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Air pollution is one of the foremost environmental threats to human health. However, the meteorological and social fac-
tors that lead to respiratory and cardiovascular diseases have not been fully elucidated. In this study, we use Principal
Component Analysis and Generalized Linear Model (PCA-GLM) to investigate the combined effect of socioeconomic
development and air pollution on cardiorespiratory hospitalization in southern Brazil. This region has the highest rates
of hospitalization by cardiorespiratory diseases in the country. We analyze three main sources of data: (i) air pollutants
density from TROPOMI/Sentinel-5p satellite; (ii) temperature, humidity, and planetary boundary layer height (PBLH)
modeled with the Weather Research Forecast model; and (iii) hospitalization by cardiorespiratory diseases obtained
from the Brazilian National Health System.We estimate the Relative Risk (RR) using the PCA-GLM coefficients and inter-
quartile variations of air pollutants density and meteorological parameters. Our results show that the population living in
colder and drier municipalities is more prone to cardiorespiratory hospitalization. Regarding respiratory hospitalization,
municipalities with lower socioeconomic development are more sensitive to meteorology and pollution variability than
highly developed ones. In less developedmunicipalities, we observe the highest rates of cardiorespiratory hospitalization
even if air pollution is low, whichwe interpret in terms of higher vulnerability. The RR analysis suggests that air pollution
is an important environmental risk to cardiovascular diseases and respiratory diseases ismore sensitive to air pollution and
meteorology than cardiovascular ones. Our findings corroborate the mounting evidence that social vulnerability is a sig-
nificant factor affecting the increase of cardiorespiratory hospitalization in the world.
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1. Introduction

Air pollution is the world's major cause of cardiorespiratory diseases
(WHO, 2017). Meteorological conditions can also impact human health
and indirectly affect the cardiorespiratory morbidity by boosting air
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pollution in events of atmospheric stagnation and lower planetary bound-
ary layer height (PBLH) (Toro et al., 2019), with dry air and temperature
extremes contributing to higher mortality by cardiovascular (CVD) and re-
spiratory (RSD) diseases (Gasparrini et al., 2015). The effects of these envi-
ronmental hazard are moderated by sex (Clougherty, 2010), lifestyle (Strak
et al., 2017), age (Ebisu et al., 2019), and other social vulnerabilities (Pino-
Cortés et al., 2020). The impacts of air pollution differ among socio-
demographic groups (European Environment Agency, 2018), with vulnera-
ble populations having a higher mortality risk usually as a result of greater
exposure, higher sensitivity, and reduced ability to cope with the disease
(European Environment Agency, 2018; Ho et al., 2018).

Although highly relevant to human health, the influence of air pollutant
concentration (e.g., Gao et al., 2013; Krall et al., 2018) and meteorological
conditions (e.g., Gasparrini et al., 2015; Ikäheimo et al., 2020) on cardiore-
spiratory hospitalization and mortality has generally been conducted using
only local data. Even though monitoring stations are a reliable source of
local data, their spatial representativity is usually limited (Righini et al.,
2014) and does not capture the spatial variability of air pollutant concentra-
tions at larger scales (Yatkin et al., 2020). The lack of spatially distributed
air pollution data has been one of the limiting factors for detailed ecological
epidemiology studies at regional scales (Requia et al., 2016).

Given that social, air pollution, and meteorological conditions are
widely reported as critical drivers of cardiorespiratory diseases at the local
scale (Laurent et al., 2007; Leitte et al., 2009), using datasets that expand
the current fine-scale spatial coverage may enhance the understanding of
the links among societal inequalities, environmental quality, and human
health (European Environment Agency, 2018). In addition, the lack of
methodological approaches to deal with data scarcity shared bymost devel-
oping countries (Andreão and Toledo de Almeida Albuquerque, 2021) hin-
ders the analysis of combined effects of multiple environmental health
hazards (European Environment Agency, 2018). Recent high-resolution re-
mote sensing products, like the Tropospheric Monitoring Instrument On-
board Sentinel-5p, are a promising data source, which have not been fully
employed for such studies.

Here, we perform a regional-scale analysis of the influence of air
pollution, meteorology, and socioeconomic development on cardiore-
spiratory morbidity in Santa Catarina state (SC), Southern Brazil. We
selected SC because it presents one of the highest hospitalization rates
for cardiorespiratory diseases in Brazil (Brasil, 2020). The dataset
comprises a combination of satellite images of air pollutant density,
meteorological variables from regional model outputs, and hospitaliza-
tion data for municipalities.
Fig. 1. Geographical location of Santa Catarina State. (a) terrain elevation, (b) Human
Sentinel-5p data. Santa Catarina highlighted in red in Brazil
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2. Methodology

2.1. Study area

We evaluate the effect of air pollution andmeteorological conditions on
cardiorespiratory hospitalization using the state of SC in Southern Brazil as
a study case. The state is 95,300 km2 (Fig. 1) with a humid subtropical cli-
mate, according to the Köppen-Geiger classification (Alvares et al., 2013).
Average annual temperatures range from 18 to 22 °C at lower altitudes
(0-400 m) and from 12 to 18 °C at higher altitudes (>400 m) (Fig. 1a).

In this work, socioeconomic development for each municipality of SC is
characterized using the 2010 Human Development Index (HDI) obtained
from the Brazilian Institute of Geography and Statistics (IBGE, 2013). The
United Nations Program for Development – Brazil (UNPD-Brazil) in collab-
oration with the Institute of Applied Economic Research and João Pinheiro
Foundation developed the HDI municipal dataset, using an adaptation of
the global HDI method with the same dimensions considering local vari-
ables and available data. The HDI index takes into account three dimen-
sions: (i) life expectancy at birth to measure a long and healthy life; (ii)
average per capita family income to estimate the standard of living; and
(iii) mean years of schooling for adults aged 25 years and older and the ex-
pected years of schooling for children of school-going age as ameasurement
of access to education (IBGE, 2013).

