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Permafrost is warming at a global scale
Boris K. Biskaborn et al.#

Permafrost warming has the potential to amplify global climate change, because when frozen

sediments thaw it unlocks soil organic carbon. Yet to date, no globally consistent assessment

of permafrost temperature change has been compiled. Here we use a global data set of

permafrost temperature time series from the Global Terrestrial Network for Permafrost to

evaluate temperature change across permafrost regions for the period since the International

Polar Year (2007–2009). During the reference decade between 2007 and 2016, ground

temperature near the depth of zero annual amplitude in the continuous permafrost zone

increased by 0.39 ± 0.15 °C. Over the same period, discontinuous permafrost warmed by

0.20 ± 0.10 °C. Permafrost in mountains warmed by 0.19 ± 0.05 °C and in Antarctica by 0.37

± 0.10 °C. Globally, permafrost temperature increased by 0.29 ± 0.12 °C. The observed trend

follows the Arctic amplification of air temperature increase in the Northern Hemisphere. In

the discontinuous zone, however, ground warming occurred due to increased snow thickness

while air temperature remained statistically unchanged.
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One quarter of the Northern Hemisphere and 17% of the
Earth’s exposed land surface is underlain by permafrost1,
that is ground with a temperature remaining at or below

0 °C for at least two consecutive years. The thermal state of
permafrost is sensitive to changing climatic conditions and
in particular to rising air temperatures and changing snow
regimes2–7. This is important, because over the past few decades,
the atmosphere in polar and high elevation regions has warmed
faster than elsewhere8. Even if global air temperature increased by
no more than 2 °C by 2100, permafrost may still degrade over a
significant area9. Such a change would have serious consequences
for ecosystems, hydrological systems, and infrastructure integ-
rity10–12. Carbon release resulting from permafrost degradation
will potentially impact the Earth’s climate system because large
amounts of carbon previously locked in frozen organic matter
will decompose into carbon dioxide and methane13–15. This
process is expected to augment global warming by 0.13–0.27 °C
by 2100 and by up to 0.42 °C by 230015. Despite this, permafrost
change is not yet adequately represented in most of the Earth
System Models14 that are used for the IPCC projections for
decision makers. One major reason for this was the absence of a
standardized global data set of permafrost temperature observa-
tions for model validation.

Prior to the International Polar Year (IPY, 2007–2009), ground
temperatures were measured in boreholes scattered across per-
mafrost regions. However, a globally organized permafrost data
network and a standard reference period against which tem-
perature change could be measured did not exist. One key out-
come of the IPY was strenghtening the Global Terrestrial
Network for Permafrost (GTN-P)16,4. This initiative established a
temperature reference baseline for permafrost and led to an
increase in the number of accessible boreholes used for tem-
perature monitoring.

To analyze the thermal change of permafrost we assembled a
global permafrost-temperature data set that includes time series
of data attributed to the IPY reference boreholes. We compiled a
time series for the decade from 2007 to 2016 that comprises mean
annual ground temperatures �T , determined from temperatures
measured in boreholes within the continuous and discontinuous
permafrost zones in the Arctic (including the Subarctic), Ant-
arctica and at high elevations outside the polar regions. The
measurements were made at, or as close as possible to the depth
of zero annual amplitude Z*, where seasonal changes in ground
temperature are negligible (≤0.1 °C). Rates of permafrost tem-
perature change calculated for the 2007–2016 decade were
indexed in each borehole to suppress near-surface and deep
geothermal changes. Regional and global change rates were cal-
culated as area-weighted means. To compare single borehole sites,
due to the higher availability of full-year records after 2007, we
ranked the temperature difference between the biennial means of
2008–2009 and 2015–2016. We used linear regression on �T
between 2007–2016 to estimate decadal change rates. To calculate
annual departures, we compared consecutive years to the refer-
ence mean of 2008–2009. We concluded, that ground tempera-
ture near the depth of zero annual amplitude increased in all
permafrost zones on Earth, that is continuous and discontinuous
permafrost in the Northern Hemisphere, as well as permafrost in
the mountains and in Antarctica. The observed trend followed
increased air temperature and snow thickness, each in varying
degrees depending on the region.

