
 

 

 University of Groningen

Insect sex determination
Verhulst, Eveline C.; van de Zande, Louis; Beukeboom, Leo W.

Published in:
Current opinion in genetics & development

DOI:
10.1016/j.gde.2010.05.001

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Verhulst, E. C., van de Zande, L., & Beukeboom, L. W. (2010). Insect sex determination: It all evolves
around transformer. Current opinion in genetics & development, 20(4), 376-383.
https://doi.org/10.1016/j.gde.2010.05.001

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2019

https://doi.org/10.1016/j.gde.2010.05.001
https://www.rug.nl/research/portal/en/publications/insect-sex-determination(2174764d-bd1b-4e1f-b142-90aced0c3e55).html


Available online at www.sciencedirect.com

Insect sex determination: it all evolves around transformer
Eveline C Verhulst, Louis van de Zande and Leo W Beukeboom
Insects exhibit a variety of sex determining mechanisms

including male or female heterogamety and haplodiploidy. The

primary signal that starts sex determination is processed by a

cascade of genes ending with the conserved switch doublesex

that controls sexual differentiation. Transformer is the

doublesex splicing regulator and has been found in all

examined insects, indicating its ancestral function as a sex-

determining gene. Despite this conserved function, the

variation in transformer nucleotide sequence, amino acid

composition and protein structure can accommodate a

multitude of upstream sex determining signals. Transformer

regulation of doublesex and its taxonomic distribution indicate

that the doublesex–transformer axis is conserved among all

insects and that transformer is the key gene around which

variation in sex determining mechanisms has evolved.
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Introduction
Sexual development, one of the most important and

widespread developmental processes, essentially entails

one simple choice: becoming male or female. Although

this suggests a common underlying genetic mechanism,

an astoundingly diverse array of pathways regulates sex

determination. Sanchez [1��] reviewed current knowl-

edge of sex determining mechanisms with a focus on

primary signals. In flies (Diptera) the gene doublesex (dsx)

acts as a conserved major switch at the bottom of the sex-

determining cascade [1��,2,3]. The part of the sex-deter-

mining cascade where the primary signal is transmitted to

dsx has, until recently, received less attention. Data from

Hymenoptera enabled comparison of sex determination

mechanisms at a wider level within the insect class. This

has directed focus towards transformer (tra) as a central

player in the evolution of sex determination in insects. In

this review, we describe how tra translates different
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primary signals into one of two sex-specific pathways

and consider how its function may serve as the key

process around which insect sex determination mechan-

isms have evolved.

Drosophila sex determination: the reference
Insect sex determination has been extensively examined

in Drosophila melanogaster [4–6] and has served as a

reference for all other insects [7–9]. In Drosophila, the

upstream genomic region of Sexlethal (Sxl) contains two

promoters: Pearly and Pmaintenance, which is the late pro-

moter. The primary signal is based on the concentration

of X-linked signal elements (XSE) that activate the early

Sxl promoter in diploid XX individuals only [10�] (see

Figure 1). Transcription from the early promoter of Sxl
yields a transcript that is spliced to encode a functional

early SXL protein. This splice pattern depends on the use

of the 50 splice site from the early exon E1, whereas in

later stages the 50 splice site of late exon 2 is used [11]. It

results in the default exclusion of exon 3- that contains in-

frame stop codons- in the early transcript. This early

protein enables the production of a functional late SXL

protein, which further maintains female-specific Sxl spli-

cing by auto regulation. SXL also directs cryptic splicing

of tra by binding to a polypyrimidine tract in the first tra
intron and forces the general splicing factor U2AF to use

the female-specific 30 splice site in exon 3 instead of the

nonsex-specific 30 splice site in exon 2. This tra transcript

yields a functional TRA protein [12–14], which interacts

with the nonsex-specific transformer2 protein (TRA2) [15]

and binds to the dsx transcript in the middle of exon 4,

called the dsx repeat element (dsxRE). This dsxRE con-

tains six copies of the 13 nucleotide sequence TC(T/A)

(T/A)C(A/G)ATCAACA [16]. Located between repeat

element five and six of the dsxRE is a purine-rich enhancer

element (PRE) which is required for the specific binding of

TRA2 to the dsxRE [17]. The binding of TRA/TRA2 to the

dsxRE and PRE sites retains exon four in the dsx pre-

mRNA resulting in female-specific splicing of dsx at the

bottom of the cascade [18–20], generating a female-specific

DSX protein.

