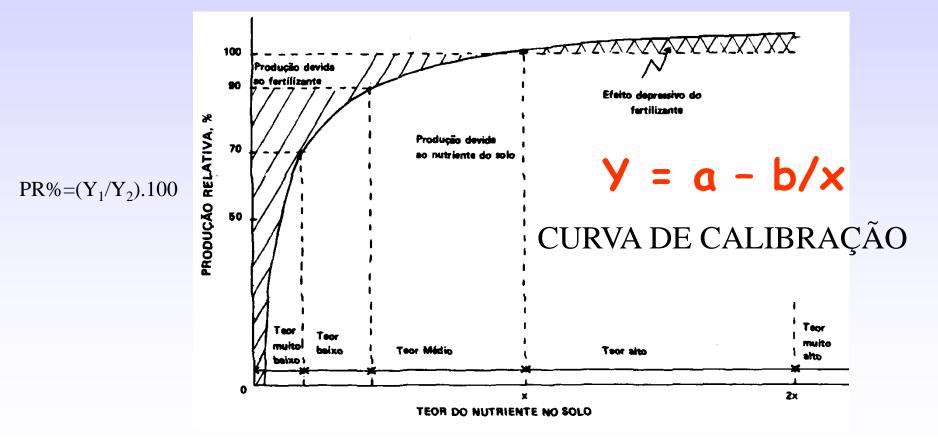
ALGODÃO (Freitas et al., 1966)

Culturas		
A. CEREAIS	V%	Obs
Arroz de sequeiro e arroz irrigado	50	1, 2
Aveia branca, cevada	70	1, 3
Aveia preta e centeio	50	1, 3
Milho, sorgo	70	1, 4
Trigo (IAC-24, IAC-120) ,Triticale	60	1, 3
Trigo (não tolerante a acidez)	70	1, 3

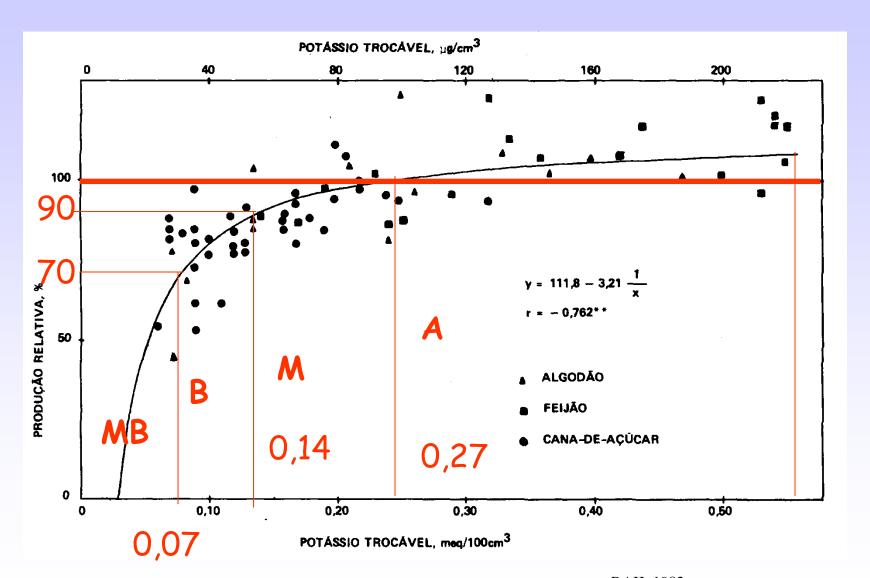
- 1 Mg mínimo de 5 mmol_c/dm³
- 2 dose máxima de calcário = 3 t/ha
- 3 dose máxima de calcário = 4 t/ha
- 4 Se MO > 50 g/dm3, então V% = 50%