Results
Permafrost temperature changes. Measurements from borehole
sites established prior to the IPY generally indicated warming
driven by higher air temperatures (Fig. 1)4,17,18. Our new data set

contains 154 boreholes of which 123 allow calculation of decadal
temperature change rates based on adequate time series. The
remaining 31 boreholes provide additional information on annual
departures. Our results show that in the decade after the IPY
permafrost warmed within 71 boreholes, cooled in 12, and
remained unchanged (within measurement accuracy) in the
remaining 40 (Fig. 2). The ground temperature rose above 0 °C in
five boreholes, indicating thawing at the measurement depth of
10 m at Z*. The largest increase of �T over the observed reference
decade between 2007 and 2016 was 0.39 ± 0.15 °C dec�1

Ref in the
Arctic continuous permafrost zone. The greatest permafrost
temperature changes observed in individual boreholes (Δ�Tb) since
2008–2009 were 0.93 and 0.90 °C in northwestern Siberia (Marre
Sale, 10 m) and northeastern Siberia (Samoylov Island, 20.75 m),
respectively. The discontinuous permafrost zone experienced
warming of 0.20 ± 0.10 °C dec�1

Ref . The largest Δ�Tb since
2008–2009 of 0.95 °C was observed in southeastern Siberia,
Magadan (Olsky pass, 10 m). Permafrost at this site started
thawing after the IPY period at the measurement depth.

Mountain permafrost in the data set is mainly represented by
boreholes in the European Alps, the Nordic countries, and central
Asia. Although absolute �T values in mountain permafrost are
highly heterogeneous, depending on elevation, local topography,
snow regime, and subsurface characteristics, changes in mountain
permafrost temperatures were analyzed for all regions and
settings19 as one group. They can vary considerably, however,
between sites of low and high ground ice content at temperatures
just below 0 °C.
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Fig. 1 Long permafrost temperature records for selected sites. a Location of
boreholes with long time-series data. Because some regions lack long
temperature records, shorter temperature records from Greenland and
Chinese mountains are included for comparison. Depth of measurements is
according to the Global Terrestrial Network for Permafrost ID16: 24.4m (ID
356), 20m (ID 55, 79, 102, 117, 501, 710, 831, 1113, and 1710), 18m (ID 386),
16.75m (ID 871), 15m (ID 854), 12m (ID 287), 10m (ID 265, 431), and 5m
(ID 528). The light blue area represents the continuous permafrost zone
(>90% coverage) and the light purple area represents the discontinuous
permafrost zones (<90% coverage). b Mean annual ground temperature
over time. Colors indicate the location of the boreholes in a. Permafrost
zones are derived from the International Permafrost Association (IPA)
map46. World Borders data are derived from http://thematicmapping.org/
downloads/world_borders.php and licensed under CC BY-SA 3.0 (https://
creativecommons.org/licenses/by-sa/3.0/)
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Mountain permafrost �T increased20,21 by 0.19 ± 0.05 °C dec�1
Ref .

The greatest Δ�Tb since 2008–2009 was 1.15 °C, observed in the
Aldan mountain tundra of southern Yakutia, Siberia (Taezhnoe,
25 m).

On average, permafrost across zones warmed by 0.33 ± 0.16 °C
over the reference decade in northern Asia and by 0.23 ±
0.11 °C dec�1

Ref in North America. This difference is most likely
due to stronger warming of the atmosphere over North Asia
compared to North America, as indicated by reconstructed
decadal air temperature changes (1998–2012) that showed
cooling in Alaska22.

Similar to warming of the Arctic continuous permafrost zone,
the Antarctic permafrost warmed by 0.37 ± 0.10 °C dec�1

Ref . How-
ever, the remoteness of the continent and its limited accessibility
resulted in far fewer boreholes drilled to Z* compared to the
Northern Hemisphere. Consequently, permafrost temperature
departures and trends were statistically not significant and had
large uncertainty bands (Fig. 3d).

Air temperature changes. The relation between air and soil
temperature development in permafrost regions is not straightfor-
ward due to highly variable buffer layers such as vegetation, active
layer soils, or snow cover. To compare permafrost temperature
changes to those in the atmosphere, we applied the same calculation
method for each borehole site using mean annual air temperatures

(T̂) at 2-m height above ground level (Fig. 4a, d), spatially inter-
polated from the ERA Interim gridded reanalysis data set23. We
calculated general snow thickness changes for Arctic sites in Fig. 4a,
b. However, there is not, as yet, a reliable consistent data set on
snow thickness applicable for high elevation regions or Antarctica.

