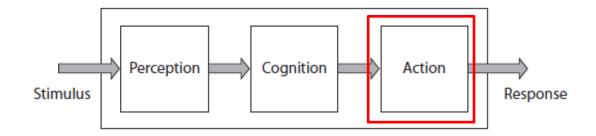


- Introdução
- Reações simples
- Reações de escolha
- Princípios de compatibillidade
- Estímulos irrelevantes
- Tarefa dupla e desempenho sequencial
- Preferências para ação de controle
- Controle de movimento
- Movimento direcionado
- Treinamento


- Introdução
- Reações simples
- Reações de escolha
- Princípios de compatibillidade
- Estímulos irrelevantes
- Tarefa dupla e desempenho sequencial
- Preferências para ação de controle
- Controle de movimento
- Movimento direcionado
- Treinamento

Introdução

Definição de como é a ação a ser tomada após um estímulo e a seleção da reposta

Ocorre após o recebimento do estímulo e uma ação cognitiva

• Várias formas de ação podem ser tomada, desde muito simples até muito complexa

- Introdução
- Reações simples
- Reações de escolha
- Princípios de compatibillidade
- Estímulos irrelevantes
- Tarefa dupla e desempenho sequencial
- Preferências para ação de controle
- Controle de movimento
- Movimento direcionado
- Treinamento

Reações simples

Forma mais simples de ação: definir entre fazer ou não fazer algo (go/no-go)

• Exemplo: ao acender uma lâmpada, aperte o botão estímulo ação

• A ação pode se tornar mais complexa quando a decisão é mais séria ou quando depende de diversos fatores (exemplo: decidir pela parada de uma linha de produção)

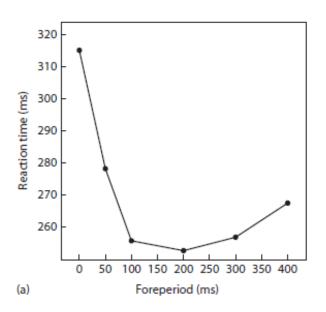
• Estímulos também influenciam na ação (duração, intensidade, etc.)

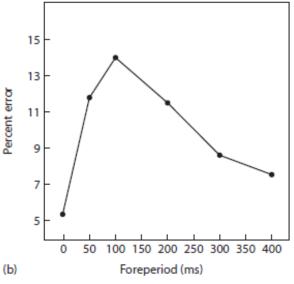
- Introdução
- Reações simples
- Reações de escolha
- Princípios de compatibillidade
- Estímulos irrelevantes
- Tarefa dupla e desempenho sequencial
- Preferências para ação de controle
- Controle de movimento
- Movimento direcionado
- Treinamento



- Ocorre quando existem várias decisões possíveis, e uma delas necessariamente deve ser tomada, baseada em estímulos
- Exemplo: vários alarmes podem tocar, e para cada alarme diferente, um botão deve ser acionado
- Fatores importantes nesse tipo de decisão:
 - velocidade
 - precisão
 - ênfase na velocidade ou precisão
 - intervalo de aviso
 - quantidade de incerteza
 - compatibilidade de estímulos e resposta
 - Prática do agente

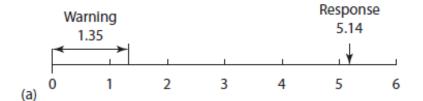
- Tradeoff velocidade x precisão
- Uma resposta só será realizada quando houver um acúmulo de evidências o suficiente para que a decisão seja tomada

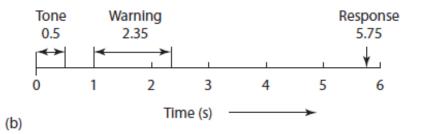

 Substâncias como álcool e drogas apresentam uma influência considerável na capacidade de acúmulo de informações