D. FIBROSAS	V%	obs
Algodão	70	6
Bambu	50	
Crotalaria juncea, linho textil, quenafe	70	
Juta, rami	60	
Sisal	80	6

 $6 - Mg \text{ mínimo de } 9 \text{ mmol}_c/\text{dm}^3$

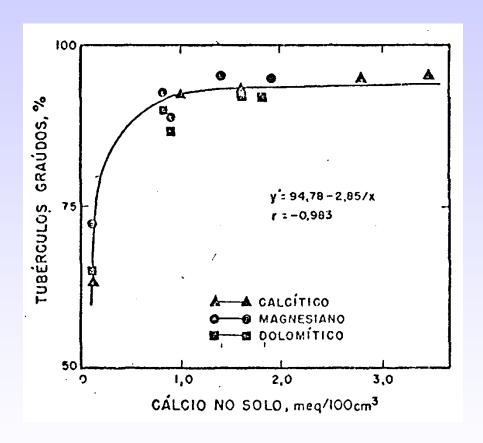

E. FRUTIFERAS		
Abacate	60	6
Abacaxi	50	1, 7
Acerola	70	6
Banana	60	6,7
Citros (laranja, limão, tangerina e murcote), frutas de clima temperado, goiaba	70	6
Mamão, maracujá	80	6
Manga, uvas finas e rústicas	80	

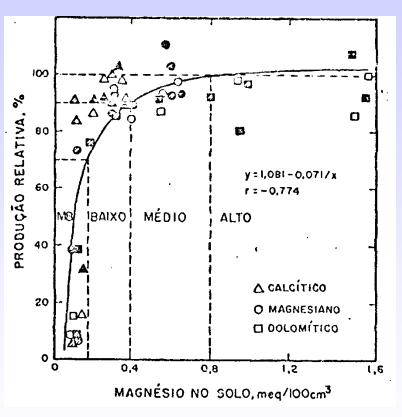
CERRADO

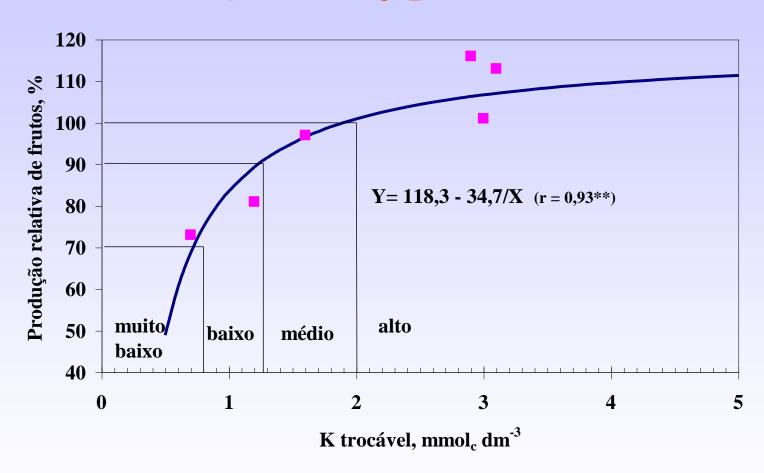

V% = 30% → pastagens estabelecidas

2 - NIVEL DE SUFICIÊNCIA

Valor da análise de P, Ca, Mg e K x possibilidade de resposta das culturas à adubação




NÍVEIS DE SUFICIÊNCIA: K (mmol_c/dm³)


Ca

Mg

LARANJEIRA

NIVEL DE SUFICIÊNCIA X NECESSIDADE DE ADUBAÇÃO:

Aumento de produtividade

Nível de suficiência no solo	Exigência da cultura para determinada produtividade		
Muito alto			
Alto	Nutrientes disponível no solo		
Médio			
Baixo	Nutrientes requeridos na adubação		
Muito baixo			

São Paulo

Teor	Ca ²⁺ trocável	Mg²+ trocável	
	mmol _c dm ⁻³		
baixo	0-3	0-4	
médio	4-7	5-8	
alto	>7	>8	

Teor	K trocável	Produção relativa
	mmol _c dm ⁻³	%
muito baixo	0-0,7	0-70
baixo	0,8-1,5	71-90
médio	1,6-3,0	91-100
alto	3,1-6,0	>100
muito alto	>6,0	>100

Interpretação dos resultados de análise de solo

Teor	B Água quente	Cu	Fe	Mn	Zn
			mg/dm ³		
Baixo	0 - 0,20	0 - 0,2	0 - 4	0 - 1,2	0 - 0,5
Médio	0,21 - 0,60	0,3 - 0,8	5 - 12	1,3 - 5,0	0,6 - 1,2
Alto	> 0,60	> 0,8	> 12	> 5,0	> 1,2

Table 1 - Interpretation limits of micronutrients in soils.