The coastal areas of SC are characterized bymoderate to high HDI and a
tourism economy (Fig. 1b). The Northern and Southern regions are the
mostly industrialized, consequently, with higher SO2 density (Fig. 1c). In
the central part of SC is observed the lowest HDI, especially far from
major cities (de Rocha, 2019). In this analysis, we have considered 293
out of 295 municipalities in Santa Catarina state. Two municipalities have
been excluded from the analysis because they are not listed in the available
shapefile used to delineate the municipalities' boundaries. Table 1 presents
basic descriptive information of Santa Catarina's municipalities.

2.2. Air quality data

Air pollutant densities of CO, NO2, SO2, Aerosol, and O3 in the tropo-
spheric vertical column are obtained from the TROPOspheric Monitoring
Instrument (TROPOMI) onboard the Copernicus Sentinel 5 Precursor
(S5P) satellite (https://www.copernicus.eu/en). We sample daily data
with 7km (along) × 3.5km (across) resolution for the year 2019 using
the Earth Engine data catalog (https://developers.google.com/earth-
engine/datasets/catalog/sentinel-5p). We consider monthly 90° percentile
development index (HDI) for each city. (c) median density of SO2 in 2019 using
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Table 1
Descriptive information of the data used in this work from 293 of 295 Santa
Catarina's municipalities.

25th quantile 50th quantile 75th quantile

Population form municipalities 3642 7877 18,950
HDI 0.71 0.74 0.76
Morbidity RSD for 100 k inhabitants 42.74 72.53 133.39
Morbidity CVD for 100 k inhabitants 42.17 63.33 95.26
Temperature (°C) 16.44 20.06 22.12
Humidity (kg/kg) 9.49 12.17 13.36
PBLH (m) 352.87 438.57 510.07
Monoxide carbon (mol/m2) x 10−2 2.38 2.63 2.95
Ozone (mol/m2) x 10−1 (25–50-75) 1.16 1.2 1.26
Nitrogen dioxide (mol/m2) x 10−5 5.66 6.32 6.78
Sulfur dioxide (mol/m2) x 10−4 2.78 4.17 6.05
Aerosol (UV Aerosol index) 0.8 0.95 1.09
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of air pollutant density to affect human health and aggregate it by the mu-
nicipality, matching the spatial and temporal scales of hospitalization data.
Fig. 2 shows the municipal mean annual values of monthly 90° percentile
from TROPOMI data in SC. Higher densities of NO2 and O3 are found in
the South of SC, while that of SO2 and CO are found in the North. Winter
and spring are the seasons in which the air pollutant density is higher in
Santa Catarina (Fig. 2 a-e).

The European Space Agency (ESA) provides a validation of the
Sentinel-5 mission at https://mpc-vdaf.tropomi.eu/, containing a
comparison with independent satellite missions and ground-level
monitoring. The last report from this platform compares TROPOMI
and ground level measurements using data from 25 monitoring sites
from July to September 2021, revealing a bias of +16% for O3 and
− 34% for NO2. CO density from TROPOMI has a bias around
+6.5%. Goldberg et al. (2019) show that TROPOMI overestimates
22% the concentration of CO when compared with data from 3
monitoring sites in New York, while an underestimation of 21% was
observed in Toronto. Although independent comparisons have dem-
onstrated bias in air pollutant densities from TROPOMI, these mea-
surements are well correlated with observations (e.g., Zhao et al.,
2021; Borsdorff et al., 2018).

2.3. Meteorological data

We run the Weather Research Forecast (WRF) model version 4.0
(Skamarock et al., 2019) to get gridded meteorological data within SC
for 2019. We extract temperature, air humidity and planetary boundary
layer height (PBLH) using the WRF outputs. We used WRF outputs since
other gridded meteorological databases do not provide high resolution
and PBLH data. The simulations are performed with two nested model-
ing domains with 15× 15 km (d01) and 3× 3 km (d02) (Appendix 01).
One-way nesting provides a higher model performance, where the ini-
tial and lateral boundary conditions for the finer grid are obtained
from the coarse grid. To improve the estimates of PBLH, we adopt the
maximum number of vertical levels (33 levels of 50 hPa) in the WRF
simulations. Other WRF physics parameterizations we adopt: Morrison
2-moment scheme for microphysics; Rapid radiative transfer model
(RRTM) for a longwave spectral region; Dudhia scheme for shortwave
radiation; Monin-Obukhov Similarity scheme for surface-layer; Noah
Land-Surface Model for land-surface; YSU scheme for boundary layer,
and Kain-Fritsch scheme for cumulus.

Global meteorological data from the Global Forecast System (GFS) pro-
vided by theNational Center for Environmental Prediction (NCEP)with a spa-
tial resolution of 0.5° x 0.5° and temporal resolution of 6 h (https://www.ncdc.
noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs)
is set as boundary and initial conditions inWRF simulations (Skamarock et al.,
2008). Land use for WRF is obtained from Moderate Resolution Imaging
Spectroradiometer (MODIS) with the classification scheme United States Geo-
logical Survey (USGS) (https://www2.mmm.ucar.edu/wrf/src/wps_files/
geog_high_res_mandatory.tar.gz).
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We calculate monthly averaged values for each municipality in SC
from WRF hourly outputs to coincide with the temporal resolution of
hospitalization data. Fig. 2 shows temperature, humidity, and PBLH
within SC's municipalities for 2019. There is a clear seasonality in
temperature, air humidity, and PBLH (Fig. 2 f-h). An interannual var-
iation of 10 °C is observed in median temperature values. Temperature
and specific humidity spatial patterns in SC are similar and driven
mainly by topography. The center and western region of SC present
the lowest values of PBLH, implying in lower dispersion of air pollut-
ants.

2.4. Hospitalization and HDI data

Hospitalization by cardiorespiratory diseases data is obtained from
the Department of Informatics from the Brazilian National Health
System (DATASUS) (http://www2.datasus.gov.br/DATASUS/index.
php?area=02). We select the morbidity cases for cardiovascular dis-
eases (CVD, codes ICD-10 and I00-I99) and respiratory diseases (RSD,
codes ICD-10 and J00-J99) occurring in 2019. We use RSD and CVD
monthly data aggregated by municipality. Municipality population
data from the Brazilian National Institute of Statistics and Geography
(IBGE, 2020) is used to calculate the hospitalization rate per 100.000
inhabitants. A moderate seasonality is observed in cardiorespiratory
hospitalizations in SC (Fig. 2 i-g), with higher values of the cardiorespi-
ratory disease occurring in winter. Hospitalization data are normalized
by population in this manuscript.