In XY males the level of XSEs is insufficient for early Sxl
transcription and no early SXL protein is synthesized,

preventing the auto regulatory loop from establishing. As

a result, Sxl pre-mRNA from the late promoter is male

specifically spliced by default, yielding a truncated non-

functional SXL protein. The absence of SXL leads to the

‘default’ splicing of the tra pre-mRNA and a nonfunc-

tional TRA protein. Without TRA, dsx pre-mRNA is

spliced by default generating a male-specific DSX

protein.
www.sciencedirect.com
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Figure 1

The sex determination cascade in Drosophila melanogaster. Boxes with numbers indicate transcripts with exon number and relative exon size. Dark

gray transcripts are full length and yield a functional protein. Light gray transcripts contain early in-frame stop codons and give truncated nonfunctional

proteins. Transcripts are designated by their gene name in italic. Proteins are designated by their capital gene name. Superscript F and M stand for

female-specific transcript or protein or male-specific transcript or protein, respectively. PeSxl indicates Sxl transcript from the early promoter, PmSxl

indicates Sxl from the late promoter. DSXM directs primarily male morphology but also interacts a little with FRUM to direct male behavior, which is

indicated by a smaller arrow. The gray bottom half of the sex-determining cascade shows the conserved part of the cascade.
The TRA/TRA2 complex also regulates female-specific

splicing of fruitless ( fru), which yields a nonfunctional

FRU protein [21], while absence of TRA leads to male-

specific fru splicing and a functional FRU protein. Fru is

not part of the (morphological) sex determination path-

way but seems conserved in insects [22,23] and reviewed

in [24]. It is conserved in both gene structure and its

function as a determiner of male sexual behavior.

Conservation of sex-determining genes in
insects
There is a common pattern in insect sex-determining

cascades: at the bottom is dsx, which has been identified

for all examined dipteran [25–32] and hymenopteran

insect species [33,34�]. DSX has two characteristic

domains: a DNA binding domain (DM or OD1) and an

oligomerization domain (dsx dimer or OD2). Oliveira et al.
[34�] showed for several insect species that amino acid

alignment of these domains followed the established

phylogeny, suggesting their importance in sexual differ-

entiation. Conservation of dsx is in agreement with Wilk-

ins’ theory [35] stating that regulatory elements are

recruited into sex-determining pathways, causing diver-

gence towards the top, while dsx remains conserved at the
www.sciencedirect.com
bottom. However, as more and more sex-determining

cascades are elucidated, it appears that conservation is

not only at the level of dsx, but also at the regulation of its

sex-specific splicing.

Transformer

After the initial identification in Ceratitis capitata [36��],
also in other insect species (Anastrepha sp., Bactrocera
oleae, Lucilia cuprina, Musca domestica, Apis mellifera and

Nasonia vitripennis), dsx splicing regulator genes have

been identified that all appear to be D. melanogaster tra
orthologs [37,38,39�,40,41�,42��]. A tra ortholog has not

