ENGENHARIA DE MATERIAIS

Mecânica dos Fluidos e Reologia

Prof. Dr. Sérgio R. Montoro

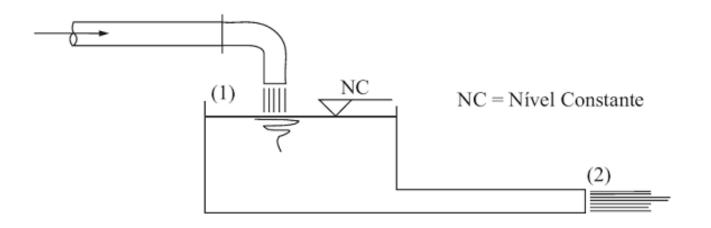
sergio.montoro@usp.br

srmontoro@dequi.eel.usp.br

AULA 5 CINEMÁTICA DOS FLUIDOS EXERCÍCIOS

REGIMES OU MOVIMENTOS VARIADO E PERMANENTE

Regimes ou movimentos variado e permanente


Regime permanente é aquele em que as propriedades do fluido são invariáveis em cada ponto com o passar do tempo.

Isso significa que, apesar de um certo fluido estar em movimento, a configuração de suas propriedades em qualquer instante permanece a mesma.

Um exemplo prático disso será o escoamento pela tubulação do tanque da figura a seguir, desde que o nível dele seja mantido constante.

Regimes ou movimentos variado e permanente

Nesse tanque, a quantidade de água que entra em (1) é idêntica à quantidade de água que sai por (2); nessas condições, a configuração de todas as propriedades do fluido, como velocidade, massa específica, pressão, etc., será, em cada ponto, a mesma em qualquer instante.

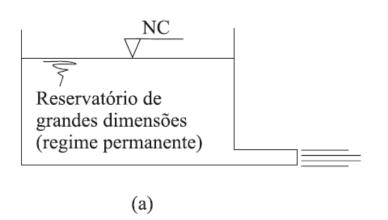
Regimes ou movimentos variado e permanente

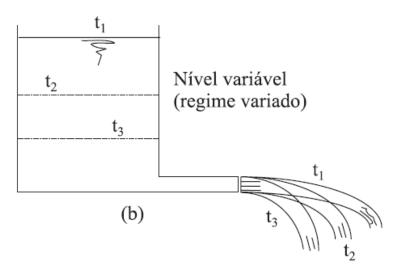
Regime variado é aquele em que as condições do fluido em alguns pontos ou regiões de pontos variam com o passar do tempo. Se no exemplo da figura anterior não houver fornecimento de água por (1), o regime será variado em todos os pontos.

Denomina-se reservatório de grandes dimensões um reservatório do qual se extrai ou no qual se admite fluido, mas, devido à sua dimensão transversal muito extensa, o nível não varia sensivelmente com o passar do tempo.

Regimes ou movimentos variado e permanente

Em um reservatório de grandes dimensões, o nível mantém-se aproximadamente constante com o passar do tempo, de forma que o regime pode ser considerado aproximadamente permanente.


A figura (a) mostra um reservatório de grandes dimensões, em que, apesar de haver uma descarga do fluido, o nível não varia sensivelmente com o passar do tempo, e o regime pode ser considerado permanente.



CINEMÁTICA DOS FLUIDOS

Regimes ou movimentos variado e permanente

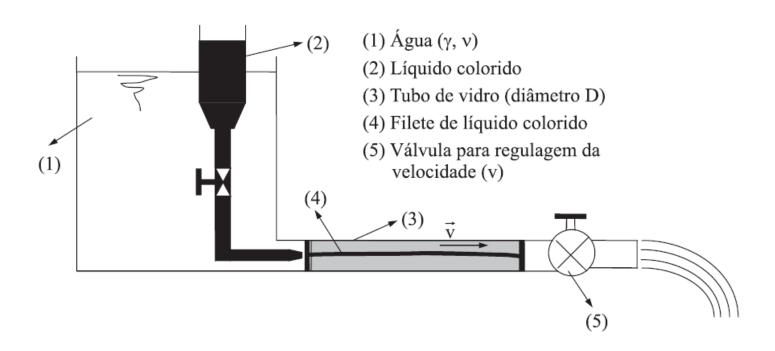
Regimes ou movimentos variado e permanente

A figura (b) mostra um reservatório em que a seção transversal é relativamente pequena em face da descarga do fluido. Isso faz com que o nível dele varie sensivelmente com o passar do tempo, havendo uma variação sensível da configuração do sistema, caracterizando um regime variado.

ESCOAMENTO LAMINAR E TURBULENTO

Escoamento laminar e turbulento

Para definir esses dois tipos de escoamentos, recorre-se à experiência de Reynolds (1883), que demonstrou a sua existência.


Seja, por exemplo, um reservatório que contém água. Um tubo transparente é ligado ao reservatório e, no fim deste, uma válvula permite a variação da velocidade de descarga da água. No eixo do tubo é injetado um líquido corante do qual se deseja observar o comportamento, conforme mostrado na figura a seguir.