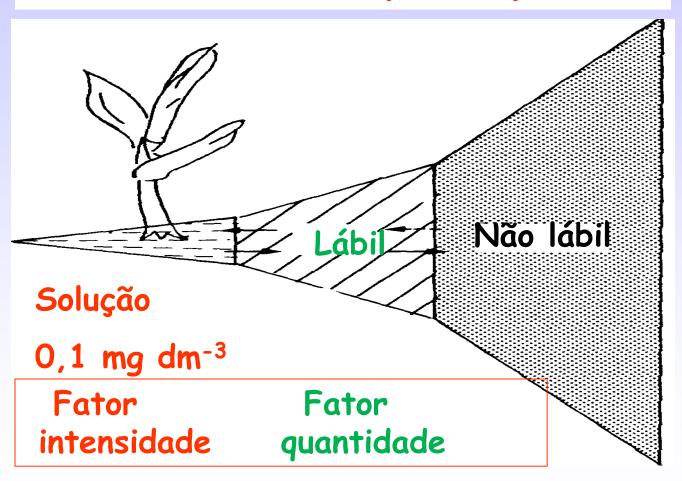
Soil content	Hot water		DTPA pH 7.3			
	В	Cu	Fe	Mn	Zn	
			mg dm³			
Low^1	0.00-0.20	0.0-0.2	0-4	0.0-1.2	0.0-0.5	
Medium ¹	0.21-0.60	0.3-0.8	5-12	1.3-5.0	0.6-1.2	
High ¹	0.61-1.10	0.9-1.5	13-24	5.1-9	1.3-2.3	
Very high ²	1.2-3.0	1.6-15	25-60	10-50	2.4-15	
Toxicity ³	> 3.0				>130	

¹Raij et al. (1996). ²Suggestion of the authors of this paper. ³Alloway (1995).

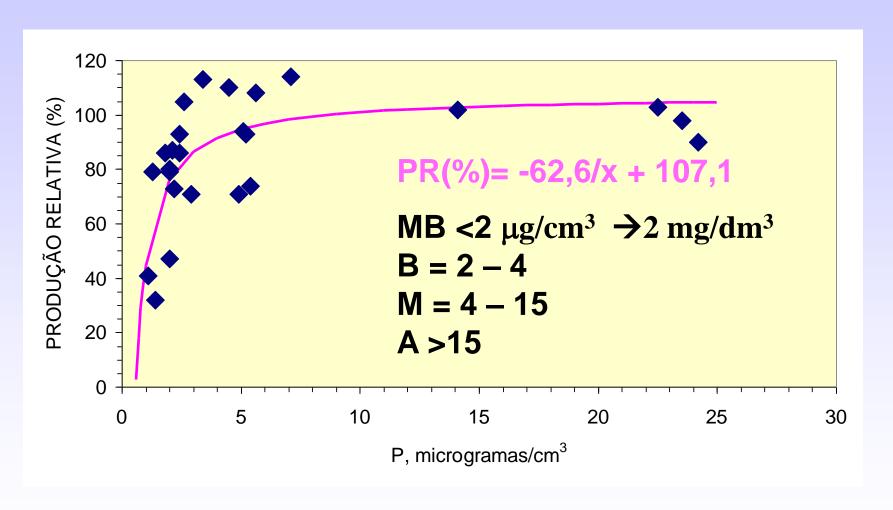
Apêndice 7: Referência Rápida para Interpretação de Análises de Solo

