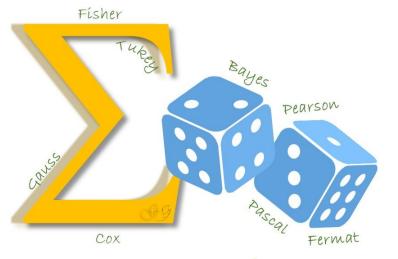


BIOESTATÍSTICA

GLEICE M S CONCEIÇÃO

MARIA DO ROSÁRIO D O LATORRE

FSP USP



BIOESTATÍSTICA

ESTIMAÇÃO

GLEICE M S CONCEIÇÃO MARIA DO ROSÁRIO D O LATORRE FSP USP

O que vamos aprender

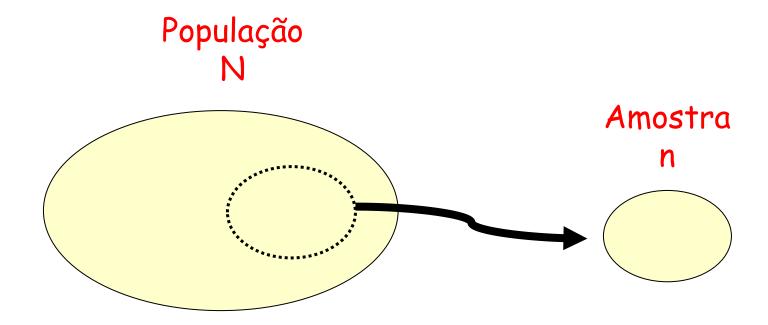
- ✓ Algumas considerações sobre população e amostra
- ✓ Diferença entre parâmetros e estimadores
- ✓ Fundamental para entender técnicas de inferência estatística:
 - ✓ Estimativa por ponto e por intervalo (Intervalos de Confiança)
 - ✓ Teste de Hipóteses

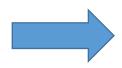
População e amostra

BIOESTATISTICA

Medidas populacionais são quase sempre desconhecidas.

Na maioria das vezes não é possível estudar a população toda.





A Estatística permite tirar conclusões sobre a população a partir do estudo de alguns de seus elementos (amostra).

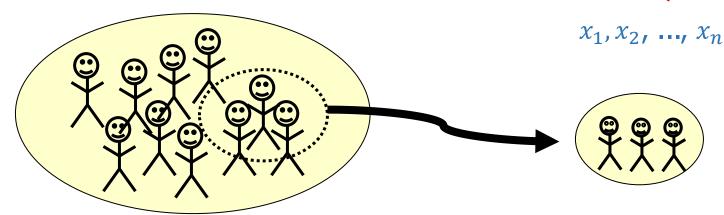
População e amostra

Seja X uma variável aleatória (quantitativa) de interesse

Na população (tamanho N):

$$X_1, X_2, ..., X_N$$

Na amostra (tamanho n):



 μ é a média de X na população = E(X) σ^2 é a variância de X na população = VAR(X)

 \bar{X} é a média de X na amostra

S² é a variância de X na amostra queicems conceição maria do rosário d d latorre FSP-USP

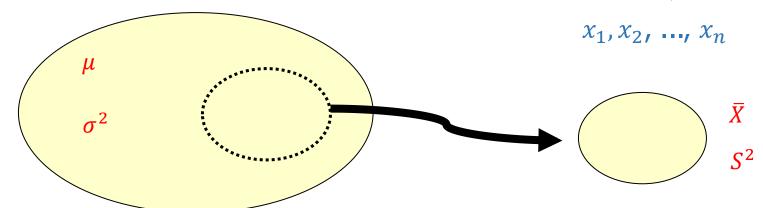
População e amostra

Seja X uma variável aleatória (quantitativa) de interesse

Na população (tamanho N):

$$X_1, X_2, ..., X_N$$

Na amostra (tamanho n):



$$\mu = \frac{\sum_{i=1}^{N} X_i}{N}$$

$$\sigma^2 = \frac{\sum_{i=1}^N (X_i - \mu)^2}{N}$$

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$\mu = \frac{\sum_{i=1}^{N} X_i}{N} \qquad \sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N} \qquad \bar{X} = \frac{\sum_{i=1}^{n} x_i}{n} \qquad S^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{X})^2}{n-1}$$

Parâmetros x Estimadores

 μ , σ^2 são **parâmetros** populacionais, constantes.

 \overline{X} , S^2 são estatísticas da amostra, estimadores dos parâmetros populacionais, são variáveis aleatórias.

Estimação

Seja X uma variável aleatória (quantitativa) de interesse

Na população (tamanho N):

$$X_1, X_2, \dots, X_N$$

Na amostra (tamanho n):

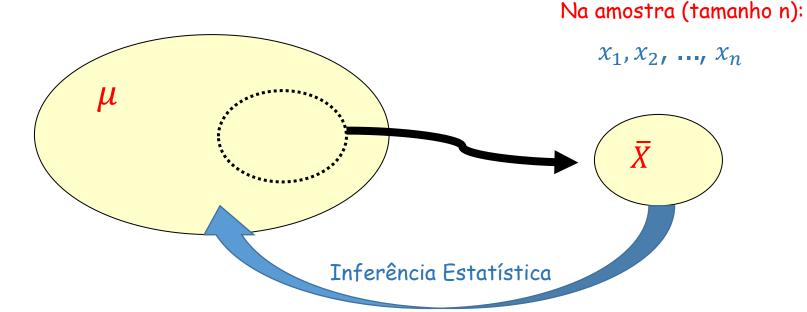
 x_1, x_2, \dots, x_n
 \overline{X}

Inferência

Seja X uma variável aleatória (quantitativa) de interesse

Na população (tamanho N):

$$X_1, X_2, \dots, X_N$$



- √ Tirar conclusões para a população com base na amostra
- ✓ Necessário associar uma probabilidade a essas conclusões

Inferência Estatística:

Tomar decisões sobre μ , com base em \bar{X} :

- \checkmark *IC*(μ , γ) intervalo de confiança para μ
- ✓ Teste de hipóteses para μ

GLEICE M S CONCEIÇÃO MARIA DO ROSÁRIO D D LATORRE FSP-USP

Inferência

Tirar conclusões para a população com base na amostra

- ✓ Se conhecêssemos o "todo" (a população), poderíamos tirar conclusões sobre qualquer uma de suas "partes" (amostras) sem cometer nenhum erro.
- ✓ Mas estamos indo na direção contrária queremos tirar conclusões sobre o "todo" (a população), quando observamos apenas uma "parte" (a amostra).
- ✓ Conclusões estão sujeitas a erros necessário conhecer a probabilidade de cometer tais erros.