CINEMÁTICA DOS FLUIDOS

Escoamento laminar e turbulento

Escoamento laminar e turbulento

Nota-se que ao abrir pouco a válvula, portanto para pequenas velocidades de descarga, forma-se um filete reto e contínuo de fluido colorido no eixo do tubo (3). Ao abrir mais a válvula (5), o filete começa a apresentar ondulações e finalmente desaparece a uma pequena distância do ponto de injeção. Nesse último caso, como o nível (2) continua descendo, conclui-se que o fluido colorido é injetado, mas, devido a movimentos transversais do escoamento, é totalmente diluído na água do tubo (3).

Escoamento laminar e turbulento

Esses fatos denotam a existência de dois tipos de escoamentos separados por um escoamento de transição.

No primeiro caso, em que é observável o filete colorido reto e contínuo, conclui-se que as partículas viajam sem agitações transversais, mantendo-se em lâminas concêntricas, entre as quais não há troca macroscópica de partículas.

Escoamento laminar e turbulento

No segundo caso, as partículas apresentam velocidades transversais importantes, já que o filete desaparece pela diluição de suas partículas no volume de água.

Escoamento laminar é aquele em que as partículas se deslocam em lâminas individualizadas, sem trocas de massa entre elas.

Escoamento turbulento é aquele em que as partículas apresentam um movimento aleatório macroscópico, isto é, a velocidade apresenta componentes transversais ao movimento geral do conjunto do fluido.

Escoamento laminar e turbulento

O escoamento laminar é o menos comum na prática, mas pode ser visualizado num filete de água de uma torneira pouco aberta ou no início da trajetória seguida pela mudança de um cigarro, já que a uma certa distância dele notam-se movimentos transversais.

Reynolds verificou que o fato de o movimento ser laminar ou turbulento depende do valor do número adimensional dado por:

Escoamento laminar e turbulento

$$Re = \frac{\rho vD}{\mu} = \frac{vD}{v}$$

Esta expressão se chama número de Reynolds e mostra que o tipo de escoamento depende do conjunto de grandezas ν , D e ν , e não somente de cada uma delas.

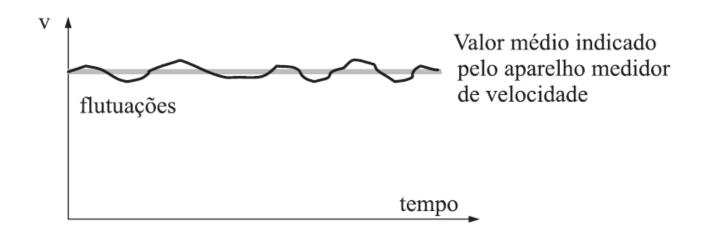
Escoamento laminar e turbulento

Reynolds verificou que, no caso de tubos, seriam observados os seguintes valores:

Re < 2000 Escoamento laminar

2000 < Re < 2400 Escoamento de transição

Re > 2400 Escoamento turbulento


Escoamento laminar e turbulento

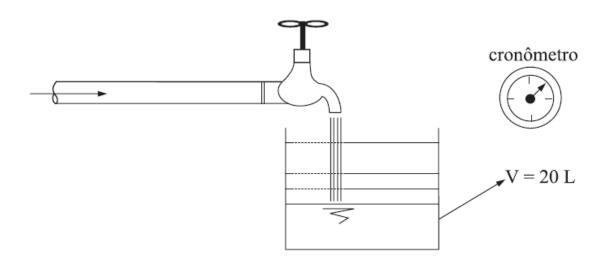
Note-se que o movimento turbulento é variado por natureza, devido às flutuações da velocidade de cada ponto. Pode-se, no entanto, muitas vezes, considerá-lo permanente, adotando em cada ponto a média das velocidades em relação ao tempo.

Esse fato é comprovado na prática, já que somente aparelhos muito sensíveis conseguem indicar as flutuações dos valores das propriedades de cada ponto.

Escoamento laminar e turbulento

A maioria dos aparelhos, devido ao fato de apresentarem uma certa inércia na medição, indicará um valor permanente em cada ponto que corresponderá exatamente à média citada anteriormente.

Escoamento laminar e turbulento


Assim, mesmo que o escoamento seja turbulento, poderá, em geral, ser admitido como permanente em média nas aplicações.

VAZÃO VELOCIDADE MÉDIA NA SEÇÃO

Vazão - Velocidade média na seção

A vazão em volume pode ser definida facilmente pelo exemplo da figura a seguir.

Vazão - Velocidade média na seção

Suponha-se que, estando a torneira aberta, seja empurrado o recipiente da figura anterior embaixo dela e simultaneamente seja disparado o cronômetro. Admita-se que o recipiente encha em 10 s.

Pode-se então dizer que a torneira enche 20 L em 10 s ou que a vazão em volume da torneira é 20 L/10 s = 2 L/s.

