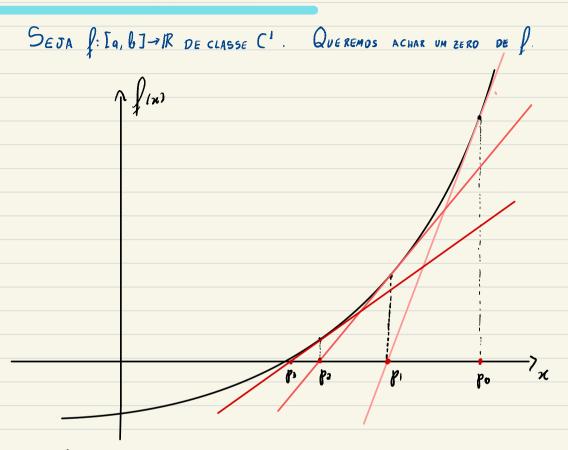
O MÉTODO DE NEWTON-RAPHSON 1

- · DEDUÇÃO GEOMÉTRICA DO ALGORITMO
- · INTERPRETAÇÃO VIA TEOREMA DE PONTO FIXO.
- · CONVERGÊNCIA
- · ESTIMATIVA DE ERRO.

COMO FUNCIONA O MÉTODO?



- 1) ESCOLHO PO
- 2) TRAÇO RETA TANGENTE A $\int em (p_0, f(p_0))$. $\pi(n) = \int (p_0) + \int (p_0) (x p_0)$.

 ACHO A RAIZ DESTA RETA $f' = p_0 \frac{\int (p_0)}{f'(p_0)}$
- 3) TRAÇO RETA TANGENTE A $\int EM(p_1, \int [p_1))$. $I(n) = \int (p_1) + \int (p_1)(x-p_1)$ ACHO A RAIZ DESTA RETA $p_2 = p_1 \frac{\int (p_1)}{\int (p_1)}$

ALGORITMO

- 1) Escolho po.
- 2) DEFINO A SEQUÊNCIA PATI = pn f(pn) , n >0.

INTERPRETAÇÃO VIA PONTO FIXO:

- SEJA $g(x) = x \frac{f(x)}{f'(x)}$ LOGO $p_{n+1} = g(p_n) = p_n \frac{f(p_n)}{f'(p_n)}$
- OBSERVE QUE g(p)=p \Rightarrow p=p-\frac{f(p)}{f'(p)} \Rightarrow f(p)=0.

(SUPOMOS QUE P'(X) = O PERTO DE P).

EXEMPLO: VAMOS APLICAR O MÉTODO DE NEWTON NA

FUNÇÃO $f: Jo, \infty E \rightarrow R$ DADA POR $f(n) = \frac{1}{\pi} - a$, a > 0

NOTE QUE
$$\int_{-\infty}^{\infty} (p) = 0 \Leftrightarrow p = \frac{1}{a}$$
. LOGO O MÉTODO APROXIMARÁ $\frac{1}{a}$.

NOTE QUE $\int_{-\infty}^{\infty} (x) = -\frac{1}{n^2}$. LOGO DADO $p_0 \in \mathbb{R}$, DE FINIMOS

 $\rho_{n+1} = \rho_n - \frac{f(\rho_n)}{f'(\rho_n)} = \rho_n - \frac{\frac{1}{p_n} - a}{-\frac{1}{p_n}} = \rho_n + \rho_n^2 \left(\frac{1}{p_n} - a\right) = 2\rho_n - a\rho_n^2$

EXEMITLUS

$\alpha = \omega$, $\rho_0 = 0.1$	$\alpha = \alpha$, $p_0 = 1$	$\alpha = 17$, $p_0 = 0.1$
0.1	ک	0.1
	-	
0.18	- 9	0.16858407

 0.2952
 -40
 0.24788223

 0.41611392
 -3280
 0.30272741

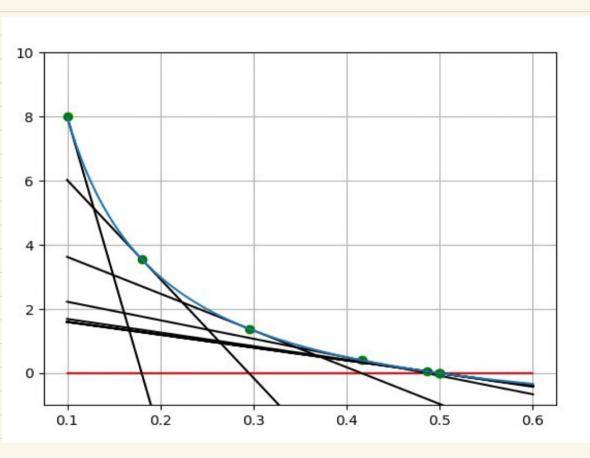
0.41611392 -3280 0.30272741

0.48592625 -21523360 0.31754707

0.49960386 NÃO CONVERGE 0.31830806

CONVERGE 0.318309886

FIGURA PARA a= 2 E po = 0.1



CONVERGÊNCIA

E CONVERGE PARA p.