We adopt the same municipal HDI classification (very low, low, me-
dium, high, and very high) as recommended by the UNPD-Brazil (PNUD,
Ipea, 2013). The municipalities are grouped using HDI ranges of middle
(0.6 to 0.7), high (0.7 to 0.8), and very high (>0.8) levels of development
and the Mann-Whitneys post hoc test evaluates the variability of each
group.

2.5. Statistical analysis

We use Spearman ranking to analyze the correlation among air pol-
lutants density, meteorological conditions, hospitalizations, and HDI.
Because correlation analysis can mask the effects of confounding vari-
ables, we also apply the combination of Principal Component Analysis
and Generalized Linear Model (PCA-GLM; as presented by Sun et al.,
2019) to evaluate the effect of meteorological parameters and air pollut-
ants concentration on the RSD and CVD hospitalizations. The PCA-GLM
resolves the collinearity interference between the variables (in our case
air pollutants density, meteorological conditions, hospitalizations). We
employ the air pollutant density from Sentinel-5 and meteorological
output from WRF as original variables in the PCA-GLM, grouping mu-
nicipalities in the same HDI range.

Before employing the PCA-GLM, we standardize and normalize the co-
variates (air pollution density, meteorology data, and HDI) (Appendix 2).
Since we use Poisson regression, the response variable does not require
standardization and normalization.We visually inspected the residual auto-
correlation from the PCA-GLM through Autocorrelation Function (ACF)
and Partial Autocorrelation Function (PACF) plots of Pearson residuals (Ap-
pendix 3 A). Identified serial correlations in the residual have been re-
moved by fitting Autoregressive Integrated Moving Average (ARIMA)
model to residual and added as a further covariate in Poisson regression
(Appendix 3 BC). This procedure has been used to account for the con-
founding covariates (Tobías and Saez, 2004). The Pearson residual graphs
after including the ARIMA confirm that the removal serial correlation
from the analysis (Appendix 3 D).

PCA transforms the original variables into a new and smaller set of var-
iables, called principal components (PCs). The PCs are orthogonal linear
combinations of the original variables which explain the original variance
and covariance. Since the PCs are orthogonal to each other, they can be
used inmultivariate models including all variables in the samemodel with-
out misinterpretation of regression coefficients due to the collinearity

https://mpc-vdaf.tropomi.eu/
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Fig. 2. Spatial distribution in 2019 of a) aerosol, b) CO, c) O3, d) SO2, e) NO2, f) T (temperature), g) Q (specific humidity), h) PBLH, i) CVD, and j) RSD. Data from Sentinel-5
(a-e), WRF outputs (f-h), and DATASUS (i-j). We used annual average from 90° percentile monthly values in a-e) and annual averages f-h). Boxplot shows the seasonal
variability of each variable from a-j).
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effect. Spearman correlation analysis confirms the orthogonality among
PCs (p-values larger than 0.05 Appendix 04). Given a mean-centered
dataset X with n samples and p original variables (CO, O3, SO2, NO2, aero-
sol, T, Q, PBLH), the component that retains the maximum variance of data
is the first principal component (PC1) is given by the linear combination of
the original variables CO, O3, SO2, NO2, aerosol, T, Q, PBLH, according to:

PC1 ¼ α1 COþ α2 O3 þ α3 SO2 þ α4 NO2 þ α5 aerosolþ α6 Tþ α7 Qþ α8 PBLH

ð1Þ
4

The covariance matrix (S) given by:

S ¼ 1
n − 1

X0X (2)

where X is an (n × p) matrix.
It is not possible to formally include HDI into the PCA-GLMmodel since

meteorological and air pollution density aremonthly data while HDI data a
single decadal value. Using the hospitalization data as the response variable
and the PCs in a Poisson GLM, we obtain the regression coefficients from
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each PC. To convert the PCs' regression coefficient to the original variable
regression coefficient, we use:

bβi ¼ ∑r
j¼1bαijbγj :i ¼ 1, 2, . . . , p (3)

where bγj is the regression coefficients of the j-th PC calculated in the GLM
using hospitalization as response variable (Appendix 05), p is the number
of covariates (total of 8), r is the number of PCs considered in the analysis,
and bαij is the j-th estimated eigenvector of the covariate's matrix (Appendix

06). bβi is the individual contribution of each covariate (meteorology or air
pollutant density) to the hospitalization (Appendix 07).

We use the first three PCs (Appendix 08) in the Poisson GLM because
they explain most of the variance of the original covariates (up to 87%).
We use the following software and Python (version 3.7) packages in the
analysis: “scikit-learn v. 0.24”, “pandas v. 1.3.1”, and “statsmodels v.
0.12.2”.

The risk analysis has been performed in this article according to:

cRR xið Þ ≈ exi
bβi (4)

where, cRR xið Þ represent the Relative Risk (RR) for interquartile variation
(3rd quantile - 1st quantile) of xi (Appendix 09).

To deal with the problem of underestimating standard errors in the
Poisson regression model when overdispersion is present, we used the
Huber robust sandwich estimator, which corrects the heteroscedasticity
from data. ThemethodHC1 of Huber estimator from the Python statsmodel
library has been used in this work (Palmer et al., 2013).
Fig. 3.Mosaic of median values of CVD (higher panels) and RSD (lower panels) morbidi
(HDI > 0.8)), according to percentiles classes of weather variables (temperature, specifi
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3. Results and discussion

Hospitalizations due to CVD and RSD are higher in less developed mu-
nicipalities (i.e., for the lowest range of HDI – Figs. 3 and 4). The negative
correlations between morbidity by RSD and CVD and HDI (ρ = −0.46
and r=−0.41, respectively - Appendix 10) confirm that population living
in more developed municipalities is less prone to cardiorespiratory hospi-
talization. In contrast, the positive correlation between HDI and O3, NO2,
and CO (Appendix 10) show that more developed municipalities are
slightly more polluted than less developed ones (Appendix 11). Wealthier
municipalities tend to have higher average levels of air pollutants density
caused by the vehicular and industrial emissions (Hsiang et al., 2019).