(yet) been identified in Lepidoptera, perhaps because of

the strong sequence divergence that characterizes tra
evolution. In Bombyx mori no tra ortholog has been found

based on the lack of dsxRE or PRE binding sites on Bmdsx
and the presumed default mode of female-specific spli-

cing [43,44]. However, dsxRE/PRE binding sites have

only been identified in dipterans based on homology to

Drosophila and are probably so diverged that recognition

of these sites in other orders is difficult. Cho et al. [33]

reported the absence of dsxRE/PRE binding sites in the

hymenopteran A. mellifera and suggested that Amdsx
follows default female-specific splicing, similar to B. mori.
Current Opinion in Genetics & Development 2010, 20:376–383
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Nevertheless, a functional tra ortholog has recently been

found in A. mellifera, termed feminizer, which is function-

ally and structurally similar to tra [39�,45]. Interestingly, a

comparison between dsx of hymenopterans A. mellifera
and N. vitripennis revealed putative dsxRE/PRE binding

sites that indeed have severely diverged from those of

Diptera [23]. Similar dsxRE/PRE binding sites have been

identified in the Nasonia fruitless gene [23] and in Nvtra
[42��]. Hence, the illustrious feminizing factor on the W

chromosome in B. mori [46��,47], may be an unconfirmed

ortholog of tra that also functions as active feminizing

factor. In the mosquito Anopheles gambiae and the phorid

fly Megaselia scalaris, only dsx has been found to date, but

tra is surmised to be the regulating splice factor of Agdsx
and Msdsx since dsxRE/PRE binding sites have been

identified [31,27].

The functional importance of these dsx splicing regulators

in female development has been shown by RNA inter-

ference (RNAi) in early embryos, which resulted in male-

specific dsx splicing [36��,37,38,45,40,41�,42��]. The sub-

sequent transformation of otherwise female offspring was

not always complete and resulted in intersexes with

various stages of masculinization, while male develop-

ment remained unaffected. Although these tra genes

differ largely in their nucleotide and amino acid compo-

sition, their function as the sex-specific splicing regulator
Figure 2

Classification of insects and the conservation of dsx and tra. Red boxes ind

indicate species from which only dsx has been reported but presence of tra ha

a feminizing gene has been found but no dsx or tra yet (modified after [1��])
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of dsx appears conserved [9]. Strikingly, a conserved

pattern of tra regulation in all insect species is the sex-

specific alternative splicing that produces transcripts in

males that contain early in-frame stop codons and yield

no protein. Only the female-specific splicing of tra
pre-mRNA yields a full-length transcript and leads to

TRA protein production. This active TRA protein directs

female specific splicing of dsx, implying a functional

conservation in insect sex determination.

Tra regulation of dsx apparently constitutes the axis of

insect sex determination. It likely acquired its function in

the early ancestors of the insects, as tra orthologs are

found throughout the insect class including Diptera,

Hymenoptera and Coleoptera (Figure 2), but apparently

has no sex determining function in the crustacean Daph-
nia [48]. The large sequence divergence indicates that tra
conservation is predominantly at the functional and less at

the structural level. This becomes apparent when TRA

protein sequences are compared among species. Com-

parison of the insect classification to a phylogeny based on

the TRA protein sequence reveals that its evolution has

followed species divergence confirming that conservation

lies in function rather than sequence (Figure 3). Strik-

ingly, alignment of TRA orthologs shows that only the

proline and Arg/Ser rich regions are conserved throughout

the examined insect species, reflecting their function as
icate species in which dsx and tra have been identified. Green boxes

s been inferred from sequence data. Blue box indicates species in which

.

www.sciencedirect.com
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Figure 3

Amino acid alignment and protein sequence tree of tra/fem proteins identified in insect species from three different orders. Upper part: Insect

classification on the left is redrawn from Sanchez [1��]. On the right is the UPGMA consensus tree of the transformer protein sequences with bootstrap

values indicated at the nodes (UPGMA cluster with a Jones–Taylor–Thornton matrix, 1000 bootstraps). In the middle is the protein sequence alignment

showing all conserved areas. Green box indicates conserved domain in Diptera, yellow box indicates conserved domain in all species except D.

melanogaster and purple box indicates conserved domain in Hymenoptera. Red box indicates shared Arg/Ser domains and blue box the common Pro-

rich region. Lower part: Alignment of the conserved domains with similar colors as in the complete protein alignment (upper part). aa: amino acids.

