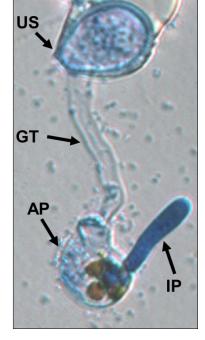
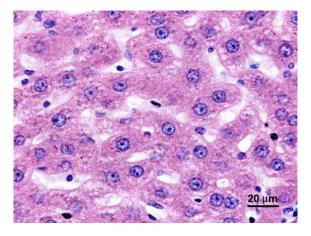

MÉTODOS DE ESTUDO DAS CÉLULAS E DIFERENÇAS NA ARQUITETURA CELULAR

Aula prática 2

LGN0114 - Biologia Celular



Leandro F. de Souza Departamento de Genética leandro_fonseca@usp.br


CONCEITOS IMPORTANTES

Fixação: consiste no tratamento de células com soluções específicas que causam sua morte, conservando-se suas propriedades físicas e químicas.

Coloração: visa corar determinados componentes celulares, não corando os demais, possibilitando seu estudo pelo contraste de regiões "escuras" (coradas) e "claras" (não coradas).

Uredosporos de *Puccinia psidii*, agente causal da ferrugem do eucalipto, durante o processo de diferenciação morfológica.

por A.P.B.

Células de hepatócitos.

POR QUE FIXAR AMOSTRAS?

- Evitar a autólise (degradação) das amostras;
- Impedir a contaminação por bactérias e fungos;
- Endurecer as células para o corte pelo micrótomo;
- Aumentar a afinidade dos componentes por corantes;

Tratamento com:

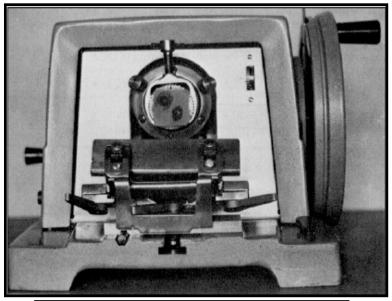
- Microscopia óptica -> formol e glutaraldeído
- Microscopia eletrônica -> tetróxido de ósmio e glutaraldeído.

TÉCNICAS DE COLORAÇÃO

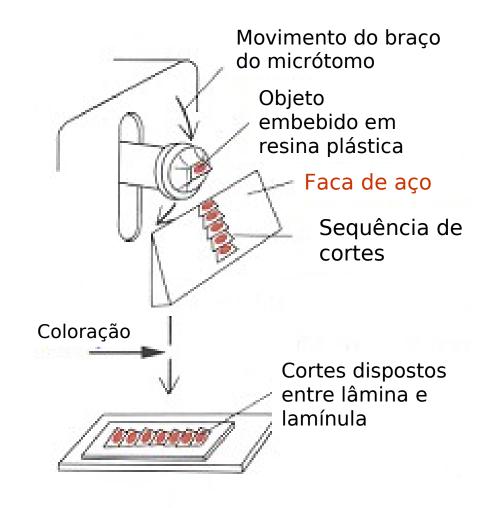
- ✓ Melhor distinção de estruturas internas e contrastes em amostras celulares;
- ✓ Estudo de componentes específico dentro das células;
- ✓ Técnicas de coloração consistem em mergulhar a célula numa substância denominada corante, capaz de tingir diferencialmente uma ou mais partes celulares.
 - ✓ Não existe uma técnica de coloração que evidencie todas as estruturas celulares;
 - √ Afinidade depende de carga elétrica e pH;
 - ✓ Podem matar ou não as células.

No microscópio eletrônico a coloração é feita com sais de metais pesado, por isso a imagem obtida é sempre em preto e branco.

