

Sumário

Conceitos Preliminares

Histórico e Fundamentos

Metodologias de Pesquisa em Fatores Humanos

Confiabilidade e Erro Humano

• Processamento de Informação

Sumário

Conceitos Preliminares

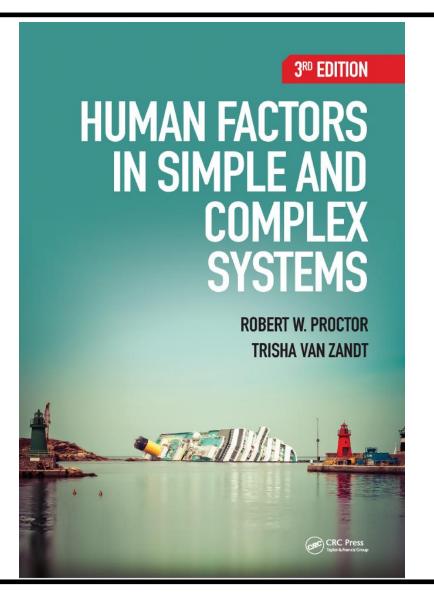
Histórico e Fundamentos

Metodologias de Pesquisa em Fatores Humanos

Confiabilidade e Erro Humano

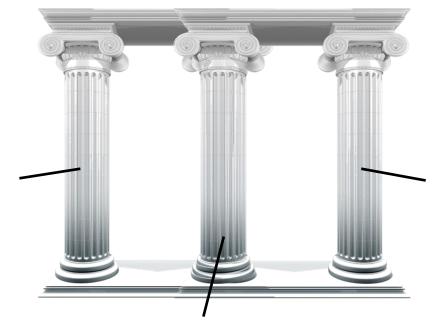
• Processamento de Informação

Avaliação será feita por trabalho em grupo, a ser entregue no final do semestre


 As aulas serão das 14:20 às 16h. Após esse horário, estarei disponível para tirar dúvidas e conversar sobre o trabalho

• TENTATIVAMENTE, serão realizadas aulas demonstrativas no Simulador de Voo (opcionais, sem peso na avaliação)

 Bibliografia principal para a parte inicial do curso


- Fatores que influenciam um projeto seguro:
 - Tecnologia
 - Metodologia
 - Lições Aprendidas
 - Requisitos
 - Fatores Humanos
 - Conhecimento das Falhas

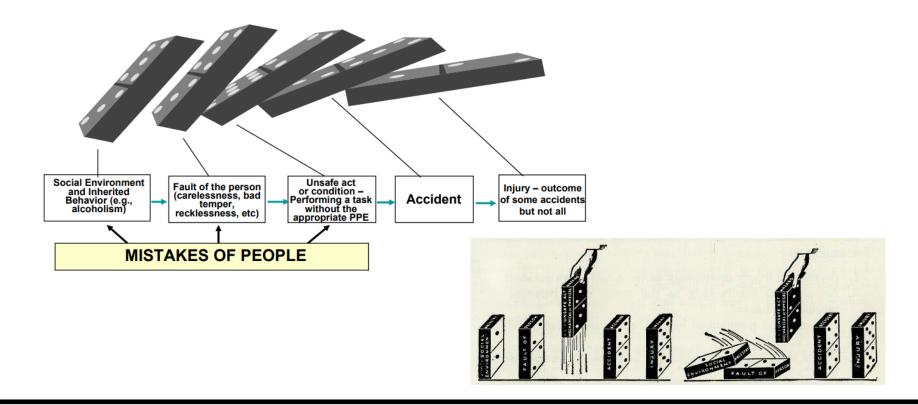
Segurança de Voo

Segurança de Voo

Integridade operacional

Integridade da manutenção

Integridade

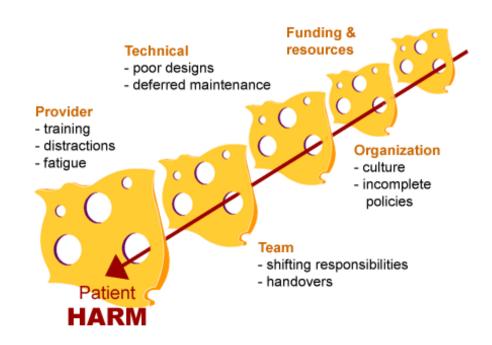

do produto

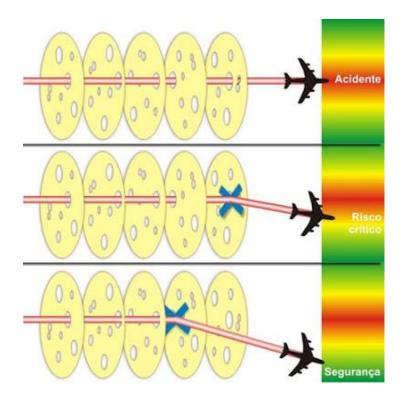
- Segurança de Voo Modelos
- Modelo Sequencial (Dominó)

Herbert W. Henrich (1932)