TEUREMA: S_{EJA} $f: [a,b] \rightarrow IL$ uma função de classe $C^2(f,f',f'')$ Existem e são contínuas). Logo se $pe Ja, ll \not e$ tal que f(p)=0 $ef'(p) \neq 0$, então $\exists 8>0$ tal que $[p-8,p+8] \subset Ja,bl$, $f(a) \neq 0$, $\forall x \in [p-8,p+8]$, $equivar eq f(p) \neq 0$ Sequência (p_n) definida como $p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}$ está bem definida

PEMO: COMO
$$f'$$
 É CONTINUM E $f'(p) \neq 0$, PODEMOS ES COLHER \tilde{S} 70 TAL QUE $[p-\tilde{S}, p+\tilde{S}]$ C $Ja, b[$ E $f'(x) \neq 0, \forall x \in [p-\tilde{S}, p+\tilde{S}]$

SEDA g: [p-\$, p+\$]
$$\rightarrow \mathbb{R}$$
 DADO POR g(x)= $\kappa - \frac{f(x)}{f'(x)}$.

En PARTICULAR,
$$g(p) = p - \frac{f(p)}{f'(p)} = p \cdot \nabla p \in PONTO FIXO DEG.$$

NOTE QUE
$$g'(x) = 1 - \frac{\int_{-1}^{1}(x)}{\int_{-1}^{1}(x)} + \int_{-1}^{1}(x) \frac{1}{\int_{-1}^{1}(x)} \int_{-1}^{1}(x) = \frac{\int_{-1}^{1}(x)\int_{-1}^{1}(x)}{\int_{-1}^{1}(x)} = \frac{\int_{-1}^{1}(x)\int_{-1}^{1}(x)}{\int_{-1}^{1}(x)} = \frac{\int_{-1}^{1}(x)\int_{-1}^{1}(x)}{\int_{-1}^{1}(x)} = 0.$$

SE X6 [p-S, p+8], ENTÃO |g'(n) | \ k < 1.

POR FIM, SE NE[p-8, p+8], ENTÃO

RESUMINDO: TEOREMA PO VALOR MÉDIO.

i)
$$S \in x \in [p-S, p+S]$$
, ENTÃO $g(x) \in [p-S, p+S]$.

BASTA, POR FIM, OBSERVAR QUE

ESTIMATIVA DE ERRO

CORO LÁ RIO: NAS CONDIÇÕES ANTERIORES, TEMOS

DEMO: SECUE DOS RESULTADOS DE PONTO FIXO.

TEOREMA: SETA $f: [a,b] \rightarrow \mathbb{R}$ DE CLASSE C^3 , $p \in [a,b]$ TAL QUE f(p) = 0 \in $f'(p) \neq 0$. SE $p_0 \in [a,b]$ \notin TAL QUE A SEQUÊNCIA (p_n) DEFINIDA POR $p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}$, $n \geqslant 0$, CONVERGE

PARA P, ENTÃO A CONVERGÊNCIA É QUADRÁTICA.

DEMO: BASTA DEFINIR g(x) = x - P(x) NUMA VIZINHANÇA DE P E

OBSERVAR QUE pn+1 = g(pn), PARA n GRANDE.

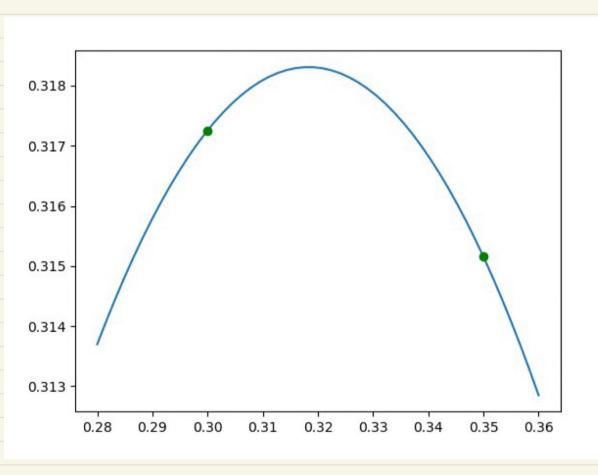
• COMO
$$f \in C^3 \Rightarrow g \in DE$$
 CLASSE C^2 A CONVERGÊNCIA $\in QUADRÁTICA$.