EXEMPLOS DE CORANTES

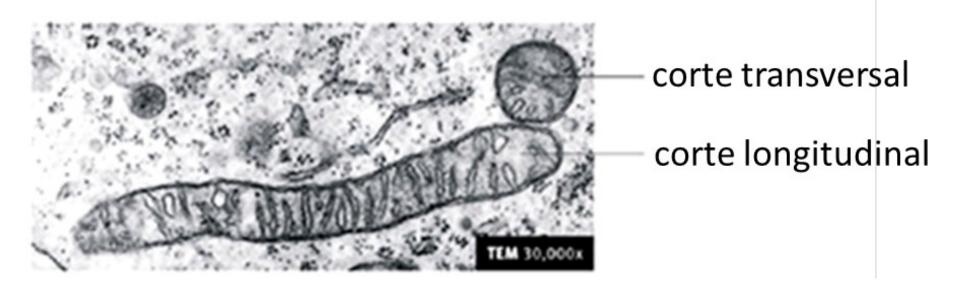

CORANTES BÁSICOS OU CATIÔNICOS (ligam-se à moléculas carregadas negativamente)	ESTRUTURAS EVIDENCIADAS
Azul de metileno	Cora o núcleo de azul (DNA e RNA)
Giensa	Cromossomos e células do sangue
Vermelho neutro	Acumula-se em vacúolos
Azul de toluidina	Fosfatos do DNA e RNA; carboxila e sulfato presentes nos polissacarídeos ácidos
Água iodada	Cora o núcleo e amiloplastos
Hematoxilina	Cora o núcleo
CORANTES ÁCIDOS OU ANIÔNICOS (liga-se à moléculas carregadas positivamente)	ESTRUTURAS EVIDENCIADAS
Eosina	Citoplasma
Fucsina básica	Citoplasma
Xilydine Ponceau	Cora grupamentos ácidos de proteínas citoplasmáticas

CORANTES NEUTROS	ESTRUTURAS EVIDENCIADAS
Violeta de Genciana	Cromossomas de células vivas em divisão
Solução de lugol	Grãos de amido, paredes celulósicas


Os corantes também podem ser classificados como naturais ou sintéticos de acordo com a origem:

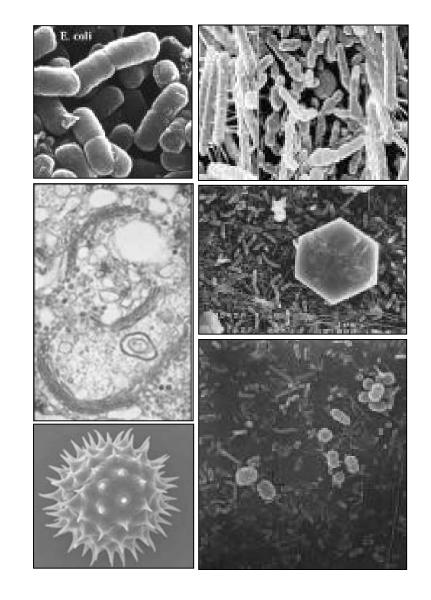
CORANTE NATURAL	ORIGEM
Carmim	Ovários de um inseto - Cochonilha
Hematoxilina	Leguminosa
Anil	Anileira – papilionácea
Orceína	Líquen
Açafrão	Estames de <i>Crocus sativus</i>

MICRÓTOMO



Cortes histológicos para observação em microscópio óptico

DESVENDANDO O INTERIOR DAS CÉLULAS...


- Corte em fatias finas pelo MICRÓTOMO;
 - Amostra incluída e protegida por matriz ou resina (facilitar o corte e proteger tecido);
 - Microscopia óptica: parafina ou resina plástica:
 - espessura 1 a 6 micrômetros (μm)
 - micrótomo com navalha de aço
 - Microscopia eletrônica: resina dura tipo Epóxi:
 - espessura 0,02 a 0,1 micrômetros (μm)
 - micrótomo com navalha de vidro ou diamante

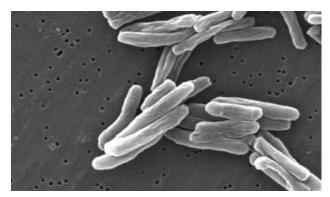
A imagem depende do plano de corte!

MICROSCOPIA ÓPTICA (MO)

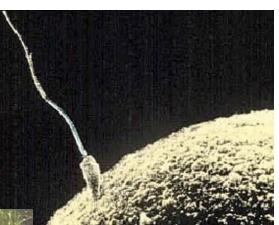
X MICROSCOPIA ELETRÔNICA (ME)

MICROSCOPIA DE LUZ (ÓPTICA) X MICROSCOPIA ELETRÔNICA

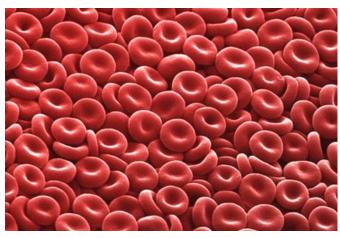
✓MO = utiliza a luz visível para iluminar o espécime.


✓ ME = utiliza feixes de elétrons, em vez de fótons, para a visualização de células ou estruturas celulares.