The propagation of temperature change in the atmosphere
downward to the depth of Z* can take up to several years, but the
time varies depending on the surface characteristics, the subsurface
ice content, and the soil thermal diffusivitiy24,25. We took this lag
into account by averaging over the previous 4 years for each year
considered, but there was no significant correlation at an annual
resolution between permafrost temperature departures at Z* depth
and 2-m air temperature anomalies derived from ERA Interim data
alone (Fig. 4). This lack of correlation can be attributed to the
discrepancy between the scale at which borehole observations are
conducted and the spatial resolution of 80 km for the gridded air-
temperature reanalysis data26 and because in permafrost regions, the
reanalysis output is more dependent on the model structure and
data assimilation methods than in data-rich regions27; local micro-
and secondary climate effects28; and buffering layers at the air-
ground interface5 that influence the thermal response of permafrost
to short-term changes in air temperature.

Previous studies have shown that these surface effects,
along with the thermal diffusivity of the underlying materials,
act as a buffer that reduces the effect of short-term climate
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Fig. 2 Permafrost temperature and rate of change near the depth of zero annual amplitude. a, b Mean annual ground temperatures for 2014–2016 in the
Northern Hemisphere and Antarctica, n= 129 boreholes. c, d Decadal change rate of permafrost temperature from 2007 to 2016, n= 123 boreholes
(Eq. 3). Changes within the average measurement accuracy of ~±0.1 °C are coded in green. Continuous permafrost zone (>90% coverage); discontinuous
permafrost zones (<90% coverage). Permafrost zones are derived from the International Permafrost Association (IPA) map46. World Borders data are
derived from http://thematicmapping.org/downloads/world_borders.php and licensed under CC BY-SA 3.0 (https://creativecommons.org/licenses/by-
sa/3.0/)
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variation2,3,5–7,29. Thus, short-term meteorological phenomena
are increasingly attenuated and delayed with depth, and the mean
permafrost temperature changes near the depth of Z* generally
follow the atmosphere’s long-term trend. Mean surface air
temperature changes calculated from ERA Interim data at the
borehole locations (Fig. 5b) are similar to those for permafrost
temperature with respect to direction and order of magnitude.
The decadal change rates of air temperature were estimated to
0.86 ± 0.84 °C per reference decade in the Arctic continuous
permafrost zone, 0.63 ± 0.91 °C dec�1

Ref in the Arctic discontinuous
permafrost zone, and 0.1 ± 0.50 °C dec�1

Ref in mountain perma-
frost. Air temperature trends in Antarctica (annual mean 0.10 ±
0.55°C dec�1

Ref , June–August mean –0.48 ± 0.91 °C dec�1
Ref ,

unweighted median –0.12, Fig. 5b), however, do not match the
observed strong permafrost warming. This discrepancy is due to
large climatic differences between the Antarctic Peninsula and
eastern Antarctica30,31, the small number of boreholes that fulfill
the quality criteria, and the principal climate model bias in
Antarctica32.

Air temperature trends in the Arctic continuous permafrost
zone correspond well with permafrost temperature change rates
(Figs. 3a and 4a), suggesting that enhanced warming of
permafrost in the High Arctic reflects the polar amplification of

recent atmospheric warming22. However, in the Arctic discontin-
uous permafrost zone, air temperatures were statistically
unchanged between 2006 and 2014 while permafrost tempera-
tures increased. We found that snow dynamics, the time lag
between air and ground temperature, and the latent heat effect
serve as concurrent explanations for this phenomenon.

Snow thickness changes. The snow cover reduces the upward
transfer of energy from the ground to the air during winter33,34.
Distinct peaks in the mean snow depth in 2009, 2011 and from
2013 onward (Fig. 4a, b) suggest that the observed continued
warming of discontinuous permafrost is facilitated by increasing
snow thickness. Compared to the Arctic continuous permafrost
zone, the mean snow cover in the discontinuous zone arrived
about 1 week later, reached its maximum insulation 1 month
earlier, and also disappeared half a month earlier. Compared to
2007–2009 the snow cover in 2014–2016 in the discontinuous
zone started to form 13.7 days earlier, reached its maximum
insulation effect 37.7 days earlier, and disappeared 9.3 days earlier
(Fig. 4f). It was shown previously that a difference of only 10 days
caused significant warming in Alaska35. Increases of shrub height
and density that trap wind drifting snow is likely also a
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contributing factor36. All of these changes provide evidence of
increased protection of the ground from low temperatures during
winter37,38. Snow timing differences within the continuous zone
are less distinct but show a generally similar trend (Fig. 4e, f).