- Segurança de Voo Modelos
- Pirâmide de Heinrich

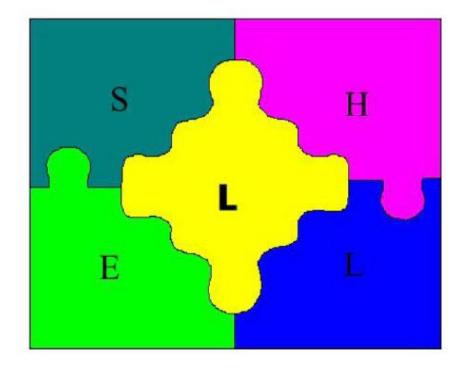
Herbert W. Henrich





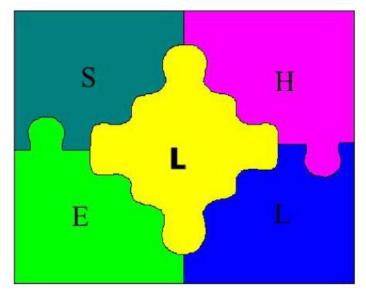
- Segurança de Voo Modelos
- Modelo do queijo suíço

James Reason (década de 1980)



- Segurança de Voo Modelos
- Modelo SHELL

Edwards & Hawkins (década de 1970)

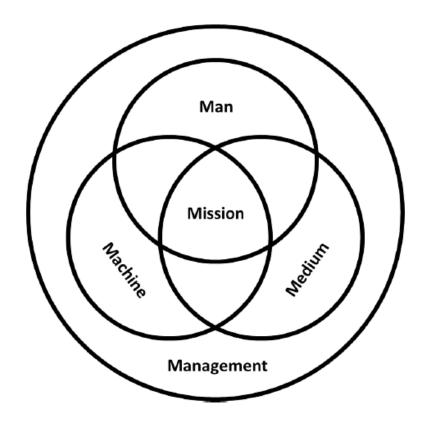


- Segurança de Voo Modelos
- Modelo SHELL

Edwards & Hawkins (década de 1970)

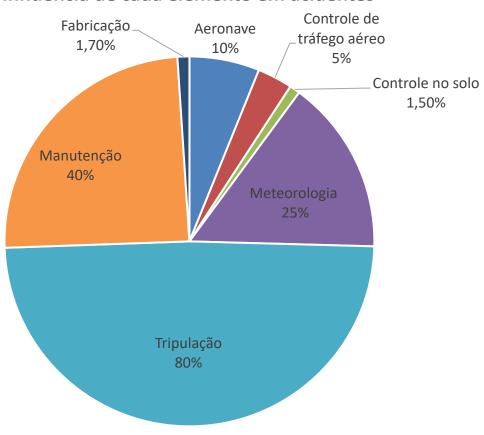
Software (S): Suporte lógico, representa todo tipo de informação escrita disponível (requisitos normativos, manuais de operação, fichas de despacho, etc.) e também a automatização dos processos (piloto automático, planilhas de calculo etc.);

Hardware (H): simboliza os equipamentos em si com todas as variáveis envolvidas (ergonomia, espaço de trabalho etc.);


Environment (E): retrata o ambiente, sendo assim, pode estar para as condições dos espaços físico interno e externo a aeronave, assim como para os hangares de manutenção, conjuntura de pátio de manobras etc.;

Liveware (L): trata-se do próprio elemento humano com suas capacidades e limitações fisiológicas, psicológicas e sociais (visão, audição, vícios, personalidade, motivação, atenção, relações, problemas etc.).

- Segurança de Voo Modelos
- Teoria 5M



Segurança de Voo

Influência de cada elemento em acidentes

Sumário

Conceitos Preliminares

Histórico e Fundamentos

Metodologias de Pesquisa em Fatores Humanos

Confiabilidade e Erro Humano

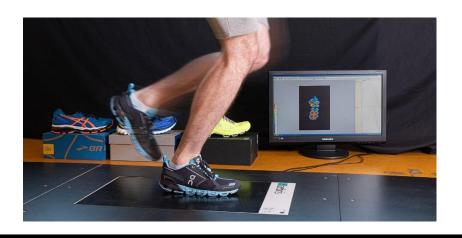
• Processamento de Informação

 Os primeiros registros conhecidos do estudo de Fatores Humanos são da década de 1670, onde Giovanni Borelli, aluno de Galileo, mostrou preocupação com a biomecânica de trabalhadores do campo

Ao longo do tempo, poucos trabalhos foram realizados nessa área do conhecimento

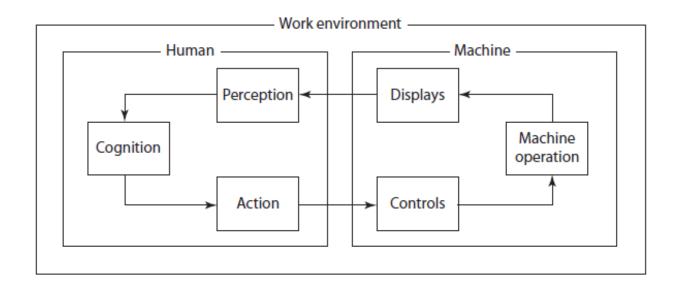
 Com os avanços tecnológicos ocorridos na II Guerra Mundial, a preocupação com a performance de operadores, bem como o aumento da produtividade em empresas, iniciou um aumento expressivo de estudos nessa área

O desenvolvimento crescente fez com que essa área ainda esteja em grande expansão



- Algumas áreas com grande interesse em fatores humanos:
 - Aeronáutica
 - Automobilística
 - Computação
 - Medicina
 - Segurança
 - Processos produtivos
 - Esportes
 - Etc.