Inferência

Tirar conclusões para a população com base na amostra

- ✓ Tomar decisões sobre μ (parâmetro populacional) com base em \overline{X} (estimador, estatística da amostra).
- ✓ Necessário associar probabilidades de erros (ou margens de erros) a essas decisões
- ✓ Mas, para conhecer essas probabilidades, seria necessário conhecer a população PROBLEMA!
- ✓ A menos que
 - ... pudéssemos associar distribuições de probabilidades conhecidas aos dados
 - ... ou ao estimador (\bar{X})
- 🗸 Para saber se isto é possível, precisamos estudar as propriedades de $ar{X}$

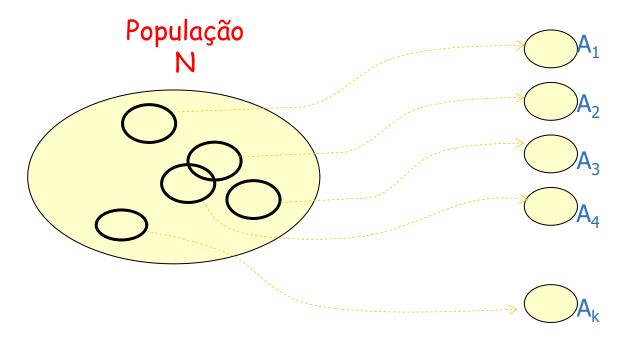
Propriedades de \bar{X}



X- variável aleatória (quantitativa) de interesse

$$E(X) = \mu$$
$$VAR(X) = \sigma^2$$

Amostras de tamanho n

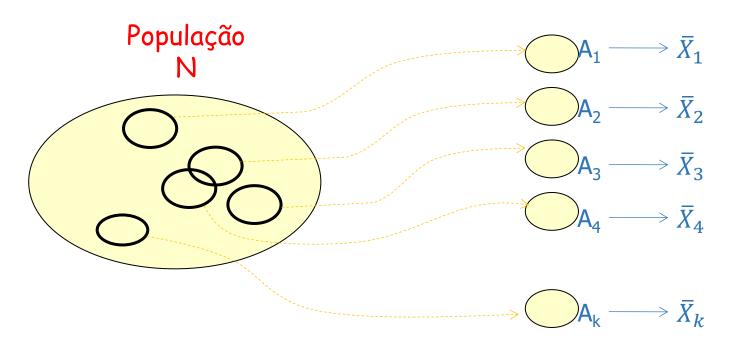


Propriedades de \bar{X}

X- variável aleatória (quantitativa) de interesse

$$E(X) = \mu$$
$$VAR(X) = \sigma^2$$

Amostras de tamanho n



- $\checkmark \ \bar{X}$ é constante ou variável aleatória?
- \checkmark \bar{X} é uma variável aleatória, pois é uma função da amostra
- ✓ Variáveis aleatórias tem E, VAR e distribuição
- $\checkmark E(\bar{X}) = ?$
- $\checkmark VAR(\bar{X}) = ?$
- ✓ Como seria a distribuição de \bar{X} ?

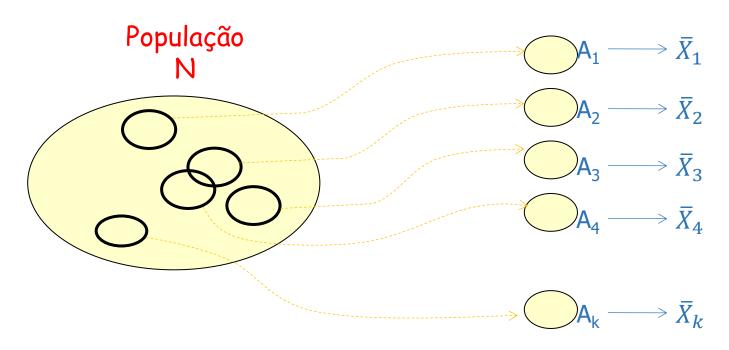
GLEICE M S CONCEIÇÃO MARIA DO ROSÁRIO D D LATORRE FSP-USP

Propriedades de \bar{X}

X- variável aleatória (quantitativa) de interesse

$$E(X) = \mu$$
$$VAR(X) = \sigma^2$$

Amostras de tamanho n



Resultados importantes:

$$\checkmark E(\bar{X}) = \mu$$

$$\checkmark VAR(\bar{X}) = \frac{\sigma^2}{n}$$

✓ TLC: Para n "grande", \bar{X} ~Normal

Em resumo:

$$\bar{X} \xrightarrow{n \to \infty} N\left(\mu, \frac{\sigma^2}{n}\right)$$

GLEICE M S CONCEIÇÃO MARIA DO ROSÁRIO D D LATORRE FSP-USP

Vamos entender melhor isto por meio de um exemplo:

Considere uma população de tamanho N=5.

A variável de interesse X assume os seguintes valores na população:

✓ Como a população é conhecida, é possível obter E(X) e VAR(X)

$$E(X) = \mu = \frac{\sum_{i=1}^{N} X_i}{N} = \frac{1+3+5+5+7}{5} = 4.2$$

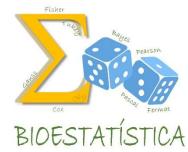
$$VAR(X) = \sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N} = 4,16$$

- ✓ Intuitivamente, amostras diferentes devem apresentar médias amostrais diferentes.
- ✓ Vamos retirar todas as amostras possíveis de tamanho n=2 desta população, com reposição, e construir a distribuição da média amostral \bar{X} .

Α	(X_1, X_2)	\bar{x}		
1	(1, 1)	1		

Α	(X_1, X_2)	\bar{x}
1	(1, 1)	1
2	(1, 3)	2

Α	(X_1, X_2)	\bar{x}
1	(1, 1)	1
2	(1, 3)	2
3	(1, 5)	3
4	(1, 5)	3
5	(1, 7)	4



Α	(X ₁ , X ₂)	\bar{x}	Α	(X ₁ , X ₂)	\bar{x}	Α	(X ₁ , X ₂)	\bar{x}	Α	(X ₁ , X ₂)	\bar{x}	Α	(X ₁ , X ₂)	\bar{x}
1	(1, 1)	1	6	(3, 1)	2	11	(5, 1)	3	16	(5, 1)	3	21	(7, 1)	4
2	(1, 3)	2	7	(3, 3)	3	12	(5, 3)	4	17	(5, 3)	4	22	(7, 3)	5
3	(1, 5)	3	8	(3, 5)	4	13	(5, 5)	5	18	(5, 5)	5	23	(7, 5)	6
4	(1, 5)	3	9	(3, 5)	4	14	(5, 5)	5	19	(5, 5)	5	24	(7, 5)	6
5	(1, 7)	4	10	(3, 7)	5	15	(5, 7)	6	20	(5, 7)	6	25	(7, 7)	7

Distribuição de $ar{X}$

\bar{x}	$P(\bar{X}=\bar{x})$
1	1/25
2	2/25
3	5/25
4	6/25
5	6/25
6	4/25
7	1/25
Total	1

A partir da **distribuição de** \overline{X} , **v**amos obter

$$\checkmark E(\bar{X})$$

$$\checkmark VAR(\bar{X})$$

$$E(\bar{X}) = \sum \bar{x} P(\bar{X} = \bar{x})$$

$$VAR(\bar{X}) = \sum (\bar{x} - E(\bar{X}))^2 P(\bar{X} = \bar{x})$$

Distribuição de $ar{X}$

\bar{x}	$P(\bar{X}=\bar{x})$
1	1/25
2	2/25
3	5/25
4	6/25
5	6/25
6	4/25
7	1/25
Total	1