EXEMPLO: SEUA J: JO, DE JR DADA POR J(x) = - T O MÉTODO DE NEWTON CONSISTE EN ACHAR O PONTO FIXO DA FUNÇÃO $q(x) = x - \frac{f(\omega)}{p'(\omega)} = x - \frac{1}{x^{-1}} = 2x - \pi x^{2}$ $N_{0.76} \quad \text{ove} \quad \frac{1}{0.3} = \frac{10}{3} = 3.333 > \pi$ $\frac{1}{0.35} = 2.857... \quad \sqrt{\pi}$ Vemos também que g(x) = x(2-17n). Logo os zeros de $g(x) = \frac{2}{4} > \frac{2}{0.4} = \frac{20}{4} = 5$ $g'(x) = 2(1-17n). \quad \text{Logo o zero de } g \in \frac{1}{11}$ LOGO Q É CRESCENTE DE 0.3 A TO E DECRESCENTE DE TO A 0.35 $g(0.3) = 2 \times 0.3 - \pi_{\times}(0.3)^{2} = 0.3172... \in [0.3, 0.35]$

 $g(\frac{1}{\pi}) = \frac{1}{\pi} \in [0.3, 0.35]$ $g(0.35) = 0.3151... \in [0.3, 0.35]$ $\exists S \in x \in [0.3, 0.35], ENTÃO g(x) \in [0.3, 0.35].$ $POR FIM, g'(x) = 2 - 2Mx \Rightarrow g'(0.3) = 0.115...$ $|g'(x)| \leq 0.2, Vx \in [0.3, 0.35]$

Pouco Prático!

ABAIXO: $g(x) = 2x - 17x^{2}$ • (0.3, 0.3172)• (0.35, 0.3151)• (0.35, 0.3151)



Aula 5: Método de Newton-Raphson 1

Ideia: Seja $f:[a,b] \to \mathbb{R}$ uma função de classe C^1 e $p \in [a,b]$ tal que f(p) = 0 (p é um zero de f). Dado o ponto $p_0 \in [a,b]$, calculamos $f(p_0)$, $f'(p_0)$ e a reta tangente que passa por $(p_0, f(p_0))$. A reta será dada por $f(p_0) + f'(p_0) + f'(p_0) + f'(p_0)$. Achamos a raiz de $f(p_0) + f'(p_0) + f'(p_0)$. Repetindo este processo chegamos à sequência:

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}.$$

Veremos que, sob certas condições, a sequência acima convergirá para p.

Método de Newton-Raphson (também chamado apenas de método de Newton): Escolhemos $p_0 \in [a, b]$.

Para cada $n \ge 0$, definimos $p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}$. (Precisamos sempre que $f'(p_n) \ne 0$).

Observação 1. Seja $g: I \to \mathbb{R}$, $I = \{x \in [a,b]; f'(x) \neq 0\}$, a função definida como $g(x) = x - \frac{f(x)}{f'(x)}$. Seja $p \in [a,b]$ tal que f(p) = 0 e $f'(p) \neq 0$. Então p é um ponto fixo de g. De fato, g(p) = p se, e somente se, $p - \frac{f(p)}{f'(p)} = p$, ou seja, f(p) = 0. Além disso, vemos que o método de Newton-Raphson pode ser escrito como $p_{n+1} = g(p_n)$, que é exatamente a iteração do método do ponto fixo.

Teorema 2. Seja $f:[a,b] \to \mathbb{R}$ uma função de classe C^2 . Seja $p \in]a,b[$ tal que f(p)=0 e $f'(p)\neq 0$. Logo existe $\delta>0$ tal que $[p-\delta,p+\delta]\subset [a,b]$ e para todo $p_0\in [p-\delta,p+\delta]$, a sequência (p_n) dada por $p_{n+1}=p_n-\frac{f(p_n)}{f'(p_n)}$ está bem definida e converge para p.

Observação 3. Nas condições do Teorema acima, podemos estimar os erros com as estimativas a priori e posteriori dos erros do método do ponto fixo.

Proposição 4. Seja $f:[a,b] \to \mathbb{R}$ uma função de classe C^3 e $p \in [a,b]$ tal que f(p) = 0 e $f'(p) \neq 0$. Seja $p_0 \in [a,b]$. Se a sequência (p_n) do método de Newton convergir para p, então a sequência converge quadraticamente.

Observação 5. Nas condições da Proposição 4, a sequência sempre converge caso p_0 esteja suficientemente próximo a p, pelo Teorema 2. Na aula seguinte, o Teorema da Convexidade dará uma condição mais simples para a convergência.