D 4		Interpretação
Determinação	Valores adequados	Observações
pH em H ₂ O ou CaCl ₂	Entre 5,5 e 7,0	O excesso de acidez (baixo pH) será corrigido através da calagem.
pH SMP ou Índice SMP	Não classificável. Utilizado internamente pelo laboratório para o cálculo da acidez potencial (H+Al). Nos Estados do RS e SC é utilizado como indicador da necessidade de calagem (ver observações).	Nos Estados do RS e SC a dose de calcário é obtida consultando-se tabela cuja entrada é o índice SMP. Valores próximos de 7,0 geralmente indicam que não há necessidade de calagem.
Matéria Orgânica	Maiores que 15g/dm³	Valores menores ocorrem em solos arenosos, solos erodidos ou em camadas mais profundas. Teores expressos na unidade % são dez vezes menores que em g/dm³. Teores expressos em carbono orgânico (qualquer unidade) devem ser multiplicados por 1,72 para transformar em matéria orgânica
Fósforo Disponível (Mehlich)	Dependem do tipo de solo e da cultura (consultar bibliografia específica). Em geral para solos argilosos deve estar acima de 6mg P/dm³ e para solos arenosos acima de 20mg P/dm³	Se os teores estiverem expressos nas unidades antigas, como µg P/mL ou ppm P, correspondem numericamente à unidade mg P/dm³, não sendo necessárias transformações.
Fósforo Disponível (Resina)	Dependem da cultura (consultar bibliografia específica). Em geral deve estar acima de 10mg P/dm³ para florestais, acima de 30mg P/dm³ para perenes, acima de 40mg P/dm³ para anuais e acima de 60mg P/dm³ para hortaliças.	
Potássio Trocável	Dependem da cultura (consultar bibliografia específica). Em geral deve estar acima de 0,30 cmol _e /dm³ ou 120mg/dm³ ou 3,0 mmol _e /dm³	Para solos arenosos e de CTC mais baixa os teores adequados podem ser mais baixos (em alguns casos, como cerrados, podem ser metade desse valor citado).
Cálcio Trocável	Acima de 4,0 cmol _c /dm³ ou 40,0 mmol _c /dm³	Se necessário será corrigido através da calagem.
Magnésio Trocável	Acima de 0,80 cmol _c /dm³ ou 8,0 mmol _c /dm³	Se necessário será corrigido através da calagem.
Alumínio Trocável	0,0 (zero) cmol _c /dm ³ ou mmol _c /dm ³	Se ocorrer Alumínio, ao se realizar a calagem os teores caem para zero. Em alguns Estados, como MG, GO, MT MS a dose de calcário é calculada a partir do valor de Al trocável.
Acidez Potencial (H+AI) e Soma de Bases (SB)	Não classificáveis	São usadas para cálculo da CTC e necessidade de calagem.
C.T.C. a pH 7,0	Não classificável	Também usada para cálculo de calagem. Valores muito baixos (menores que 5 cmol _e /dm³ ou 50 mmol _e /dm³) ocorrem em solos arenosos e alguns solos argilosos dos cerrados.
Saturação por Bases (V%)	Para a maioria das culturas deve estar entre 60 e 70%. Para algumas culturas em solos sob cerrado basta que esteja em torno de 50%.	Usado no cálculo em um dos métodos de recomendação de calcário.
Saturação por Alumínio (m%)	0 (zero) %	Se ocorrerem valores maiores, fazendo-se a calagem estes caem para zero.
Saturação por Ca	Entre 40 e 60%	Se necessário será corrigido através da calagem.
Saturação por Mg	Entre 10 e 15%	Se necessário será corrigido através da calagem.
Saturação por K	Entre 3 e 5%	Se necessário será corrigido através da adubação potássica.
Fórmulas*	Soma de Bases (SB) SB = Ca + Mg + K	x 100

