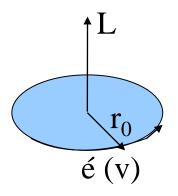
# Magnetismo Fenomenologia Clássica

Origem e comportamento de momentos magnéticos: tratamento clássico

Diamagnetismo, Paramagnetismo e Espectro Atômico: modelo simples

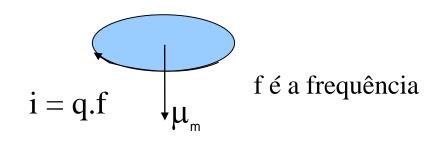
# Momento Angular Orbital e Momento Magnético Orbital

MODELO DE DIPOLO MAGNÉTICO ATÔMICO -  $\mu m = 1.A$ 


Momentos Magnéticos: são originados devido à movimentação de partículas carregadas.

Momento angular (L) e momento ( $\mu_m$ ) magnético relacionados

$$\gamma = \frac{\mu_{\scriptscriptstyle m}}{L} = cons \ tan \ te$$


Razão giromagnética

# Cálculo da razão giromagnética



$$\mathbf{L} = \mathbf{r} \times \mathbf{p} = \mathbf{m}(\mathbf{r} \times \mathbf{v})$$

$$|L| = m \cdot v \cdot r_{o}$$



$$\mu_{m} = (q.f).(\pi r_{o}^{2}) \implies \omega = 2\pi f = \frac{V}{r_{o}}$$

$$\mu_{m} = \frac{q.v.r_{o}}{2}$$

m = m<sub>e</sub>, massa do elétron

$$\gamma = \frac{\mu_{m}}{L} = \frac{q \cdot v \cdot r_{o}}{2 \cdot m \cdot v \cdot r_{o}} = \frac{q}{2 \cdot m} = -\frac{e}{2 \cdot m} = -8.78 \times 10^{10} \, \text{C/kg}$$

É um número exato em materiais nos quais o magnetismo é originário do somente do **movimento orbital dos elétrons**, mas em outros materiais não é. Nos outros é necessário o uso de física quântica

# Diamagnetismo Clássico

#### Lei de Lenz

Se um campo magnético é aplicado perpendicular ao plano da órbita de um elétron, a corrente se modifica (variação na velocidade - ∆v).

A variação de fluxo dφ/dt originada a partir do laço de corrente é igual e oposta àquela devido ao campo

# i = q.f

f é a frequência

#### O campo não modifica o raio da órbita!

Há duas forças radiais:

- a força do campo sobre o elétron  $\mathbf{F} = q \mathbf{v} \times \mathbf{B} = -e.v.B$  (FORÇA DE LORENTZ)
- A reação: variação da FORÇA CENTRÍFUGA (F = m<sub>e</sub>v²/r) devido à variação da velocidade:

$$\Delta F_c = 2. m_e .v .\Delta v/r$$
 fazendo  $F = \Delta F_c$   $\Delta V = \frac{\Delta V}{2}$ 

$$\Delta m = \mu = \frac{q.\Delta v.r}{2}$$

$$\Delta m = - (e^2 r^2 / 4 m_e) B$$

# Susceptibilidade Diamagnética

$$M = N.\Delta m$$

$$\Delta m = - (e^2 r^2 / 4 m_e) B$$

$$M = -\frac{\mu Ne^2 ZR^2}{4 m_e} H$$

$$\chi = \frac{dM}{dH}$$

$$\chi = -\frac{\mu_{\scriptscriptstyle 0} N e^2 Z R^2}{4 \, m_{\scriptscriptstyle e}}$$

# Susceptibilidade Diamagnética

Boa concordância com valores experimentais  $\chi \approx -10^{-6}$ 

$$\chi = -\frac{\mu_0 \text{Ne}^2 Z R^2}{4 \, \text{m}_2}$$



 $\underline{Z}$ ,  $\underline{e}$  e  $\underline{m}_{\underline{e}}$  independem de T  $\underline{N}$ ,  $\underline{R}^2$  dependem fracamente de T

gases raros: He, Ne, Ar

gases poliatômicos: H2, N2

sólidos iônicos: NaCl

substâncias com ligações covalentes: Si, Ge

Diamagnetismo ocorre para todas as substâncias, mas em alguns casos é tão fraco que pode ser desprezado.