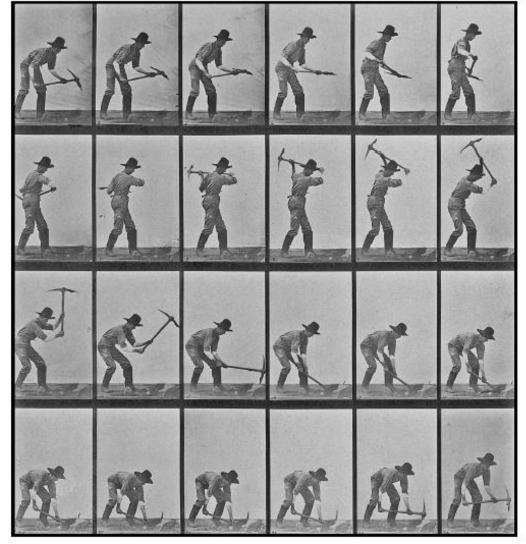
- Alguns termos importantes que foram assimilados a Fatores Humanos
 - Ergonomia
 - Interação Humano-Máquina
 - Sistemas Humano-Máquina
 - Integração Humano-Sistema


Definição:

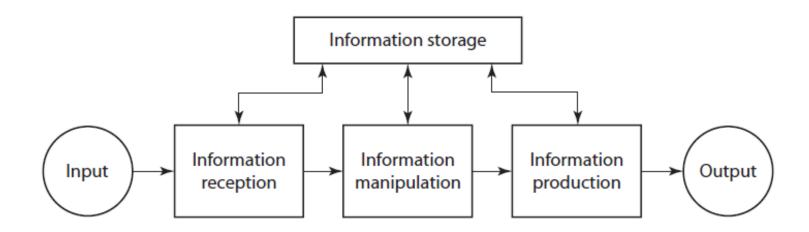
"Ergonomia (ou fatores humanos) é a disciplina científica preocupada com a compreensão das interações entre humanos e outros elementos de um sistema, e a profissão que aplica a teoria, princípios, dados e outros métodos de projeto a fim de otimizar o bem-estar humano e o desempenho geral do sistema"

O sistema Humano-Máquina

 Um dos primeiros modelos matemáticos voltados a Fatores Humanos foi chamada de Lei de Weber, proposta nos anos 1870, considerando a chamada "sensação psicofísica", onde se mede o reconhecimento de um estímulo


• Anos depois, a Lei de Fechner introduz o modelo de quantificação da sensação a um estímulo

$$S$$
 – Magnitude de uma sensação I – Intensidade física de um estímulo K – Constante


 Após a revolução industrial, iniciou-se a preocupação com produtividade e saúde dos trabalhadores em serviços manuais. O estudo da biomecânica contava basicamente com recursos fotográficos para correção postural ou de procedimento

Modelo de processamento mental

Atualmente, os fatores humanos cobrem, de forma "oficial", as seguintes áreas:

Technical Groups of the Human Factors Society

Aerospace systems: Application of human factors to the development, design, certification, operation, and maintenance of human-machine systems in aviation and space environments.

Aging: Concerned with human factors appropriate to meeting the emerging needs of older people and special populations in a wide variety of life settings.

Augmented cognition: Concerned with fostering the development and application of real-time physiological and neurophysiological sensing technologies that can ascertain a human's cognitive state while interacting with computing-based systems ... [to] enable efficient and effective system adaptation based on a user's dynamically changing cognitive state.

Children's issues: Consists of researchers, practitioners, manufacturers, policy makers, caregivers, and students interested in research, design, and application concerning human factors and ergonomics (HF/E) issues related to children's emerging development from birth to 18.

Cognitive engineering and decision making: Encourages research on human cognition and decision making and the application of this knowledge to the design of systems and training programs.

Communications: Concerned with all aspects of human-to-human communication, with special emphasis on communication mediated by technology.

Computer systems: Concerned with human factors in the design of computer systems. This includes the user-centered design of hardware, software, applications, documentation, work activities, and the work environment.

Education: Concerned with the education and training of human factors and ergonomics specialists.

Environmental design: Concerned with the relationship between human behavior and the designed environment ...
[including] ergonomics and macroergonomics aspects of design within home, office, and industrial environments.
Forensics: Application of human factors knowledge and techniques to "standards of care" and accountability established within the legislative, regulatory, and judicial systems.

Health care: Maximizing the contribution of human factors and ergonomics to medical system effectiveness and the quality of life of people who are functionally impaired.

Human performance modeling: Focuses on the development and application of predictive, reliable, and executable quantitative models of human performance.

Individual differences in performance: Interest in any of the wide range of personality and individual difference variables that are believed to mediate performance.

Internet: Interest in Internet technologies and related behavioral phenomena.

Macroergonomics: Focuses on organizational design and management issues in human factors and ergonomics as well as work system design and human-organization interface technology.

Occupational ergonomics: Application of ergonomics data and principles for improving safety, productivity, and quality of work in industry.

Perception and performance: Promotes the exchange of information concerning perception and its relation to human performance.

Product design: Dedicated to developing consumer products that are useful, usable, safe, and desirable ... by applying the methods of human factors, consumer research, and industrial design.

Safety: Development and application of human factors technology as it relates to safety in all settings and attendant populations.

Surface transportation: Information, methodologies, and ideas related to the international surface transportation field.
System development: Integration of human factors/ergonomics into the development of systems.

Test and evaluation: All aspects of human factors and ergonomics as applied to the evaluation of systems.

