PEF 5710 - Otimização Estrutural 1º Quadrimestre 2022

Semana 08 Utilização do Excel

Prof. Marcelo Araujo da Silva marcelo.araujo@ufabc.edu.br

Professor Titular da Disciplina: Dr. Reyolando M. L. R. F. Brasil

Instalando o Excel Solver

Para instalar o solver em seu Excel, basta seguir os passos a seguir (Excel 2010 e posterior):

- 1. Vá para Arquivo > Opções;
- 2. Clique em **Suplementos** e, na caixa **Gerenciar**, selecione **Suplementos do Excel**;
- 3. Clique em **Ir**;
- 4. Na caixa **Suplementos disponíveis**, marque a caixa de seleção **Solver** e clique em **OK**;
- 5. Depois de carregar o suplemento Solver, o comando **Solver** torna-se disponível no grupo **Análise**, na guia **Dados**.

A Janela do Solver

âmetros do Solver					×			
Definir Objetivo: Para: <u>M</u> áx.	<u>О мі́п</u> .	O ⊻alor de:	0	1		←	1. 2.	Caixa Definir Objetivo; Tipo de Otimização;
Alterando Células Var	i <u>á</u> veis:							· · · · · · · · · · · · · · · · · · ·
				1		-	3.	Caixa de Variáveis de Projeto;
✓ Tornar Variáveis I	rrestritas N <u>ã</u> o Negati	vas		<u>A</u> dicionar Alter <u>a</u> r E <u>x</u> cluir Redefinir Tudo <u>C</u> arregar/Salvar		~	4.	Equações de Restrição;
S <u>e</u> lecionar um Método de Solução: Método de Solução	GRG Não Linear		~	<u>O</u> pções		-	5.	Método de Otimização;
Selecione o mecanis mecanismo LP Simp problemas do Solve	smo GRG Não Linear j lex para Problemas d er não suaves.	para Problemas do Solver o Solver lineares. Selecion	suaves e não linear e o mecanismo Evo	es. Selecione o lutionary para				
Aju <u>d</u> a		6.	Resolve <u>r</u>	<u>F</u> echar				

Exemplo 1 - Cálculo do Autovalor

Dada a estrutura da *Figura 1*, a partir de sua geometria e propriedades mecânicas é possível obter suas frequências naturais de vibração.

Figura 1 - Estrutura discretizada de uma torre eólica

Exemplo 1 - Cálculo do Autovalor

As frequências naturais são encontradas resolvendo a equação característica:

$$det\left(oldsymbol{K}+\lambdaoldsymbol{M}
ight)=0,$$

onde *K* é a matriz de rigidez, *M* é a matriz de massa, ambas com dimensões $n \times n \in \lambda$ é o autovalor. A frequência natural de vibração é dada por:

$$\omega_i = \sqrt{\lambda_i},$$

onde ω_i é a chamada frequência circular e a frequência cíclica é

$$f_i = rac{\omega_i}{2\pi}$$
 .

Exemplo 1 - Cálculo do Autovalor

Na *Tabela 1* tem-se uma breve descrição das características geométricas da torre de energia eólica.

Variável	Valor	Descrição		
Н	60 m	Altura da torre acima do solo		
Diam. tip	200 cm	Diâmetro na ponta da torre		
Thic. tip	0,93 cm	Espessura da torre na ponta		
Diam. base	708,04 cm	Diâmetro na base da torre		
Thic. base	1,03 cm	Espessura da torre na base		

Tabela 1 - Geometria da torre de energia eólica

O material da torre tem $\rho = 7850 \text{ kg/m}^3$ e uma massa concentrada de 104000 kg no topo precisa ser considerada.

Exemplo 1 - Cálculo do Autovalor

A estrutura foi discretizada em 40 elementos e assim foram determinadas as matrizes $K \in M$. A *Tabela 2* apresenta o projeto inicial.

	Cálculo do primeiro autovalor				
Variável	Valor	Descrição			
lamb	40,000 [rad/s] ²	Autovalor inicial			
f	1,01 [Hz] Frequência fundamental ir				
Det	-1,40E+02	Resíduo da equação característica			
scale	8	Fator de escalonamento			
f-fem	<mark>0,62</mark> [Hz]	Frequência calculada com FEM			
Error aprox 61,2363%		Erro entre o Excel Solver e FEM			

Tabela 2 - Projeto inicial

Exemplo 1 - Cálculo do Autovalor

A *Tabela* 3 apresenta o projeto final obtido. Note que o determinante apresentou um valor próximo de zero, e o erro de aproximação é um valor igual a *10*-⁷ (excelente).

