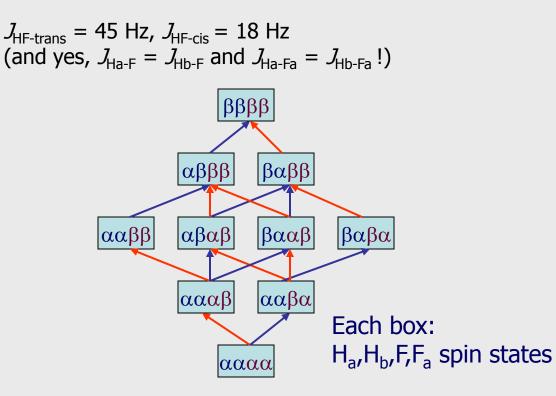

Magnetic Equivalence (Revisited)

Remember the following example:

1,1-difluroethene

- The two protons are chemically equivalent
- The two protons are not magnetically equivalent as they each have a different coupling constant to F (and respectively F_a)


The confusion arises from the fact that although the two protons are not (by definition) magnetically equivalent, any difference in coupling constant to F and F_a respectively would be degenerate in energy

Magnetic Equivalence (Revisited)

Looking at the various spin states, you can see why there are spectral consequences for magnetic non-equivalence:

Let's use a to show α spin + $\frac{1}{2}$ and β to show spin - $\frac{1}{2}$

- 1. Spectra that can be analyzed and interpereted by the n+1 rule or the analysis we just covered are first-order spectra
- 2. Second order spectra are those that require advanced analysis due to the effects of:
 - Magnetic non-equivalence
 - The difference in chemical shift (v, in Hz) between the two protons that are coupled is similar to the coupling constant (J)
- 3. We will consider $\Delta v/J$:
 - For $\Delta v/J > 10$, the pattern becomes first order and we say the two are weakly coupled
 - For $\Delta v/J < 10$, the pattern becomes second-order and we say the two protons are strongly coupled

Second-Order Spectra – Some nomenclature

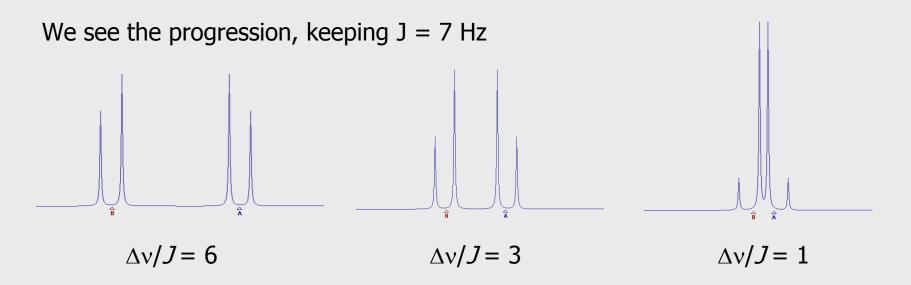
- 1. There are general patterns for the finite number of possibilities for groups of coupled ¹Hs
- 2. Nuclei that are engaged in mutual coupling constitute a *spin system*
- 3. Each chemically distinct proton is assigned a letter, A,B,C...
 - If these protons are chemically and magnetically equivalent, they are subscripted like a chemical formula: A₂, B₂, etc.
 - If these protons are chemically equivalent, but not magnetically they are designated as AA', BB', etc.
- 4. If a pair protons are very different in chemical shift, they are assigned letters far apart in the alphabet X, Y, Z
- 5. If three sets of protons are involved, with widely spaced chemical shift, an intermediate letter is used, M, N, etc.


A2, AB and AX spin systems

Starting with a very simple spin system – two vicinal protons, J = 7 Hz

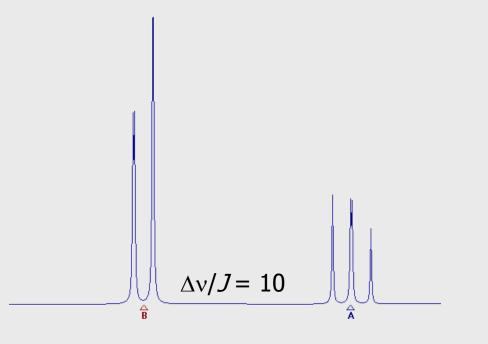
If $\Delta v/J$ is large, a first order spectrum results – and we say the spin system is "AX" and weakly coupled (respective to chemical shift)