A partir da **distribuição de** \bar{X} , **v**amos obter

$$E(\bar{X}) = \sum \bar{x} P(\bar{X} = \bar{x})$$

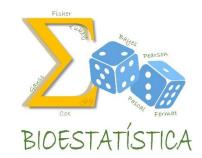
$$E(\bar{X}) = 1\frac{1}{25} + 2\frac{2}{25} + 3\frac{5}{25} + 4\frac{6}{25} + 5\frac{6}{25} + 6\frac{4}{25} + 7\frac{1}{25}$$

$$= 4,2$$

$$VAR(\bar{X}) = \sum (\bar{x} - E(\bar{X}))^2 P(\bar{X} = \bar{x})$$

$$VAR(\bar{X}) = (1 - 4,2)^2 \frac{1}{25} + (2 - 4,2)^2 \frac{2}{25} + \dots + (7 - 4,2)^2 \frac{1}{25}$$

$$= 2,08$$



População

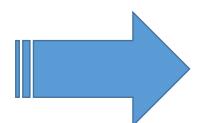
Amostras

$$E(X) = \mu = 4.2$$

$$E(\overline{X}) = 4.2$$

$$VAR(X) = \sigma^2 = 4.16$$

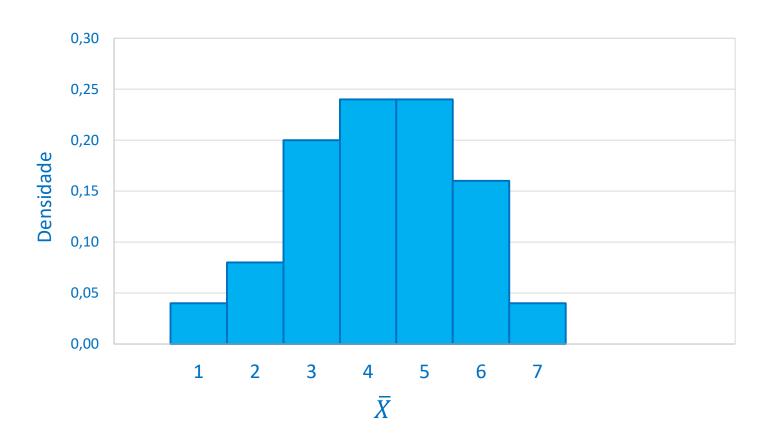
$$VAR(\bar{X}) = 2,08 = \frac{4,2}{2}$$



$$\checkmark$$
 $E(\bar{X}) = \mu \Rightarrow \bar{X}$ é um estimador não viesado para μ

$$\checkmark VAR(\bar{X}) = \frac{\sigma^2}{n}$$

Histograma para a distribuição de $ar{X}$

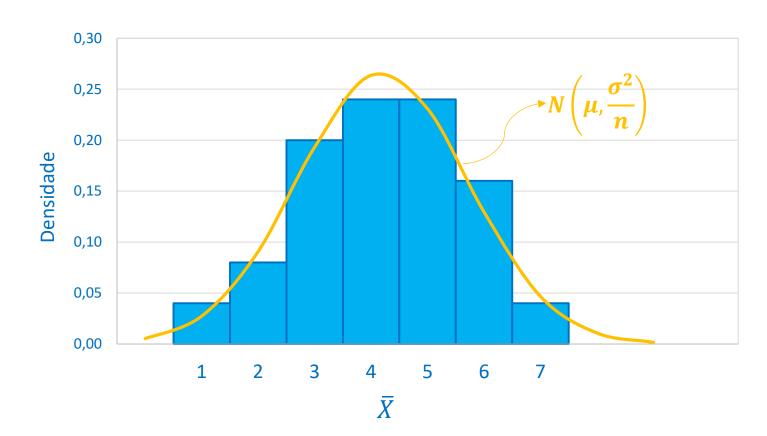


$$E(\bar{X}) = \mu = 4,12$$

$$VAR(\bar{X}) = \frac{\sigma^2}{n} = 2,08$$

A distribuição de \bar{X} assemelha-se à alguma distribuição conhecida?

Histograma para a distribuição de $ar{X}$



$$E(\bar{X}) = \mu = 4,12$$

$$VAR(\bar{X}) = \frac{\sigma^2}{n} = 2,08$$

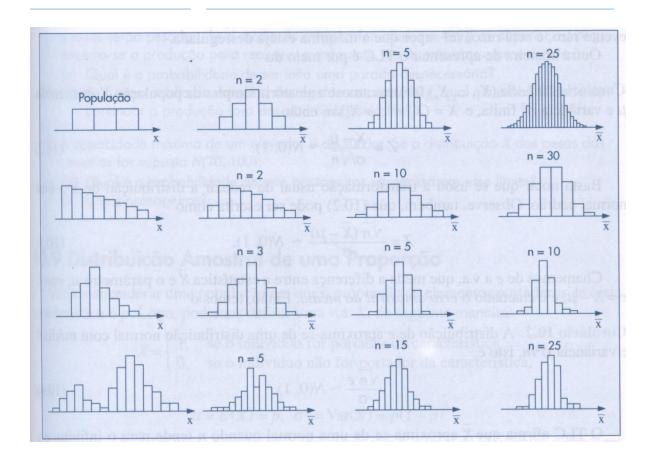
A distribuição de \bar{X} assemelha-se à alguma distribuição conhecida?

Teorema Limite Central (TLC)

Histogramas correspondentes às distribuições amostrais de \bar{X} para amostras extraídas de algumas populações.

Distribuição de X

Distribuição de \bar{X}



Distribuição amostral de \hat{p} (proporção)

Fisher

Tugg

Bayes

Pearson

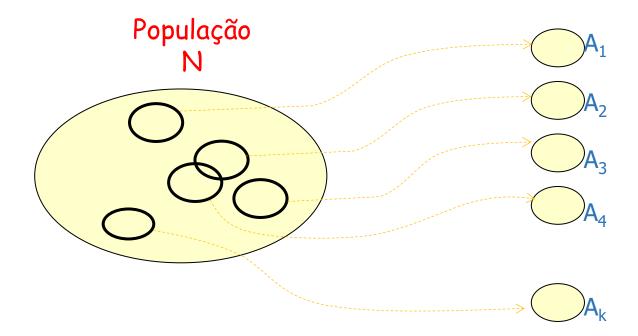
Fermat

BIOESTATISTICA

P (proporção) - variável aleatória (qualitativa) de

interesse

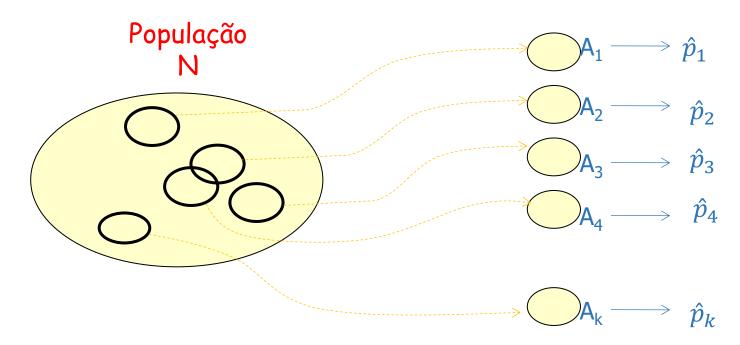
Amostras de tamanho n



Distribuição amostral de \hat{p} (proporção)

P (proporção) - variável aleatória (qualitativa) de interesse

Amostras de tamanho n



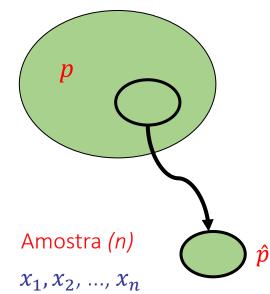
- \checkmark \hat{p} é constante ou variável aleatória?
- \checkmark $\bar{\hat{p}}$ é uma variável aleatória, pois é uma função da amostra
- ✓ Variáveis aleatórias tem E, VAR e distribuição
- $\checkmark E(\bar{\hat{p}}) = ?$
- $\checkmark VAR(\bar{\hat{p}}) = ?$
- ✓ Como seria a distribuição de \hat{p} ?

Distribuição amostral da proporção (\hat{p})

$$X \sim Bernoulli(p)$$
, i.e., $X = \begin{cases} 1 & \cdots & sucesso & \cdots & p \\ 0 & \cdots & fracasso & \cdots & 1-p \end{cases}$ $E(X) = p$ $VAR(X) = p(1-p)$

População (N)

$$X_1, X_2, ..., X_N$$



Em que sucesso significa o indivíduo ser portador de uma determinada característica de interesse na população (p. ex., tuberculose, asma, etc.).

Ou seja, p é a probabilidade (constante) de um indivíduo da população ter a característica.