	Cálculo do primeiro autovalor				
Variável	Valor	Descrição			
lamb 15,386 [rad/s] ²		Autovalor inicial			
f	0,62 [Hz] Frequência fundamental ir				
Det	1,78E-05	Resíduo da equação característica			
scale	8	Fator de escalonamento			
f-fem	<mark>0,62</mark> [Hz]	Frequência calculada com FEM			
Error aprox -0,00001%		Erro entre o Excel Solver e FEM			

Tabela 3 - Projeto final obtido com o Excel Solver

Exemplo 1 - Cálculo do Autovalor

Figura 2 - Janela de comunicação do Solver

	К	L	М	GK	GL	GM	GN	GO	GP	GQ
1				olver Parameters						×
2				orverrarameters						~
3										_
4				Set Objective:		\$L\$14	4			Î
5				T -1 0 1 1	0			0		
6				10. <u>M</u> ax		U <u>v</u> alu	e OT:	0		_
/				By Changing Variab	ole Cells:					
0				\$L\$12						±
10										_
11	Computation of	the eigen-v	alue	Subject to the Cons	traints:					
12	lamb =	15.386	(rad/s) ²	\$L\$12 >= 0				~	Add	
13	f =	0.62	Hz							
14	Det =	1.78E-05]						Change	
15	scale =	8							Delete	
16	f-fem =	0.62	Hz						2	_
17	f-solver =	0.62	Hz						Reset All	
18	Error approx =	-0.00001%							2	
19								<u> </u>	Load/Save	
20				Make Unconstr	ained Variables Non	-Negative				
22				Select a Solving	CBC Neplinear					
23				Method:	GKG Nonlinear				Options	
24										
25				Solving Method						
26				Select the GRG No engine for linear	onlinear engine for S Solver Problems, and	olver Problems	that are smoot	h nonlinear. Select	the LP Simplex	
27				non-smooth.	solver Problems, dife	screet the EVOI	aconary engine	tor solver proble	ing that are	
28										
29								6-1	c la ca	
30				Help				≥oive	Cl <u>o</u> se	

A *Figura 2* mostra a janela de comunicação do Solver. Então:

- A célula *L14* (Det) é a função objetivo, que deve ser *0*,
- A célula *L12* é a variável de projeto, e a restrição imposta nela é que esta variável precisa ser positiva.

O projeto ótimo é $x^* = [0,62]$ e $f(x^*) = 1,78 \times 10^{-5} \approx 0.$

10

Exemplo 2 - Coluna Sob Carga Axial

Uma coluna, engastada na base e livre na ponta, de comprimento L = 5 m é mostrada na *Figura 3*. Sua seção é circular de raio médio *R* e espessura *t*.

Figura 3 - Estrutura do exemplo 2

Exemplo 2 - Coluna Sob Carga Axial

Os demais dados são:

$$P = 10 \; MN; \qquad
ho = 7833 \; kg/m^3;
onumber \ E = 207 \; GPa; \qquad \sigma_a = 248 \; MPa.$$

As variáveis de projeto são:

$$R(x_1)$$
 e $t(x_2).$

A função objetivo, por sua vez, é

$$f(R,t)=2
ho L\pi Rt.$$

Exemplo 2 - Coluna Sob Carga Axial

Por último, as restrições são:

$$egin{aligned} g_1(R,t) &= rac{P}{2\pi R t} - \sigma_a \leq 0, \ g_2(R,t) &= P - rac{\pi^3 E R^3 t}{4L^2} \leq 0, \ g_3(R,t) &= -R \leq 0, \end{aligned}$$
 (carga de flambagem) $g_4(R,t) &= -t \leq 0. \end{aligned}$ (raio é positivo)

Exemplo 2 - Coluna Sob Carga Axial

Transcrevendo essas expressões no Excel, pode-se ver as fórmulas na Figura 4.

	A	В	С	D
1	x1 =	0.1666159452805	m	Average Radius
2	x2 =	0.0385169439351371	m	Thickness
3	ro =	7833	kg/m3	Density
4	L =	5	m	Length
5	E =	207	GPa	Elasticity Modulus
6	sa =	248	MPa	Allowable Stress
7	P =	10	MN	Axial Load
8				
9	F(x) =	=2*PI()*B1*B2*B4*B3	kg	Structure Mass
10				
11	g1 =	=B7/(2*PI()*B1*B2)-B6		Constraint 1
12	g2 =	=B7-PI()^3*B1^3*B2*B5*1000/(4*B4^2)		Constraint 2

Figura 4 - Expressões do Exemplo 2

Exemplo 2 - Coluna Sob Carga Axial

Na Figura 5 são mostradas os valores iniciais das variáveis.