Incertezas temporais

- A certeza de que virá um estímulo permite que o agente se prepare para a resposta
- Existem intervalos mais apropriados para o anúncio prévio de um estímulo
- Exemplo: foi solicitado que voluntários apertassem o botão direito quando um X surgia à direita de uma linha, e um botão esquerdo quando surgia à esquerda. Antes do surgimento do X, um sinal sonoro era enviado
- Os gráficos mostram que o tempo entre o sinal sonoro e o X influenciam no tempo de resposta, mas não na precisão

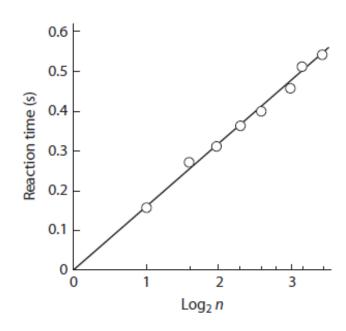




Incertezas temporais

• Para decidir se deve-se ou não aplicar um sinal antes de qualquer estímulo (por exemplo um alerta em aeronave), deve ser levado em consideração o tempo do sinal e o intervalo

Incerteza estímulo-resposta


- O tempo de reação aumenta com o aumento da incerteza
- O número de possíveis estímulos aumenta a incerteza (e consequentemente o tempo de reação) – exemplo do número de lâmpadas (gráfico abaixo)
- A lei de Hick-Hyman traduz isso em forma de equação

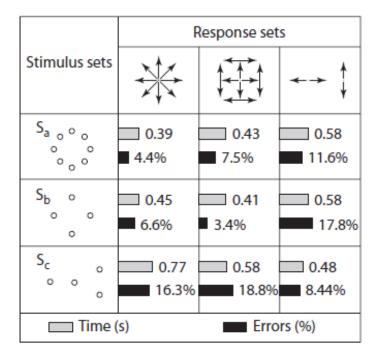
Tempo de reação =
$$a + b[T(S,R)]$$

a é uma constante que depende de fatores sensoriais e motores

b é o tempo de transmissão de informação (fortemente influenciado pelas características do estímulo)

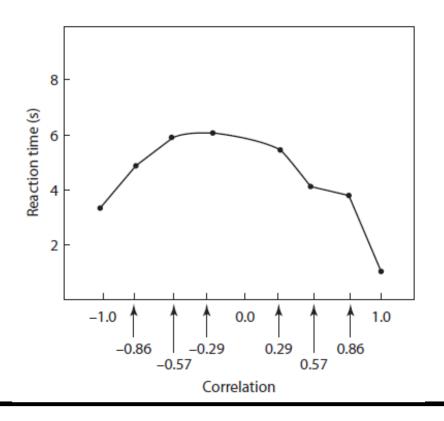
T(S,R) é a informação transmitida entre estímulo (S) e resposta (R) – gráfico ao lado