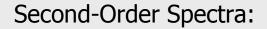
H_a H_b


We see the expected first order spectrum – two doublets

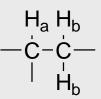
A₂, AB and AX spin systems

 $\begin{array}{c} H_a H_b \\ -\dot{C} - \dot{C} - \\ | & | \end{array}$

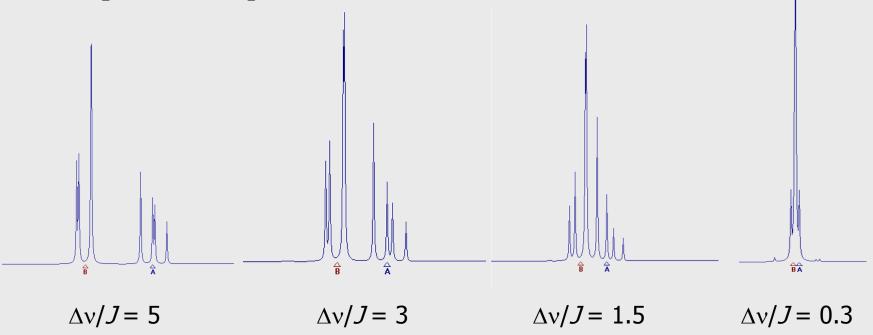

As $\Delta v/J$ becomes smaller, second order effects come into play, the energy levels of coupling overlap with those of chemical shift – and we say the spin system is "AB" and becoming strongly coupled



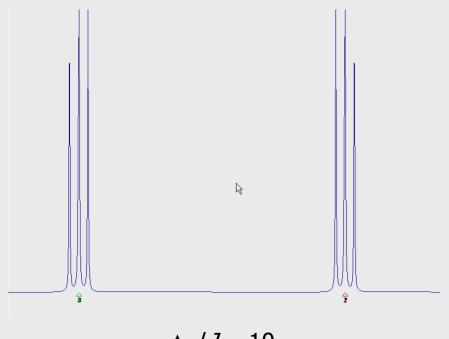
AX₂, AB₂ spin systems



When $\Delta v/J$ is large, we see the first-order spectrum that we would expect – a doublet and triplet:



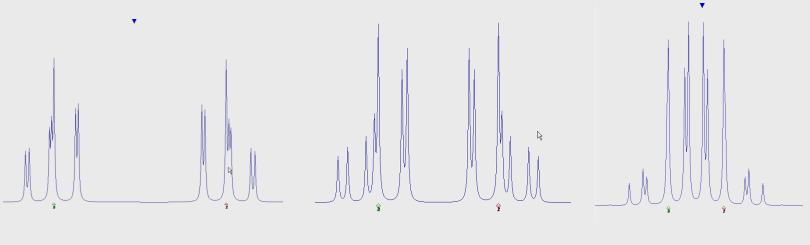
 AX_2 , AB_2 spin systems


Again we see the progression into second-order behavior as $\Delta v/J$ is decreased; AX₂ becomes AB₂:

 A_2X_2 , A_2B_2 spin systems

 $\begin{array}{c} \mathsf{H}_{a}\,\mathsf{H}_{b}\\ -\dot{\mathsf{C}}-\dot{\mathsf{C}}-\\ \overset{'}{\mathsf{H}}_{a}\overset{'}{\mathsf{H}}_{b}\end{array}$

When $\Delta v/J$ is large, we see the first-order spectrum that we would expect – a pair of triplets:

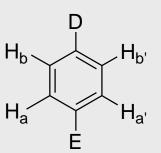

 $\Delta v/J = 10$

 A_2X_2 , A_2B_2 spin systems

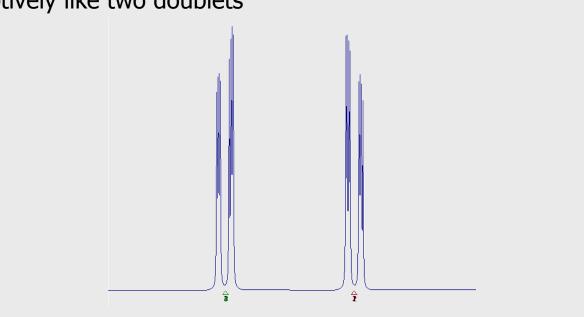
 $-C-C-H_{a}H_{b}$

 $H_a H_b$

Now we will expect to see second order effects as becomes smaller; A_2X_2 becomes A_2B_2 :