Discussion
An important factor that explains the general discrepancy
between mean annual temperature changes at Z* in permafrost
and the atmosphere is that permafrost progressively with depth

“remembers” the surface temperature history of the past several
years25,39. The temporal dimension of episodes with lower air
temperatures between 2009 and 2013 in the Arctic (Fig. 4a, b),
and around 2012 in the mountains (Fig. 4c), relative to preceding
period of higher air temperatures, however, was not large enough
to sustainably impact the general warming trend of permafrost.

We partly attribute the difference in ground temperature
change between the continuous permafrost and the discontinuous
permafrost zones to the latent heat effect. In this process, the ice-
water phase change associated with warmer permafrost in the
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discontinuous zone (Fig. 2a, b) reduces the response of ground
temperature to changes in air temperature4. Cold permafrost
therefore exhibits a greater response to changing air temperature
compared to permafrost with a temperature close to 0 °C4,40.

The warming of permafrost observed since IPY continues the
trends documented prior to IPY41. Our global analysis suggests
that the future increases in air temperature projected under
current climate scenarios42 will result in continued permafrost
warming. The duration of our time-series, however, does not yet
permit predictive analysis of non-linear climate-permafrost rela-
tions as the latent heat effect is stronger near 0 °C and surface
characteristics are not constant. However, observations of thaw at
some of the observation sites demonstrate that the latent heat
requirement cannot indefinitely delay permafrost warming down
to depths of about 15 m observed in this study (Fig. 6), nor
prevent the eventual thawing of permafrost. This could have wide
implications in terms of permafrost degradation and release of
greenhouse gases from decomposition of organic matter.

The SWIPA 2017 report41 gave an estimate of 0.5 °C warming
of permafrost in very cold areas such as the High Arctic since IPY
(2007–2009). This is similar to our network observations of
strong warming within the Arctic continuous permafrost zone
and of continued warming elsewhere. The assessment of per-
mafrost temperature trends presented in this paper can facilitate
validation of models to project thawing of permafrost down to the
depth of Z* and associated impacts with respect to feedbacks to
the climate system.

The current global coverage of permafrost temperature mon-
itoring is not yet ideal, due to the limited sampling in regions
such as Siberia, central Canada, Antarctica, and the Himalayan
and Andes mountains. Furthermore, even though the data used
were quality checked and are as complete as possible, logistical

challenges during fieldwork caused gaps in the time series. Better
assessments of the evolution of the thermal state of permafrost,
including consideration of non-linear system behavior, will ben-
efit from ongoing efforts to enhance the global network spatially
and extend the length of the record. Enhancing existing mon-
itoring sites through co-location with meteorological stations
could further improve understanding of microclimate and buffer-
layer influences, and would also provide the data necessary for a
comprehensive assessment of permafrost responses to ongoing
climate change.

The newly compiled GTN-P data set has facilitated assessment
of trends in permafrost temperatures and can also contribute to
improved representation of permafrost dynamics in climate
models and the reduction of uncertainty in the prediction of
future conditions.

Methods
Field observations of permafrost temperatures. Boreholes were established and
temperatures were recorded during annually repeated fieldwork campaigns in polar
and high-elevation areas. Temperature was measured either by lowering a cali-
brated thermistor into a borehole, or recorded using permanently installed multi-
sensor cables43. Measurements were recorded either manually with a portable
temperature system or by automated continuous data logging. At some borehole
sites, permafrost thawed at the measurement depth during the period of obser-
vations. The criterion to include non-permafrost sites in the global change calcu-
lation was that ground temperatures near the depth of the Z* were below 0 °C until
the end of the IPY reference period in 2009.
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Compiling permafrost temperature data. Permafrost temperature data are
assembled in the Global Terrestrial Network for Permafrost (GTN-P) Database16.
They are then transferred to a global data set after a 1-year embargo to allow
authors to publish their local findings first. Within the GTN-P Data Management
System the data presented were harmonized, quality checked and filtered to gen-
erate a standardized global permafrost borehole data set. Data standardization was
performed during data entry into the database following international geospatial
metadata standards ISO 19115/2 and TC/221. The data management system is
based on an object-oriented data model, accessible online at http://gtnpdatabase.
org. The GTN-P mean annual ground temperature �T compilation is accessible
online at https://doi.org/10.1594/PANGAEA.884711.