Figura 5 - Valores numéricos do Exemplo 2 para o projeto inicial

B 9		• = × •	<i>fx</i> =2*	*PI()*B1*B2*B4*B3	
	А	В	С	D E	
1	x1 =	0.0100	m	Average Radius	
2	x2 =	0.0500	m	Thickness	
3	ro =	7833	kg/m3	Density	
4	L =	5	m	Length	
5	E =	207	GPa	Elasticity Modulus	
6	sa =	248	MPa	Allowable Stress	
7	P =	10	MN	Axial Load	
8					
9	F(x) =	123.04	kg	Structure Mass	
10					
11	g1 =	2935.10		Constraint 1	
12	g2 =	10.00		Constraint 2	

Exemplo 2 - Coluna Sob Carga Axial

Figura 6 - Janela de comunicação do Solver

A				Soner authority
	В	С	D E	
1 x1 =	0.0100	m	Average Radius	Set Objective: \$8\$9
2 x2 =	0.0500	m	Thickness	
3 ro =	7833	kg/m3	Density	To: O Max O Min O Value Of:
4 L =	5	m	Length	By Changing Variable Cells:
5 E =	207	GPa	Elasticity Modulus	\$8\$1:\$8\$2
6 sa =	248	MPa	Allowable Stress	
7 P =	10	MN	Axial Load	Subject to the Constraints:
8				\$B\$11 <= 0 ^ Add
9 F(x) =	123.04	kg	Structure Mass	\$B\$12 <= 0
10				<u>C</u> hange
11 g1 =	2935.10		Constraint 1	Delete
12 g2 =	10.00		Constraint 2	Delete
13				Decet All
14				<u>n</u> eset All
15				<u>L</u> oad/Save
16				Make Unconstrained Variables Non-Negative
17				
18				Select a Solving GRG Nonlinear Options
19				
20				Solving Method
21				Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex
22				engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are non-smooth
23				
24				
25				Help Solve Close
260040000000				

Veja que, na *Figura 6*, as restrições 3 e 4 podem ser substituídas clicando na opção *"Tornar Variáveis Irrestritas Não Negativas*".

Perceba também que o problema é não linear, vide a opção "*GRG Não Linear*".

Exemplo 2 - Coluna Sob Carga Axial

A Figura 7 mostra o projeto final obtido: $x^* = [0, 1603 \ 0, 0400]$ e $f(x^*) = 1579, 23$.

B 9		• I × 🗸	<i>fx</i> =2*	*PI()*B1*B2*B4*B3	
	А	В	С	D E	
1	x1 =	0.1603	m	Average Radius	
2	x2 =	0.0400	m	Thickness	
3	ro =	7833	kg/m3	Density	
4	L =	5	m	Length	
5	E =	207	GPa	Elasticity Modulus	
6	sa =	248	MPa	Allowable Stress	
7	P =	10	MN	Axial Load	
8					
9	F(x) =	1579.23	kg	Structure Mass	
10					
11	g1 =	0.00		Constraint 1	
12	g2 =	-0.58		Constraint 2	

Figura 7 - Valores numéricos do Exemplo 2 para o projeto final

Real Property of the second se

Exemplo 3 - Viga Sob Carga Concentrada

Observe, agora, a viga mostrada na *Figura 8*. Desta vez, o objetivo é minimizar a massa da viga.

Figura 8 - Viga biapoiada com carga concentrada no meio

Fonte: Elaborado pelos autores.

Os dados são: L=10~m; $ho=2500~kg/m^3;$

$$\sigma_{P}=20 \; tf; \qquad \qquad \sigma_{a}=20 \; MPa.$$

18

Exemplo 3 - Viga Sob Carga Concentrada

As variáveis de projeto são, respectivamente, a largura da base e altura da seção:

$$b_w(x_1)$$
 e $h(x_2).$

Logo, o vetor de projeto é

$$oldsymbol{x} = \left[b_w \,\, h
ight].$$

A função objetivo, por sua vez, é

$$f(b_w,h)=
ho Lb_wh.$$

Exemplo 3 - Viga Sob Carga Concentrada

Por último, as restrições do problema são:

$$egin{aligned} g_1(b_w,h) &= rac{3}{2} rac{PL}{b_w h^2} - \sigma_a \leq 0, \ g_2(b_w,h) &= b_w - h \leq 0, \ g_3(b_w,h) &= -b_w + 0, 2 \leq 0, \ g_4(b_w,h) &= -h + 0, 2 \leq 0. \end{aligned}$$
 (altura mínima)

Exemplo 3 - Viga Sob Carga Concentrada

Transcrevendo essas expressões no Excel, pode-se ver as fórmulas na Figura 9.