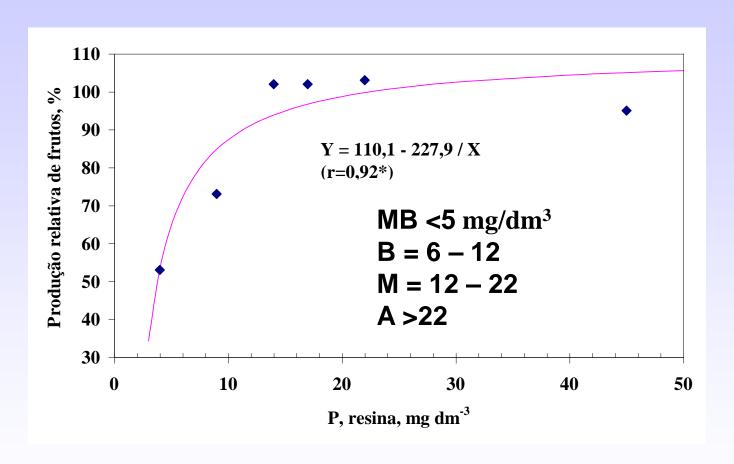
^{*} Para esses cálculos as determinações devem estar todas na mesma unidade, que pode ser cmolç/dm³, mmolç/dm³ ou a antiga meq/100 mL

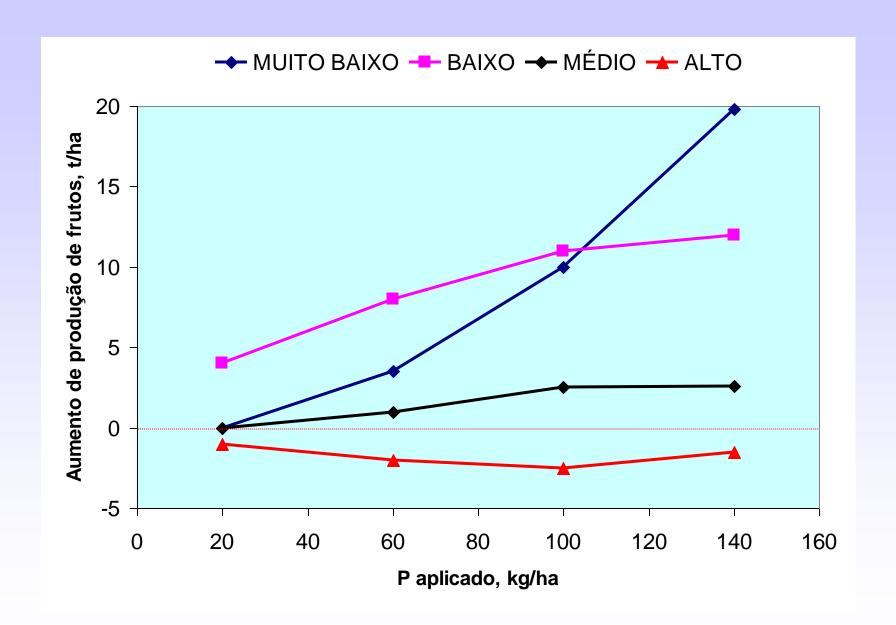

RS/SC (ROLAS)

Classes	Ca	Mg		CTC	_{pH 7,0} (cmo	ol_c/dm^3)
	cmol _c /L		Classes	<15,0 5	,1 - 15,0	≤5,0
Baixo	≤2,0	≤0,5			K mg/dn	n^3
Médio	2,1-4,0	0,6-1,0	Muito Baixo	≤ 30	≤ 20	≤ 15
Alto	>4,0	>1,0	Baixo	31-60	21-40	16-30
			Médio	61-90	41-60	31-45
			Alto	91-180	61-120	46-90
			Muito alto	>180	>120	>90


MG: Ca Mg K

Classes	Ca	Mg	K
	cmol _c	cmol _c dm ⁻³	
Muito baixo	≤0,40	≤0,15	≤15
Baixo	0,41-1,20	0,16-0,45	16-40
Médio	1,21-2,40	0,46-0,90	41-70
Bom	2,41-4,00	0,91-1,50	71-120
Muito bom	>4,00	>1,50	>120


