DIELS-ALDER REACTION

The Diels-Alder Reaction

NOTE: = gain of bond order = loss of bond order

THE DIENE MUST BE ABLE TO ADOPT THE S-CIS CONFORMATION

DIELS-ALDER REACTION

The reaction is concerted - all of the orbitals are aligned in a 6-ring.

The HOMO of the diene donates electrons into the LUMO of the dienophile.

BUTADIENE

$$\pi_3$$

HOMO

$$\pi_2 \rightarrow$$

$$\pi_1 \stackrel{\uparrow}{\longrightarrow}$$

ETHYLENE

The HOMO of the diene donates electrons into the LUMO of the dienophile.

EXAMPLE - WITH ELECTRONIC FACTORS

$$\begin{array}{c|c} H_3C \\ \hline \\ H_3C \\ \hline \\ \end{array} \begin{array}{c} CH_3 \\ \hline \\ \Delta \end{array} \begin{array}{c} H_3C \\ \hline \\ H_3C \\ \end{array} \begin{array}{c} CH_3 \\ \hline \end{array}$$

Diene

Dienophile

A Cyclohexene

Works best if the dienophile has electron-withdrawing groups, and the diene has electron-donating groups.

The HOMO of the diene donates PUSHES electrons into the LUMO of the dienophile PULLS.

FORMATION OF A BICYCLIC COMPOUND

THE REACTION IS USUALLY STEREOSELECTIVE

The endo product is usually preferred.

It has been suggested that the pi systems like to establish maximum overlap during the reaction.

MORE DIELS-ALDER REACTIONS

HOOC

ACETYLENES (ALKYNES)

If the dienophile is an alkyne a cyclohexadiene is formed.