
"Série espectroquímica"

Efeito da magnitude de Δ na cor dos complexos

2Para um dado íon metálico, a cor depende do ligante

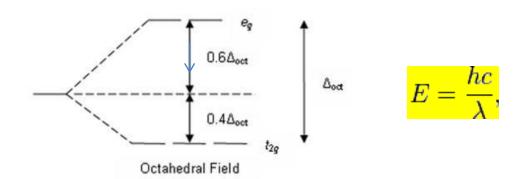
 $[Cr(NH_3)_6]^{3+}$

 $[Cr(NH_3)_5CI]^{2+}$

$$E = \frac{hc}{\lambda}$$
, Δ_{oct}

$\Delta_{ m octa\'edrico}$ valor depende da "força" do ligante

```
[Co(NH<sub>3</sub>)<sub>6</sub>]<sup>2+</sup>
[Co(NH<sub>3</sub>)<sub>5</sub>I]<sup>1+</sup> qual ligante induz a maior amplitude de estabilização??
```

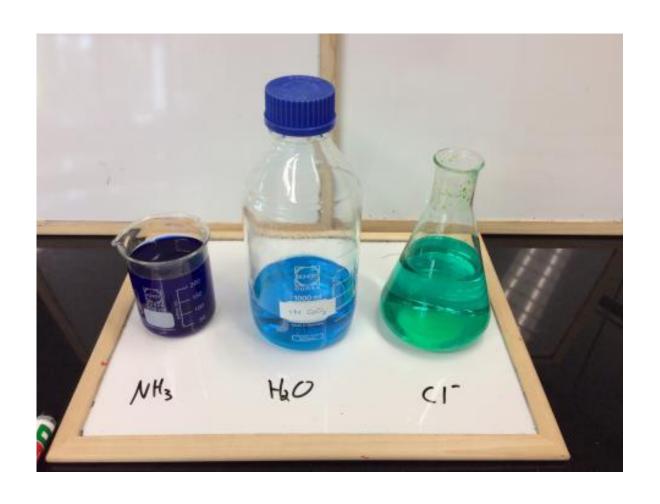

Essa abordagem gerou a "Série espectroquímica"

```
|T| < Br^{-1} < S^{-2} < SCN^{-1} < C|^{-1} < NO_{2}^{-1} < N_{3}^{-1} < F^{-1} < OH^{-1} < C_{2}O_{4}^{-2} < H_{2}O < NCS^{-1} < CH_{3}CN < py < NH_{3} < en < bipy < phen < NO^{-2} < PPh_{3} < CN^{-1} < CO

Força do campo ligante
```

PORTANTO: Maior amplitude para o valor de Δ_0 é esperado no complexo com $NH_3 >>$ deve apresentar a transição de maior energia e menor λ

"Série espectroquímica" na prática


 $\Delta_{\rm octa\'edrico}$ valor depende da "força" do ligante

Exemplo com complexos de Cu²⁺

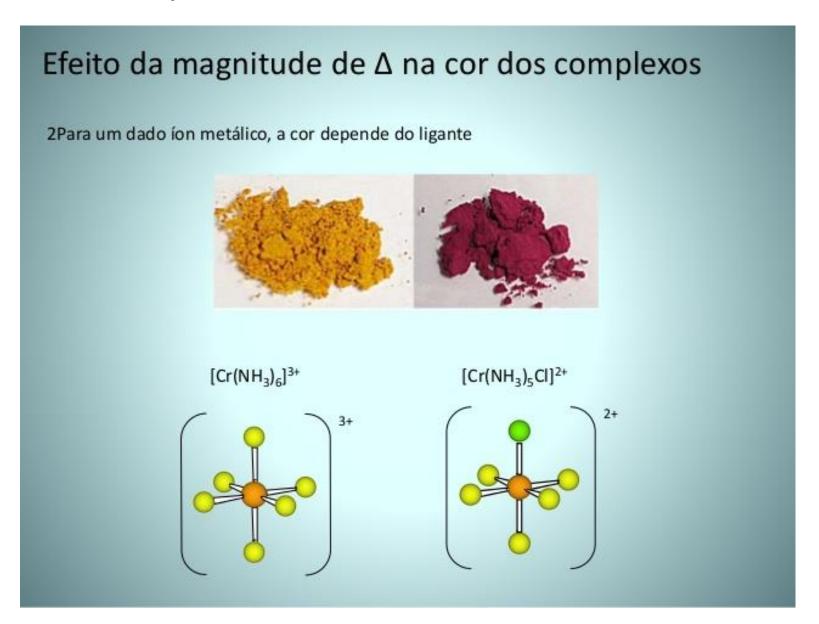
$$I^{-} < Br^{-} < S^{-2} < SCN^{-} < Cl^{-} < NO_{2}^{--} < N_{3}^{--} < F^{-} < OH^{-} < C_{2}O_{4}^{-2} < H_{2}O < NCS^{-} < CH_{3}CN < py < NH_{3} < en < bipy < phen < NO^{-2} < PPh_{3} < CN^{-} < CO$$

Força do campo ligante

Cu²⁺ com 3 ligantes diferentes

Absorção e cores complementares

absorvida


Transmitida (aquela que a gente vê em uma solução)

Colour of light absorbed	Approximate wavelength ranges / nm	Corresponding wavenumbers (approximate values) / cm ⁻¹	Colour of light transmitted, i.e. complementary colour of the absorbed light
- ·	T 00 (0 0	4.4.000 4.6.4.00	
Red	700–620	14 300–16 100	Green
Orange	620-580	16 100–17 200	Blue
Yellow	580-560	17 200-17 900	Violet
Green	560-490	17 900-20 400	Red
Blue	490–430	20 400-23 250	Orange $E = \frac{hc}{\lambda}$
Violet	430–380	23 250–26 300	Yellow

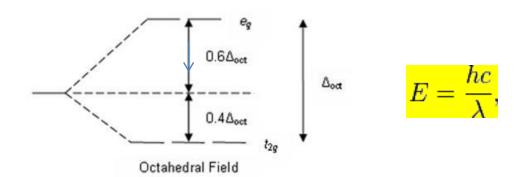

[†] When an electronic spectrum exhibits more than one absorption in the visible region, the simplicity of the colour wheel does not hold.