To tease out the individual effects of air pollution and meteorology on
health outcomes, we use the RR analysis derived from PCA-GLM. The RR
analysis in Fig. 5 reveals that RSD is more susceptible to meteorology and
air pollution than CVD since the risk values for RSD are larger than those
for CVD. The inclusion of HDI as a covariate confirms that socioeconomic
conditions have a strong effect on RSD and CVD, comparable to the effect
of meteorological and air pollution variables (Fig. 5). Similarly, Laurent
et al. (2007) demonstrated that groups with different socioeconomic condi-
tions have different responses to air pollutant–related health effects; and
Cakmak et al. (2016) showed that the risk of developing respiratory condi-
tions increases in low-income and low-education groups our results corrob-
orate finding from previous research that socioeconomic characteristics
and climate could amplify or attenuate the air pollution effect on cardiovas-
cular and respiratory mortality and morbidity (Cakmak et al., 2006, 2007).

Among air pollutants, the O3 and aerosol have the highest RR values,
therefore, the highest impacts in respiratory and cardiovascular
ties for each HDI group (HDI-m (0.6 < HDI < 0.7), HDI-h (0.7 < HDI < 0.8), HDI-vh
c humidity, PBL) and density of air pollutants (CO, O3, NO2, SO2, Aerosol).



Fig. 4. Boxplot of morbidity by RSD and CVD in SC classified according to HDI groups. HDI-m (0.6 < HDI < 0.7), HDI-h (0.7 < HDI < 0.8), HDI-vh (HDI > 0.8); “a” is
significantly different than HDI-h and “b” significantly different than HDI-vh (significance level p < 0.05).
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hospitalization (Fig. 5). O3 has also a marked effect on human health
and is a major factor in asthma morbidity and mortality (WHO, 2021).
It has been shown that the fine particles (aerodynamic diameter smaller
than 2.5 μm) associated with the aerosol affects more people than any
other pollutant (WHO, 2021). This parcel of the aerosol could be
retained for a long time in the lung, inducing lung inflammation,
cough, worsening asthma (Schraufnagel, 2020), and other health impli-
cations. Particulate matter has increased mortality due to lung cancer,
ischemic heart disease, and chronic obstructive pulmonary disease
(Cakmak et al., 2018).
Fig. 5. Relative Risk (RR) for Respiratory System Disease (RSD) and Cardiovascular Sys
density of SO2, O3, NO2, CO, and Aerosol derived from PCA-GLM regression coefficients
relative risks <1 (negative associations) associated with the respective covariate. Tails
appendix 13. Values bellow variable's name represent the original interquartile range
same as shown in Table 1.
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Low temperature, humidity, and PBLH also affect CVD and RSD (Fig. 5).
Temperature is themeteorological covariate with the stronger effect on car-
diorespiratory hospitalization, followed by humidity. RSD hospitalizations
are usually higher where the air is drier, which could amplify the effect of
air pollution-related diseases (Leitte et al., 2009; Mäkinen et al., 2009).

The RR analysis byHDI range further corroborates that RSD hospitaliza-
tion (Fig. 6) in municipalities with low socioeconomic conditions are more
susceptible to the air pollutants density. We observe the largest RSD risk
due to pollutants density in medium HDI municipalities. For all pollutant
variables other than NO2 and SO2, the relative risks show a clear pattern,
tem Disease (CVD) due to HDI, temperature, humidity (Q), PBLH, and air pollutants
. The vertical line is the cutline between relative risks >1 (positive associations) and
represent the confidence intervals from RR analysis which could also be found in
of each variable used on RR estimates. Units from the interquartile ranges are the



Fig. 6. Relative Risk (RR) for RSD due to temperature, humidity (Q), PBLH, and air pollutants density of SO2, O3, NO2, CO, and Aerosol for ranges of HDI derived from PCA-
GLM regression coefficients. The vertical line is the cutline for the risk for negative (below 1.00) and positive (above 1.00) association related to the covariate. Tails represent
the confidence intervals fromRR analysis which could also be found in appendix 13. Values bellow variable's name represent the original interquartile range of each variable
used on RR estimates. Units from the interquartile ranges are the same as shown in Table 1.
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with relative risks being lowest in the highest HDI category, highest in the
lowest HDI-category and intermediate in the medium HDI-category. As
well as for fine particles and O3, it is widely reported that NO2 (Meng
et al., 2021), CO (Chen et al., 2021), and SO2 (Amsalu et al., 2019;
Orellano et al., 2021) has also increased the risk of RSD. It is worth empha-
sizing that even though the air pollutant density (Appendix 9) is smaller in
municipalities in the medium HDI range, the RR values are slightly higher
than in the high HDI range. It confirms that the impact on RSD is higher
in vulnerable municipalities, even when air pollution is lower.

Low temperature, humidity, and PBLH increase the risk of RSD, espe-
cially inmedium and high HDI ranges, which is in agreement with previous
research (e.g., Giang et al., 2014; Mäkinen et al., 2009; Tsangari et al.,
2016; Zhao et al., 2019). The analysis also reveals that temperature, humid-
ity, and PBLH impose similar pressure on RSD hospitalization risk as the air
pollutant densities. The only exception is the RR due to O3 in the medium
HDI range which is much higher than the other covariates.

The ratio of hospitalization by pollutant density andmeteorology varia-

tion, expressed by bβi values also confirms that themedium range HDI group
is more susceptible to RSD due to the air pollutants density (Appendix 12).
In this context, Cakmak et al. (2006) have shown that living in communities
in which individuals have lower household education and income levels
may increase the individuals' vulnerability to air pollution.

When analyzing the RR of CVD by a group of HDI (Fig. 7), O3 has the
highest overall RR value among pollutants, followed by SO2, CO, Aerosol,
and NO2. In this case, the effect on CVD admissions is highest in the highest
HDI-category for SO2, O3 and CO, where the air pollution is also higher, and
the population is older. This should be further investigated using a larger
dataset, covering a larger period andmunicipalities. Temperature is themete-
orological covariate with the lowest overall RR (highest relative risk for low
temperatures) for CVD by HDI group. The risk of CVD increases with the de-
crease in the temperature in all groups and is higher in very-high HDI ranges.