CINEMÁTICA DOS FLUIDOS

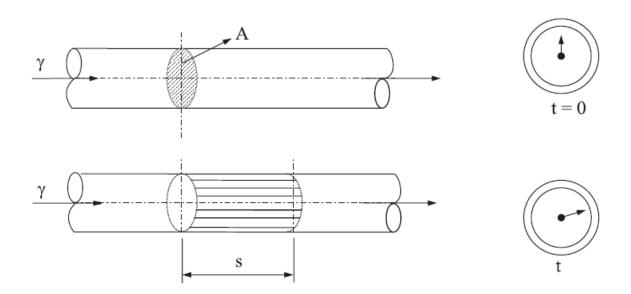
Vazão – Velocidade média na seção

Define-se vazão em volume Q como o volume de fluido que atravessa uma certa seção do escoamento por unidade de tempo.

$$Q = \frac{V}{t}$$

Vazão - Velocidade média na seção

As unidades correspondem à definição: m³/s, L/s, m³/h, L/min, ou qualquer outra unidade de volume ou capacidade por unidade de tempo.


Existe uma relação importante entre a vazão em volume e a velocidade do fluido, conforme mostrada na figura a seguir.

CINEMÁTICA DOS FLUIDOS

Vazão - Velocidade média na seção

Vazão - Velocidade média na seção

Suponha-se o fluido em movimento da figura.

No intervalo de tempo t, o fluido se desloca através da seção de área A a uma distância s.

O volume de fluido que atravessa a seção de área A no intervalo de tempo t é V = sA.

Logo, a vazão será:

CINEMÁTICA DOS FLUIDOS

Vazão - Velocidade média na seção

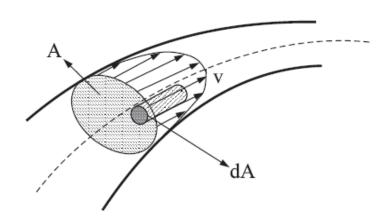
$$Q = \frac{V}{t} = \frac{sA}{t}$$

mas

$$\frac{S}{t} = v$$

Logo:

$$Q = v.A$$


Vazão - Velocidade média na seção

É claro que essa expressão só seria verdadeira se a velocidade fosse uniforme na seção.

Na maioria dos casos práticos, o escoamento não é unidimensional; no entanto, é possível obter uma expressão do tipo da equação Q = v A definindo a velocidade média na seção.

Vazão – Velocidade média na seção

Obviamente, para o cálculo da vazão, não se pode utilizar a equação anterior, pois v é diferente em cada ponto da seção.

CINEMÁTICA DOS FLUIDOS

Vazão – Velocidade média na seção

Adotando um dA qualquer entorno de um ponto em que a velocidade genérica é v, como mostrado na figura anterior, tem-se:

$$dQ = v dA$$

Logo, a vazão na seção de área A será:

$$Q = \int_{A} v dA$$

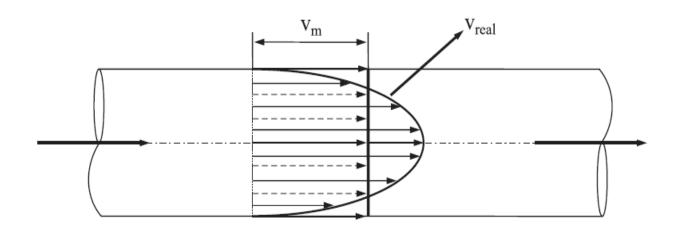
CINEMÁTICA DOS FLUIDOS

Vazão – Velocidade média na seção

Define-se velocidade média na seção como uma velocidade uniforme que, substituída no lugar da velocidade real, reproduziria a mesma vazão na seção.

Logo:

$$Q = \int_{A} v dA = v_m A$$


CINEMÁTICA DOS FLUIDOS

Vazão - Velocidade média na seção

Dessa igualdade, surge a expressão para o cálculo da velocidade

média na seção:

$$v_m = \frac{1}{A} \int_A v dA$$

CINEMÁTICA DOS FLUIDOS

Outras definições:

Assim como se define a vazão em volume, podem ser analogamente definidas as vazões em massa (Q_m) e em peso (Q_G) .

$$Q_m = \frac{m}{t}$$
 onde m = massa de fluido

$$Q_G = \frac{G}{t}$$
 onde G = peso de fluido

CINEMÁTICA DOS FLUIDOS

Outras definições:

Pela equação:

$$Q_m = v_m A$$
 mas $Q_m = \frac{m}{t} = \frac{\rho V}{t}$

Logo:

$$Q_m = \rho Q = \rho v_m A$$

e

$$Q_G = \frac{G}{t} = \frac{\gamma V}{t}$$

CINEMÁTICA DOS FLUIDOS

Outras definições:

Ou

$$Q_G = \gamma Q = \gamma v_m A$$

Por outro lado,

$$Q_G = \gamma Q = \rho g Q$$

e

$$Q_G = gQ_m$$

◆ As unidades de vazão em massa serão kg/s, kg/h e qualquer outra que indique massa por unidade de tempo.

◆ As unidades de vazão em peso serão kgf/s, N/s, kgf/h e qualquer outra que indique peso por unidade de tempo.

EXPERIÊNCIA DE REYNOLDS DETERMINAÇÃO DO REGIME DE ESCOAMENTO

Experiência de Reynolds — Determinação do Regime do Escoamento

Objetivo

Estudo dos regimes de escoamento dos fluidos a partir da realização da experiência semelhante à de Reynolds com a visualização do escoamento laminar e turbulento.