Além disso,

✓ a proporção de indivíduos na população com a característica é

$$p=rac{\sum_{i=1}^{N}X_{i}}{N}$$
 , ou seja, $\,p\,$ é uma média, $\,p=\mu$

✓ a proporção de indivíduos na amostra com a característica é

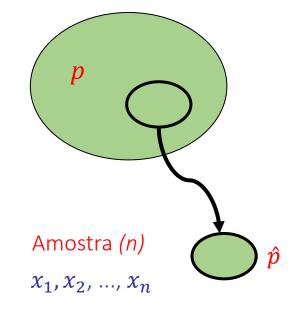
$$\hat{p}=rac{\sum_{i=1}^{n}x_{i}}{n}$$
, ou seja, \hat{p} é uma média, $\hat{p}=ar{X}$ gleicems conceição maria do Rosário do Latorre

Distribuição amostral da proporção (\hat{p})

$$X \sim Bernoulli(p)$$
, i.e., $X = \begin{cases} 1 & \cdots & sucesso & \cdots & p \\ 0 & \cdots & fracasso & \cdots & 1-p \end{cases}$ $E(X) = p$ $VAR(X) = p(1-p)$

População (N)

$$X_1, X_2, ..., X_N$$



- ✓ na população: $p = \mu$
- ✓ na amostra: $\hat{p} = \bar{X}$

Vimos, pelo TLC, que
$$\bar{X} \xrightarrow{n \to \infty} N\left(E(X), \frac{VAR(X)}{n}\right)$$

Consequentemente,
$$\hat{p} = \bar{X} \xrightarrow{n \to \infty} N\left(p, \frac{p(1-p)}{n}\right)$$

Então, para n grande

- 🗸 a distribuição de \hat{p} pode ser aproximada pela Normal!
- ✓ podemos utilizar a Normal para construir intervalos de confiança e testar hipóteses para p.

Pelo TLC, para *n* grande:

$$\hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right)$$

$$\Rightarrow Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)$$

Intervalo de confiança para a proporção (p)

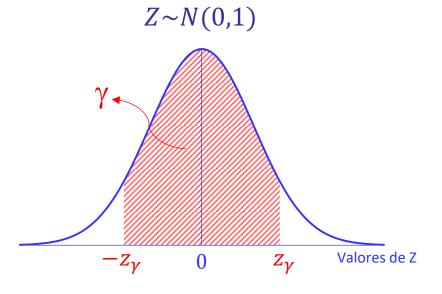
Utilizando a aproximação pela Normal

Na N(0,1), fixando γ , podemos encontrar um valor z_{γ} tal que

$$P(-z_{\gamma} \le Z \le z_{\gamma}) = \gamma$$

$$\Rightarrow P\left(-z_{\gamma} \le \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \le z_{\gamma}\right) = \gamma$$

$$\Rightarrow P\left(-z_{\gamma}\sqrt{\frac{p(1-p)}{n}} \le \hat{p} - p \le z_{\gamma}\sqrt{\frac{p(1-p)}{n}}\right) = \gamma$$



Intervalo de confiança para a proporção (p)

Utilizando a aproximação pela Normal

$$\Rightarrow P\left(-\hat{p} - z_{\gamma}\sqrt{\frac{p(1-p)}{n}} \le -p \le -\hat{p} + z_{\gamma}\sqrt{\frac{p(1-p)}{n}}\right) = \gamma$$

Multiplicando tudo por -1:

$$\Rightarrow P\left(\hat{p} - z_{\gamma}\sqrt{\frac{p(1-p)}{n}} \le p \le \hat{p} + z_{\gamma}\sqrt{\frac{p(1-p)}{n}}\right) = \gamma$$

$$\Rightarrow IC(p,\gamma) = \hat{p} \mp z_{\gamma} \sqrt{\frac{p(1-p)}{n}}$$

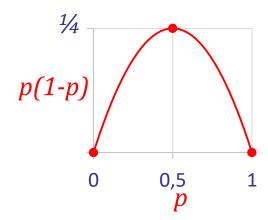
IC(p,
$$\gamma$$
) = $\hat{p} \mp z_{\gamma} \sqrt{\frac{p(1-p)}{n}}$

Problema: não conhecemos p.

Podemos proceder de duas maneiras:

i) Note que p(1-p) assume o valor máximo 1/4 (quando p=1/2). Então, substituímos p(1-p) por $\frac{1}{4}$:

$$IC(p,\gamma) = \hat{p} \mp z_{\gamma} \sqrt{\frac{1}{4n}}$$



produzindo um intervalo de confiança **conservador** ou **conservativo** para *p*.

ii) Substituímos p por \hat{p}

IC(p,
$$\gamma$$
) = $\hat{p} \mp z_{\gamma} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

produzindo um intervalo de confiança **otimista** para p.

Exercício 3

Pretende-se estimar a proporção de cura, através do uso de um certo medicamento em doentes contaminados com cercária.

Um experimento consistiu em aplicar o medicamento em 200 pacientes, escolhidos ao acaso, e observar que 160 deles foram curados.

- a) Obtenha uma estimativa pontual para a proporção de cura.
- b) Obtenha estimativas por intervalo para a proporção de cura (conservativo e otimista). Utilize um coeficiente de confiança de 95%.
- c) Interprete os intervalos de confiança que você construiu.

- a) Estimativa pontual para o parâmetro p: $\hat{p} = \frac{160}{200} = 0.8$
- b) Estimativa por intervalo para o parâmetro *p*:
 - ✓ Conservativo

IC(p, 0,95) =
$$\hat{p} \mp z_{\gamma} \sqrt{\frac{1}{4n}} = 0.8 \mp 1.96 \sqrt{\frac{1}{4 * 200}}$$

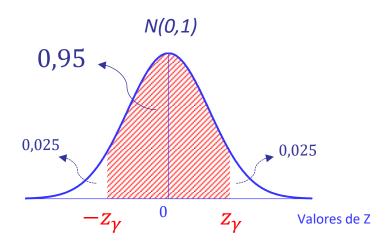
= $0.8 \mp 0.069296 = [0.7307: 0.8693]$

✓ Otimista

IC(p, 0,95) =
$$\hat{p} \mp z_{\gamma} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.8 \mp 1.96 \sqrt{\frac{0.8 * 0.2}{200}}$$

= $0.8 \mp 0.055437 = [0.7446 : 0.8554]$

$$\gamma = 0.95 \Rightarrow z_{\gamma} = 1.96$$



$$z_{\gamma} = 1,96$$

GLEICE M S CONCEIÇÃO MARIA DO ROSÁRIO D D LATORRE FSP-USP

Intervalo de confiança para a proporção (p) Utilizando a distribuição Binomial (Exata!)

$$X \sim Bernoulli(p)$$
, i.e., $X = \begin{cases} 1 & \cdots & sucesso & \cdots & p \\ 0 & \cdots & fracasso & \cdots & 1-p \end{cases}$ $E(X) = p$ $VAR(X) = p(1-p)$

População (N)

$$X_1, X_2, ..., X_N$$

Amostra (n)
 $x_1, x_2, ..., x_n$

Na amostra, o estimador de *p* será:

$$\hat{p} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{y}{n}$$

onde $y \sim Binomial(n, p)$

Ou seja, a distribuição de \hat{p} pode ser obtida da distribuição de y (Binomial):

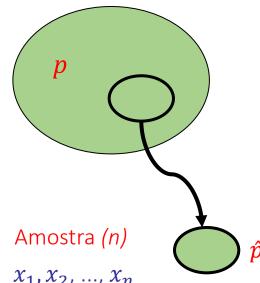
Intervalo de confiança para a proporção (p)

Utilizando a distribuição Binomial (Exata!)

$$X \sim Bernoulli(p)$$
, i.e., $X = \begin{cases} 1 & \cdots & sucesso & \cdots & p \\ 0 & \cdots & fracasso & \cdots & 1-p \end{cases}$ $E(X) = p$ $VAR(X) = p(1-p)$

População (N)

$$X_1, X_2, ..., X_N$$



Como $y \sim Binomial(n, p)$, consigo obter probabilidades:

$$P(y = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Mas

$$P(y = k) = P\left(\frac{y}{n} = \frac{k}{n}\right) = P\left(\hat{p} = \frac{k}{n}\right)$$

- ✓ Difícil de fazer os IC à mão!
- ✓ Mas o computador faz!