Training: Information and interchange among people interested in training and training research.

Virtual environments: Human factors issues associated with human-virtual environment interaction.

Sumário

Conceitos Preliminares

Histórico e Fundamentos

Metodologias de Pesquisa em Fatores Humanos

Confiabilidade e Erro Humano

• Processamento de Informação

- Fatores Humanos é uma área muito diversa em termos de tipos de experimento e tipos de dados a serem colhidos/analisados
- Quando fazer experimentos envolvendo Fatores Humanos?
 - Para descobrir se uma hipótese sobre uma questão "é verdadeira"
 - Explorar a relação entre as variáveis
 - Para desenvolver e validar o modelo para prever o desempenho
 - Validação de conceito
 - Melhorar o design do produto
- Quando NÃO fazer experimentos envolvendo Fatores Humanos?
 - A questão pode ser resolvida por análise ou com base em dados existentes
 - Não há consequências críticas
 - Uma compreensão mais profunda não é necessária

- Cuidados a serem tomados em experimentos envolvendo Fatores Humanos?
 - Sempre que for possível se obter a conclusão sem experimentos, prefira não fazer
 - Considerações sobre ética

Não expor participantes a condições antiéticas

- Cuidado com a legislação vigente
- Considerar a dimensão das variáveis

Ex.: o tempo de resposta a um estímulo de um choque elétrico é muito diferente do tempo de resposta a um estímulo de temperatura, por exemplo

Cuidado com falsas variáveis

Ex.: número de liquidificadores têm relação com o número de assassinatos?

Não iniciar experimento com ideias já formadas

- Comitê de ética para experimentos com seres vivos
 - www.plataformabrasil.saude.gov.br

Tipos de pesquisa

Quantitativa	Qualitativa
 Com ou sem humanos Fenômeno natural Experimentos físicos Modelamento matemático Otimização 	 Com humanos Observação Ex.: observar pilotos em voo Estudos de caso Teste de usabilidade
 Com humanos Modelo de desempenho Questionários Experimentos 	 Ex.: um equipamento Pode ser quantitativo Questionários de resposta aberta Grupos de foco Entrevistas

Planejamento do experimento Motivação Questões da pesquisa (hipótese) Melhorar planejamento Trouxe impacto? Design do Tentar novamente? experimento Questões relacionadas? Coleta de dados Testes preliminares Análise de dados Conclusões

- Levar em consideração que boa parte dos dados colhidos podem ser de difícil quantificação.
 Nesse caso, planejar com antecedência quais variáveis serão medidas e como relacionar essa variável com as informações desejadas
 - Exemplos: Carga de trabalho, estresse, consciência situacional, etc.

- Levar em consideração que algumas variáveis naturalmente são subjetivas
 - Exemplo: preferência, resposta livre, etc.

- O uso de ferramentas estatísticas é muito importante em experimentos envolvendo Fatores
 Humanos
- Terminologia importante:
 - Letras romanas representam estatísticas (amostras)
 - Letras gregas representam parâmetros (população)

• Cabe ao responsável pelo experimento definir se e quais ferramentas estatísticas atendem melhor à sua pesquisa

Média

Para amostra	Para população
$\bar{X} = \frac{\sum X}{n}$	$\mu = \frac{\sum X}{N}$

• Exemplo: média da amostra: 1, 3, 4, 2, 3, 5, 1

$$\bar{X} = \frac{1+3+4+2+3+5+1}{7} = \frac{19}{7} = 2,71$$

Mediana

 $ilde{X}$ É o ponto do meio do intervalo, quando colocado em ordem crescente (ou decrescente)

• Exemplo: mediana da amostra: 1, 3, 4, 2, 3, 5, 1

Colocar em ordem crescente: 1, 1, 2, 3, 3, 4, 5

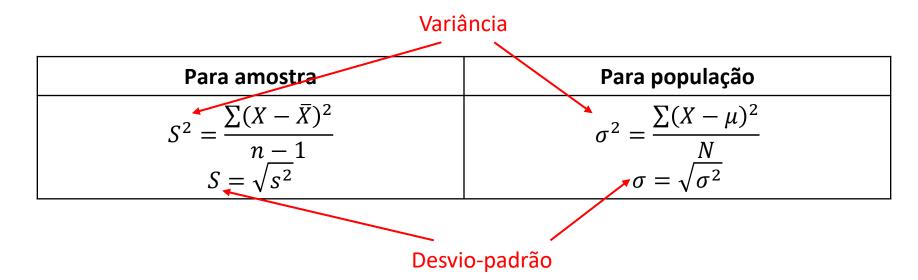
$$\tilde{X} = 3$$

Para número para de amostras, faz-se a média entre os dois números no meio do intervalo

Moda

- É o(s) número(s) mais comum(ns) da amostra
- Exemplo: moda da amostra: 1, 3, 4, 2, 3, 5, 1
 Modas são 1 e 3 (bi-modal)

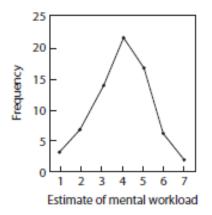
Intervalo Médio

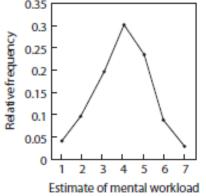

- É a média entre o valor mínimo e o valor máximo do intervalo
- Exemplo: Intervalo médio da amostra: 1, 3, 4, 2, 3, 5, 1