Table 20.2a The visible part of the electromagnetic spectrum.

Mais um exemplo

"Série espectroquímica" na prática

$\Delta_{ m octa\'edrico}$ valor depende da "força" do ligante

$$I^- < Br^- < S^{-2} < SCN^- < Cl^- < NO_2^- < N_3^- < F^- < OH^- < C_2O_4^{-2} < H_2O < NCS^- < CH_3CN < py < NH_3 < en < bipy < phen < NO^{-2} < PPh_3 < CN^- < CO$$

Força do campo ligante

Absorção e cores complementares

absorvida

Transmitida (aquela que a gente vê em uma solução)

Colour of light absorbed	Approximate wavelength ranges / nm	Corresponding wavenumbers (approximate values) / cm ⁻¹	Colour of light transmitted, i.e. complementary colour of the absorbed light
Red	700–620	14 300–16 100	Green $E = \frac{hc}{c}$
Orange	620-580	16 100-17 200	Blue $\frac{E - \frac{1}{\lambda}}{\lambda}$
Yellow	580-560	17 200-17 900	Violet
Green	560-490	17 900-20 400	Red
Blue	490–430	20 400-23 250	Orange
Violet	430–380	23 250–26 300	Yellow

[†] When an electronic spectrum exhibits more than one absorption in the visible region, the simplicity of the colour wheel does not hold.

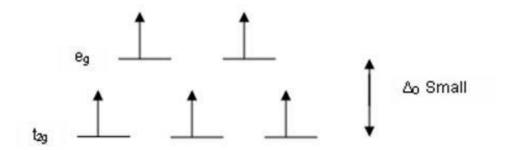
Table 20.2a The visible part of the electromagnetic spectrum.

Teoria do campo cristalino

Complexos tetraédricos

Quatro ligantes se aproximam do cátion alinhados com as pontas de

Pense: Como a teoria do campo cristalino explicaria cátions metálicos que apresentam estrutura tetraédrica???


Há complexos que contém cátions do grupo "d" que possuem somente 4 ligantes distribuídos nas pontas de um tetraedro e não 6 ligantes como nos complexos octaedricos estudados anteriormente. Nestes casos, não há uma orientação direta dos orbitais dos ligantes com os orbitais d do cátion metálico, mas a maior aproximação com os orbitais xz, xy e yz (não alinhados com as pontas de um octaedro) fazem com que, nestes complexos, os orbitais de maior energia sejam xz, xy e yz e não z², x²-y² como nos complexos octaédricos.

Tetrahedral

Nos complexos tetraédricos, a diferença de energia entre os dois níveis ocupados pelos orbitais "d" é menor do que a diferença observada nos complexos octaédricos

$\Delta_{\text{tetraédrico}} \approx 4/9 \Delta_{\text{octaédrico}}$

Por isso, a energia de emparelhamento de elétrons, usualmente é maior do que a separação de energia entre os orbitais. Desta forma, as estruturas tetraédricas somente são relevantes em cátions metálicos que possuem mais do que 5 elétrons "d".

+ Exercícios relevantes em química bioinorgânica

Capítulo 16 do livro Atkins (Princípios de Química): Estrutura eletrônica dos complexos >> exercícios 16.45-16.51; 16.53-16.56; 16.61

Capítulo 19 do livro Shriver e Atkins (Química Inorgânica): complexos dos metais do bloco "d" >> exercícios 19.1a; 19.1b; 19.1c; 19.1f 19.4; 19.19; 19.23 (como projeto)

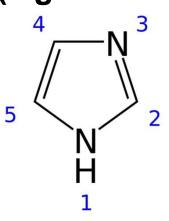
Todas as questões levantadas em sala de aula nos tópicos "pense"

Exercício 16. 47 – Atkins Princípios de Química (*Próxima aula.....*)

Quando a força do campo ligante é grande o suficiente para que ocorra emparelhamento preferencial de elétrons?

Requer confirmação experimental (paramagnetismo), mas, na série espectroquímica, a posição da água costuma ser o limite para campo fraco

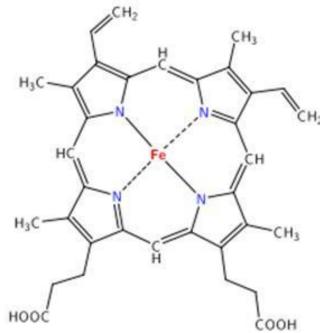
série espectroquímica


$$I^{-} < Br^{-} < S^{-2} < SCN^{-} < CI^{-} < NO_{2}^{--} < N_{3}^{--} < F^{-} < OH^{-} < C_{2}O_{4}^{-2} < H_{2}O < NCS^{-} < CH_{3}CN < py < NH_{3} < en < bipy < phen < NO^{-2} < PPh_{3} < CN^{-} < CO$$

Força do campo ligante

Complexos

- a) $[Co(NH_3)_6]^{3+}$
- b) [NiCl₄]²⁻ (tetraédrico)
- c) $[Fe(OH_2)_6]^{3+}$
- d) $[Fe(CN)_6]^{3-}$


Sítios biológicos de coordenação de íons metálicos (alguns exemplos)

Imidazol (no AA Histidina) comumente formando complexos com Cobre

Cisteína

Porfirina

adenosine triphosphate (ATP)