A total of 154 boreholes with 1264 �T values were used in this study. Data
analyses of decadal permafrost temperature change were based on 123 boreholes
and 1033 �T values calculated from > 105 sensor observations.

Calculating permafrost temperature change. We used the R environment44 to
calculate the mean permafrost temperature change for every borehole from quality-
filtered �T data. The same measurement depth was used each year for a borehole.
The depth was chosen to be the nearest available sensor to the depth of Z*, the
depth at which seasonal changes in temperature are ≤0.1 °C (Fig. 7). The nearest
depth to Z* was detected by either an algorithm calculating the difference between
annual maximum (summer) and minimum (winter) temperature in the original
data starting from the shallowest depth downwards and using cubic spline inter-
polation between thermistors and a threshold set to sensor accuracy, or by visual
inspection of annual maximum and minimum temperature measurements plotted
versus depth (Fig. 7). Because the depth of Z* varies over time as temperature
changes, we used an average estimated for the observation period. The data
revealed that 19.5% of measurements were from above Z*. 59.8% of measurements
represented Z* and 20.7% were from below Z*. Measurements from boreholes that
had no reliable indication of Z* had a mean depth of 17.1 m, which is well below
the average of all indicated Z* values (mean 14.1 m, median 12 m). Thus, the data
distribution represents an approximation to Z* which minimizes the potential bias
caused by seasonal fluctuations.

We created a data set that reflects long-term climate change and avoids large
temperature fluctuations caused by seasonal phenomena, e.g., in Antarctica, by
excluding data from shallow boreholes that did not reach Z*. Because Z* could not
be determined in all boreholes the minimum depth was set to 10 m. However, five
boreholes with depths between 6.7 m and 10m were included (GTN-P ID’s16: 137,
860, 861, 877, and 1192), because their depths were equal to Z*, and seasonal
fluctuations were less than the instrument precision and accuracy. Boreholes that
fulfilled the quality criteria but were not included in this analysis due to depth
constraints, represented 22.6% of the original data set. 8.6% were excluded from the
Arctic continuous data set; 23.4% from the Arctic discontinuous data set; 30.0%
from the mountain data set; and 57.1% from the Antarctic data set. Statistically
indifferent temperature trends of the remaining shallow (≤12 m) and deeper
(>12 m, max. 40 m) boreholes in the utilized data set confirm that the observed
depths near Z* (Fig. 6b) provide a representative sample tracking climate variability
coherently.

We applied different methods to extract information on permafrost
temperature changes in single years, in single boreholes and for decadal changes in
the permafrost regions, described as follows: We define a set i= {2007,...,2016} to
identify the years. To identify the boreholes b we use the GTN-P Database ID.
Continuous (full-year) records started at a large number of borehole sites in 2008,
the second year of the 4th International Polar Year (IPY). To base the reference

period for the annual departure calculation on the largest possible number of
boreholes we exclude 2007 and estimate the annual differences in �T in year y 2 i
and borehole b as

Δ�Ty;b ¼ �Ty;b � 1=2 �T2008;b þ �T2009;b

� �
ð1Þ

The last term on the right-hand side of Eq. (1) serves as our mean value for the
reference period. We compare this reference period to the latest available mean
value period and calculateΔ�Tb to rank total temperature differences among
boreholes.

Δ�Tb ¼ 1=2 �T2015;b þ �T2016;b

� �
� 1=2 �T2008;b þ �T2009;b

� �
ð2Þ

Equations (1) and (2) require data to be available in each of the observation years.
To calculate the rate of temperature change per decade we follow a third

approach using the primary mean annual ground temperature data set �Tb for all
available years in i and perform linear regression, according to the following
attribution of our data in the regression equation:

�Treg
b ¼ ab þ cbx ð3Þ

where �Treg
b is the regression estimate of �Tb , ab is the vertical intercept (the starting

temperature in a borehole), cb is the slope of the regression line, and x is the range
of years involved.