P extraído (resina) P solúvel (ácido)



SP MILHO

LARANJEIRA

SÃO PAULO - P (RESINA) mg dm⁻³

Cultura	Muito baixo	Baixo	Médio	Alto	Muito Alto
Florestais	0-2	3-5	6-8	9-16	>16
Perenes	0-5	6-12	13- 30	31-60	>60
Anuais	0-6	7-15	16- 40	41-80	>80
Hortaliças	0-10	11- 25	26- 60	61- 120	>120

ROLAS - RS/SC (Mehlich 1)

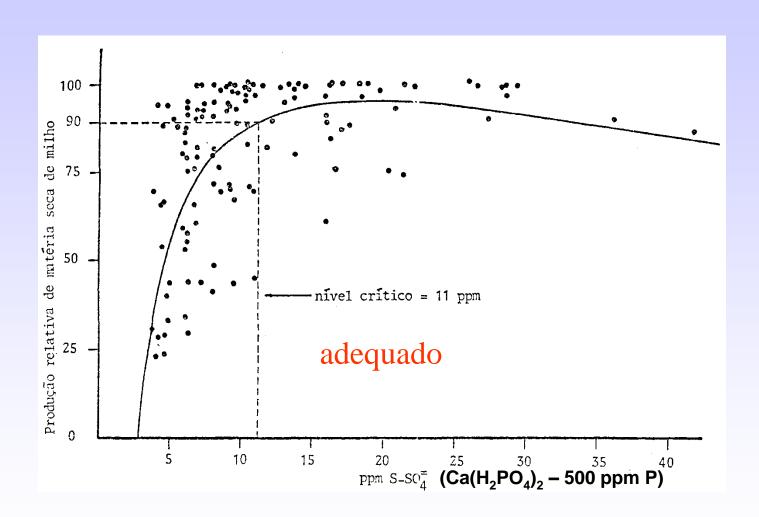
	Classes de solos conforme o teor de argila*				
Nível de suficiência	1	2	3	4	Solos alagados
	mg/dm ³				
Muito Baixo	≤ 2,0	≤ 3,0	≤ 4,0	≤ 7,0	-
Baixo	2,1 - 4,0	3,1 - 6,0	4,1 - 8,0	7,1-14,0	≤3,0
Médio	4,1 - 6,0	6,1 - 9,0	8,1 - 12,0	14,1-21,0	3,1 - 6,0
Alto	6,1 - 12,0	9,1 - 18,0	12,1-24,0	21,1-42,0	6,1 - 12,0
Muito Alto	> 12,0	>18,0	>24,0	>42,0	> 12,0

•Teores de argila: classe 1 60% classe 2 60 a 41%

classe 3 40 a 21% classe $4 \le 20\%$

MG - Classes de interpretação P (o teor de argila ou Prem)

Característica	Classificação				
	Muito baixo	Baixo	Médio	Bom	Muito bom
			mg/dm ^{3 (1)}		
Argila (%)			Fósforo disponível	(2)	
60-100	≤ 2 , 7	2,8 - 5,4	5,5 - 8,0 ⁽³⁾	8,1 - 12,0	> 12,0
35-60	≤ 4,0	4,1 - 8,0	8,1 - 12,0	12,1 - 18,0	> 18,0
15-35	≤ 6,6	6,7 - 12,0	12,1 - 20,0	20,1 - 30,0	> 30,0
0-15	≤ 10,0	10,1 - 20,0	20,1 - 30,0	30,1 - 45,0	> 45,0
P-rem ⁽⁴⁾ (mg/L)					
0-4	≤ 3,0	3,1 - 4,3	4,4 - 6,0	6,1 - 9,0	> 9,0
4-10	≤ 4,0	4,1 - 6,0	6,1 - 8,3	8,4 - 12,5	> 12,5
10-19	≤ 6,0	6,1 - 8,3	8,4 - 11,4	11,5 - 17,5	> 17,5
19-30	≤ 8,0	8,1 - 11,4	11,5 - 15,8	15,9 - 24,0	> 24,0
30-44	≤ 11,0	11,1 - 15,8	15,9 - 21,8	21,9 - 33,0	> 33,0
44-60	≤ 15,0	15,1 - 21,8	21,9 - 30,0	30,1 - 45,0	> 45,0


$S(SO_4^{2-})$ extraído

Extrator: $Ca(H_2PO_4)_2$ - 500 ppm P

Orgânico: 90%

50₄²- adsorvido (argilas 1:1, oxidos de Fe e Al)

NIVEL DE SUFICIÊNCIA?