Introdução Teórica

Experiência de Reynolds

A correta descrição e formulação dos regimes de escoamento dos fluidos só foi proposta entre 1880 e 1884 por Osborne Reynolds. A figura 1 a seguir descreve graficamente o experimento de Reynolds.

Experiência de Reynolds – Determinação do Regime do Escoamento

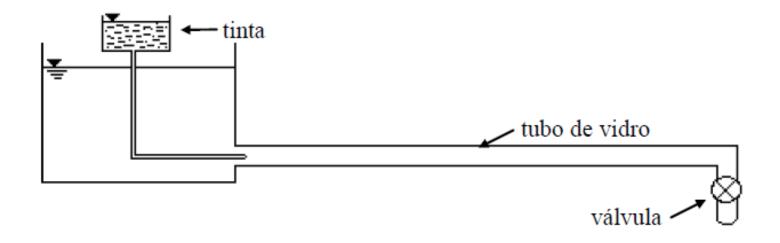


Figura 1 – Aparato utilizado por Reynolds para estabelecer os regimes de escoamento.

Experiência de Reynolds — Determinação do Regime do Escoamento

Ao abrir a válvula, Reynolds nota que ocorrem quatro tipos de fluxos.

a) Vazões baixas: a tinta não se mescla.

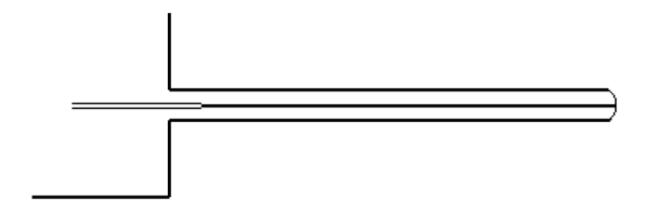


Figura 2 – Filamento de tinta para vazões baixas.

Experiência de Reynolds — Determinação do Regime do Escoamento

Ao abrir a válvula, Reynolds nota que ocorrem quatro tipos de fluxos.

b) Vazões intermediárias: o filamento de tinta começa a apresentar comportamento sinuoso e ligeiramente instável.

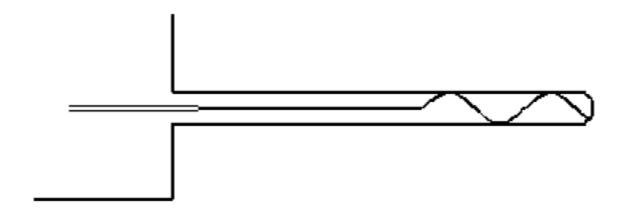


Figura 3 – Filamento de tinta para vazões intermediárias.

Experiência de Reynolds — Determinação do Regime do Escoamento

Ao abrir a válvula, Reynolds nota que ocorrem quatro tipos de fluxos.

c) Vazões altas: A tinta mantêm um movimento instável dentro do fluido até a completa mistura da tinta com o fluido.

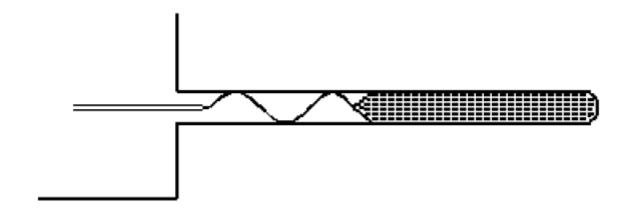


Figura 4 – Filamento de tinta para vazões altas.

Experiência de Reynolds — Determinação do Regime do Escoamento

Ao abrir a válvula, Reynolds nota que ocorrem quatro tipos de fluxos.

d) Vazões mais altas: Logo que a tinta sai do recipiente se mistura completamente com o fluido.

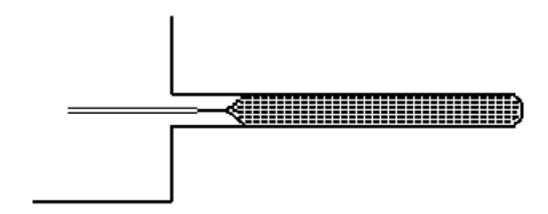


Figura 5 – Filamento de tinta para vazões extremamente altas.

Experiência de Reynolds — Determinação do Regime do Escoamento

Com esta experiência, Reynolds define dois tipos de fluxo:

Laminar — quando a tinta não se mistura. As partículas do fluido movemse em camadas ou lâminas de fluido segundo uma trajetória reta e paralela, sem troca de partículas entre elas.

Turbulento – ocorre quando a tinta se mistura completamente. O escoamento se apresenta com troca de partículas de fluidos entre as camadas, que se movimentam com velocidades diferentes. As partículas não têm um vetor velocidade muito definido.

Experiência de Reynolds — Determinação do Regime do Escoamento

Com esta experiência, Reynolds define dois tipos de fluxo:

Fluxo em Transição — quando o filamento começa a fazer-se instável com a existência de ondulações. É um regime intermediário entre o regime laminar e o turbulento, quando as partículas começam a ter certa instabilidade em seu movimento.