The requirement to perform linear regression on b was that i included at least
one value y in the IPY period (2007, 2008, or 2009), one value in the modern
reference period (2015 or 2016) and a minimum of five values in total. We
calculated the rate of temperature change in each borehole as the slope of the linear
regression cb using the linear model function (lm) in the R environment. To
generate decadal change values, we extrapolated 37.7% of the borehole data in the
Arctic continuous zone, 47.3% in the Arctic discontinuous zone, 29.3% in the
mountain zone and 100% in Antarctica for 1–3 years.

The consistency of temperature time series in boreholes depends on sustained
data collection at remote sites. At some boreholes, instrumentation was destroyed,
damaged or malfunctioned leading to interruptions in data collection45. To avoid
broken data runs affecting the annual means, measurements at frequencies greater
than monthly (e.g. daily or hourly), were aggregated to monthly means before
calculating annual means. Mean annual values were based on at least monthly
primary data. Data points based on fewer than one measurement every month were
allowed only if the sensor depth was equal to or below the depth of zero annual
amplitude. Annual means were calculated from original measurements as calendar-
year means in the GTN-P Database. Meteorological years in permafrost areas
depend on the onset and termination of the freezing and thaw periods, and in
previous studies varied spatially. We therefore indicated the starting month of the
period in the data set. Mean values contain only the available valid �T data in each
year, and thus the number of borehole temperatures included in change-rate
calculations varies between years.

To evaluate temperature changes in the Arctic continuous and discontinuous
permafrost zones, in the mountain permafrost and in permafrost in Antarctica, we
applied a spatial de-clustering prior to calculating mean values of temperature
changes from the boreholes. The spatial de-clustering reduces the bias in the
calculation of means caused by an inhomogeneous (clustered) spatial distribution
of the boreholes. We grouped the boreholes into ten world zones (Fig. 8) and
defined the areas underlain by permafrost by correlating the boreholes with the
International Permafrost Association (IPA) permafrost zones46. Arctic continuous
permafrost represents the mean of four different zones: Arctic continuous
permafrost West (2.41 × 106 km2), Arctic continuous permafrost West islands
(1.57 × 106 km2), Arctic continuous permafrost Europe (0.22 × 106 km2), and
Arctic continuous permafrost East (Asia) (6.62 × 106 km2). Arctic discontinuous
permafrost is averaged over three zones: Arctic discontinuous permafrost West
(3.91 × 106 km2), Arctic discontinuous permafrost East (Asia) (3.86 × 106 km2),
and Arctic discontinuous permafrost Europe (0.28 × 106 km2). Mountain
permafrost is averaged over two zones: Chinese mountains (2.07 × 106 km2), and
Other mountains (2.33 × 106 km2) including the Alps and other sites with high
elevations >1000 m a.s.l. such as in Scandinavia and the North American
Cordillera. Antarctica is treated as one zone (0.05 × 106 km2 6,47). For comparing
temperature trends between North American and north Asian permafrost we
define two separate data sets by excluding southern, European, and central Asian
boreholes. Within the zones, clusters of boreholes close together were grouped
when the sum of longitude and latitude differences were <0.1 decimal degree and
the �T values of adjacent boreholes were averaged before calculating the mean
temperature change.

To estimate the mean annual temperature change in each zone we applied area-
weighted arithmetic averaging of �T values in boreholes. To preserve the signal of local
outlier trends showing atypical temperature change directions and magnitudes (e.g.,
in parts of Antarctica and in Québec, Canada), we did not use medians. To suppress
near-surface and geothermal changes indices of boreholes were distributed as three
possible integers to multiply the sites before averaging, according to the following
criteria: (i) �T is available in each year of the reference periods indicated in Eqs. (1) and
(2), and (ii) �T depth is equal to the depth of Z* and >10 m (few exceptions were made
according to the depth of Z* as described above).
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Zero annual amplitude Z * Permafrost