Materiais diamagnéticos são aqueles que não têm contribuição do spin para o momento magnético total

## **Materiais Paramagnéticos**

Materiais que têm momentos magnéticos permanentes locais, mas cuja interação entre eles é fraca (<< kbT)

Lei de Curie : 
$$\chi = \frac{C}{T}$$
 para átomos livres (M =  $\chi$  H)

T = 0 K e campo aplicado: todos momentos alinhados ao campo.

T > 0 K - energia térmica atua contra o ordenamento, a energia é fraca e positiva.

# Teoria de Langevin

 $\mu_m$  é o momento atômico; Hé o campo aplicado  $\theta$  é o ângulo entre  $\mu_m$  e H A energia é dada por:

$$E(\theta) = \boldsymbol{\mu_m} \cdot \boldsymbol{B}$$



$$E(\theta) = \boldsymbol{\mu_m} \cdot \boldsymbol{B} \qquad E(\theta) = \mu_0 \cdot \mu_m \cdot H \cdot \cos(\theta)$$

Para uma temperatura T, a probabilidade do momento ter energia  $E(\theta)$  é proporcional ao fator de Boltzmann:

$$e^{-E( heta)/k_{B}T}$$

 $e^{-E(\theta)/k_BT}$  aplicavel quando a temperatura é alta o suficiente ou a densidade de partículas é baixa o suficiente para terper con constituir de la particular de la particu insignificantes.

A probabilidade do ângulo entre  $\mu_m$  e H estar entre  $\theta$  e  $\theta$  + d $\theta$  será:

$$dp(\theta) = \frac{\exp(-E(\theta)/k_B T).d\Omega}{Z}$$
 Ângulo sólido 
$$d\Omega = 2\pi . \sec \theta . d\theta$$

Z é a função partição de probabilidade:

$$Z = \int_{0}^{\pi} \exp(-E(\theta)/k_{B}T).2\pi. \sin \theta. d\theta$$

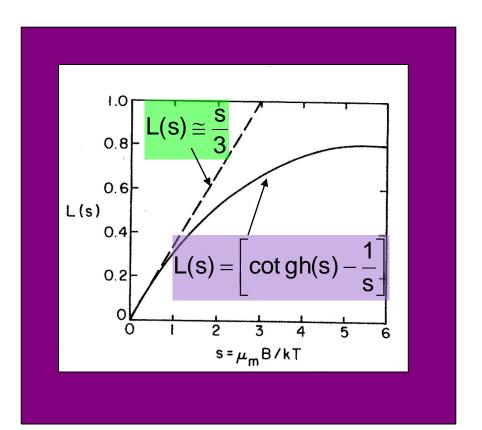
A média térmica do momento magnético da componente paralela ao campo é:

$$\langle \mu_m \rangle_T = \int_0^{\pi} \mu . \cos(\theta) . dp(\theta) = L(s)$$
  $s = \frac{\mu}{k_s T}$ 

A função L(s):

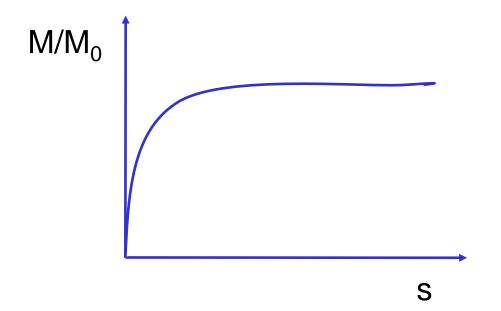
$$L(s) = \left[\cot gh(s) - \frac{1}{s}\right]$$

onde


$$s = \frac{\mu_{m}B}{k_{n}T}$$

Para s pequeno:

$$\cot gh(s) = tgh^{-1}(s) = \frac{1}{s} + \frac{s}{3} - \frac{s^{3}}{45} + \dots$$


E:

$$L(s) \cong \frac{s}{3}$$



A magnetização é dada por N (densidade de átomos) multiplicado por

$$\langle \mu_m \rangle_T = L(s)$$
  $M = N \langle \mu_m \rangle_T L(s)$   $M = N \cdot \mu_m \cdot \left[ \cot gh(s) - \frac{1}{s} \right]$ 



$$M_0 = N.\mu$$

$$s = \frac{\mu B}{k_B T}$$

#### Para s pequeno:

$$M = N\mu \cdot \frac{s}{3}$$

$$M = N\mu_m \cdot \frac{\mu_m \mu_0 H}{3k_B T}$$

$$M = \frac{N\mu_m^2 \mu_0}{3k_B T} H = \chi H$$

$$\chi = \frac{N\mu_m^2 \mu_0}{3k_B T} = \frac{C}{T}$$

 $\chi$  cresce para T pequeno (baixa agitação térmica) e/ou H grande: M/M $_0 \approx 1$  (saturação)

Exemplo: Gadolínio para B ~ 1 T.