We do not include confounding factors other than HDI in our analysis,
such as age, height, weight, body mass index, occupation, gestational, hy-
pertension, gender, number of neonates, and others. It is a limitation of
our study and could be addressed in future studies and when these data be-
come available. Future work would better elucidate the air pollution and
7

meteorology effect amongHDI ranges using a larger dataset covering entire
country and time window.

Although we have used PBLH as a proxy of air quality, it does not cap-
ture seasonal variations in emissions. Therefore, the association between
PBLH and air quality should be carefully analyzed with future work includ-
ing the effect of seasonal variations in emissions and the effect of boundary
layer variations in air quality.

4. Conclusion

In this work, we evaluate the effect of air pollution and meteorological
conditions on cardiorespiratory diseases combining satellite images from
Sentinel-5 andmeteorological data from theWRFmodel. Our results reveal
that socioeconomic development plays an important role in determining
the air pollution and meteorological drivers of hospitalization in southern
Brazil. Developed municipalities are more polluted, however, they have
less cardiorespiratory hospitalizations.

Our results suggest that RSD hospitalization in Southern Brazil is im-
pacted by air pollutant density, low temperature, low humidity, and low
PBLH, especially in low socioeconomic municipalities. O3 and aerosol are
the most important among the pollutants, while the temperature is the
most relevant meteorological variable on RSD and CVD risks. Comparing
both diseases, RSD is more susceptive to meteorology and air pollution
than CDV. Regarding CVD hospitalization, air pollution density affects
with the similar strength as meteorology, confirming that air pollution is
one of the most important environmental cardiovascular risk factors. The
analysis dividing the data by group of HDI reveals that CVD risk is higher
in very high HDI municipalities, where the air pollution is higher, and the
population is older. It should be further investigated using a larger dataset,
covering a larger period and municipalities.

Our results indicate that socioeconomic development is a key predictor
of RSD and CVD morbidities. Future work using a larger dataset should in-
clude long-term exposition, chronicle effects, and other influencing factors
(e.g., genetics, life stage, sex, and comorbidities). We also recommend fur-
ther studies including the effect of seasonal variations in emissions and the
effect of boundary layer variations in air quality.



Fig. 7. Relative Risk (RR) for CVD due to temperature, humidity (Q), PBLH, and air pollutants density of SO2, O3, NO2, CO, and Aerosol for ranges of HDI derived from PCA-
GLM regression coefficients. The vertical line is the cutline for the risk for negative (below 1.00) and positive (above 1.00) association related to the covariate. Tails represent
the confidence intervals fromRR analysis which could also be found in appendix 13. Values bellow variable's name represent the original interquartile range of each variable
used on RR estimates. Units from the interquartile ranges are the same as shown in Table 1.

R. Will et al. Science of the Total Environment 826 (2022) 154063
CRediT authorship contribution statement

Robson Will: Conceptualization, Methodology, Formal analysis,
Investigation, Writing – original draft, Writing – review & editing, Visualiza-
tion. Marina Hirota: Writing – review & editing, Visualization. Pedro Luiz
Borges Chaffe: Conceptualization, Investigation, Writing – original draft,
Writing – review & editing, Visualization. Otavio Nunes dos Santos:Meth-
odology, Formal analysis,Writing– review& editing, Visualization.Leonardo
Hoinaski: Conceptualization, Methodology, Formal analysis, Investigation,
Writing – original draft, Writing – review & editing, Visualization.

Declaration of competing interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the
work reported in this paper.

Acknowledgments

Authors would like to thank the Fundação de Amparo à Pesquisa e
Inovação de Santa Catarina - FAPESC, for financial support of project
number 2018TR499 (“Avaliação do impacto das emissões veiculares,
queimadas, industriais e naturais na qualidade do ar em Santa Catarina”).

Appendix A. Appendices. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.154063.

References

Alvares, C.A., Stape, J.L., Sentelhas, P.C., De Moraes Gonçalves, J.L., Sparovek, G., 2013.
Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift 22, 711–728.
https://doi.org/10.1127/0941-2948/2013/0507.
8

Amsalu, E., Guo, Y., Li, H., Wang, T., Liu, Y., Wang, A., Liu, X., Tao, L., Luo, Y., Zhang, F.,
Yang, X., Li, X., Wang, W., Guo, X., 2019. Short-term effect of ambient sulfur dioxide
(SO2) on cause-specific cardiovascular hospital admission in Beijing, China: a time
series study. Atmos. Environ. 208, 74–81. https://doi.org/10.1016/j.atmosenv.
2019.03.015.

Andreão, W.L., Toledo de Almeida Albuquerque, T., 2021. Avoidable mortality by im-
plementing more restrictive fine particles standards in Brazil: an estimation using
satellite surface data. Environ. Res. 192. https://doi.org/10.1016/j.envres.2020.
110288.

Borsdorff, T., Aan de Brugh, J., Hu, H., Aben, I., Hasekamp, O., Landgraf, J., 2018. Measuring
carbon monoxide with TROPOMI: first results and a comparison with ECMWF-IFS analy-
sis data. Geophys. Res. Lett. 45, 2826–2832. https://doi.org/10.1002/2018GL077045.

Brasil, 2020. TabNetWin32 3.0: Morbidade Hospitalar do SUS - por local de residência - Santa
Catarina [WWW Document]. URL http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sih/
cnv/nrsc.def (accessed 10.12.20).

Cakmak, S., Dales, R.E., Judek, S., 2006. Respiratory health effects of air pollution gases: mod-
ification by education and income. Arch. Environ. Occup. Health 61, 5–10. https://doi.
org/10.3200/AEOH.61.1.5-10.

Cakmak, S., Dales, R.E., Vidal, C.B., 2007. Air pollution andmortality in Chile: susceptibility among
the elderly. Environ. Health Perspect. 115, 524–527. https://doi.org/10.1289/ehp.9567.