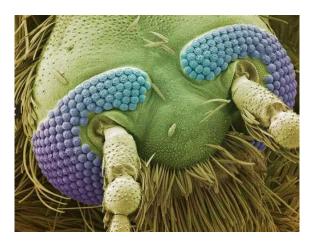
Microscópio de luz: C.O. = ~500 nm (as menores células e as maiores organelas)


Microscópio eletrônico: C.O. = \sim 0,005 nm (ultraestruturas - 0,2 nm)


MICROSCOPIA ELETRÔNICA DE VARREDURA - MEV



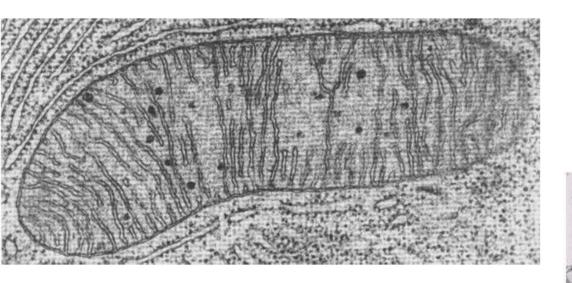
bactéria



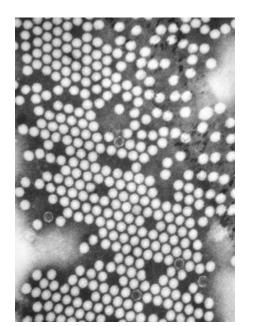
fecundação

hemácias

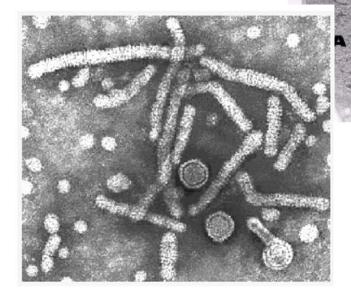
inseto


MICROSCOPIA DE VARREDURA

- ✓ Emprega feixes de elétrons;
- ✓ Complementar à microscopia de transmissão (transmissão tem maior poder de resolução, varredura tem a vantagem de fornecer imagens tridimensionais);
- ✓ O trajeto do feixe de elétrons é modificado fazendo com que percorra a superfície do espécime, ponto por ponto, e ao longo de linhas paralelas (varredura);
- ✓ Os espécimes não precisam ser cortados para serem examinados (objetos de 1 cm ou mais podem ser examinados);
- ✓ O material deve ser fixado, dessecado, e recoberto por uma delgada camada condutora de eletricidade, em geral ouro ou platina depositados à vácuo.


MEV: amostras grossas podem ser utilizadas.

Neste caso, amostras fixadas quimicamente são desidratadas, secas no aparelho de ponto crítico de secagem e cobertas como um metal condutor (Ex: ouro).


MICROSCOPIA ELETRÔNICA DE TRANSMISSÃO - MET

mitocôndria

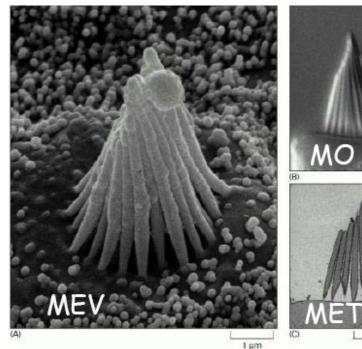
vírus

citoplasma

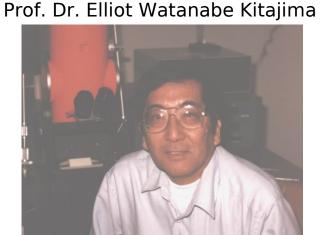
MICROSCOPIA DE TRANSMISSÃO:

- ✓ Não se pode examinar células vivas, apenas fixadas e completamente secas;
- ✓ Os cortes histológicos precisam ser realmente finos, sendo necessária a utilização de micrótomos com navalha de vidro fraturado ou diamante;
- ✓ Os estudos de microscopia eletrônica transmissão são feitos principalmente em ampliações em papel fotográfico, mais do que diretamente no microscópio.

MET: seções ultrafinas do espécime são necessárias para que o feixe de elétrons atravesse a amostra e uma imagem seja formada.