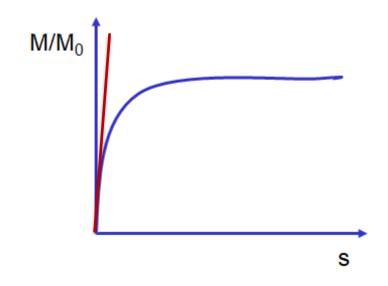
$$s = \frac{\mu B}{k_B T}$$

T @ 300 K 
$$\rightarrow$$
  $\chi \approx 1.5 \times 10^{-2}$ ;

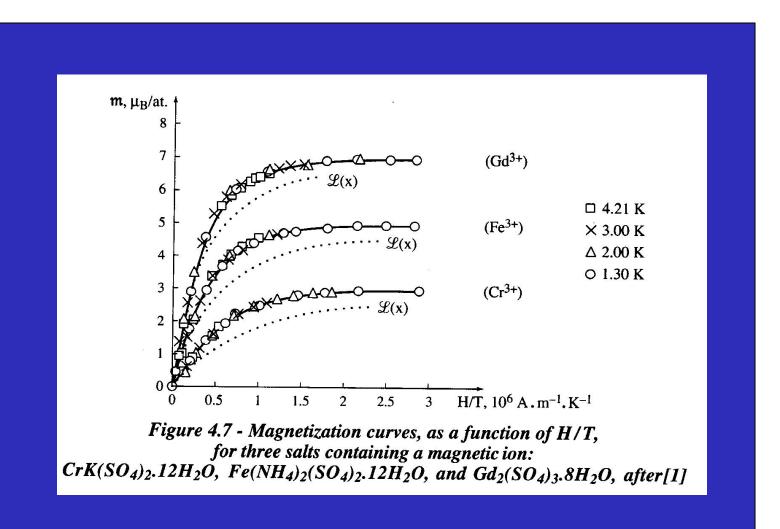
T @ 1 K 
$$\rightarrow \chi \approx 0.8$$

## **Teoria de Langevin - resumo**

A magnetização é dada por N (densidade de átomos) multiplicado por  $\langle \mu_m \rangle_{\tau}$ :


$$M = N \cdot \mu_{m} \cdot \left[ \cot gh(s) - \frac{1}{s} \right]$$

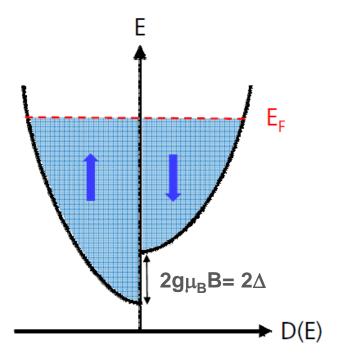
$$M_0 = N.\mu_m$$


$$M_0 = N.\mu_m$$
 
$$s = \frac{\mu_m B}{k_B T}$$

#### Para s pequeno:

$$\chi = \frac{N \, \mu_m^2 \, \mu_0}{3 \, k_B T} = \frac{C}{T}$$




# Teoria de Langevin comparada a dados experimentais





# Paramagnetismo de Pauli

- Ocorre principalmente em metais (elétrons livres)
- Como cada orbital pode ser ocupado por um spin "up" ou "down", se um campo magnético é aplicado, a energia do elétron pode aumentar ou diminuir.



A susceptibilidade de Pauli é:

$$\chi_P = \frac{3N\mu_0\mu_B^2}{2E_F}$$

- Independe da temperatura
- Efeito fraco comparado ao paramagnetismo de íons
- Há contribuição somente dos elétrons livres, aqueles próximos do nível de Fermi (energia de Fermi é E<sub>F</sub>)