Cakmak, S., Hebbern, C., Cakmak, J.D., Vanos, J., 2016. The modifying effect of socioeco-
nomic status on the relationship between traffic, air pollution and respiratory health in
elementary schoolchildren. J. Environ. Manag. 177, 1–8. https://doi.org/10.1016/j.
jenvman.2016.03.051.

Cakmak, S., Hebbern, C., Pinault, L., Lavigne, E., Vanos, J., Crouse, D.L., Tjepkema, M., 2018.
Associations between long-term PM2.5 and ozone exposure and mortality in the Cana-
dian Census Health and Environment Cohort (CANCHEC), by spatial synoptic classifica-
tion zone. Environ. Int. 111, 200–211. https://doi.org/10.1016/j.envint.2017.11.030.

Chen, K., Breitner, S., Wolf, K., Stafoggia, M., Sera, F., Vicedo-Cabrera, A.M., Guo, Y., Tong, S.,
Lavigne, E., Matus, P., Valdés, N., Kan, H., Jaakkola, J.J.K., Ryti, N.R.I., Huber, V.,
Scortichini, M., Hashizume, M., Honda, Y., Nunes, B., Madureira, J., Holobâcă, I.H.,
Fratianni, S., Kim, H., Lee, W., Tobias, A., Íñiguez, C., Forsberg, B., Åström, C., Ragettli,
M.S., Guo, Y.L.L., Chen, B.Y., Li, S., Milojevic, A., Zanobetti, A., Schwartz, J., Bell, M.L.,
Gasparrini, A., Schneider, A., 2021. Ambient carbon monoxide and daily mortality: a
global time-series study in 337 cities. Lancet Planet. Heal. 5, e191–e199. https://doi.
org/10.1016/S2542-5196(21)00026-7.

Clougherty, J.E., 2010. A growing role for gender analysis in air pollution epidemiology. En-
viron. Health Perspect. 118, 167–176. https://doi.org/10.1289/ehp.0900994.

ce:label>Ebisu et al., 2019Ebisu, K., Malig, B., Hasheminassab, S., Sioutas, C., 2019. Age-
specific seasonal associations between acute exposure to PM2.5 sources and cardiorespi-
ratory hospital admissions in California. Atmos. Environ. 218, 117029. https://doi.org/
10.1016/j.atmosenv.2019.117029.

European Environment Agency, 2018. Unequal Exposure and Unequal Impacts: Social Vulner-
ability to Air Pollution, Noise and Extreme Temperatures in Europe. , pp. 1–102 https://
doi.org/10.2800/324183.

https://doi.org/10.1016/j.scitotenv.2022.154063
https://doi.org/10.1016/j.scitotenv.2022.154063
https://doi.org/10.1127/0941-2948/2013/0507
https://doi.org/10.1016/j.atmosenv.2019.03.015
https://doi.org/10.1016/j.atmosenv.2019.03.015
https://doi.org/10.1016/j.envres.2020.110288
https://doi.org/10.1016/j.envres.2020.110288
https://doi.org/10.1002/2018GL077045
http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sih/cnv/nrsc.def
http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sih/cnv/nrsc.def
https://doi.org/10.3200/AEOH.61.1.5-10
https://doi.org/10.3200/AEOH.61.1.5-10
https://doi.org/10.1289/ehp.9567
https://doi.org/10.1016/j.jenvman.2016.03.051
https://doi.org/10.1016/j.jenvman.2016.03.051
https://doi.org/10.1016/j.envint.2017.11.030
https://doi.org/10.1016/S2542-5196(21)00026-7
https://doi.org/10.1016/S2542-5196(21)00026-7
https://doi.org/10.1289/ehp.0900994
https://doi.org/10.1016/j.atmosenv.2019.117029
https://doi.org/10.1016/j.atmosenv.2019.117029
https://doi.org/10.2800/324183
https://doi.org/10.2800/324183


R. Will et al. Science of the Total Environment 826 (2022) 154063
Gao, Y., Chan, E.Y.Y., Zhu, Y., Wong, T.W., 2013. Adverse effect of outdoor air pollution on
cardiorespiratory fitness in Chinese children. Atmos. Environ. 64, 10–17. https://doi.
org/10.1016/j.atmosenv.2012.09.063.

Gasparrini, A., Guo, Y., Hashizume, M., Lavigne, E., Zanobetti, A., Schwartz, J., Tobias, A.,
Tong, S., Rocklöv, J., Paulo, S., Paulo, S., 2015. Mortality risk attributable to high and
low ambient temperature: a multicountry observational study. Lancet 369–375.
https://doi.org/10.1016/S0140-6736(14)62114-0.

Giang, P.N., Van Dung, D., Giang, K.B., Van Vinh, H., Rocklöv, J., 2014. The effect of temper-
ature on cardiovascular disease hospital admissions among elderly people in Thai Nguyen
Province, Vietnam. Glob. Health Action 7, 1–7. https://doi.org/10.3402/gha.v7.23649.

Goldberg, D.L., Lu, Z., Streets, D.G., De Foy, B., Griffin, D., Mclinden, C.A., Lamsal, L.N.,
Krotkov, N.A., Eskes, H., 2019. Enhanced capabilities of TROPOMI NO2: estimating
NOX from North American cities and power plants. Environ. Sci. Technol. 53,
12594–12601. https://doi.org/10.1021/acs.est.9b04488.

Ho, H.C., Wong,M.S., Yang, L., Chan, T.C., Bilal, M., 2018. Influences of socioeconomic vulner-
ability and intra-urban air pollution exposure on short-termmortality during extreme dust
events. Environ. Pollut. 235, 155–162. https://doi.org/10.1016/j.envpol.2017.12.047.

Hsiang, S., Oliva, P., Walker, R., 2019. The distribution of environmental damages. Rev. En-
viron. Econ. Policy 13, 83–103. https://doi.org/10.1093/reep/rey024.

IBGE, 2013. Índice de Desenvolvimento Humano Municipal Brasileiro, Atlas do
Desenvolvimento Humano no Brasil.

IBGE, 2020. IBGE | Cidades@ | Santa Catarina | Panorama [WWW Document]. URL https://
cidades.ibge.gov.br/brasil/sc/panorama (accessed 9.13.21).