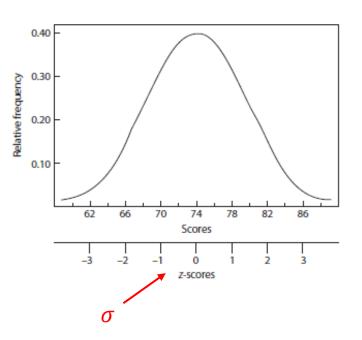
Intervalo médio =
$$\frac{1+5}{2}$$
 = 3

- Variância e desvio-padrão
- É a média do quadrado das distâncias entre as amostras e a média da amostra

• Mostra o quanto uma amostra ou população possui os valores dispersos com relação à média

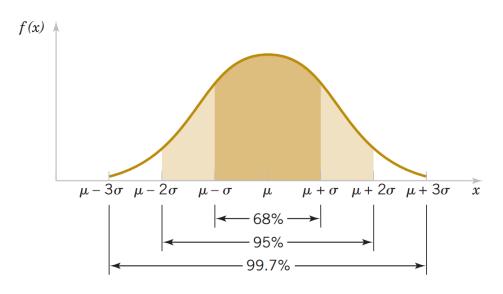

• Para amostras, o denominador é n-1, pois normalmente se descarta a amostra usada para estimativa

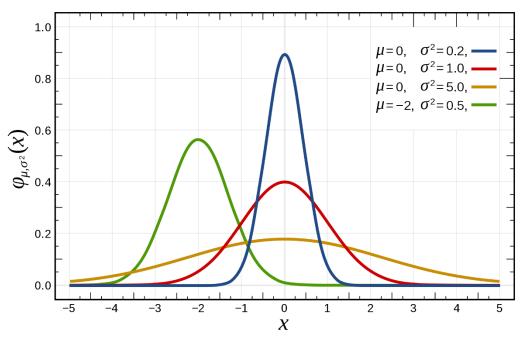




• Distribuição normal

 Representa a distribuição da quantidade de amostras em cada valor (ou intervalo de valores) dentre os valores possíveis


Metodologias de Pesquisa em Fatores Humanos



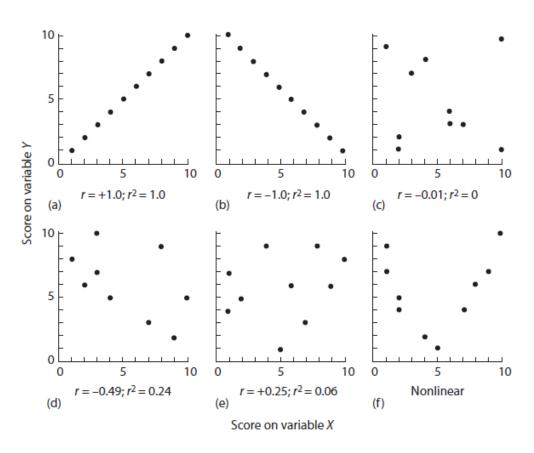
• Distribuição normal

Representa a distribuição da quantidade de amostras em cada valor (ou intervalo de valores)

dentre os valores possíveis

• Para experimentos envolvendo humanos, é normal que a variabilidade seja alta

Metodologias de Pesquisa em Fatores Humanos


Correlação

 O coeficiente de correlação (r) indica o quanto o valor de uma variável depende do valor de outra

 Quando mais o módulo de r se aproxima de 1, mais relacionados estão os valores

$$r = \frac{S_{XY}}{S_X S_Y}$$

$$S_X = \sqrt{\frac{1}{n-1} \sum (X - \bar{X})^2}$$
 $S_Y = \sqrt{\frac{1}{n-1} \sum (Y - \bar{Y})^2}$

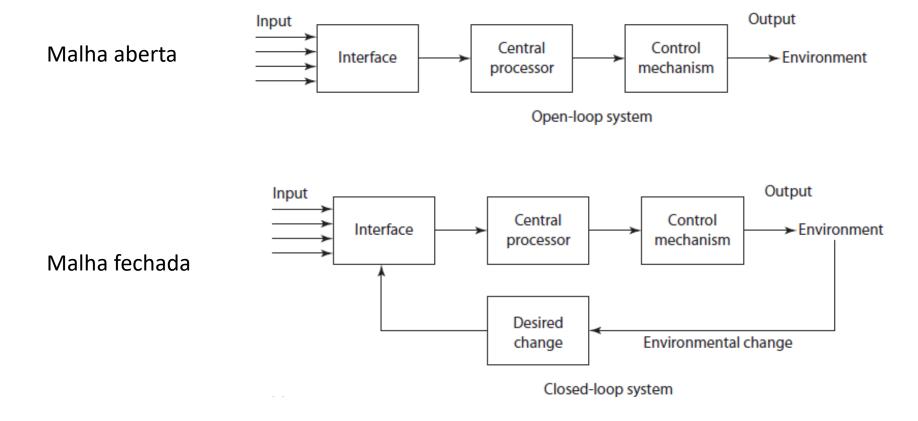
$$S_{XY} = \frac{1}{n-1} \sum_{XY} (X - \overline{X})(Y - \overline{Y})$$

Sumário

Conceitos Preliminares

Histórico e Fundamentos

Metodologias de Pesquisa em Fatores Humanos


Confiabilidade e Erro Humano

• Processamento de Informação

 O ser humano no cumprimento de tarefas pode ser classificado como um sistema de controle, que pode ser de malha fechada (se houver monitoramento) ou de malha aberta (se não houver)

• Erros humanos ocorrem. Portanto deve-se estar preparado para esse fato (será abordado em aula posterior)

 As fontes de erros podem ser muitas, como falta de atenção, incapacidade, ambiente propício, etc.

