Lista de Exercícios - Bloco 4 "Redes de Petri"

1. Construa os gráficos das Redes de Petri seguintes.

A = conjunto de arcos definidos pela tabela:

Transição	Pré-set Pós-set	
t1	p1	p2
t2	p2, p4, p7, p14	р3
t3	р3	p4, p5
t4	p4, p5	p6
t5	p6	p7, p8
t6	p7, p8	p9
t7	р9	p2, p10
t8	p2, p10	p2, p11
t9	p11	p4, p7, p12, p15
t10	p12	p14
t11	p15	p14

- a.1) Verifique as propriedades da vivacidade, reversibilidade e segurança.
- **a.2)** Caso alguma delas não esteja sendo respeitada, promova as alterações necessárias para contemplar essas propriedades.

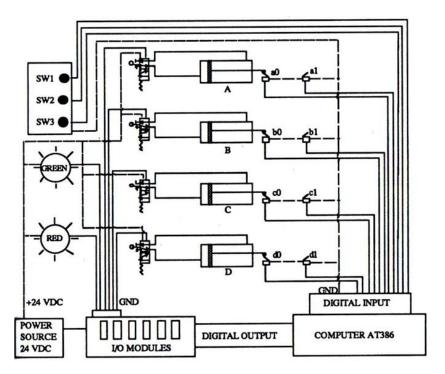
A = conjunto de arcos definidos pela tabela:

Transição	Pré-set	Pós-set	
t1	p1, p9	p2	
t2	p2, p10	р3	
t3	р3	p4	
t4	p4	p1, p9, p10	
t5	p5, p10	p6	
t6	р6	p7	
t7	p7	p8	
t8	p8	p5, p9, p10	

- b.1) Verifique as propriedades da vivacidade, reversibilidade e segurança.
- **b.2)** Caso alguma delas não esteja sendo respeitada, promova as alterações necessárias para contemplar essas propriedades.

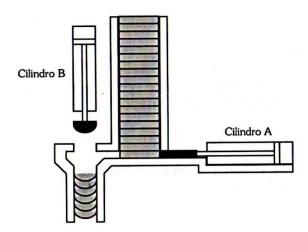
A = conjunto de arcos definidos pela tabela:

Transição	Pré-set	Pós-set
t1	p1	p2
t2	p1	p5
t3	p2	р3
t4	p2	p8
t5	p5	p8
t6	p5	p6
t7	р3	p4
t8	p4	p1
t9	p6	p7
t10	p7	p1


- **c.1)** Verifique as propriedades da vivacidade, reversibilidade e segurança.
- **c.2)** Caso alguma delas não esteja sendo respeitada, promova as alterações necessárias para contemplar essas propriedades.

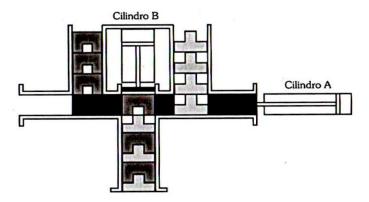
2. Modelar por rede de Petri o seguinte sistema produtivo:

Dois operadores, O1 e O2, operam 3 máquinas, M1, M2 e M3. O1 pode operar M1 ou M2 e O2 pode operar M1 ou M3. O processamento das peças se inicia por M1. Considerar as seguintes condições:

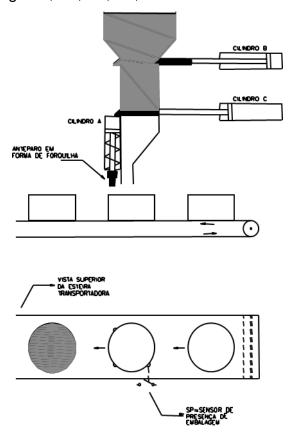

- Máquina M1 livre e ocupada;
- Máquina M2 livre e ocupada;
- Máquina M3 livre e ocupada;
- Operador O1 livre, ocupado com a máquina M1 e ocupado com a máquina M2;
- Operador O2 livre, ocupado com a máquina M1 e ocupado com a máquina M3;
- Buffer entre as máquinas M1 e M2, com capacidade de 2 peças;
- Buffer entre as máquinas M1 e M3, com capacidade de 2 peças.

3. Construa uma Rede de Petri para representar o seguinte sistema eletro-pneumático, em que os pistões são responsáveis por posicionar serras de corte para cortar peças metálicas.