Ikäheimo, T.M., Jokelainen, J., Näyhä, S., Laatikainen, T., Jousilahti, P., Laukkanen, J.,
Jaakkola, J.J.K., 2020. Cold weather-related cardiorespiratory symptoms predict higher
morbidity and mortality. Environ. Res. 191. https://doi.org/10.1016/j.envres.2020.
110108.

Krall, J.R., Chang, H.H., Waller, L.A., Mulholland, J.A., Winquist, A., Talbott, E.O., Rager, J.R.,
Tolbert, P.E., Sarnat, S.E., 2018. A multicity study of air pollution and cardiorespiratory
emergency department visits: comparing approaches for combining estimates across cit-
ies. Environ. Int. 120, 312–320. https://doi.org/10.1016/j.envint.2018.07.033.

Laurent, O., Bard, D., Filleul, L., Segala, C., 2007. Effect of socioeconomic status on the rela-
tionship between atmospheric pollution and mortality. J. Epidemiol. Community Health
61, 665–675. https://doi.org/10.1136/jech.2006.053611.

Leitte, A.M., Petrescu, C., Franck, U., Richter, M., Suciu, O., Ionovici, R., Herbarth, O., Schlink,
U., 2009. Respiratory health, effects of ambient air pollution and its modification by air
humidity in Drobeta-Turnu Severin, Romania. Sci. Total Environ. 407, 4004–4011.
https://doi.org/10.1016/j.scitotenv.2009.02.042.

Mäkinen, T.M., Juvonen, R., Jokelainen, J., Harju, T.H., Peitso, A., Bloigu, A., Silvennoinen-
Kassinen, S., Leinonen, M., Hassi, J., 2009. Cold temperature and low humidity are asso-
ciated with increased occurrence of respiratory tract infections. Respir. Med. 103,
456–462. https://doi.org/10.1016/j.rmed.2008.09.011.

Meng, X., Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A.M., Milojevic, A., Guo, Y., Tong, S., De
Sousa Zanotti Stagliorio Coelho, M., Saldiva, P.H.N., Lavigne, E., Correa, P.M., Ortega,
N.V., Osorio, S., Garcia, Kyselý, J., Urban, A., Orru, H., Maasikmets, M., Jaakkola, J.J.K.,
Ryti, N., Huber, V., Schneider, A., Katsouyanni, K., Analitis, A., Hashizume, M., Honda,
Y., Ng, C.F.S., Nunes, B., Teixeira, J.P., Holobaca, I.H., Fratianni, S., Kim, H., Tobias, A.,
Íñiguez, C., Forsberg, B., Åström, C., Ragettli, M.S., Guo, Y.L.L., Pan, S.C., Li, S., Bell,
M.L., Zanobetti, A., Schwartz, J., Wu, T., Gasparrini, A., Kan, H., 2021. Short term associ-
ations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mor-
tality: multilocation analysis in 398 cities. BMJ https://doi.org/10.1136/bmj.n534.

Orellano, P., Reynoso, J., Quaranta, N., 2021. Short-term exposure to sulphur dioxide (SO2)
and all-cause and respiratory mortality: a systematic review and meta-analysis. Environ.
Int. 150, 106434. https://doi.org/10.1016/j.envint.2021.106434.

Palmer, A., Losilla, J.M., Vives, J., Jimenez, R., 2013. Erratum: Overdispersion in the poisson
regression model. A comparative simulation study (Methodology (2007) 3:3 (89–99)
DOI:10.1027/1614-2241.3.3.89). Methodology 9, 178. https://doi.org/10.1027/1614-
2241/a000069.

Pino-Cortés, E., Díaz-Robles, L.A., Campos, V., Vallejo, F., Cubillos, F., Gómez, J., Cereceda-
Balic, F., Fu, J., Carrasco, S., Figueroa, J., 2020. Effect of socioeconomic status on the
9

relationship between short-term exposure to PM2.5 and cardiorespiratory mortality and
morbidity in a megacity: the case of Santiago de Chile. Air Qual. Atmos. Heal. 13,
509–517. https://doi.org/10.1007/s11869-020-00818-6.

PNUD, Ipea, F., 2013. Índice de Desenvolvimento Humano Municipal Brasileiro, Atlas do
Desenvolvimento Humano no Brasil.

Requia, W.J., Koutrakis, P., Roig, H.L., Adams, M.D., Santos, C.M., 2016. Association between
vehicular emissions and cardiorespiratory disease risk in Brazil and its variation by spa-
tial clustering of socio-economic factors. Environ. Res. 150, 452–460. https://doi.org/
10.1016/j.envres.2016.06.027.

Righini, G., Cappelletti, A., Ciucci, A., Cremona, G., Piersanti, A., Vitali, L., Ciancarella, L.,
2014. GIS based assessment of the spatial representativeness of air quality monitoring sta-
tions using pollutant emissions data. Atmos. Environ. 97, 121–129. https://doi.org/10.
1016/j.atmosenv.2014.08.015.

de Rocha, I.O., 2019. Atlas Geográfico de Santa Catarina: população – fascículo 3, Secretaria
de Estado do Planejamento. Diretoria de Estatística e Cartografia. https://doi.org/10.
5965/978858302152032018.

Schraufnagel, D.E., 2020. The health effects of ultrafine particles. Exp. Mol. Med. 52,
311–317. https://doi.org/10.1038/s12276-020-0403-3.

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D., Duda, M.G., Huang, X., Wang,
W., Powers, J.G., 2008. A description of the advanced research WRF version 3 (No.
NCAR/TN-475+STR). Univ. Corp. Atmos. Res. https://doi.org/10.1080/07377366.
2001.10400427.

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Zhiquan, L., Berner, J., Wang, W., Pow-
ers, J.G., Duda, M.G., Barker, D.M., Huang, X.-Y., 2019. A Description of the Advanced
Research WRF Model Version 4. NCAR Tech. Note NCAR/TN-475+STR. , p. 145
https://doi.org/10.5065/1dfh-6p97.

Strak, M., Janssen, N., Beelen, R., Schmitz, O., Karssenberg, D., Houthuijs, D., van den Brink,
C., Dijst, M., Brunekreef, B., Hoek, G., 2017. Associations between lifestyle and air pollu-
tion exposure: potential for confounding in large administrative data cohorts. Environ.
Res. 156, 364–373. https://doi.org/10.1016/j.envres.2017.03.050.