- Os erros podem ser classificados de várias formas:
 - Pela sua ação
 - Pelo tipo de falha
 - Pelo processo
 - Pela objetivo

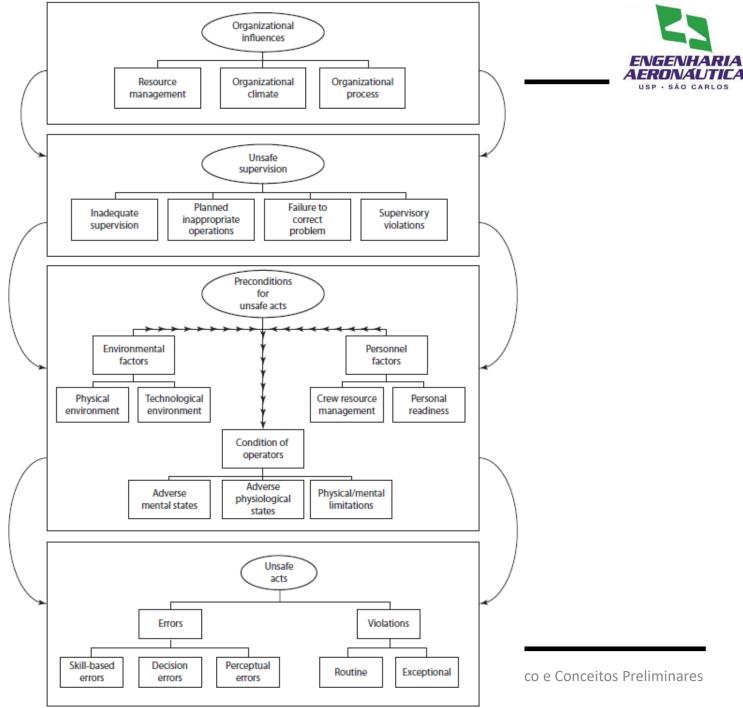
- Pela ação, os erros podem ser classificados como
 - Erro por omissão
 - Erro por comissão
 - Erro de tempo
 - Erro de sequenciamento
 - Erro de seleção
 - Erro quantitativo

- Pelo tipo de falha, os erros podem ser classificados como
 - Erro de operação
 - Erro de projeto
 - Erro de montagem ou manufatura
 - Erro de instalação ou manutenção

Pelo processo, os erros podem ser classificados como

Tipo	Atividade	Exemplo				
Perceptivo Procurando e recebendo informação		Detectar, inspecionar, observar, ler, receber, varredura, enquete				
Mediacional	Identificar objetos, ações e eventos	Discriminar, identificar, localizar				
	Processando informação	Interpretar, itenizar, tabular, transferir				
Comunicação	Resolução de problemas e tomada de decisão	Analisar, escolher, comprar, estimar, prever, planejar, responder, comunicar, direcionar, indicar				
Motor	Tarefas simples e discretas	Ativar, fechar, conectar, desconectar, segurar, entrar, abaixar, mover, pressionar, levantar, definir				
	Tarefas complexas e contínuas	Alinhar, regular, sincronizar, acompanhar, transportar				

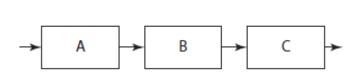
- Segundo o objetivo, James Reason em 1990 propôs que o erro humano pode se classificar em três grandes grupos principais:
 - Influências organizacionais
 - Supervisão insegura
 - Preconização para atos inseguros

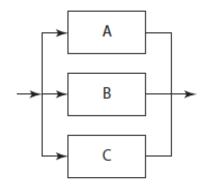

• Em 2003, Wiegmann & Shappell ampliaram esse modelo, adicionando um novo grupo e detalhando 19 categorias dentro desses grupos