S-SO₄²-

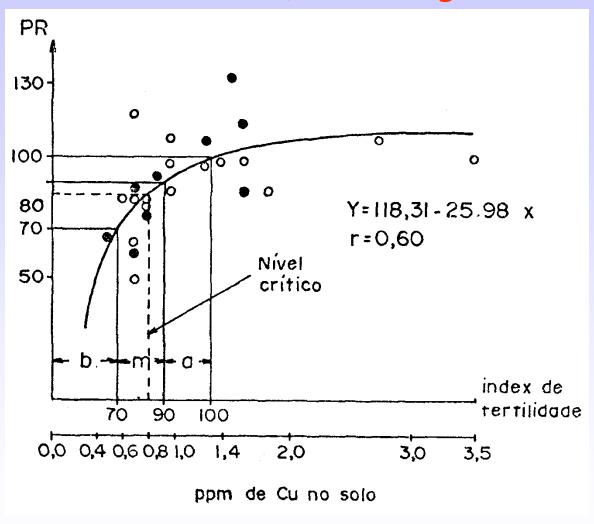
Teor	São Paulo	RS/SC	
	mg/dm ³		
Baixo	0-4	<2,0	
Médio	5-10	2,0-5,0*	
Alto	>10	>5,0	

* 10 mg/dm³ para leguminosas e para culturas exigentes em enxofre (brássicas, liliáceas, etc).

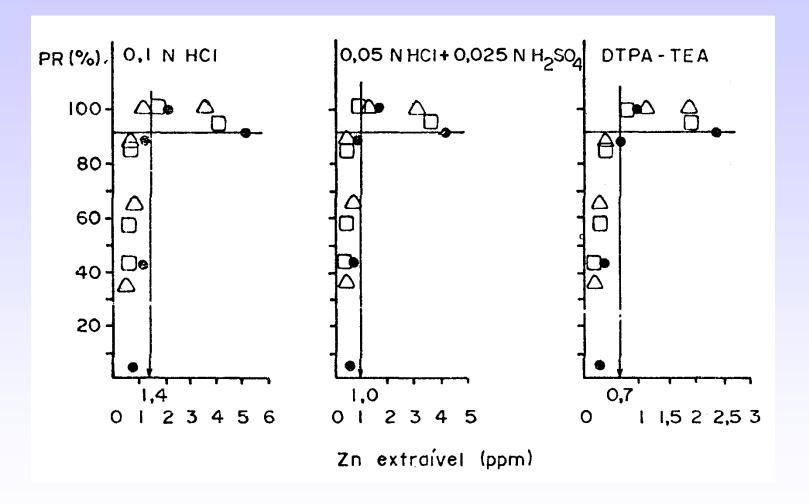
MG 5-50₄²⁻

	Classificação						
	Muito	Baixo	Médio ⁽¹⁾	Bom	Muito bom		
	baixo						
	mg/dm³						
P-rem (mg/L)		Enxofre disponível (2)					
0-4	≤ 3,0	3,1 - 4,3	4,4 - 6,0	6,1 - 9,0	> 9,0		
4-10	≤ 4,0	4,1 - 6,0	6,1 - 8,3	8,4 - 12,5	> 12,5		
10-19	≤ 6,0	6,1 - 8,3	8,4 - 11,4	11,5 - 17,5	> 17,5		
19-30	≤ 8,0	8,1 - 11,4	11,5 - 15,8	15,9 - 24,0	> 24,0		
30-44	≤ 11,0	11,1 - 15,8	15,9 - 21,8	21,9 - 33,0	> 33,0		
44-60	≤ 15,0	15,1 - 21,8	21,9 - 30,0	30,1 - 45,0	> 45,0		