Sun, Z., Yang, L., Bai, X., Du, W., Shen, G., Fei, J., Wang, Y., Chen, A., Chen, Y., Zhao, M.,
2019. Maternal ambient air pollution exposure with spatial-temporal variations and pre-
term birth risk assessment during 2013–2017 in Zhejiang Province, China. Environ. Int.
133, 105242. https://doi.org/10.1016/j.envint.2019.105242.

Tobías, A., Saez, M., 2004. Time-Series Regression Models to Study the Short-Term Effects of
Environmental Factors on Health * 1–21.

Toro .R., A, Kvakić, M., Klaić, Z.B., Koračin, D., Morales .R.G.E., S, Leiva .M.A., G, 2019. Ex-
ploring atmospheric stagnation during a severe particulate matter air pollution episode
over complex terrain in Santiago, Chile. Environ. Pollut. 244, 705–714. https://doi.
org/10.1016/j.envpol.2018.10.067.

Tsangari, H., Paschalidou, A.K., Kassomenos, A.P., Vardoulakis, S., Heaviside, C., Georgiou,
K.E., Yamasaki, E.N., 2016. Extreme weather and air pollution effects on cardiovascular
and respiratory hospital admissions in Cyprus. Sci. Total Environ. 542, 247–253.
https://doi.org/10.1016/j.scitotenv.2015.10.106.

WHO, 2017. O Impacto Global da Doença Respiratória, European Respiratory Society.
WHO, 2021. Ambient (Outdoor) Air Pollution [WWW Document]. URL https://www.who.

int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed
12.6.21).

Yatkin, S., Gerboles, M., Belis, C.A., Karagulian, F., Lagler, F., Barbiere, M., Borowiak, A.,
2020. Representativeness of an air quality monitoring station for PM2.5 and source ap-
portionment over a small urban domain. Atmos. Pollut. Res. 11, 225–233. https://doi.
org/10.1016/j.apr.2019.10.004.

Zhao, Y., Zhang, L., Zhou, M., Chen, D., Lu, X., Tao, W., Liu, J., Tian, H., Ma, Y., Fu, T.M.,
2019. Influences of planetary boundary layer mixing parameterization on summertime
surface ozone concentration and dry deposition over North China. Atmos. Environ.
218, 116950. https://doi.org/10.1016/j.atmosenv.2019.116950.

Zhao, F., Liu, C., Cai, Z., Liu, X., Bak, J., Kim, J., Hu, Q., Xia, C., Zhang, C., Sun, Y., Wang, W.,
Liu, J., 2021. Ozone profile retrievals from TROPOMI: implication for the variation of tro-
pospheric ozone during the outbreak of COVID-19 in China. Sci. Total Environ. 764,
142886. https://doi.org/10.1016/j.scitotenv.2020.142886.

https://doi.org/10.1016/j.atmosenv.2012.09.063
https://doi.org/10.1016/j.atmosenv.2012.09.063
https://doi.org/10.1016/S0140-6736(14)62114-0
https://doi.org/10.3402/gha.v7.23649
https://doi.org/10.1021/acs.est.9b04488
https://doi.org/10.1016/j.envpol.2017.12.047
https://doi.org/10.1093/reep/rey024
http://refhub.elsevier.com/S0048-9697(22)01155-X/rf0100
http://refhub.elsevier.com/S0048-9697(22)01155-X/rf0100
https://cidades.ibge.gov.br/brasil/sc/panorama
https://cidades.ibge.gov.br/brasil/sc/panorama
https://doi.org/10.1016/j.envres.2020.110108
https://doi.org/10.1016/j.envres.2020.110108
https://doi.org/10.1016/j.envint.2018.07.033
https://doi.org/10.1136/jech.2006.053611
https://doi.org/10.1016/j.scitotenv.2009.02.042
https://doi.org/10.1016/j.rmed.2008.09.011
https://doi.org/10.1136/bmj.n534
https://doi.org/10.1016/j.envint.2021.106434
https://doi.org/10.1027/1614-2241/a000069
https://doi.org/10.1027/1614-2241/a000069
https://doi.org/10.1007/s11869-020-00818-6
http://refhub.elsevier.com/S0048-9697(22)01155-X/rf0155
http://refhub.elsevier.com/S0048-9697(22)01155-X/rf0155
https://doi.org/10.1016/j.envres.2016.06.027
https://doi.org/10.1016/j.envres.2016.06.027
https://doi.org/10.1016/j.atmosenv.2014.08.015
https://doi.org/10.1016/j.atmosenv.2014.08.015
https://doi.org/10.5965/978858302152032018
https://doi.org/10.5965/978858302152032018
https://doi.org/10.1038/s12276-020-0403-3
https://doi.org/10.1080/07377366.2001.10400427
https://doi.org/10.1080/07377366.2001.10400427
https://doi.org/10.5065/1dfh-6p97
https://doi.org/10.1016/j.envres.2017.03.050
https://doi.org/10.1016/j.envint.2019.105242
http://refhub.elsevier.com/S0048-9697(22)01155-X/rf0200
http://refhub.elsevier.com/S0048-9697(22)01155-X/rf0200
https://doi.org/10.1016/j.envpol.2018.10.067
https://doi.org/10.1016/j.envpol.2018.10.067
https://doi.org/10.1016/j.scitotenv.2015.10.106
http://refhub.elsevier.com/S0048-9697(22)01155-X/rf0215
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://doi.org/10.1016/j.apr.2019.10.004
https://doi.org/10.1016/j.apr.2019.10.004
https://doi.org/10.1016/j.atmosenv.2019.116950
https://doi.org/10.1016/j.scitotenv.2020.142886

	Socioeconomic development role in hospitalization related to air pollution and meteorology: A study case in southern Brazil
	1. Introduction
	2. Methodology
	2.1. Study area
	2.2. Air quality data
	2.3. Meteorological data
	2.4. Hospitalization and HDI data
	2.5. Statistical analysis

	3. Results and discussion
	4. Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Appendices. Supplementary data
	References