B 8		< <i>fx</i> =B1*B2*B4*B3		
	А	В	С	D
1	x1 =	0.2	m	Width
2	x2 =	0.866025403784434	m	Height
3	ro =	2500	kg/m3	Density
4	L =	10	m	Length
5	sa =	20	MPa	Allowable Stress
6	P =	20	tf	Point Load
7				
8	F(x) =	=B1*B2*B4*B3	kg	Beam Mass
9				
10	g1 =	=3/2*B6*B4/(B1*B2^2)*10000-B5*1000000		Constraint 1
11	g2 =	=B1-B2		Constraint 2
12	g3 =	=-B1+0.2		Constraint 3
13	g4 =	=-B2+0.2		Constraint 4

Figura 9 - Expressões do Exemplo 3

Exemplo 3 - Viga Sob Carga Concentrada

Na Figura 10 são mostradas os valores iniciais das variáveis.

Figura 10 - Valores numéricos do Exemplo 3 para o projeto inicial

B 8		- : × - j	x =B1*	B2*B4*B3	
	А	В	С	D E	
1	x1 =	0.100	m	Width	
2	x2 =	0.100	m	Height	
3	ro =	2500	kg/m3	Density	
4	L =	10	m	Length	
5	sa =	20	MPa	Allowable Stress	
6	P =	20	tf	Point Load	
7					
8	F(x) =	250	kg	Beam Mass	
9					
10	g1 =	298000000		Constraint 1	
11	g2 =	0.000		Constraint 2	
12	g3 =	0.100		Constraint 3	
13	g4 =	0.100		Constraint 4	

Exemplo 3 - Viga Sob Carga Concentrada

Figura 11 - Janela de comunicação do Solver

B 8		• I × 🗸	fx =B1	L*B2*B4*B3	Solver Parameters
	А	В	C	D E	
1	x1 =	0.100	m	Width	Set Objective: SBSB
2	x2 =	0.100	m	Height	sta openie.
3	ro =	2500	kg/m3	Density	To: O Max Min O Value Of: 0
4	L =	10	m	Length	
5	sa =	20	MPa	Allowable Stress	By Changing Variable Cells:
6	P =	20	tf	Point Load	\$B\$1:\$B\$2
7					Subject to the Constraints:
8	F(x) =	250	kg	Beam Mass	SB\$10 <= 0
9					\$B\$11 <= 0
10	g1 =	298000000		Constraint 1	\$8\$12 <= 0 \$8\$13 <= 0
11	g2 =	0.000		Constraint 2	
12	g3 =	0.100		Constraint 3	Delete
13	g4 =	0.100		Constraint 4	
14					<u>R</u> eset All
15					
16					Load/save
17					Make Unconstrained Variables Non-Negative
18					Select a Solving GRG Nonlinear V Options
19					Method:
20					Solving Method
21					Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex
22					engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are
23					non-smooth.
24					
25					Help Solve Close
26	_				
T	5400				
1	- WE				

Na *Figura 11* é possível observar a janela do Solver.

Exemplo 3 - Viga Sob Carga Concentrada

A Figura 12 mostra o projeto final obtido: $x^* = [0,200\ 0,866] e f(x^*) = 4330.$

B8 ▼ : × ✓ fx =B1*B2*B4*B3				
	А	В	С	D E
1	x1 =	0.200	m	Width
2	x2 =	0.866	m	Height
3	ro =	2500	kg/m3	Density
4	L =	10	m	Length
5	sa =	20	MPa	Allowable Stress
6	P =	20	tf	Point Load
7				
8	F(x) =	4330	kg	Beam Mass
9				
10	g1 =	0.000		Constraint 1
11	g2 =	-0.666		Constraint 2
12	g3 =	0.000		Constraint 3
13	g4 =	-0.666		Constraint 4

Figura 12 - Valores numéricos do Exemplo 3 para o projeto final

Dúvidas?