Teorema Limite Central (TLC)

- ✓ X variável aleatória com uma distribuição qualquer
- \checkmark $E(X) = \mu$, $VAR(X) = \sigma^2$
- \checkmark Amostra aleatória simples, tamanho n: $x_1, x_2, ..., x_n$
- $\sqrt{X} = \frac{\sum_{i=1}^{n} x_i}{n}$

Então:
$$\overline{X} \xrightarrow{n \to \infty} N\left(\mu, \frac{\sigma^2}{n}\right)$$

- ✓ Isto é, para *n* grande:
 - \checkmark \bar{X} tem distribuição Normal (independentemente da distribuição de X)
 - \checkmark Com esperança (média) igual à da variável original: $E(X) = \mu$
 - ✓ Com variância igual à da variável original dividida pelo tamanho da amostra (n): VAR(X) = $\frac{\sigma^2}{n}$
- \checkmark Entretanto, se X já tiver distribuição Normal, \bar{X} será Normal, não importa o valor de n

Teorema Limite Central (TLC)

$$\bar{X} \xrightarrow{n \to \infty} N\left(\mu, \frac{\sigma^2}{n}\right) \implies Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

- Frequentemente, precisamos trabalhar com esta quantidade, mas não conhecemos σ^2 , apenas S^2 .
- ✓ Então, utilizamos um resultado que é uma consequência do TLC:

$$t = \frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t_{(n-1)}$$

 \checkmark A distribuição t-Student não depende de μ e σ^2 , apenas do número de graus de liberdade

- \checkmark Já aprendemos a obter uma estimativa pontual para a média μ , que é $ar{X}$
- ✓ Utilizando o TLC, vamos obter uma estimativa por intervalo para μ
- \checkmark Queremos obter um intervalo que contenha μ , com uma probabilidade alta.
- Algo do tipo: dois valores v_1 e v_2 tais que $P(v_1 \le \mu \le v_2) = \gamma$, onde γ é uma probabilidade alta!
- ✓ Vamos utilizar o TLC:

Segundo o TLC, para n grande,
$$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$$

Lembrando ...

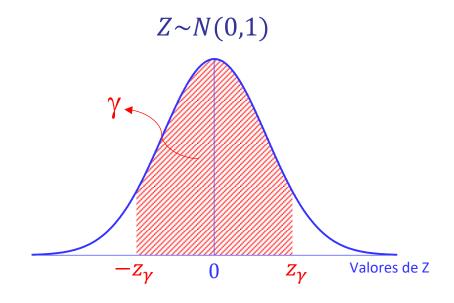
Se
$$Z \sim N(0,1)$$

✓
$$P(-z < Z < z) = 0.90 \Rightarrow z = 1.645$$

✓
$$P(-z < Z < z) = 0.95 \Rightarrow z=1.96$$

✓
$$P(-z < Z < z) = 0.96 \Rightarrow z = 2.055$$

✓
$$P(-z < Z < z) = 0.99 \Rightarrow z = 2.575$$



Ou seja, fixando γ , podemos encontrar um valor z_{γ} tal que

$$P(-z_{\gamma} \le Z \le z_{\gamma}) = \gamma$$

Fixando γ , podemos encontrar um valor z_{γ} tal que

$$P(-z_{\gamma} \le Z \le z_{\gamma}) = \gamma$$

Substituindo Z por $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$:

$$\Rightarrow P\left(-z_{\gamma} \le \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \le z_{\gamma}\right) = \gamma$$

Agora basta isolar μ na expressão acima, de modo a obter

$$v_1 e v_2$$
 tais que $P(v_1 \le \mu \le v_2) = \gamma$

e teremos o intervalo!

$$P\left(-z_{\gamma} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le z_{\gamma}\right) = \gamma \quad \Rightarrow P\left(-z_{\gamma} \, \sigma/\sqrt{n} \le \bar{X} - \mu \le +z_{\gamma} \, \sigma/\sqrt{n}\right) = \gamma$$

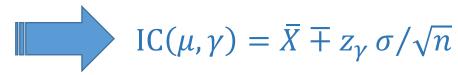
$$\Rightarrow P(-\bar{X} - z_{\gamma} \sigma / \sqrt{n} \le -\mu \le -\bar{X} + z_{\gamma} \sigma / \sqrt{n}) = \gamma$$

Multiplicando tudo por -1:

$$\Rightarrow P(\bar{X} - z_{\gamma} \sigma / \sqrt{n} \le \mu \le \bar{X} + z_{\gamma} \sigma / \sqrt{n}) = \gamma$$

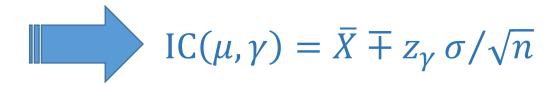
Então,
$$v_1=ar{X}-z_\gamma\,\sigma/\sqrt{n}$$
 e $v_2=ar{X}+z_\gamma\,\sigma/\sqrt{n}$

E representamos o intervalo assim:



Note que, para construir o IC, a variância populacional σ^2 deve ser conhecida.

Intervalo de confiança para a média μ , quando a variância σ^2 é conhecida



Interpretação

- \checkmark A probabilidade de que o IC contenha o verdadeiro valor da média populacional é dada por γ .
- ✓ Se obtivermos várias amostras de mesmo tamanho e para cada uma calcularmos os correspondentes intervalos de confiança com coeficiente de confiança γ , esperamos que a proporção de intervalos que contenham o valor μ seja igual a γ .

Exemplo

Por analogia a produtos similares, o tempo de reação a um determinado medicamento pode ser considerado como tendo distribuição Normal com desvio padrão igual a 2 minutos (a média é desconhecida). Vinte pacientes foram sorteados, receberam o medicamento e tiveram seu tempo de reação anotado. Os dados foram os seguintes:

Obtenha uma estimativa pontual e uma estima por intervalo (intervalo de confiança) para o tempo médio de reação. Utilize um coeficiente de confiança igual a 95%.

Exemplo

 \checkmark Estimativa pontual para μ :

$$\bar{X} = 4,668 \text{ minutos}$$

 \checkmark Estimativa para μ por intervalo de confiança:

$$\checkmark \ \mathsf{IC}(\mu,\gamma) = \bar{X} \mp z_{\gamma} \, \sigma / \sqrt{n}$$

$$\checkmark \sigma = 2$$

$$\checkmark$$
 Para $\gamma = 0.95 \Rightarrow z_{\gamma} = 1.96$

$$IC(\mu, \gamma) = \bar{X} \mp z_{\gamma} \, \sigma / \sqrt{n}$$

$$IC(\mu, \gamma) = 4,668 \mp 1,96 * 2/\sqrt{20}$$

$$IC(\mu, \gamma) = 4,668 \mp 0,8763$$

$$IC(\mu, \gamma) = [3,7915 : 5,5445] min$$

✓ Interpretação: A probabilidade de que o intervalo [3,8 : 5,5] minutos contenha o tempo **médio** de reação ao medicamento na **população** (μ) é 0,95 ou 95%.