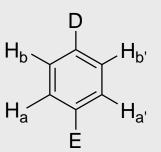


 $\Delta v/J = 6$

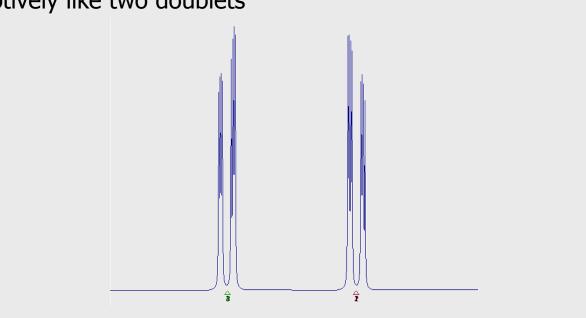

 $\Delta v/J = 3$

 $\Delta v/J = 1$

AA'XX', AA'BB' spin systems – here we see the consequence of magnetic non-equivalence

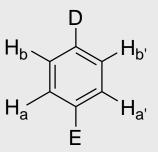


Starting out; $\underline{J}_{ortho} = 10$ Hz, $J_{meta} = 3$ Hz, $J_{para} = 0$ Hz: the spectrum looks deceptively like two doublets

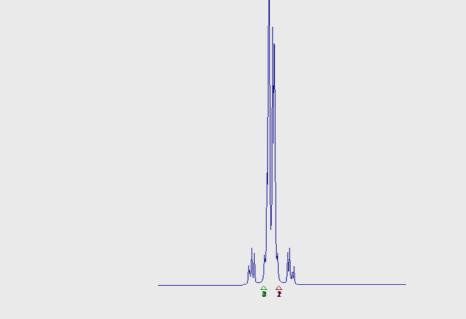


 $\Delta v/J = 10$, when D and E are very different electronegatively

AA'XX', AA'BB' spin systems – here we see the consequence of magnetic non-equivalence



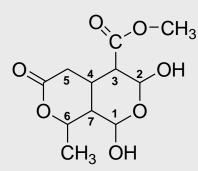
Starting out; $\underline{J}_{ortho} = 10$ Hz, $J_{meta} = 3$ Hz, $J_{para} = 0$ Hz: the spectrum looks deceptively like two doublets



 $\Delta v/J = 10$, when D and E are very different electronegatively

AA'XX', AA'BB' spin systems – here we see the consequence of magnetic non-equivalence

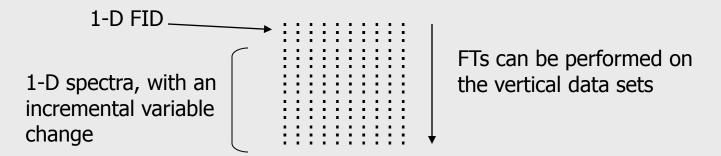
Starting out; $\underline{J}_{ortho} = 10$ Hz, $J_{meta} = 3$ Hz, $J_{para} = 0$ Hz: as D and E approach one another as far as electronegativity, we clearly see the 2nd order effect:


 $\Delta v/J = 1$, when D and E are similar electronegativity

Second-Order Spectra – How are they analyzed?

- 1. Second order spectra can not be analyzed by traditional methods of comparison of *J*-values
- 2. Some of the simple patterns are recognizable to an experienced NMR analyst and can be used to interpret a spectrum
- More complex spin systems are typically analyzed by spectral simulation software – the various expected *J*-values and differences in chemical shift can be entered and a theoretical spectrum produced
- This software WINDNMR, developed by Hans Reich at the University of Wisconsin, Madison, was used to produce the spectral patterns in this lecture – it is freeware available for download
- 5. More sophisticated software is available, and is usually part of any NMR processing package

Advanced Homework Assignment II:


1. Based on your knowledge of first-order coupling patterns and the ability to use tables of *J*-values, make the stereochemical assignments for xylomollin, a secoiridoid-type monoterpene:

Н	δ	mult	Js (Hz)
1	5.88	d	3
2	5.48	d	8
3	2.59	dd	10, 8
4	3.00	dddd	12, 10, 10, 5
5a	2.49	dd	17, 5
5b	2.54	dd	17, 12
6	4.52	dq	10, 7
7	1.75	ddd	10, 10, 3

A quick look at 2-D NMR techniques:

- 1. In actuality, the techniques we have already covered ¹H, ¹³C, and DEPT are 2-D (frequency vs. intensity) however, by tradition the intensity component is dropped when discussing dimensionality
- 2. In the following techniques, many FIDs (proto-NMR spectra) are taken one after another, with some acquisition variable or pulse sequenced varied by small increments
- 3. Since each FID is a collection of digitized data points in the first dimension (say 10 points to make a spectrum) if 10 spectra are accumulated with an incremental change in variable, an FT can be performed in the other dimension