From top to bottom organisms and GenBank accession no.: Drosophila melanogaster (AAF49441); Lucilia cuprina (ACS34689); Anastrepha obliqua

(ABW04165); Ceratitis capitata (AAM88673); Bactrocera oleae (CAG29243); Musca domestica (ACY40709); Nasonia vitripennis (NP_001128299); Apis

mellifera (ABV56235); Bombus terrestris (ABY74329); Melipona compressipes (ABV79891) and Tribolium castaneum (XP_001809947).
splice factor. One additional domain is conserved in

Hymenoptera only, a second domain is conserved in all

species except Drosophila [48] and a third domain is

conserved in all Diptera (Figure 3). The second domain

may function in tra auto regulation that is absent in

D. melanogaster and replaced by Sxl. The other two

domains are apparently not involved in tra splicing but

may have other unknown functions.

Doublesex

Dsx belongs to a class of DM domain containing genes

that are conserved outside the insect class, and regulates

sex determination in both vertebrates [43,49–53] and

invertebrates [54–56]. Tra, on the other hand, has been

identified as a dsx splicing factor in insects only [48]. A

comparison of sex-determining cascades in different

insect groups reveals that diversity essentially starts at
www.sciencedirect.com
the level of regulation of tra splicing and that tra acts as

receptor for various primary signals. These signals are

very diverse and include X-chromosome dose [10�], a

male determining factor on the Y chromosome and/or

autosome [36��,57], and a feminizing factor on the W

chromosome [47] in diploids, as well as complementary

sex determination and genomic imprinting sex determi-

nation in haplodiploids [42��,58,59��]. Therefore, the

conserved part of the insect sex-determining cascade

must be extended to include tra, and from an evolutionary

perspective, tra appears to serve as the gene around which

flexibility in sex determination is manifested.

Evolution of tra regulation. . .
In all tra (or fem) containing insects except D. melanogaster,

female specific splicing of tra involves an auto regulatory

loop, in which the TRA protein is required for female
Current Opinion in Genetics & Development 2010, 20:376–383
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specific splicing of tra pre-mRNA [36��,60,40,38,45,41�,
42��]. Maternal input of tra mRNA or protein into the

eggs has been demonstrated for all examined species

except D. melanogaster and A. mellifera and has been

surmised to start tra auto regulation. In the haplodiploid

N. vitripennis it has been shown for the first time that

sufficient levels of maternally provided tra mRNA in eggs

are required for female development. Knockdown of tra
in mothers leads to a diminished amount of maternally

provided tra mRNA in eggs and results in diploid males

[42��]. In Drosophila, Sxl has been recruited upstream of

tra and is female specifically regulated through its own

auto regulatory loop. However, Siera and Cline [61�]
showed that tra auto regulation may also be ancestral

in Drosophila since a positive feedback loop of tra still

operates through Sxl, which in turn regulates tra splicing.

Tra regulation by X chromosome dose may occur outside

the Drosophilidae but most likely in the absence of Sxl.
How this is accomplished remains to be investigated. In

A. mellifera a duplication of fem has been recruited into the

sex-determining cascade and initiates female-specific

splicing of fem transcripts [39�]. Overall, the maternal

provision of tra to eggs appears to be an ancestral regu-

latory mechanism, as all deviations from this system are of

recent origin.

Two intriguing questions are how variations in tra regu-

lation can account for the large variety in sex determining

mechanisms in insects and how turnovers in signals and

genes controlling tra can occur during evolution. A com-

parison between diploid and haplodiploid sex determi-

nation is particularly illustrative as a ‘flipover’ of tra
regulation may lie at the basis of the difference between

these two modes of sex determination.