Intervalo de confiança para a média μ , quando a variância σ^2 é conhecida

$IC(\mu, \gamma) = \bar{X} \mp z_{\gamma} \, \sigma / \sqrt{n}$

Problema!!!

- ✓ Na prática, é difícil obter este tipo de intervalo.
- ✓ Porque, em geral, não conhecemos σ^2 , apenas S^2 .

Teorema Limite Central (TLC)

$$\bar{X} \xrightarrow{n \to \infty} N\left(\mu, \frac{\sigma^2}{n}\right) \implies Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

- Frequentemente, precisamos trabalhar com esta quantidade, mas não conhecemos σ^2 , apenas S^2 .
- ✓ Então, utilizamos um resultado que é uma consequência do TLC:

$$t = \frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t_{(n-1)}$$

 \checkmark A distribuição t-Student não depende de μ e σ^2 , apenas do número de graus de liberdade

Distribuição t de Student

Seja Z uma v.a. com distribuição N(0,1) e

Y uma v.a. com distribuição $\chi^2(v)$, com Z e Y independentes.

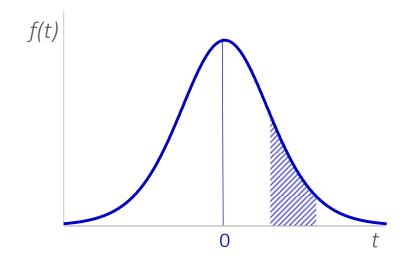
Então a v.a.

$$t = \frac{Z}{\sqrt{Y/\nu}}$$

tem função densidade dada por

$$f(t) = \frac{\Gamma((\nu+1)/2)}{\Gamma(\nu/2)\sqrt{\pi\nu}} (1 + t^2/\nu)^{-(\nu+1)/2}$$

$$-\infty < t < \infty$$



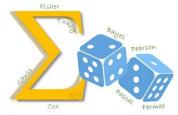
$$E(t) = 0$$

$$Var(t) = v/(v-2)$$

A área sob a curva fornece probabilidades

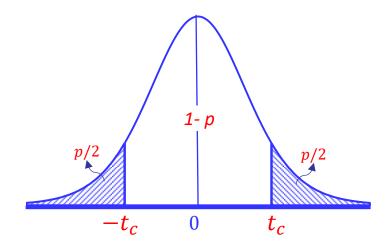
Corpo dá os valores t_c tais que $P(-t_c < t < t_c) = 1 - p$

g,l.	p=0,90	•••	0,4	0,3	0,2	0,1	0,05	0,02	0,01	0,001
•••										
7	0,130		0,896	1,119	1,415	1,895	2,365	2,998	3,499	5,408
8	0,130		0,889	1,108	1,397	1,860	2,306	2,896	3,355	5,041
9	0,129		0,883	1,100	1,383	1,833	2,262	2,821	3,250	4,781
10	0,129		0,879	1,093	1,372	1,812	2,228	2,764	3,169	4,587
11	0,129		0,876	1,088	1,363	1,796	2,201	2,718	3,106	4,437
12	0,128		0,873	1,083	1,356	1,782	2,179	2,681	3,055	4,318
13	0,128		0,870	1,079	1,350	1,771	2,160	2,650	3,012	4,221
14	0,128		0,868	1,076	1,345	1,761	2,145	2,624	2,977	4,140
15	0,128		0,866	1,074	1,341	1,753	2,131	2,602	2,947	4,073
16	0,128		0,865	1,071	1,337	1,746	2,120	2,583	2,921	4,015
17	0,128		0,863	1,069	1,333	1,740	2,110	2,567	2,898	3,965
18	0,127		0,862	1,067	1,330	1,734	2,101	2,552	2,878	3,922
19	0,127		0,861	1,066	1,328	1,729	2,093	2,539	2,861	3,883
20	0,127		0,860	1,064	1,325	1,725	2,086	2,528	2,845	3,850
21	0,127		0,859	1,063	1,323	1,721	2,080	2,518	2,831	3,819
•••		•••	•••		•••	•••		•••	•••	
26	0,127	•••	0,856	1,058	1,315	1,706	2,056	2,479	2,779	3,707
27	0,127		0,856	1,057	1,314	1,703	2,052	2,473	2,771	3,690
28	0,127		0,856	1,056	1,313	1,701	2,048	2,467	2,763	3,674
29	0,127		0,854	1,055	1,311	1,699	2,045	2,462	2,756	3,659
30	0,127		0,854	1,055	1,310	1,697	2,042	2,457	2,750	3,646
40	0,126		0,851	1,050	1,303	1,684	2,021	2,423	2,704	3,551
60	0,126	•••	0,848	1,046	1,296	1,671	2,000	2,390	2,660	3,460
120	0,126	•••	0,845	1,041	1,289	1,658	1,980	2,358	2,617	3,373
œ	0,126		0,842	1,036	1,282	1,645	1,960	2,326	2,576	3,291



BIOESTATÍSTICA

- \checkmark Para um determinado valor de p (soma das áreas em azul), o corpo da tabela fornece o valor de t_c .
- \checkmark Para um determinado valor de t_c , a primeira linha da tabela fornece o valor de p (soma das áreas em azul).



$$P(-t_c < t < t_c) = 1 - p$$

GLEICE M S CONCEIÇÃO MARIA DO ROSÁRIO D D LATORRE FSP-USP

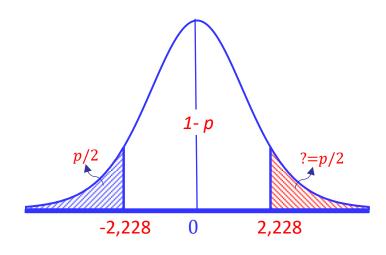
Corpo dá os valores t_c tais que $P(-t_c < t < t_c) = 1 - p$

g,l.	p=0,90	•••	0,4	0,3	0,2	0,1	0,05	0,02	0,01	0,001
7	0,130		0,896	1,119	1,415	1,895	2,365	2,998	3,499	5,408
8	0,130		0,889	1,108	1,397	1,860	2,306	2,896	3,355	5,041
9	0,129		0,883	1,100	1,383	1,833	2,262	2,821	3,250	4,781
10	0,129		0,879	1,093	1,372	1,812	2,228	2,764	3,169	4,587
11	0,129		0,876	1,088	1,363	1,796	2,201	2,718	3,106	4,437
12	0,128		0,873	1,083	1,356	1,782	2,179	2,681	3,055	4,318
13	0,128		0,870	1,079	1,350	1,771	2,160	2,650	3,012	4,221
14	0,128		0,868	1,076	1,345	1,761	2,145	2,624	2,977	4,140
15	0,128		0,866	1,074	1,341	1,753	2,131	2,602	2,947	4,073
16	0,128		0,865	1,071	1,337	1,746	2,120	2,583	2,921	4,015
17	0,128		0,863	1,069	1,333	1,740	2,110	2,567	2,898	3,965
18	0,127		0,862	1,067	1,330	1,734	2,101	2,552	2,878	3,922
19	0,127		0,861	1,066	1,328	1,729	2,093	2,539	2,861	3,883
20	0,127		0,860	1,064	1,325	1,725	2,086	2,528	2,845	3,850
21	0,127		0,859	1,063	1,323	1,721	2,080	2,518	2,831	3,819
•••							•••	•••		
26	0,127		0,856	1,058	1,315	1,706	2,056	2,479	2,779	3,707
27	0,127		0,856	1,057	1,314	1,703	2,052	2,473	2,771	3,690
28	0,127		0,856	1,056	1,313	1,701	2,048	2,467	2,763	3,674
29	0,127		0,854	1,055	1,311	1,699	2,045	2,462	2,756	3,659
30	0,127		0,854	1,055	1,310	1,697	2,042	2,457	2,750	3,646
40	0,126		0,851	1,050	1,303	1,684	2,021	2,423	2,704	3,551
60	0,126		0,848	1,046	1,296	1,671	2,000	2,390	2,660	3,460
120	0,126		0,845	1,041	1,289	1,658	1,980	2,358	2,617	3,373
oc	0,126		0,842	1,036	1,282	1,645	1,960	2,326	2,576	3,291