n é o número de estímulos possíveis

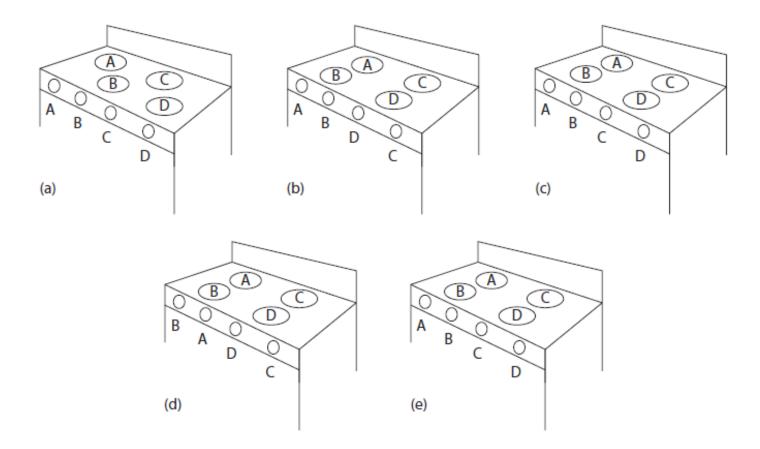


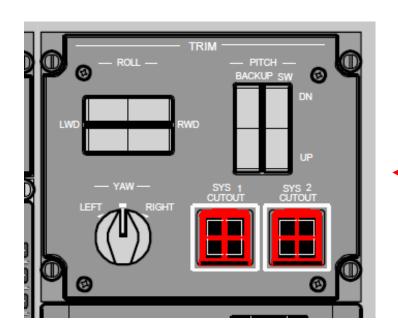
- Introdução
- Reações simples
- Reações de escolha
- Princípios de compatibillidade
- Estímulos irrelevantes
- Tarefa dupla e desempenho sequencial
- Preferências para ação de controle
- Controle de movimento
- Movimento direcionado
- Treinamento

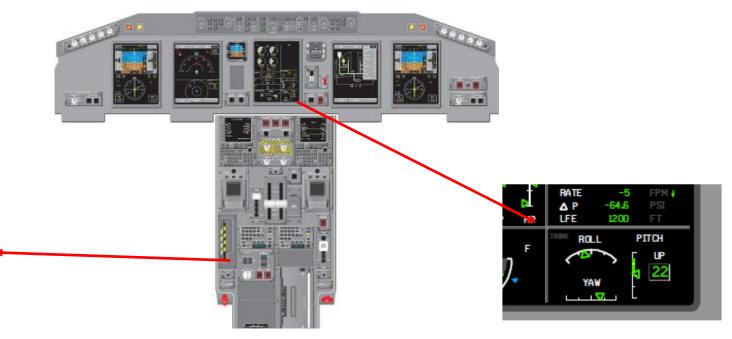
- Compatibilidade estímulo-resposta
- Também chamada de compatibilidade S-R
- A rapidez e a precisão da resposta são fortemente influenciadas quando há uma correspondência clara entre o estímulo e a resposta requerida
- Exemplo:



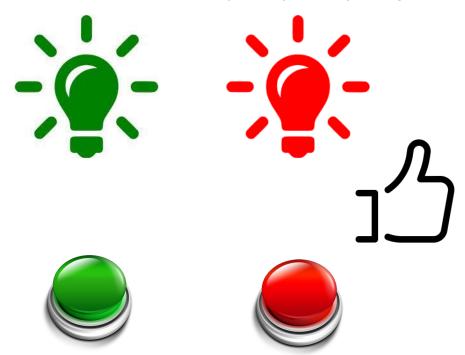
- Compatibilidade estímulo-resposta
- O gráfico abaixo fez uma variação dessa correlação. Usando o mesmo estímulo-resposta do caso anterior, a indicação das setas teve o ângulo variado em diversas posições
- O gráfico mostra que uma correlação de -1 (espelhado) teve um desempenho melhor do que posições intermediárias

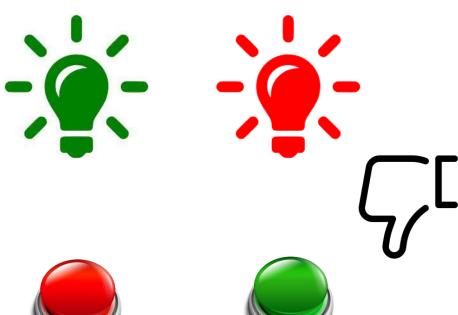

 Isso mostra que regras bem definidas facilitam na execução da resposta


- Compatibilidade estímulo-resposta
- Exemplo: disposição de queimadores de fogão



- Compatibilidade estímulo-resposta
- Exemplo: compensadores EMBRAER 170





- Compatibilidade estímulo-resposta
- Codificação de posição relativa
- É eficiente, sempre que a posição utilizada é RELATIVA

- Compatibilidade estímulo-resposta
- Interpretação teórica da compatibilidade
- O cérebro humano define respostas através de algoritmos. Se o estímulo-resposta tem pouca compatibilidade, mais "linhas de código" devem ser inseridas nesse algoritmo, tornando a resposta mais lenta e mais sujeita a erros