MICROSCOPIA ELETRÔNICA (ME)

Microscópio eletrônico de <u>varredura</u> (UniFeSP)

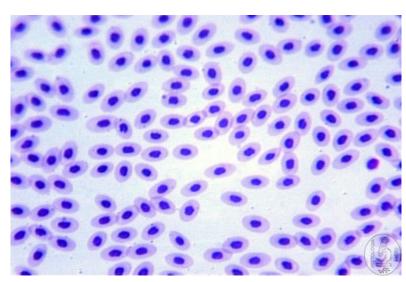

Microscópio eletrônico de <u>transmissão</u> (UniFeSP)

Núcleo de Apoio à Pesquisa/ Microscopia Eletrônica Aplicada à Pesquisa Agropecuária

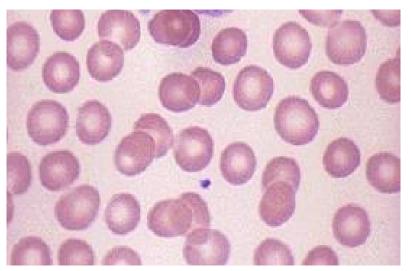
http://www.esalq.usp.br/napmepa/

MEV

<u>M</u>icroscopia <u>E</u>letrônica de <u>V</u>arredura



<u>M</u>icroscopia <u>E</u>letrônica de <u>T</u>ransmissão


MET

EXERCÍCIO 1.1

b) Observar células fixadas do sangue humano e de galinhas

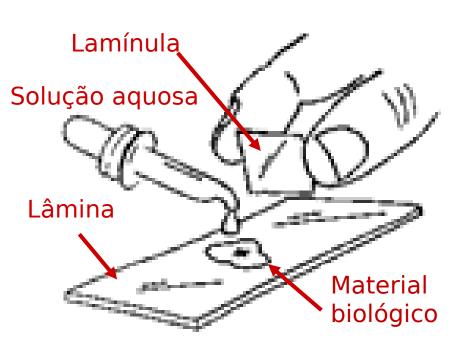
Hemácias de galinha (com núcleo)

Hemácias de humano (sem núcleo)

Anotar o aumento utilizado!

EXERCÍCIOS 1.2.

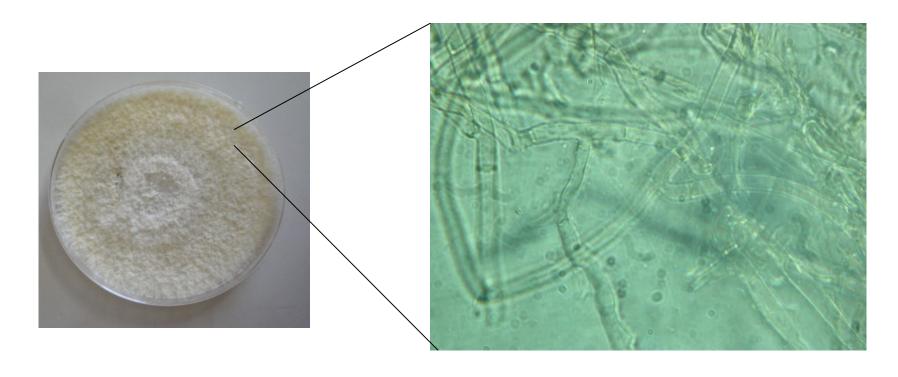
Observar cortes transversais feito por micrótono


Monocotiledônea ou eudicotiledônea?

Corte <u>transversal</u> do ovário de lírio destacando número de lócus.

EXERCÍCIO 2a

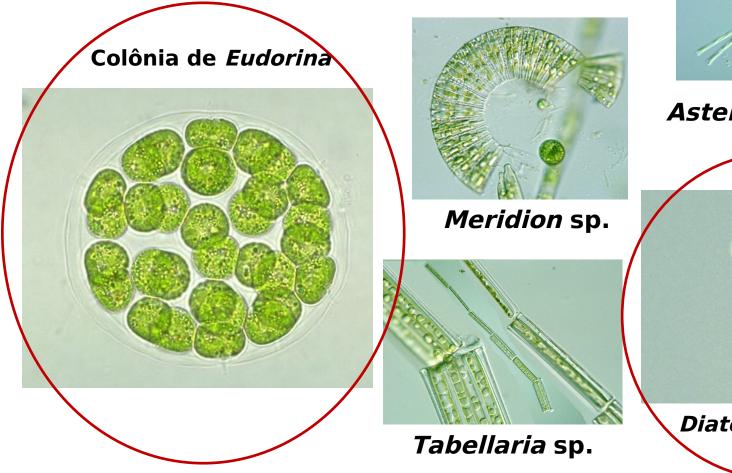
- **a)** Observar células da mucosa bucal.
- ✓ Entre a lâmina e a lamínula:
 - lâmina sem riscos e sem gordura;
 - solução aquosa (água, soro fisiológico, tampões);
 - material biológico;
 - lamínula.