$$P(t_{10} > 2,228) = ?$$

$$P(t_{10} > 2,228) = \frac{0,05}{2} = 0,025$$

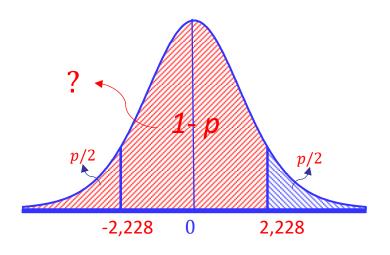


Corpo dá os valores t_c tais que $P(-t_c < t < t_c) = 1 - p$

g,l.	p=0,90	 0,4	0,3	0,2	0,1	0,05	0,02	0,01	0,001
•••		 							
7	0,130	 0,896	1,119	1,415	1,895	2,365	2,998	3,499	5,408
8	0,130	 0,889	1,108	1,397	1,860	2,306	2,896	3,355	5,041
9	0,129	 0,883	1,100	1,383	1,833	2,262	2,821	3,250	4,781
10	0,129	 0,879	1,093	1,372	1,812	2,228	2,764	3,169	4,587
11	0,129	 0,876	1,088	1,363	1,796	2,201	2,718	3,106	4,437
12	0,128	 0,873	1,083	1,356	1,782	2,179	2,681	3,055	4,318
13	0,128	 0,870	1,079	1,350	1,771	2,160	2,650	3,012	4,221
14	0,128	 0,868	1,076	1,345	1,761	2,145	2,624	2,977	4,140
15	0,128	 0,866	1,074	1,341	1,753	2,131	2,602	2,947	4,073
16	0,128	 0,865	1,071	1,337	1,746	2,120	2,583	2,921	4,015
17	0,128	 0,863	1,069	1,333	1,740	2,110	2,567	2,898	3,965
18	0,127	 0,862	1,067	1,330	1,734	2,101	2,552	2,878	3,922
19	0,127	 0,861	1,066	1,328	1,729	2,093	2,539	2,861	3,883
20	0,127	 0,860	1,064	1,325	1,725	2,086	2,528	2,845	3,850
21	0,127	 0,859	1,063	1,323	1,721	2,080	2,518	2,831	3,819
•••		 	•••			•••		•••	
26	0,127	 0,856	1,058	1,315	1,706	2,056	2,479	2,779	3,707
27	0,127	 0,856	1,057	1,314	1,703	2,052	2,473	2,771	3,690
28	0,127	 0,856	1,056	1,313	1,701	2,048	2,467	2,763	3,674
29	0,127	 0,854	1,055	1,311	1,699	2,045	2,462	2,756	3,659
30	0,127	 0,854	1,055	1,310	1,697	2,042	2,457	2,750	3,646
40	0,126	 0,851	1,050	1,303	1,684	2,021	2,423	2,704	3,551
60	0,126	 0,848	1,046	1,296	1,671	2,000	2,390	2,660	3,460
120	0,126	 0,845	1,041	1,289	1,658	1,980	2,358	2,617	3,373
oc	0,126	 0,842	1,036	1,282	1,645	1,960	2,326	2,576	3,291

$$P(t_{10} < 2,228) = ?$$

$$P(t_{10} < 2,228) = 1 - \frac{0,05}{2} = 0,975$$

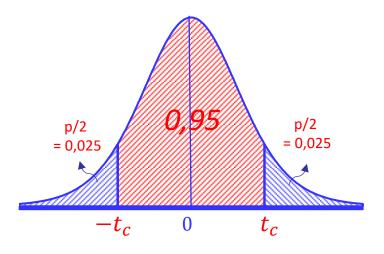


Corpo dá os valores t_c tais que $P(-t_c < t < t_c) = 1 - p$

g,l.	p=0,90	•••	0,4	0,3	0,2	0,1	0,05	0,02	0,01	0,001
•••										
7	0,130		0,896	1,119	1,415	1,895	2,365	2,998	3,499	5,408
8	0,130		0,889	1,108	1,397	1,860	2,306	2,896	3,355	5,041
9	0,129		0,883	1,100	1,383	1,833	2,262	2,821	3,250	4,781
10	0,129		0,879	1,093	1,372	1,812	2,228	2,764	3,169	4,587
11	0,129		0,876	1,088	1,363	1,796	2,201	2,718	3,106	4,437
12	0,128		0,873	1,083	1,356	1,782	2,179	2,681	3,055	4,318
13	0,128		0,870	1,079	1,350	1,771	2,160	2,650	3,012	4,221
14	0,128		0,868	1,076	1,345	1,761	2,145	2,624	2,977	4,140
15	0,128		0,866	1,074	1,341	1,753	2,131	2,602	2,947	4,073
16	0,128		0,865	1,071	1,337	1,746	2,120	2,583	2,921	4,015
17	0,128		0,863	1,069	1,333	1,740	2,110	2,567	2,898	3,965
18	0,127		0,862	1,067	1,330	1,734	2,101	2,552	2,878	3,922
19	0,127		0,861	1,066	1,328	1,729	2,093	2,539	2,861	3,883
20	0,127		0,860	1,064	1,325	1,725	2,086	2,528	2,845	3,850
21	0,127		0,859	1,063	1,323	1,721	2,080	2,518	2,831	3,819
•••										
26	0,127		0,856	1,058	1,315	1,706	2,056	2,479	2,779	3,707
27	0,127		0,856	1,057	1,314	1,703	2,052	2,473	2,771	3,690
28	0,127		0,856	1,056	1,313	1,701	2,048	2,467	2,763	3,674
29	0,127		0,854	1,055	1,311	1,699	2,045	2,462	2,756	3,659
30	0,127		0,854	1,055	1,310	1,697	2,042	2,457	2,750	3,646
40	0,126		0,851	1,050	1,303	1,684	2,021	2,423	2,704	3,551
60	0,126		0,848	1,046	1,296	1,671	2,000	2,390	2,660	3,460
120	0,126		0,845	1,041	1,289	1,658	1,980	2,358	2,617	3,373
œ	0,126		0,842	1,036	1,282	1,645	1,960	2,326	2,576	3,291

$$t_c$$
, tal que
$$P(-t_c < t < t_c) = 0.95$$

 $t_c = 2,228$



GLEICE M S CONCEIÇÃO MARIA DO ROSÁRIO D D LATORRE FSP-USP

Para uma t_{60}

✓ Obtenha as probabilidades:

a)
$$P(t < 2)$$

b)
$$P(t > 2)$$

c)
$$P(-2 < t < 2)$$

d)
$$P(t > -2)$$

✓ Obtenha o valor t_c tal que:

a)
$$P(-t_c < t < t_c) = 0.80$$

b)
$$P(-t_c < t < t_c) = 0.85$$

c)
$$P(-t_c < t < t_c) = 0.90$$

d)
$$P(-t_c < t < t_c) = 0.95$$

e)
$$P(-t_c < t < t_c) = 0.99$$

Para uma t_{60}

✓ Obtenha as probabilidades:

a)
$$P(t < 2) = 1 - \frac{0.05}{2} = 0.975$$

b)
$$P(t > 2) = \frac{0.05}{2} = 0.025$$

c)
$$P(-2 < t < 2) = 1 - 0.05 = 0.95$$

d)
$$P(t > -2) = 1 - \frac{0.05}{2} = 0.975$$

✓ Obtenha o valor t_c tal que:

a)
$$P(-t_c < t < t_c) = 0.80 \Rightarrow t_c = 1.296$$

b)
$$P(-t_c < t < t_c) = 0.85 \Rightarrow t_c = 1.4835$$

c)
$$P(-t_c < t < t_c) = 0.90 \Rightarrow t_c = 1.671$$

d)
$$P(-t_c < t < t_c) = 0.95 \Rightarrow t_c = 2.000$$

e)
$$P(-t_c < t < t_c) = 0.99 \Rightarrow t_c = 2.660$$

Lembrando ...