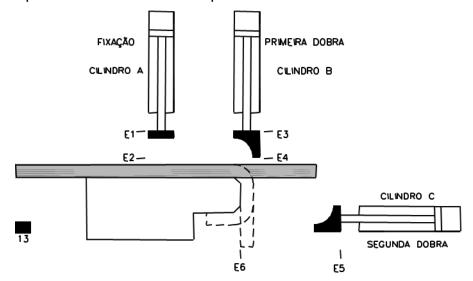
Considere a seguinte sequência de operação: A+, B+,{A- e C+}, {B- e D+}, C-, D-.


4. Considere o seguinte sistema para curvar peças circulares:

A sequência de operações dos cilindros deve ser A+, B+, B-, A-, onde nas posições recolhidas e expandidas são colocados sensores NA com tags A0, A1, B0 e B1.

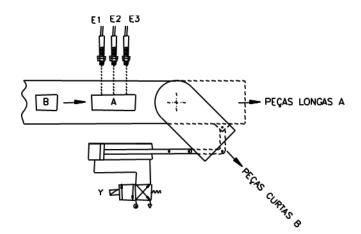

- a) Desenvolva a Rede de Petri operacional do sistema. Considere uma botoeira L/D para comandas os cilindros.
- **b)** Faça o diagrama lader da rede acima.

5. Considere o dispositivo de encaixar peças abaixo:


- a) Descreva a sequência de operações dos cilindros.
- b) Desenvolva a Rede de Petri operacional. Considere uma botoeira L/D para ligar e desligar o sistema e sensores NA de fim de curso nos dois pistões.
- c) Faça o diagrama lader da rede acima.

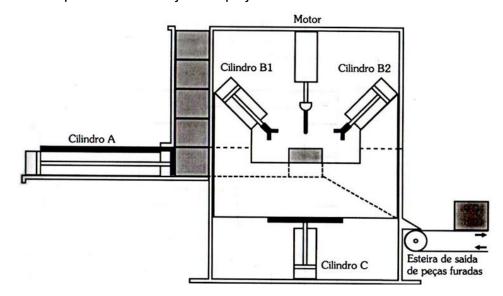
6. Considere o processo de enchimento abaixo. Nesse processo, a sequência de operações é dada por: A+, B+, C-, C+, A-, B-. Nas posições recolhidas e expandidas são colocados sensores NA com as tags A0, A1, B0, B1, C0 e C1.

- a) Considere uma variável virtual para diferenciar estados físicos semelhantes e desenvolva a Rede de Petri.
- b) Faça o diagrama lader da rede acima.


7. Considere o processo de dobra de chapas abaixo:

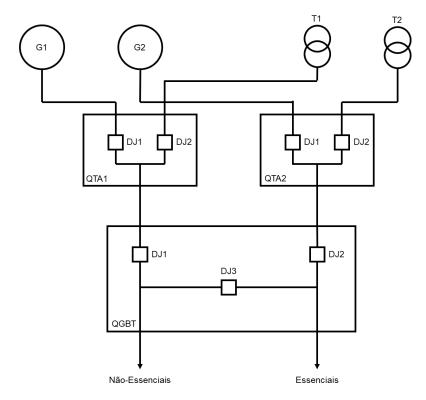
Nas posições recolhidas e expandidas dos cilindros são colocados sensores NA de fim de curso com os tags E1, E2, E3, E4, E5 e E6.

- a) Descreva a sequência de operações dos cilindros.
- **b)** Desenvolva a Rede de Petri operacional. Considere uma botoeira L/D para comandar os cilindros.
- c) Faça o diagrama lader da rede acima.


8. Considere o sistema de transferência de material em esteiras transportadoras.

Peças longas tipo A detectadas pelos sensores simultaneamente são enviadas para a esteira, continuando o percurso. Peças curtas tipo B são transferidas utilizando-se o desviador para outro percurso.

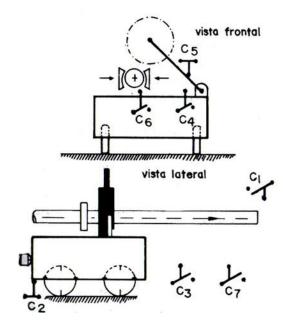
- a) Desenvolva a Rede de Petri operacional do sistema. Considere uma botoeira L/D para comandar os cilindros.
- b) Faça o diagrama lader da rede acima.


9. Considere o dispositivo de furação de peças abaixo.

Nas posições recolhidas e expandidas dos cilindros são colocados sensores NA de fim de curso com os tags A0, A1, B1-0, B1-1, B2-0, B2-1, C0 e C1.

- a) Descreva a sequência de operações dos cilindros.
- **b)** Desenvolva a Rede de Petri operacional do sistema. Considere uma botoeira L/D para comandas os cilindros.
- c) Faça o diagrama lader da rede acima.