- Prática e seleção de respostas
- Com a prática (treinamento), o tempo de reação cai logaritmicamente

 O aumento do número de estímulos também aumenta exponencialmente o tempo de resposta

- Introdução
- Reações simples
- Reações de escolha
- Princípios de compatibillidade
- Estímulos irrelevantes
- Tarefa dupla e desempenho sequencial
- Preferências para ação de controle
- Controle de movimento
- Movimento direcionado
- Treinamento

Estímulos irrelevantes

• Estímulos sem importância também influenciam as respostas a estímulos relevantes

- Nesta questão, três efeitos são importantes e devem ser considerados:
 - <u>Efeito Simon</u>: estímulos vindos da direita tendem a ser respondidos pela direita, e vice-versa
 - <u>Efeito Stroop</u>: estímulos de diferentes naturezas podem atrapalhar o tempo de resposta e/ou a precisão

AMARELO AZUL LARANJA
PRETO VERMELHO VERDE
ROXO AMARELO VERMELHO
LARANJA VERDE PRETO
AZUL VERMELHO ROXO
VERDE AZUL LARANJA

*Efeito Simon está relacionado com respostas conflitantes

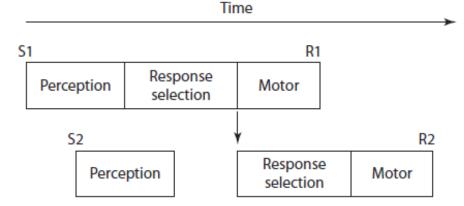
Efeito Stroop está relacionado com estímulos conflitantes

Estímulos irrelevantes

• Estímulos sem importância também influenciam as respostas a estímulos relevantes

- Nesta questão, três efeitos são importantes e devem ser considerados:
 - <u>Efeito Flanker</u>: a pessoa pode estar focada em um estímulo rodeada de estímulos irrelevantes.
 Mesmo assim, dependendo da natureza dos estímulos irrelevantes, eles podem influenciar na detecção e na resposta
 - Exemplo: XHX, SHS

- Introdução
- Reações simples
- Reações de escolha
- Princípios de compatibillidade
- Estímulos irrelevantes
- Tarefa dupla e desempenho sequencial
- Preferências para ação de controle
- Controle de movimento
- Movimento direcionado
- Treinamento


Tarefa dupla e desempenho sequencial

- Algumas atividades podem exigir várias ações ao mesmo tempo, como dirigir um carro ou pilotar uma aeronave
- Efeito do período refratário psicológico
- Se dois estímulos que requerem ação, são efetuados na sequência, a resposta ao segundo estímulos será atrasada se ele for dado muito próximo ao primeiro estímulo

 Modelo de gargalo: a cognição para a segunda resposta começa quando a cognição para a primeira resposta termina

 Isso é minimizado se as respostas forem compatíveis uma com a outra

Tarefa dupla e desempenho sequencial

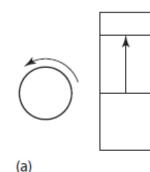
- Repetição de estímulo e resposta
- Alguns fatores influenciam no tempo de resposta:
 - Número de estímulos-respostas
 - Intervalo entre os estímulos
 - Similaridade entre as respostas
 - Simplicidade das respostas
 - Prática do agente (treinamento)

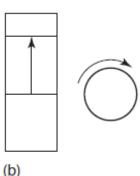


- Introdução
- Reações simples
- Reações de escolha
- Princípios de compatibillidade
- Estímulos irrelevantes
- Tarefa dupla e desempenho sequencial
- Preferências para ação de controle
- Controle de movimento
- Movimento direcionado
- Treinamento