CINEMÁTICA DOS FLUIDOS

Experiência de Reynolds — Determinação do Regime do Escoamento

O número de Reynolds

Reynolds experimentalmente determinou um parâmetro pelo qual o regime de um escoamento pode ser determinado. Mais tarde, tal descoberta recebeu o seu nome.

$$Re = \frac{\rho vD}{\mu} = \frac{vD}{v}$$

Experiência de Reynolds — Determinação do Regime do Escoamento

O número de Reynolds

Para tubos circulares, a longitude significativa da geometria do fluido é o próprio diâmetro. Para valores de número de Reynolds inferiores a 2300, detectou-se o regime laminar e, para valores superiores a 4000, o regime turbulento foi verificado. Valores de Reynolds entre 2300 e 4000, demonstram o regime de transição.

Experiência de Reynolds — Determinação do Regime do Escoamento

PROCEDIMENTO EXPERIMENTAL

Objetivo Específico: Visualização do regime de escoamento no momento da experiência. Cálculo do número de Reynolds e determinação do regime de escoamento a partir do número calculado.

Determinação do número de Reynolds e dos Regimes de escoamento.

Teoria do Método:

A partir do esquema especificado na figura 6, realiza-se a experiência semelhante à de Reynolds realizando um escoamento de água numa tubulação, juntamente com um filete de tinta azul.

Experiência de Reynolds — Determinação do Regime do Escoamento

PROCEDIMENTO EXPERIMENTAL

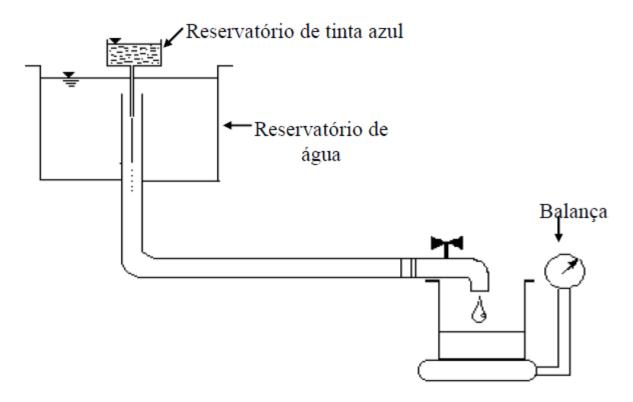


Figura 6 – Esquema da experiência no laboratório

Experiência de Reynolds — Determinação do Regime do Escoamento

PROCEDIMENTO EXPERIMENTAL

Procedimento:

Abre-se a válvula da água e da tinta simultaneamente, deixando a água escoar com uma vazão bem pequena de tal maneira que apareça somente um filete de tinta azul.

Neste instante aciona-se o cronometro e inicia-se a medida da massa na balança até atingir o valor especificado na aula.

Experiência de Reynolds — Determinação do Regime do Escoamento

PROCEDIMENTO EXPERIMENTAL

Procedimento:

Interrompe-se o cronômetro e têm-se então a primeira medida. Descarta-se a água utilizada. Para uma segunda medida, aumenta-se a vazão de água, aciona-se o cronômetro até atingir a massa desejada.

Descarta-se novamente a água. Realiza-se novamente o processo até atingir a quantidade de medidas desejadas, sempre descartando a água anterior e cronometrando o tempo.

Experiência de Reynolds — Determinação do Regime do Escoamento

PROCEDIMENTO EXPERIMENTAL

Procedimento:

Para cada medida, calcula-se o número de Reynolds observando que, como são realizadas medidas de vazão mássica (kg/s), deve-se modificar a equação 1 inicial do número de Reynolds.

Experiência de Reynolds — Determinação do Regime do Escoamento

PROCEDIMENTO EXPERIMENTAL

Procedimento:

A velocidade é calculada como função da vazão mássica:

Vazão mássica: $\dot{m} = \rho Q$

mas vazão Q = V x A, assim: $\dot{m} = \rho V \frac{\pi D^2}{\Delta}$

Experiência de Reynolds — Determinação do Regime do Escoamento

PROCEDIMENTO EXPERIMENTAL

Procedimento:

Invertendo a equação, temos a velocidade:
$$V=\dfrac{4\,\dot{m}}{\pi D^2\,\rho}$$

Aplicando na equação do número de Reynolds e considerando tubos circulares:

Re
$$y = \frac{\rho . D}{\mu} . \frac{4 \dot{m}}{\pi D^2 \rho}$$

Experiência de Reynolds — Determinação do Regime do Escoamento

PROCEDIMENTO EXPERIMENTAL

Procedimento:

Número de Reynolds para valores de Vazão mássica:

$$\operatorname{Re} y = \frac{4 \, \dot{m}}{\pi \mu D}$$

Experiência de Reynolds – Determinação do Regime do Escoamento

PROCEDIMENTO EXPERIMENTAL

Procedimento:

Dados auxiliares:

Fluido: água

 $\rho = 1000 \text{ kg/m}^3$

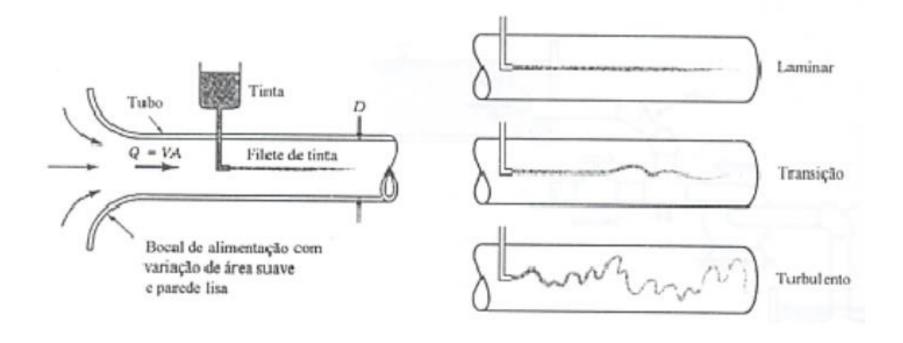
 $\mu = 1,02x10^{-3} \text{ N.s/m}^2$

Diâmetro da tubulação: 0,026 m

Experiência de Reynolds – Determinação do Regime do Escoamento

PROCEDIMENTO EXPERIMENTAL

REGIME DE ESCOAMENTO OBSERVADO	Massa (kg)	Tempo (s)	NÚMERO DE REYNOLDS	REGIME DE ESCOAMENTO

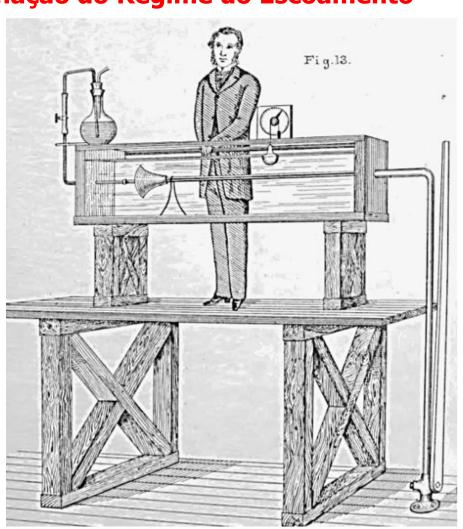


CINEMÁTICA DOS FLUIDOS

Experiência de Reynolds — Determinação do Regime do Escoamento

PROCEDIMENTO EXPERIMENTAL

CINEMÁTICA DOS FLUIDOS


Experiência de Reynolds — Determinação do Regime do Escoamento

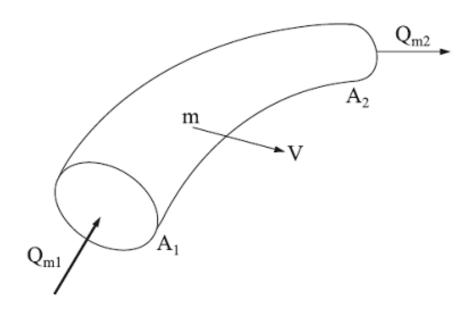
PROCEDIMENTO EXPERIMENTAL

https://www.youtube.com/watch?v=MjujI72PX-k

https://www.youtube.com/watch?v=Kgbo8Eah2QI

https://www.youtube.com/watch?v=K67usCfh84Y

Experiência de Reynolds – Determinação do Regime do Escoamento


https://www.youtube.com/watch?v=MjujI72PX-k

EQUAÇÃO DA CONTINUIDADE PARA REGIME PERMANENTE

Equação da continuidade para regime permanente

Seja o escoamento de um fluido por um tubo de corrente conforme mostrado na figura abaixo. Num tubo de corrente não pode haver fluxo lateral de massa.

Equação da continuidade para regime permanente

Seja a vazão em massa na seção de entrada Q_{m1} e na saída Q_{m2} . Para que o regime seja permanente, é necessário que não haja variação de propriedades, em nenhum ponto do fluido, com o tempo.

Se, por absurdo, $Q_{m1} \neq Q_{m2}$, então em algum ponto interno ao tubo de corrente haveria ou redução ou acúmulo de massa.

Dessa forma, a massa específica nesse ponto variaria com o tempo, o que contrariaria a hipótese de regime permanente.

CINEMÁTICA DOS FLUIDOS

Equação da continuidade para regime permanente

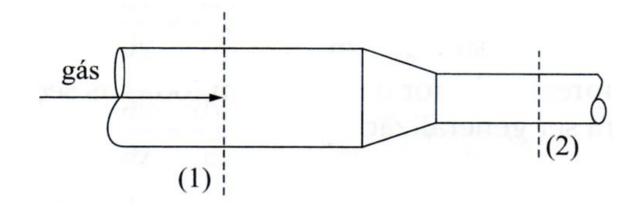
Logo:

$$Q_{m1} = Q_{m2}$$

$$\rho_1 Q_1 = \rho_2 Q_2$$

$$\rho_1 \mathbf{v}_1 \mathbf{A}_1 = \rho_2 \mathbf{v}_2 \mathbf{A}_2$$

Essa é a equação da continuidade para um fluido qualquer permanente.