Confiab

Fa

Classificação segundo o objetivo

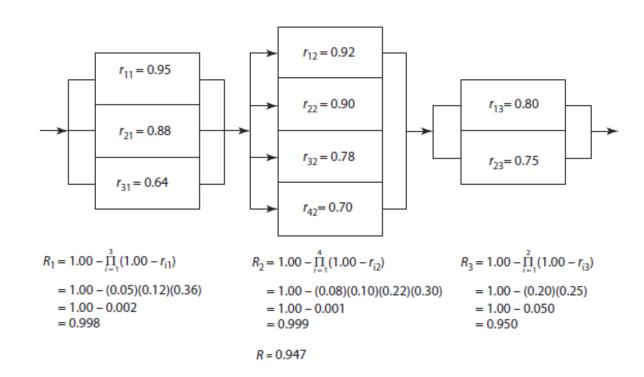




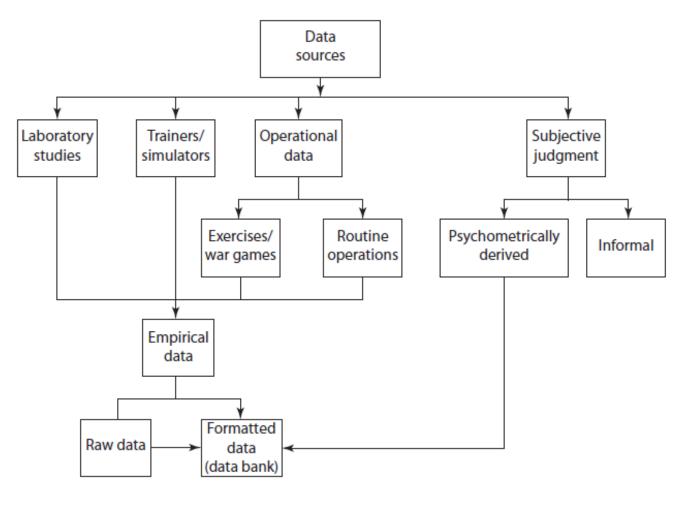
 Considerando que o erro humano acontece, a probabilidade nunca é zero, portanto deve ser considerada

 Dessa forma, analogamente ao que acontece em sistemas, atividades em série ou em paralelo afetam a probabilidade de um erro acontecer, e consequentemente sua confiabilidade

Probabilidades se somam


Probabilidades se multiplicam

• Exemplo


Confiabilidade (Reliability) R=1 - Probabilidade de falha

 Por fim, este modelo mostra que a confiabilidade humana para uma determinada tarefa tende a aumentar, já que a quantidade de informações acerca desta tarefa aumenta com o tempo

Sumário

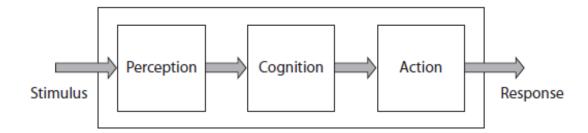
Conceitos Preliminares

Histórico e Fundamentos

Metodologias de Pesquisa em Fatores Humanos

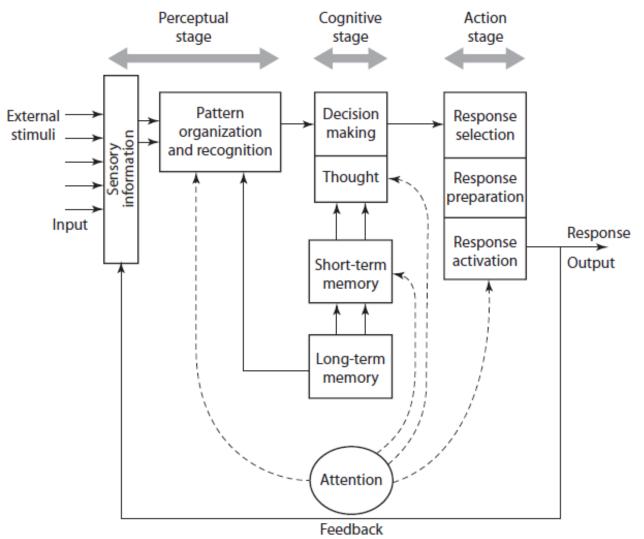
Confiabilidade e Erro Humano

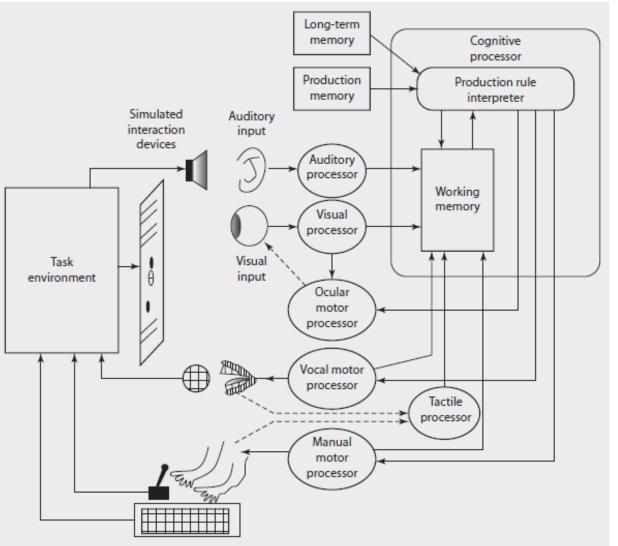
Processamento de Informação



• Estágio importante para estudo da reação humana a estímulos

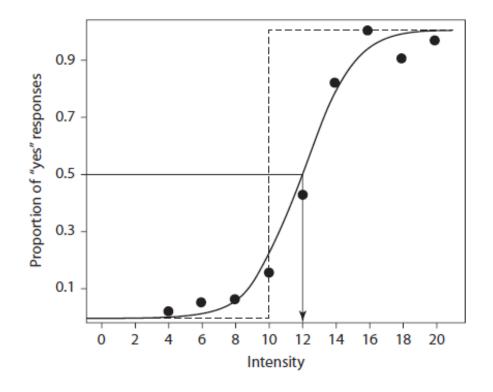
Envolve estudo de erros, tomada de decisão, carga de trabalho, solução de problemas, etc.