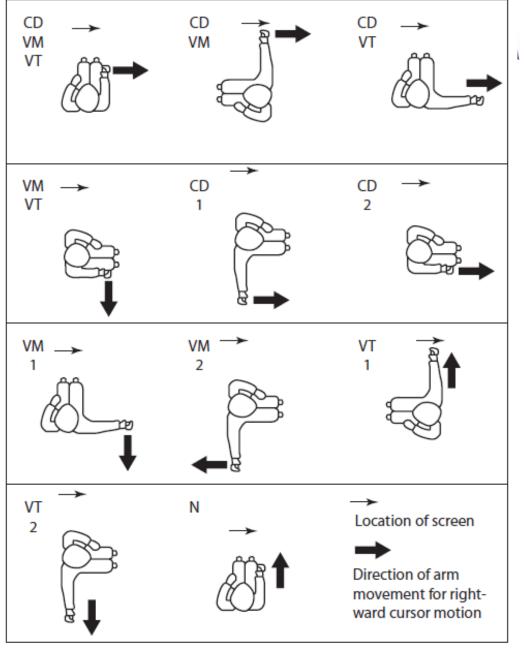
- Padrões de empunhadura
- Consiste no movimento das mãos e membros superiores para manilupar um objeto.
 Dependem de:
- Propriedades do objeto (peso, tamanho, formato, etc.)
- Função de uso

Função: sair na foto




Função: realizar solda

- Estereótipos populacionais
- Por questões "culturais", alguns movimentos são preferidos para determinadas respostas
- Imagine um joystick ou um botão rotativo controlando um cursor em uma tela. Valem quatro princípios importantes:
 - Princípio do sentido horário para a direita ou para cima: Espera-se que uma rotação do controle no sentido horário mova um ponteiro horizontalmente para a direita ou verticalmente para cima
 - Princípio de Warrick: Quando o controle está em um lado da tela, o ponteiro deve se mover na mesma direção que o lado do controle mais próximo do display


- Estereótipos populacionais
- Por questões "culturais", alguns movimentos são preferidos para determinadas respostas
- Imagine um joystick controlando um cursor em uma tela. Valem quatro princípios importantes:
 - Princípio de aumentar no sentido horário: Espera-se que a rotação no sentido horário corresponda a um aumento da leitura na escala de exibição
 - Princípio do lado da escala: Espera-se que o indicador se mova na mesma direção que o lado do controle que está próximo à escala do display

Preferências para ação de

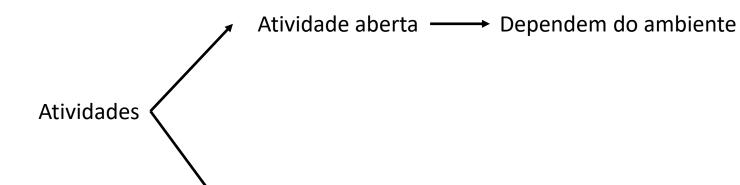
- **Estereótipos populacionais**
- Até aqui, as regras foram para casos bidimensionais. Aplicando ao caso tridimensional:
 - Um movimento de empurrar é preferencial que induza movimento para a direita ou para baixo (arfagem em aeronave)

Neste tipo de preferência, ainda pode se aplicar a escolha entre compatibilidade do campo visualmotor, compatibilidade do campo visual-tronco e compatibilidade comando-display. Em geral, a compatibilidade do campo visual-motor deve ser privilegiada