10. A instalação elétrica de um museu tem sua distribuição interna de energia elétrica segundo o unifilar abaixo.


O automatismo do sistema elétrico deve seguir as seguintes regras:

- O gerador de um quadro de transferência automática (QTA) não pode ser ligado ao mesmo tempo que o transformador desse mesmo quadro, pois não é possível realizar o paralelismo entre eles;
- Todas as cargas são alimentadas prioritariamente pelos transformadores;
- Quando há falta de energia nos transformadores (indicada pelos relés R27_T1 e R27_T2), as cargas devem ser atendidas pelos geradores;
- Os geradores possuem boias (B1 e B2) que indicam se há combustível;
- Cada fonte de energia (geradores e transformadores) consegue alimentar apenas uma das cargas (essenciais ou não essenciais);
- Na falta de fontes suficientes para as duas cargas, as essenciais devem ser priorizadas.

Lista de E/S do Controlador						
Entradas		Saídas				
0	Estado DJ1_QTA1	0	Comando DJ1_QTA1			
1	Estado DJ2_QTA1	1	Comando DJ2_QTA1			
2	Estado DJ1_QTA2	2	Comando DJ1_QTA2			
3	Estado DJ2_QTA2	3	Comando DJ2_QTA2			
4	Estado DJ1_QGBT	4	Comando DJ1_QGBT			
5	Estado DJ2_QGBT	5	Comando DJ2_QGBT			
6	Estado DJ3_QGBT	6	Comando DJ3_QGBT			
7	Relé R27_T1					
8	Relé R27_T2					
9	Bóia B1					
10	Bóia B2					

- **a)** Elabore o diagrama unifilar e as tabelas verdades para os estados dos disjuntores para cada modo operacional.
- **b)** Elabore o diagrama lader baseado nas tabelas verdade.

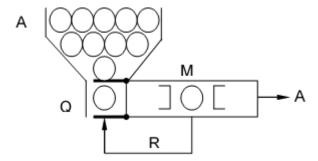
11. Considere o sistema de corte de tubos mostrado abaixo.

Um tubo em processo de extrusão contínua deve ser serrado em barras de comprimento padronizado. O mesmo é processado numa velocidade constante – Vt. Quando o mesmo atinge Pr (ponto de referência), um carrinho sai da posição P0 ao atingir P1 terá velocidade vc ≈ vt. Nessa condição a morsa prende o tubo e a serra circular executa o corte retornando a posição original. Em seguida o acionamento do carro é invertido através de frenagem por contra corrente e este ao atingir uma posição P2 é desligado voltando a P0 por inércia

Considere as variáveis de entrada e saída do sistema.

Variáveis de entrada:

- C1: tubo na posição para partir o carro
- C2: posição inicial do carrinho P0
- C3: posição P1 que irá informar o fechamento da morsa
- C4: fim do curso inferior da serra
- C5: fim do curso superior da serra
- C6: fechamento da morsa
- C7: desligamento do acionamento do carro em P2


Variáveis de saída

- CF: carro a frente
- CR: carro em retorno
- M: Morsa energizada
- SD: Serra desce
- SS: Serra sobe
- a) Desenvolva a Rede de Petri operacional. Considere uma botoeira L/D para ligar e desligar o sistema. Tendo em vista que existem dois estados operacionais físicos idênticos, crie uma terceira variável virtual par diferenciar esses estados
- b) Faça o diagrama lader da rede desenvolvida

PEA 3413 – Automação de Sistemas Industriais

Prof. Cícero Couto de Moraes

c) Considere agora duas possibilidades de falhas no sistema: a primeira caracterizada pela morsa ser acionada e a mesma não responder à solicitação e a segunda falha caracterizada pelo o sensor C5, permanecer atuado mesmo com o retorno da serra para a posição original. Para os dois casos repita os itens a e b 12. Considere a célula de manufatura abaixo.

O sistema realiza a usinagem, inspeção e, se necessário, um retrabalho da seguinte maneira: quando o sistema Q está disponível, a primeira peça da fila de entrada é usinada por uma máquina M; em seguida a peça P é inspecionada e, se defeituosa, é reprocessada pela máquina, com prioridade em relação às outras peças da fila de entrada.

Os eventos de entrada do sistema são as alterações mostradas das variáveis Q, M e P, onde:

- Q = sistema livre ou ocupado;
- M = máquina livre ou ocupada;
- P = peça aprovada ou rejeitada pela inspeção.
- a) Desenvolva o modelo da rede de Petri;
- b) Faça o diagrama lader da rede acima.