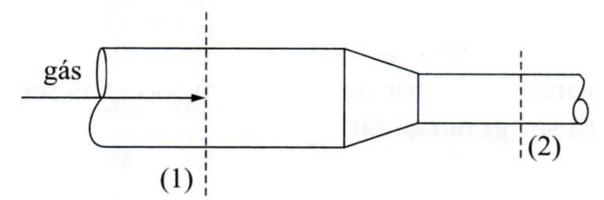


CINEMÁTICA DOS FLUIDOS

Equação da continuidade para regime permanente

EXEMPLO 1

Um gás escoa em regime permanente no trecho de tubulação da figura. Na seção (1), tem-se $A_1 = 20$ cm², $\rho_1 = 4$ kg/m³ e $v_1 = 30$ m/s. Na seção (2), $A_2 = 10$ cm² e $\rho_2 = 12$ kg/m³. Qual a velocidade na seção (2)?



CINEMÁTICA DOS FLUIDOS

Equação da continuidade para regime permanente

EXEMPLO 1 - RESOLUÇÃO

$$Qm_1 = Qm_2$$

Logo:
$$\rho_1 \mathbf{v}_1 \mathbf{A}_1 = \rho_2 \mathbf{v}_2 \mathbf{A}_2$$

Ou:
$$v_2 = v_1 \frac{\rho_1}{\rho_2} \frac{A_1}{A_2}$$

$$v_2 = 30 \times \frac{4}{12} \times \frac{20}{10} = 20 \text{ m/s}$$

CINEMÁTICA DOS FLUIDOS

Equação da continuidade para regime permanente

Se o fluido for incompressível, então a massa específica na entrada e na saída do volume V deverá ser a mesma. Dessa forma, a equação da continuidade ficará:

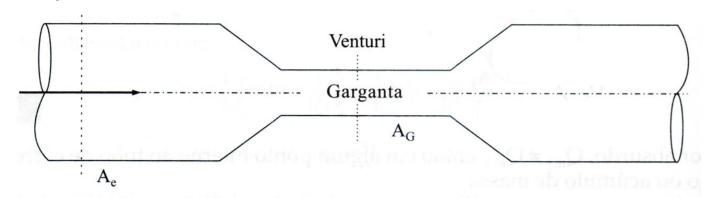
$$\rho Q_1 = \rho Q_2$$

$$Q_1 = Q_2$$

$$v_1A_1 = v_2A_2$$

Equação da continuidade para regime permanente

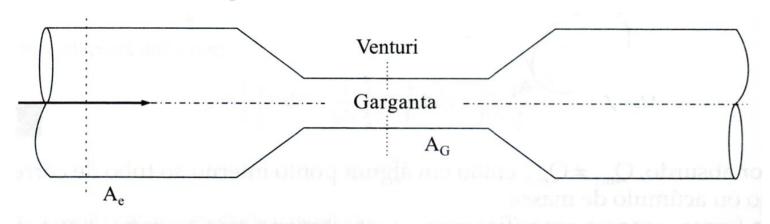
Logo, a vazão em volume de um fluido incompressível é a mesma em qualquer seção do escoamento. A equação anterior é a equação da continuidade para um fluido incompressível.


Fica subentendido que v_1 e v_2 são as velocidades médias nas seções (1) e (2). A equação $v_1A_1 = v_2A_2$ mostra que, ao longo do escoamento, velocidades médias e áreas são inversamente proporcionais, isto é, à diminuição da área correspondem aumentos da velocidade média na seção e vice-versa.

Equação da continuidade para regime permanente

EXEMPLO 2

O Venturi é um tubo convergente/divergente, como é mostrado na figura. Determinar a velocidade na seção mínima (garganta) de área 5 cm², se na seção de entrada de área 20 cm² a velocidade é 2 m/s. O fluido é incompressível.



CINEMÁTICA DOS FLUIDOS

Equação da continuidade para regime permanente

EXEMPLO 2 - RESOLUÇÃO

$$V_e \times A_e = V_G \times A_G$$

$$v_G = v_E \times \frac{A_E}{A_G}$$
 \longrightarrow $v_G = 2 \times \frac{20}{50} = 8 \text{ m/s}$

CINEMÁTICA DOS FLUIDOS

Equação da continuidade para regime permanente

Para o caso de diversas entradas e saídas de fluido, a equação $\rho_1 v_1 A_1 = \rho_2 v_2 A_2$ pode ser generalizada por uma somatória de vazões em massa na entrada (e) e outra na saída (s), isto é:

$$\sum_{e} Q_m = \sum_{s} Q_m$$

CINEMÁTICA DOS FLUIDOS

Equação da continuidade para regime permanente

Se o fluido for incompressível e for o mesmo em todas as seções, isto é, se for homogêneo, a equação $v_1A_1=v_2A_2$ poderá ser generalizada por:

$$\sum_{e} Q = \sum_{s} Q$$

Equação da continuidade para regime permanente

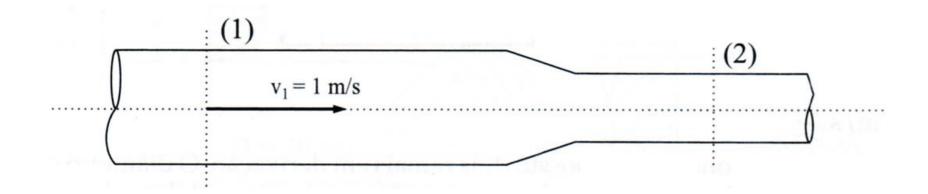
Apesar de a equação $\sum_e Q_m = \sum_s Q_m$ só poder chegar à equação $\sum_e Q = \sum_s Q$ quando se tratar de um único fluido, pode-se verificar que é válida também para diversos fluidos, desde que sejam todos incompressíveis.