Estereótipos populacionais

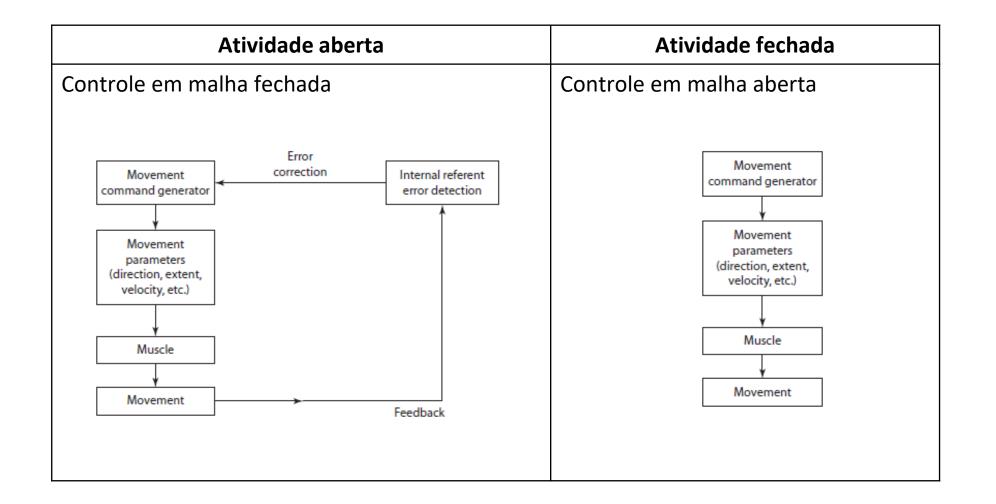
Recomendação de direção de movimento

Movimentos recomendados	
Controle aplicado	Resposta esperada
Ligar	Para cima, direita, para frente, puxar
Desligar	Para baixo, esquerda, para trás, empurrar
Direita	Sentido horário, direita
Esquerda	Sentido anti-horário, esquerda
Para cima	Para cima, para trás
Para baixo	Para baixo, para frente
Retrair	Para trás, puxar, sentido anti-horário, para cima
Estender	Para frente, empurrar, sentido horário, para baixo
Crescer	Direita, para cima, para frente
Diminuir	Esquerda, para baixo, para trás



- Introdução
- Reações simples
- Reações de escolha
- Princípios de compatibillidade
- Estímulos irrelevantes
- Tarefa dupla e desempenho sequencial
- Preferências para ação de controle
- Controle de movimento
- Movimento direcionado
- Treinamento

Controle de movimento


Atividade fechada → Não dependem do ambiente Possuem início e fim bem definidos

Controle de movimento

Controle de movimento

Características invariantes

 Algumas características de movimento são próprias da pessoa (como caligrafia ou outros tipos específicos de movimento)

- Organização modular
- Pessoas com movimentos mais precisos também têm menor variabilidade de tempo na execução de uma tarefa

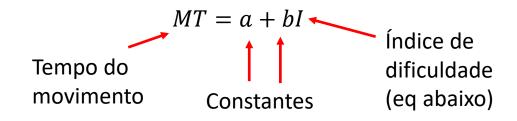
- Importância do feedback
- Movimentos mais lentos utilizam o feedback "em tempo real" para correção da atividade

- Introdução
- Reações simples
- Reações de escolha
- Princípios de compatibillidade
- Estímulos irrelevantes
- Tarefa dupla e desempenho sequencial
- Preferências para ação de controle
- Controle de movimento
- Movimento direcionado
- Treinamento

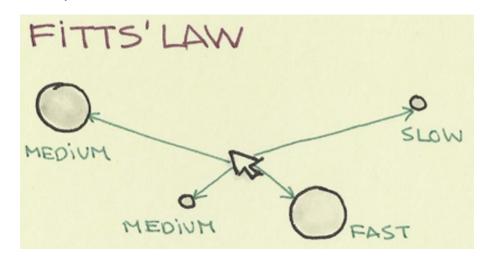
Movimento direcionado

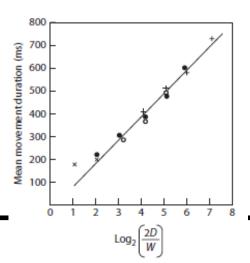
• São aqueles em que um membro deve se mover a um local de destino (pedal de acelerador, comando de voo, etc.)