Teorema Limite Central (TLC)

$$\bar{X} \xrightarrow{n \to \infty} N\left(\mu, \frac{\sigma^2}{n}\right) \implies Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

- Frequentemente, precisamos trabalhar com esta quantidade, mas não conhecemos σ^2 , apenas S^2 .
- ✓ Então, utilizamos um resultado que é uma consequência do TLC:

$$t = \frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t_{(n-1)}$$

 \checkmark A distribuição t não depende de μ e σ^2 , apenas do número de graus de liberdade

Intervalo de confiança para a média μ , quando a variância σ^2 é desconhecida

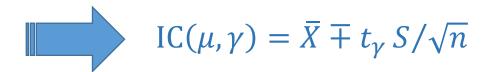
$$t = \frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t_{(n-1)}$$

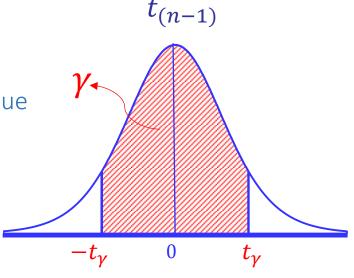
Da mesma forma ...

Fixando γ , podemos encontrar um valor t_{γ} , da distribuição $t_{n\text{-}1}$, tal que

$$P(-t_{\gamma} \le t \le t_{\gamma}) = \gamma \Rightarrow P(-t_{\gamma} \le \frac{\bar{X} - \mu}{S/\sqrt{n}} \le t_{\gamma}) = \gamma$$

E o IC será dado por:



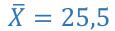




Um pesquisador avaliou os níveis plasmáticos de vitamina A em um grupo de 61 crianças diabéticas com idade até 12 anos, obtendo, para esse grupo, $\bar{X}=25,5~\mu g/dL$ e $S=8,5~\mu g/dL$.

- a) Construa intervalos de confiança para o nível plasmático médio de vitamina A nessa população, com coeficientes de confiança 80%, 85%, 90%, 95% e 99%.
- b) Interprete cada intervalo que você construiu.
- c) O que acontece com o intervalo à medida que aumenta o coeficiente de confiança? Por quê?

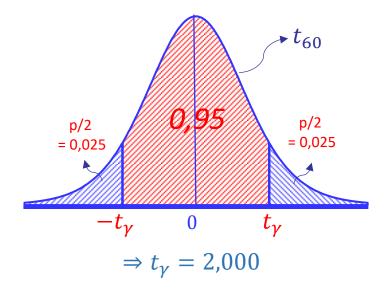
$$IC(\mu, \gamma) = \bar{X} \mp t_{\gamma} S / \sqrt{n}$$



$$S = 8.5$$

$$n = 61$$

$$\gamma = 0.95 \Rightarrow t_{\gamma} = ?$$



$$IC(\mu; 0.95) = 25.5 \mp 2 * 8.5/\sqrt{61}$$

$$IC(\mu; 0.95) = 25.5 \mp 2.177$$

$$IC(\mu; 0.95) = [23.323 : 27.677] \mu g/dL$$

Interpretação: A probabilidade de que o intervalo [23,3 : 27,7] $\mu g/dL$ contenha o nível plasmático **médio** de vitamina A na **população** (μ) de crianças diabéticas até 12 anos é 0,95 ou 95%.

γ	t_{γ}	$t_{\gamma} \frac{S}{\sqrt{n}}$	$IC(\mu, \gamma) = \bar{X} \pm t_{\gamma} \frac{S}{\sqrt{n}}$
0,80	1,296	1,410	24,090 : 26,910
0,85	1,4835	1,615	23,885 : 27,115
0,90	1,671	1,819	23,681 : 27,319
0,95	2,000	2,177	23,323 : 27,677
0,99	2,660	2,895	22,605 : 28,395

- ✓ Nesse caso, à medida que o coeficiente de confiança aumenta, aumenta a amplitude do intervalo.
- ✓ Como poderíamos resolver este problema?

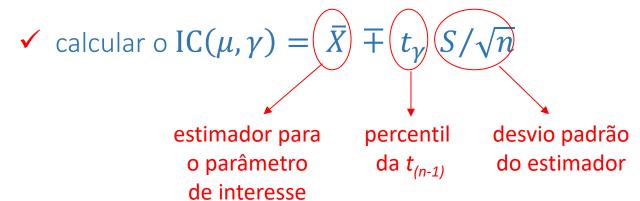
Note que a amplitude do intervalo de confiança

- \checkmark aumenta à medida que o coeficiente de confiança (γ) aumenta
- ✓ aumenta à medida que o desvio padrão (S) aumenta
- ✓ diminui à medida que o tamanho da amostra (n) aumenta

Intervalo de confiança para a média μ , quando a variância σ^2 é desconhecida

Então, para construir um $IC(\mu, \gamma)$, precisamos:

- \checkmark definir γ
- \checkmark procurar na tabela da t_{n-1} o valor t_{γ} tal que $P(-t_{\gamma} \le t \le t_{\gamma}) = \gamma$
- \checkmark coletar uma amostra de tamanho $n: x_1, x_2, ..., x_n$
- \checkmark calcular \bar{X} e S



O QUE VOCÊ PRECISA SABER...

Em resumo...

Teorema Limite Central (TLC)

$$\checkmark$$
 $E(X) = \mu$, $VAR(X) = \sigma^2$

$$\sqrt{X} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Então:
$$\bar{X} \xrightarrow{n \to \infty} N\left(\mu, \frac{\sigma^2}{n}\right)$$

- ✓ Isto é, para n grande:
 - \checkmark \bar{X} tem distribuição Normal
 - \checkmark Com esperança (média) igual à da variável original $\rightarrow E(X) = \mu$
 - ✓ Com variância igual à da variável original dividida por n → $VAR(X) = \frac{\sigma^2}{n}$
- \checkmark Entretanto, se X já tiver distribuição Normal, \bar{X} será Normal, não importa o valor de $\eta_{MARIA DO ROSÁRIO D D LATORR$

Em resumo...

Teorema Limite Central (TLC)

$$\bar{X} \xrightarrow{n \to \infty} N\left(\mu, \frac{\sigma^2}{n}\right) \implies Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

- Frequentemente, precisamos trabalhar com esta quantidade, mas não conhecemos σ^2 , apenas S^2 .
- ✓ Então, utilizamos um resultado que é uma consequência do TLC:

$$t = \frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t_{(n-1)}$$

 \checkmark A distribuição t não depende de μ e σ^2 , apenas do número de graus de liberdade

Em resumo...

Parâmetro

Intervalo de confiança com coeficiente de confiança y

$$\bar{X} \pm z_{\gamma} \frac{\sigma}{\sqrt{n}}$$

$$\bar{X} \pm t_{\gamma} \frac{S}{\sqrt{n}}$$

$$\hat{p} \pm z_{\gamma} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$\hat{p} \pm z_{\gamma} \sqrt{\frac{1}{4n}}$$

Interpretação de um IC

A probabilidade de que o IC contenha o verdadeiro valor do parâmetro é γ .