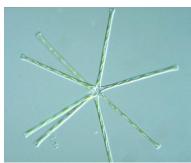

Células da mucosa bucal

Anotar o aumento utilizado

EXERCÍCIO 2b

a) Observação de fungo

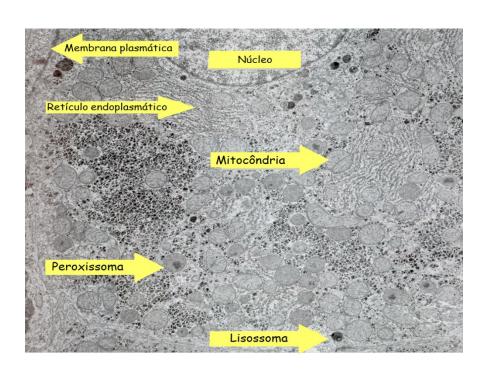

Placa de Petri com hifas de fungo


Visualização por microscopia

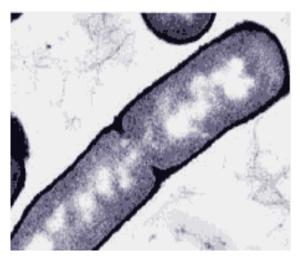
Anotar o aumento utilizado

EXERCÍCIOS 3b

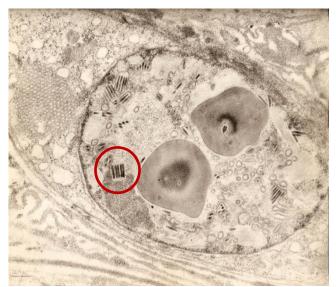
Observar células de protistas


Asterionella sp.

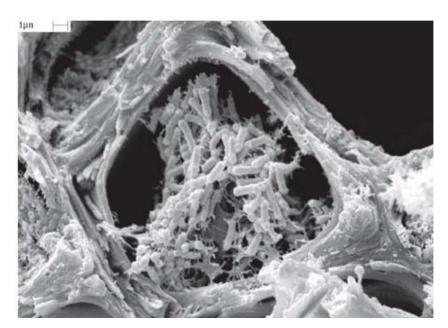
Copyright 1995-2014 Protistt Information Server


Anotar o aumento utilizado

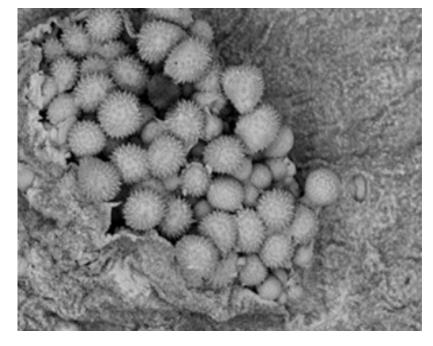
EXERCÍCIO EXTRA - Imagens de MET



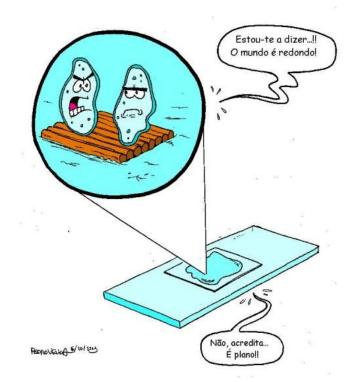
Célula eucariótica


Célula procariótica

Célula infectada com vírus



EXERCÍCIO EXTRA - Imagens de MEV


Corte transversal de vasos xilemáticos infectados por *Xylella fastidiosa*, agente causal da CVC (gentilmente cedida por Lacava, P.T.)

Esporos do fungo causador da ferrugem em Eucalipto (Crédito Tiago Falda Leite)

ESTUDO DIRIGIDO

- 1. Técnicas de preparação citológica;
- 2. Planos de corte;
- Diferenças entre o preparo de amostras para observação via microscopia óptica (MO) e microscopia eletrônica (ME);
- 4. Diferenças entre MET e MEV.
- 5. Reconhecimento de microfotografias de MET e MEV.

Bom trabalho!!!

EXERCÍCIO EXTRA 1

Entregar na próxima Aula Prática:

1.Os exercícios respondidos das páginas 14 a 16.

Sugestão de leitura:

Capítulo 1 - Célula

De Robertis, E.M.F.; Hib, J. 2014. *Biologia Celular e Molecular*. 16ª Edição. Editora Guanabara Koogan, Rio de Janeiro.