• Um modelo simples de processamento de informação discretiza o processo em três estágios

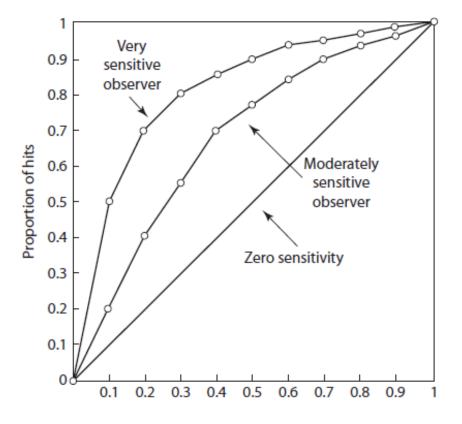

 Este modelo, de forma mais detalhada, pode ser apresentado como

 Um importante modelo de Interação Humano-Máquina aplicado à computação é o EPIC (Executive Process Interactive Control)

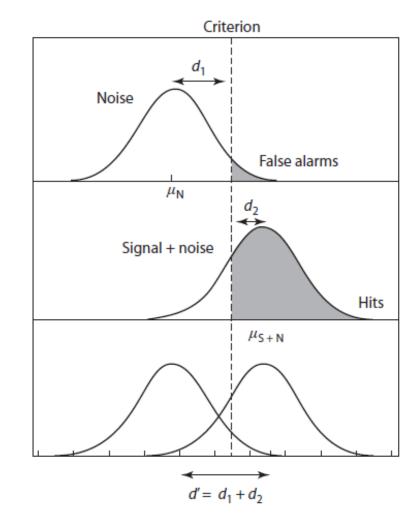
- Representação psicológica do mundo físico
- Muitos processos que envolvem Fatores Humanos envolvem a forma de percepção e processamento de informação pelo ser humano


 Boa parte desses problemas envolvem a resposta a um estímulo (por exemplo, reconhecer uma luz acesa a diferentes intensidades)

- Em problemas desse tipo, dois grandes desafios são encontrados:
 - Criar procedimentos de ensaio que não tornem o participante "viciado"
 - Determinar a fronteira (threshold) de atuação


- Representação psicológica do mundo físico
- Um gráfico típico de problemas desse tipo tem o formato a seguir

- Representação psicológica do mundo físico
- A definição do threshold torna a resposta mais ou menos sensível. O nível ideal depende da aplicação



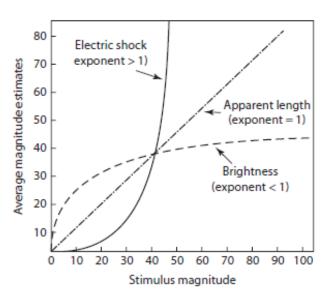
- Representação psicológica do mundo físico
- Outra questão importante na coleta de dados desse tipo é se isolar adequadamente os ruídos e os dados de interesse

Surge aí o conceito de detectabilidade

 μ_{S+N} is detectability, μ_{S+N} is the mean of the signal + noise distribution, μ_N is the mean of the noise distribution, and σ is the standard deviation of both distributions.

- Representação psicológica do mundo físico
- Outra questão importante na representação psicológica é o tipo de estímulo, gerando a escala psicofísica

 A intensidade sensorial reportada pelo participante de um teste qualquer sujeito a um estímulo é representada pela equação



- Representação psicológica do mundo físico
- O valor de n para cada tipo de estímulo e o gráfico obtido são

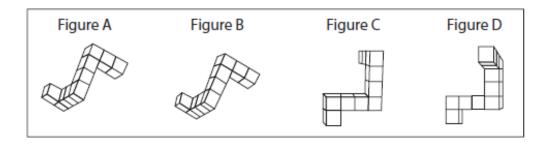
Representative Exponents of the Power Functions Relating Sensation Magnitude to Stimulus Magnitude (Based on Stevens, 1961)

Continuum	Exponent	Stimulus Conditions
Loudness	0.6	Both ears
Brightness	0.33	5° target (dark-adapted eye)
Brightness	0.5	Point source (dark-adapted eye)
Lightness	1.2	Gray papers
Smell	0.55	Coffee odor
Taste	0.8	Saccharine
Taste	1.3	Sucrose
Taste	1.3	Salt
Temperature	1.0	Cold (on arm)
Temperature	1.6	Warmth (on arm)
Vibration	0.95	60 Hz (on finger)
Duration	1.1	White noise stimulus
Finger span	1.3	Thickness of wood blocks
Pressure on palm	1.1	Static force on skin
Heaviness	1.45	Lifted weights
Force of handgrip	1.7	Precision hand dynamometer
Electric shock	3.5	60 Hz (through fingers)

Métodos cronométricos

• Outra metodologia importante de teste para processamento de informação são os métodos cronométricos, para medição do tempo de processamento pelo ser humano

- Como não é possível medir o tempo de processamento isoladamente (já que sempre envolve, no mínimo, reconhecimento, processamento e ação), pode-se utilizar:
 - Lógica de subtração: mede-se o tempo de um processo completo, em seguida o tempo de um processo semelhante que não necessite de processamento, e subtrai-se um valor do outro


• <u>Lógica de adição</u>: procedimento inverso, onde em algumas aplicações não é possível se medir um procedimento junto com o outro. Dessa forma mede-se separadamente e se soma os tempos

• Métodos cronométricos

Exemplo

Simple reaction time

Detect stimulus	Execute response				
t(1)	+ t(2)				

Go-no go reaction time

Detect stimulus			Identify stimulus		Execute response			
	t(1)	+	t(3)	+	t(2)			

Choice reaction time

Detect stimulus		Identify stimulus		Select response		Execute response	
t(1)	+	t(3)	+	t(4)	+	t(2)	

Time to identify stimulus = t(3)

= Go-no go reaction time - simple reaction time

Time to select response = t(4)

= Choice reaction time - go-no go reaction time