Active layer

Non-cryotic

D
ep

th

Temperature (°C)
0– +

T

Fig. 7 Thermal regime of permafrost. Schematic showing the maximum
(red line) and minimum ground temperature (blue line) during the year,
and their convergence to give the mean annual ground temperature �T at the
depth of zero annual amplitude Z*. Black dots show the schematic mean
temperature for permafrost soils. Compiled guided by French53
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Calculating air temperature change. The set of air temperature data monitored at
borehole sites is incomplete. To develop data comparable to the permafrost tem-
perature data, we calculated mean annual air temperatures (T̂) from ERA Interim
2m air temperature data set with 80 km spatial resolution. We derived the rea-
nalysis time series for each borehole from linear interpolation of the four nearest
grid points surrounding the borehole coordinates. Mean annual values were cal-
culated from December until November. Given, that the propagation of atmo-
spheric temperature change downward to the depth of Z* takes up to several
years25,37, depending on the local thermal diffusivity24, we extended the time series
shown in Fig. 4 backwards to 2000 and used the standard reference period
1981–2010 to estimate anomalies.

We define a set j= {1981,...,2016} to identify the years being considered. We use
the coordinates of boreholes b defined in Eq. (1) and calculate the annual difference
for specific years y 2 j in T̂ as

ΔT̂y;b ¼ T̂y;b �
1
30

X2010
j¼1981

T̂j;b ð4Þ

Based on the average propagation of surface temperature towards Z* of 4 years25 we
calculated 4-year end-point running means to compare air temperature with
permafrost temperature changes. To calculate the rate of temperature change over a

decade, we apply linear regression on T̂y;b for all y 2 j using the linear model function
in the R environment and the slope of the linear regression in an annual array
between 2004 and 2016 and multiplied the annual change rates by 10. Data analyses
of air temperature change were based on 137 borehole sites and 4932 T̂ values.

Calculating snow thickness change. We calculated the mean annual snow
thickness (Ŝ) for the Arctic continuous and the discontinuous permafrost zone
from the Canadian Meteorological Centre (CMC) daily snow depth analysis data
with 24 km spatial resolution48. We derived the reanalysis time series for each
borehole from linear interpolation of the four nearest grid points surrounding the
borehole coordinates. Mean values were calculated from December until February
for each year in the data set. To identify winters we use subsequent years, e.g. in the
time series we assign the 1999–2000 winter to 2000.

Given that 1999 is the earliest available year in the data set we define a set k=
{1999,...,2016} to identify the winter years, where y 2 k. We use the coordinates of
boreholes b defined in Eq. (1) and calculate the annual difference in Ŝ as

ΔŜy;b ¼ Ŝy;b �
1
12

X2010

k¼1999

Ŝk;b ð5Þ

The onset snow has an impact on the ground thermal regime. To assess the onset
of snow cover, we assemble a set of snow depths dates at daily resolution between 1
September and 30 April in a set of days l= {1,2,3,...,242} for every year in k. In leap
years l= {1,2,3,...,243}. To calculate the onset date of snow SO we use the first day
dSOk;b reaching 6 cm in l for which the following 5 days, adding up to a synoptic time
scale of 6 days, retain a daily snow cover of at least 6 cm49.

The insulation maximum of snow SIM is reached when the snow cover
accumulated to a thickness between 40 and 50 cm33,37. Accordingly, we set SIM
based on the first day dSIMk;b in l reaching 50 cm, or, if it is not reached, take the day
representing the maximum snow cover in l (below 50 cm).

To assess the end of snow cover SE, we assemble the snow depth dates at daily
resolution between 1 September and 30 August in a set m= {1,2,3,...,365} for every
year in k. In leap years m= {1,2,3,...,366}. To calculate SE we use the first day dSEk;b in
m reaching down to less than 1 cm after a decreasing gradient of at least 8 cm over
6 days, or, if this gradient is not reached, the first day of at least 6 subsequent snow
free (<1 cm) days.