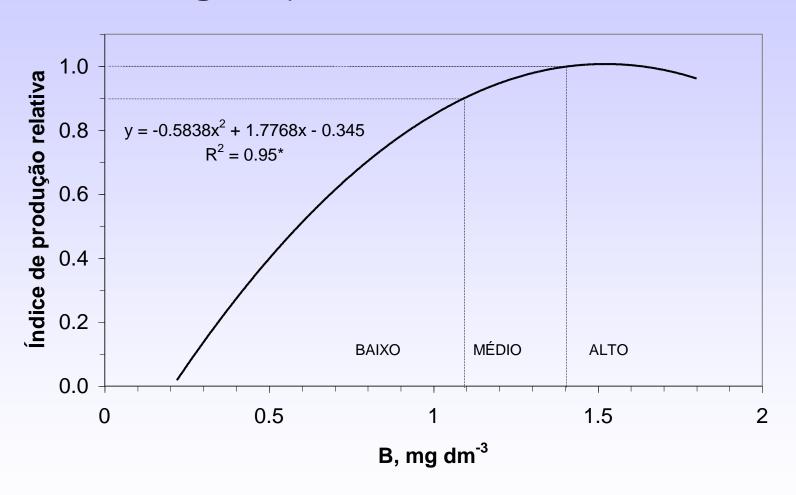
B, Zn, Mn, Cu, Fe


Extrator

B, água quente


Zn, Mn, Cu, Fe (DTPA - Mehlich 1)

NIVEL DE SUFICIÊNCIA ?


Cana-de-açúcar (Alagoas)

MILHO

B, água quente - Cafeeiro

SP - Interpretação

MICRONUTRIENTES

Nível	В	Cu	Fe	Mn	Zn		
	Água quente	DTPA					
mg/dm ³							
Baixo	0 - 0,20	0 - 0,2	0 - 4	0 - 1,2	0 - 0,5		
Médio	0,21-0,60	0,3- 0,8	5 - 12	1,3 - 5,0	0,6 -1,2		
Alto	> 0,60	> 0,8	> 12	> 5,0	> 1,2		

RS/SC - Interpretação

MICRONUTRIENTES

Teor no	В	Cu	Zn	Mn	Fe
solo					
	Água	HCl		AA 1 1: 1	Oxalato
	quente	0,1 mol/L		Mehlich 1	de amônio, pH = 3
	mg/dm ³				
Baixo	< 0,1	< 0,2	< 0,2	<2,5	-
Médio	0,1-	0,2 - 0,4	0,2 - 0,5	2,5 -	-
	0,3(1)			5,0	
Alto	> 0,3	> 0,4	> 0,5	> 5,0	> 5,0 ⁽²⁾

¹ Videira: teor adequado de 0,6 a 1,0 mg/dm³

² Valor relacionado com toxidez de Fe em arroz irrigado

MG - Interpretação

MICRONUTRIENTES

Micronutriente Class			Classificação	assificação		
	Muito	Baixo	Médio ⁽¹⁾	Bom	Alto	
	baixo					
		mg/dm³				
Zn ⁽²⁾	≤ 0,4	0,5 - 0,9	1,0 - 1,5	1,6 - 2,2	> 2,2	
Mn ⁽²⁾	≤ 2	3 - 5	6 - 8	9 - 12	> 12	
Fe ⁽²⁾	≤ 8	9 - 18	19 - 30	31 - 45	> 45	
Cu ⁽²⁾	≤ 0,3	0,4 - 0,7	0,8 - 1,2	1,3 - 1,8	> 1,8	
B(3)	≤ 0,15	0,16 - 0,35	0,36 - 0,60	0,61 - 0,90	> 0,90	

⁽¹⁾Limite superior desta classe indica o nível crítico. (2)Extrator: Mehlich-1.

(3) Extrator: água quente