(OBS: faremos um exercício sobre esse assunto mais adiante!!!)

EXERCÍCIOS

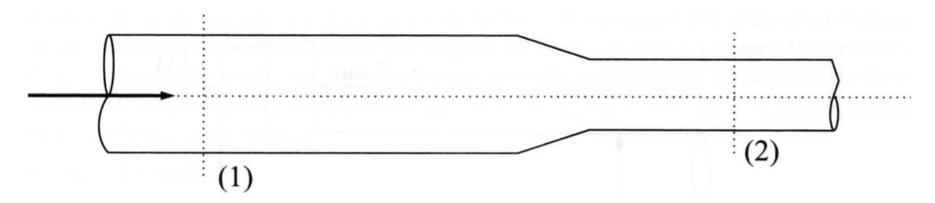
EXERCÍCIO 1: Um gás ($\gamma = 5 \text{ N/m}^3$) escoa em regime permanente com uma vazão de 5 kg/s pela seção A de um conduto retangular de seção constante de 0,5 m por 1 m. Em uma seção B, o peso específico do gás é 10 N/m³. Qual será a velocidade média do escoamento nas seções A e B? (Dado: $g = 10 \text{ m/s}^2$).

(Resposta: $v_A = 20 \text{ m/s}$; $v_B = 10 \text{ m/s}$)


EXERCÍCIO 2: Uma torneira enche de água um tanque, cuja capacidade é 6.000 L, em 1 h e 40 min. Determinar a vazão em volume, em massa e em peso em unidade do SI se $\rho_{H2O} = 1.000 \text{ kg/m}^3 \text{ e g} = 10 \text{ m/s}^2$.

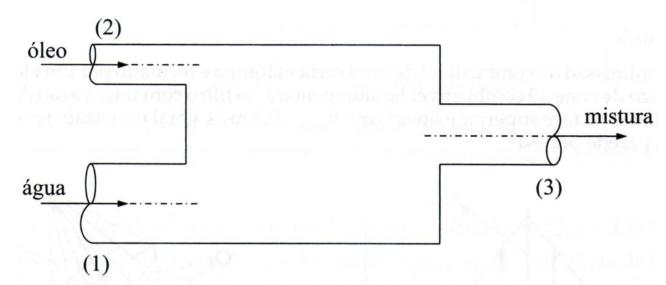
(Resposta: $Q = 10^{-3} \text{ m}^3/\text{s}$; $Q_m = 1 \text{ kg/s}$; $Q_G = 10 \text{ N/s}$)

EXERCÍCIO 3: No tubo da figura, determinar a vazão em volume, em massa, em peso e a velocidade média na seção (2), sabendo que o fluido é a água e que $A_1 = 10 \text{ cm}^2 \text{ e } A_2 = 5 \text{ cm}^2$. (Dados: $\rho_{H2O} = 1.000 \text{ kg/m}^3$, $g = 10 \text{ m/s}^2$)



(Resposta: Q = 1 L/s; $Q_m = 1 kg/s$; $Q_G = 10 N/s$; $v_2 = 2 m/s$)

EXERCÍCIO 4: O ar escoa num tubo convergente. A área da maior seção do tubo é 20 cm² e a da menor é 10 cm². A massa específica do ar na seção (1) é 1,2 kg/m³, enquanto na seção (2) é 0,9 kg/m³. Sendo a velocidade na seção (1) 10 m/s, determinar as vazões em massa, volume, em peso e a velocidade média na seção (2).


(Resp: $v_2 = 26.7$ m/s; $Q_m = 2.4$ x 10^{-2} kg/s; $Q_1 = 0.02$ m³/s; $Q_2 = 0.0267$ m³/s; $Q_G = 0.24$ N/s)

EXERCÍCIO 5: Um tubo admite água ($\rho = 1.000 \text{ kg/m}^3$) num reservatório com uma vazão de 20 L/s. No mesmo reservatório é trazido óleo ($\rho = 800 \text{ kg/m}^3$) por outro tubo com uma vazão de 10 L/s. A mistura homogênea formada é descarregada por um tubo cuja seção tem uma área de 30 cm². Determinar a massa específica da mistura no tubo de descarga e sua velocidade.

(Resp.: $\rho_3 = 933 \text{ kg/m}^3$; $v_3 = 10 \text{ m/s}$)

EXERCÍCIO 6: Água é descarregada de um tanque cúbico de 5 m de aresta por um tubo de 5 cm de diâmetro. A vazão no tubo é 10 L/s. Determinar a velocidade de descida da superfície livre da água do tanque e, supondo desprezível a variação da vazão, determinar quanto tempo o nível da água levará para descer 20 cm.

(Resposta: $v = 4 \times 10^{-4} \text{ m/s}$; t = 500 s)