Measurement accuracy. The reported measurement accuracy of our temperature
observations, including manual and automated logging systems, varied from ±0.01
to ±0.25 °C with a mean of ±0.08 °C. Previous tests have shown the comparability
of different measurement techniques to have an overall accuracy of ±0.1 °C3.
Thermistors are the most commonly used sensors for borehole measurements.
Their accuracy depends on (1) the materials and process used to construct the
thermistor, (2) the circuitry used to measure the thermistor resistance, (3) the
calibration and equation used to convert measured resistance to temperature, and
(4) the aging and resulting drift of the sensor over time. Thermistors are typically
calibrated to correct for variations due to (1) and (2). About 20% of the boreholes
are visited once per year and measured at or below Z* using single thermistors and
a data logger. In this case the system is routinely validated in an ice-bath allowing
correction for any calibration drift. The accuracy of an ice-bath is ~± 0.01 °C50.
Using the offset determined during this validation to correct the data greatly
increases the measurement accuracy near 0 °C, an important reference point for
permafrost. The remaining systems are permanently installed and typically ice-bath
calibrated at 0 °C before deployment. The calibration drift is difficult to quantify as
thermistor chains are not frequently removed for re-calibration or validation. In
many cases removal of thermistor chains becomes impossible some time after
deployment, e.g. because of borehole shearing.

The drift rate among bead thermistors from different manufacturers was <0.01 °
C per year during a 2 year experiment at 0, 30, and 60 °C51. The calibration drift of
glass bead thermistors was found to be 0.01 mK per year52, at an ambient
temperature of 20 °C. A single drifting thermistor in a chain is detectable through
its anomalous temporal trend. Such data were excluded from our data set. The
absolute accuracy of borehole temperature measurements, in terms of their
representativeness of the temperature distribution in undisturbed soil, also depends
on the depth accuracy of the sensors’ positions in the borehole. This study is
concerned with temperatures at Z*, where temperature gradients are typically small
(<0.1 °Cm−1). Consequently, mm-level positioning accuracy does not significantly
impact measurement accuracy. Finally, as this study is concerned with annual
averages, adequate chronometry is ensured.

The above discussion of accuracy relates to the absolute temperature values
measured, but the detection of temperature change is more accurate because errors
in calibration offset have no impact, sensor nonlinearities are generally small and
not of concern. We therefore consider <0.1 °C a conservative average estimate of
the accuracy of temperature change on an individual sensor basis.

Confidence intervals and statistical significance. Permafrost and air tempera-
ture departure from 2008 until 2016 (Δ�Ti;b and ΔT̂y;b) and the regression from
2007 until 2016 of each borehole were used to calculate the 95% confidence
intervals within each world zone using a Student t-test in the R environment (52%
p < 0.05, 48% p > 0.05, mean |t|= 3.4). The upper and lower confidence boundaries
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Arctic discontinuous E

Arctic continuous Eur
Arctic discontinuous Eur

Mountains China

Mountains other

Arctic continuous W Arctic discontinuous W

Arctic continuous W islands

Continuous

Discontinuous
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Permafrost zone

Borehole weighting

Borehole grouping

b

a

Fig. 8 Weighting and grouping of boreholes. Map showing the indices and
zoning of boreholes prior to area-weighting and calculation of mean
temperature changes. a Northern Hemisphere. b Antarctica. Permafrost
zones are derived from the International Permafrost Association (IPA)
map46. World Borders data are derived from http://thematicmapping.org/
downloads/world_borders.php and licensed under CC BY-SA 3.0 (https://
creativecommons.org/licenses/by-sa/3.0/)
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were calculated from de-clustered and indexed boreholes. Mean confidence
intervals for composite permafrost zones (global, Arctic continuous, Arctic dis-
continuous, mountain, Asian and American) were area-weighted. Antarctica
consists of one zone and thus area-weighting is not applicable. Given a non-
normal, unimodal, and only slightly skewed distribution of data in similarly shaped
subsets (regions) gained by eq. 3 (Figs. 5, 6), we performed a Wilcoxon Signed-
Rank test and a Kruskal–Wallis test to assess the significance of the difference to
zero and the differences between medians, respectively. To consider false positives,
we performed a False Discovery Rate adjustment of the p-values, resulting in 43.3%
p < 0.05, 56.6% p > 0.05, median 0.08 in a data matrix of 9 years (eq. 1) versus 10
permafrost world zones indicated in Fig. 8. Boxplots represent 25–75% quartiles
and whiskers are 1.5 interquartile ranges from the median.

Data availability
The GTN-P global mean annual ground temperature data for permafrost near the
depth of zero annual amplitude (2007–2016) is accessible online at https://doi.org/
10.1594/PANGAEA.884711.
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