• Dependem de feedback para definir a amplitude



Movimento direcionado


• Lei de Fitts:


- Fitts (1954) fez pessoas tocarem com uma haste dois alvos, continuamente
- Quanto mais perto os alvos, menor o tempo
- Quanto menor o alvo, maior o tempo
- Esse tempo foi equacionado da seguinte forma:

$$I = \log_2\left(\frac{2D}{W}\right)$$
 D – Distância centro a centro dos alvos

W – Tamanho dos alvos

Movimento direcionado

- Lei de Fitts:
- Extremamente importante para diversos campos do conhecimento que envolvem Fatores Humanos (exemplos: interfaces de todo tipo)

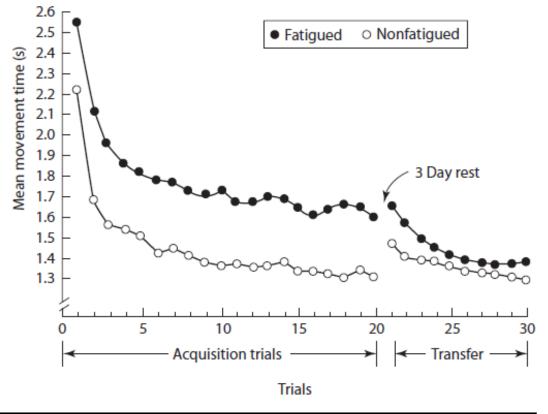
• A lei de Fitts se aplica apenas ao movimento realizado por uma mão

• Quando aplicado a duas mãos (com tarefas de dificuldades diferentes), ambas se sincronizam e levam o tempo da mão mais lenta, o que mostra uma dependência do sistema motor

 A prática pode facilitar um desacoplamento entre as mãos (desacoplamento somente parcial, nunca total)

Sumário

- Introdução
- Reações simples
- Reações de escolha
- Princípios de compatibillidade
- Estímulos irrelevantes
- Tarefa dupla e desempenho sequencial
- Preferências para ação de controle
- Controle de movimento
- Movimento direcionado
- Treinamento



• Para ações repetitivas, faz muita diferença a realização de treinamento

• Alguns fatores têm influência permanente na retenção de informações, outros têm influência

temporária (como o cansaço, por exemplo)

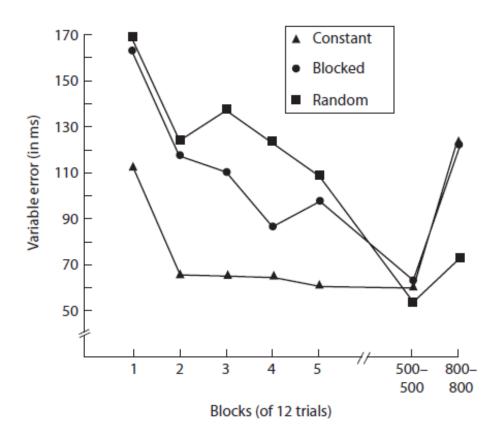
 A fadiga pode afetar o desempenho, mas não afeta a capacidade de retenção de informação (aprendizado). Períodos curtos de não-prática afetam pouco e temporariamente a capacidade de retenção

Em ações de treinamento, vale a distinção:

Atividades <u>massivas</u> x atividades <u>distribuídas</u>

Resolvidas em menos tempo

Maior índice de retenção de informações


- Experimento de variabilidade de treinamento: três grupos foram solicitados a fazer uma mesma tarefa
 - Grupo 1 (constant): as atividades eram bem definidas
 - Grupo 2 (blocked): as atividades eram parcialmente definidas
 - Grupo 3 (random): as atividades não eram definidas (os membros poderiam fazer como quisessem)
- Ao final, a mesma tarefa foi comandada, de outra forma, diferente do que tinha sido comandado aos grupos 1 e 2

