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The integral equation theory (IET) of molecular liquids has
been an active area of academic research in theoretical and
computational physical chemistry for over 40 years because it
provides a consistent theoretical framework to describe the
structural and thermodynamic properties of liquid-phase
solutions. The theory can describe pure and mixed solvent
systems (including anisotropic and nonequilibrium systems) and
has already been used for theoretical studies of a vast range of

biology, colloids, soft matter, and electrochemistry. A consider-
able advantage of IET is that it can be used to study specific
solute—solvent interactions, unlike continuum solvent models,
but yet it requires considerably less computational expense than
exnlicit solvent simulations.

However, until recently this area of research (although
active) was mostly considered as an outlier compared to
molecular simulation methods. Among other reasons for this
we would like to highlight the following: (i) due to several
problems with bridge functionals (see below), the theory has
traditionally been considered to be too inaccurate for wide-
spread use in practical applications such as research in the
biomedical and environmental sciences; (ii) a lack of stable
implementations of the IET algorithms ir user-frieadly software
prevented researchers with noncomputational backgrounds
from using these methods.

The situation has changed during the past decade. Recent
developments in theoretical and computational aspects of IET
have made it possible to make accurate calculations of thermo-
dynamic and structural properties of solvation across multiple
classes of molecular systems at relatively low computational
expense. ~ IET methods have been implemented in several

open-source and proprietary pieces of computational chemistry
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_ABSTRACT
We present an efficient method to obtain bulk isothermal compressibilities (x7) and Kirkwood-Buff
(KB) integrals of single- and multicomponent liquids using fluctuations of the number of molecules
obtained from small-sized molecular dynamics simulations. We write finite-size versions of the Orn-
stein-Zernike and the KB integral equations and include there finite size effects related to the
statistical ensemble and the finite integration volumes required in computer simulations. Conse-

guently, we obtain analytical expressions connecting 7 and the KB integrals in the thermodynamic
limit (TL) with density fluctuations in the simulated system. We validate the method by calculating
various thermodynamic quantities, including the chemical potentials of SPC/E water as a function of
the density, and of aqueous urea solutions as a function of the mole fraction. The reported results
are in excellent agreement with calculations obtained by using the best computational methods
available, thus validating the method as a tool to compute the chemical potentials of dense molec-
ular liquids and mixtures. Furthermore, the present method identifies conditions in which computer
simulations can be effectively considered in the TL.
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Deixando apenas diagramas irredutiveis: série e ponte
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A fungdo de correlagdo direta C(r)
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Uma relacdo entre a série com nds S(r) e a série C(r)

gr)=1+S(r;n) +

3 3 3 Todo diagrama com no (série) é o “produto” de
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