

GENES DE REPARO E ABORDAGENS TERAPÊUTICAS

Aparecida Maria Fontes aparecidamfontes@usp.br Ribeirão Preto – Março/ 2022

BIBLIOGRAFIA:

- Concepts of Genetics. Klug, Cummings, Spencer, Palladino e Killian. (2019). 12^a Edição. Editora Pearson.
- Genetics: from Gene to Genomes. Hartwell, Goldberg, Fischer e Hood. (2018). 6^a Edição. Editora McGraw Hill.

Roteiro:

Revisão

1. Tipos de Lesão de DNA x de Sistema de Reparo

2. Revisando 3 sistemas de reparo de DNA

Exemplos em câncer 3. Potencializadores que inibem genes de sistemas de reparo e aumentam a eficácia de drogas anti-tumorais

4. Sistema de reparo direto MGMT e inibidor BG

Exemplos em Fungos 5. Mecanismos de resistência a drogas e desenvolvimento de novas drogas

6. Tricophyton: Nucleotide Excision Repair (NER)

7. Projeto: analisar a modulação de genes que codificam fatores de transcrição e genes de reparo em *Trichophyton*

1. Tipos de lesão no DNA x Sistemas de Reparo

Processos celulares essenciais para a manutenção da integridade genética do organismo.

- **1. Reparo Direto: MGMT**
- 2. Reparo de malpareamento ou pareamento errôneo (MMR)
- 3. Reparo de Excisão de Base (BER)
- 4. Reparo de Excisão de Nucleotídeo (NER)
- 5. Reparo de quebra da fita-dupla de DNA

5.1. Reparo por junção das extremidades não homólogas (NHEJ)

5.2. Reparo por recombinação homóloga (HRR)

1. Tipos de Sistemas de Reparo

BER:

Dados de RNAseq de 122 indivíduos em 32 tecidos para os genes do sistema BER.

Dados de RNAseq de 122 indivíduos em 32 tecidos para os genes do sistema MMR.

NER:

Reparo de quebra de dupla-fita:

2. Reparo de DNA x Ciclo Celular

No ciclo celular há 2 checkpoints G1/S e G2/M em que a célula monitora a integridade do DNA. Se o DNA estiver lesionado, o ciclo celular é interrompido, o sistema de reparo ativado antes que o ciclo celular prossiga.

In Klug et al, 2019 – Concepts of Genetics – Chapter 24

2. Reparo de DNA x Ciclo Celular

Mutação no DNA é estabelecida somente se os sistemas de reparo de DNA não corrigirem a lesão do DNA antes do próximo ciclo de replicação do DNA.

In Hartwell et al, 2018 – Genetics: from Genes to Genome – Chapter 7

Antony E. Pegg

Stanton L. Gerson

Reação realizada por uma única enzima que reconhece a base modificada e transfere a lesão para o seu sítio ativo.

Responde à lesões frente a agentes alquilantes.

O⁶ ALKYLGUANINE - DNA ALKYLTRNASFERASE

Pegg et al. Prog. Nucleic. Acid. Res. Mol. Biol. 51:167-223 (1995)

Papel de agentes alquilantes na lesão do DNA

٠

Em algumas células tumorais o mecanismo de resistência aos agentes alquilantes é a super-expressão de MGMT.

Silenciamento de MGMT em tumores cerebrais

Metilação da região promotora do gene MGMT em gliomas confere uma boa resposta a agentes alquilantes

O6-Benzilguanina liga-se no sítio ativo da AGT humana

Dolan and Pegg. Clin. Cancer Res. 3:837-847 (1995)

Metoxiamina:

Após a exposição por 1 hora com 1.67 mg/ml de metoxiamina a viabilidade celular foi afetada em linhagens mutantes para o *locus apn2*.

Em *Cryptococcus neoformans,* os *loci apn1* e *apn2* do sistema de reparo **BER** podem estar envolvidos na resposta ao dano por agentes alquilantes ou a radiação UV e a combinação de metoxiamina com um agente anti-fungico convencional pode consistir uma nova abordagem terapêutica no combate a esse tipo de infecção.

Questões:

Pacientes em terapia anti-tumoral ou submetidos a diferentes condições cirúrgicas, ou ainda transplante de orgãos são mais susceptíveis a infecções fúngicas. A compreensão da modulação de genes de reparo após a exposição à drogas anti-fúngicas pode auxiliar no tratamento desse tipo de infecção?

Combinações sinergísticas de agentes anti-fúngicos e inibidores de genes de reparo podem ser utilizados no tratamento para combate a esse tipo de infecção?

Qual o ciclo de vida de *Tricophyton*? Produtos do metabolismo do fungo podem modular genes de reparo?

4. Infecções fúngicas x Genes de Reparo

Questões:

Inibição da expressão dos genes de reparo: pode ser um mecanismo para conferir resistência a compostos anti-fúngicos?

Qual a frequência de mutações espontâneas x mutações induzidas após a exposição à drogas anti-fúngicas?

A identificação da modulação de genes de reparo após o tratamento com drogas anti-fúngicas pode auxiliar no tratamento do hospedeiro?

A identificação alelos mutantes dos genes de reparo em fungos deve ser um biomarcador em protocolos clínicos da terapia anti-fúngica?

5. Infecções fúngicas x Genes de Reparo

Exemplo: C. glabrata^{msh2} e C. glabrata^{rad50}

Linhagens *C. glabrata* mutantes para os *loci msh* e *rad50* são 82 x e 9 x mais resistentes a caspofungina e anfotericina B respectivamente, quando comparada à linhagens selvagens.

Healy et al 2016. Nature Comun. 7:11128

6. Nucleotide excision repair: Trichophyton

Análise do perfil de expressão de 768 genes em *T. rubrum* em diferentes tempos após o cultivo com fragmentos de pele humana.

6. Nucleotide excision repair: Trichophyton

Table S6. Function annotation and cluster distribution of genes induced by human skin sections that are involved in cell cycle.

Accession	Cluster	Tentative annotation	GO biological process
DW705025	Ι	translationally controlled tumor protein-like variant I	nucleotide-excision repair;
DW691497	IV	U1 snRNP component	regulation of transcription
DW686862	П	UV-endonuclease UVE-1	nucleotide-excision repair;
DW702899	I	zinc ion binding; protein binding, regulation of transcription,	transcription;
EL789985	Π	DNA binding protein	transcription;
DW707253	I	GDP-mannose pyrophosphorylase A	cell cycle; biosynthetic
			process;

Exemplos de genes do sistema em reparo NER que foram modulados em *T. rubrum* em diferentes tempos após o cultivo com fragmentos de pele humana.

PROJETO

 Determinar a homologia (% identidade) de genes de reparo de *Trichophyton* e *Homo sapiens* a nível de DNA e de proteína;
Determinar a estrutura primária de determinado gene de reparo em *Trichophyton* e comparar com humano.