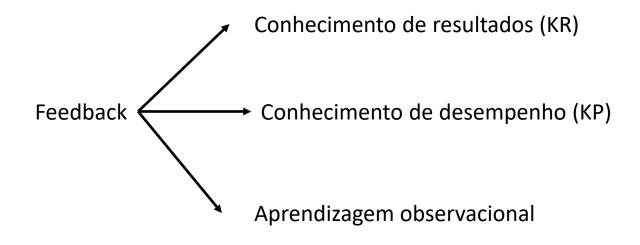
 Resultados: quanto mais definição, menos variabilidade na conclusão da tarefa, mas pior capacidade de adaptação a novos procedimentos

• Experimento de variabilidade de treinamento: Resultado

Treinamento em simuladores

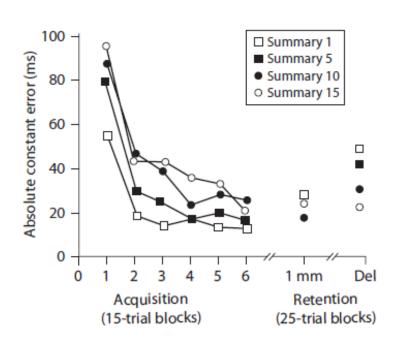
 Auxiliam na aprendizagem. Em geral são mais baratos e com menos risco (especialmente em aviação)

Realismo é dispensável para treinamento de tarefas simples


• Para tarefas complexas ou conjunto de tarefas, o realismo é importante

• Feedback e retenção da informação

 O retorno de um agente de treinamento (professor) é importante na fase de aprendizado. O feedback pode ser de três tipos



- Feedback e retenção da informação
- Conhecimento de resultados (KR):
- Se aplica a ações simples e rápidas, com muitas repetições

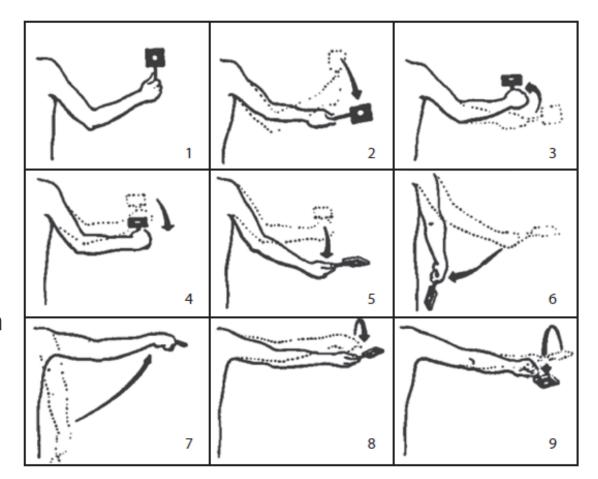
- Deve ser dada a cada final de repetição
- Experimento: quatro grupos devem fazer uma tarefa. Um teve feedback a cada repetição, outros a cada 5, a cada 10 e a cada 15. O grupo com repetições mais frequentes teve maior precisão, maior taxa de aprendizado, porém maior atraso (delay) na realização da tarefa

- Feedback e retenção da informação
- Conhecimento de resultados (KR):
- Outros experimentos mostram que um "atraso" proposital antes do fornecimento do KR é benéfico, pois ativa a memória (de curto ou longo prazo) do agente

- Funções importantes do KR:
 - Melhora a motivação
 - Forma associações de memória
 - Fornece orientações e direcionamento do desempenho

- Feedback e retenção da informação
- Conhecimento de desempenho (KP):
- Fornece feedback contínuo ao longo da tarefa, ou informações detalhadas da atividade após seu cumprimento

• Neste segundo caso, pode ser considerado um "KR quantitativo"


• Em geral, é mais eficiente que o KR convencional

- Feedback e retenção da informação
- Aprendizagem observacional:
- Aprendizado observando um modelo (uma pessoa ou algo)

 Atividades motoras podem ser parcialmente aprendidas dessa forma, pois fatores como força e tensão muscular necessárias para uma tarefa não podem ser aprendidas por observação