. . . in diploid insects
The principle of tra regulation in diploid insects is that

the paternally inherited genome inhibits female splicing

of tra in a variety of ways. A diverse array of primary

signals directly or indirectly regulates sex-specific splicing

of tra. A common theme in a number of dipteran insects is

a masculizing (M) factor on the Y chromosome that is

transmitted through males only. M actively blocks the

transcription or translation of tra, preventing the auto-

regulatory loop from establishing in ways that are not yet

well understood [36��,40,41�]. Thus, the paternally inher-

ited M factor actively inhibits female development in XY

individuals. In Drosophila the presence of twice as much X

signal elements in XX animals directs female-specific

transcription of Sxl and starts the female-specific path

of the sex-determining cascade [10�].

A special case is Lepidoptera in which females are the

heterogametic sex (ZW females, ZZ males) [46��]. As only

females contribute a W chromosome containing a fem-

inizing factor, males passively promote male develop-

ment. In their theoretical treatise on the evolution of
Current Opinion in Genetics & Development 2010, 20:376–383
sex determination, Pomiankowski et al. [62] inferred how,

based upon initial allelic variation for dsx (dsxM: masculiz-

ing factor and dsx+: feminizing factor) conversion to tra
regulation can evolve. Assuming that TRA splices only

dsx+ into a female form but not dsxM, a mutation creating a

stop codon in the tra exon 2 (traS) would be favourable for

traS/traS males, as no female DSX is produced. Simu-

lations showed that this could eventually lead to elimin-

ation of dsxM and to evolution of female heterogamy for

traS/tra+ [62].

Two general rules emerge from comparing the different

primary signals of diploid insects. First, a paternally

derived genome is always necessary for male develop-

ment and second, actively or passively, it always prevents

the activation of tra (or Sxl).

. . . in haplodiploid insects
A number of insect groups, including thrips (Thysanop-

tera), beetles (Coleoptera) and all Hymenoptera, have

haplodiploid sex determination: males are haploid,

develop from unfertilized eggs and only inherit a

maternal genome, whereas females are diploid, develop

from fertilized eggs and inherit a paternal and a maternal

genome. It is therefore impossible for the paternally

inherited genome to have a masculinizing effect as in

diploids. Instead, the paternal genome must have

acquired a complete reversal in sex determining function,

that is by feminizing rather than masculinizing.

Until recently, knowledge about primary signals in hap-

lodiploid species was limited to complementary sex

determination (csd) in which gender is determined by

the allelic state of the complementary sex determiner (csd)

gene. Although csd has been inferred for more than 60

hymenopterans [63], the csd gene has been characterized

in the honey bee only [58]. Females are heterozygous and

males hemizygous at this locus, but the biochemical

details of CSD function are not yet completely known

[39�,45]. Interestingly, the csd primary signal can also be

based on multiple loci (ml-csd) [64]. However, in all csd

cases the paternally contributed genome provides the

second csd allele that is required for female development.

In another hymenopteran, Nasonia, csd has been ruled out

as the primary signal [65]. In Nasonia female-specific tra is

maternally provided to eggs. In embryos from fertilized

eggs early zygotic expression of tra is higher than in

embryos from unfertilized eggs, which initiates an auto

regulatory loop of tra and results in female dsx splicing

[42��]. In embryos from unfertilized eggs no early zygotic

expression of tra occurs and the auto regulatory loop does

not establish, leading to male-specific tra and dsx splicing.

The difference in zygotic tra expression cannot be

explained by masculinizing factors. Instead, the tra gene,

or a trans acting factor that influences tra expression, on

the maternal genome is rendered inactive by maternal
www.sciencedirect.com
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imprinting. In an unfertilized egg, only this maternally

imprinted gene is present that prevents tra transcription

and precludes the auto regulatory loop. In a fertilized egg,

both a maternal and a paternal genome are present. The

paternal set has an active, nonsilenced gene so that tra
will be transcribed enabling the maternally provided tra
mRNA to start auto regulation of tra, eventually leading

to female development [42��]. A mutant stain of N.
vitripennis that produces gynandromorphs and females

from haploid unfertilized eggs [66,67] may be explained

by incomplete imprinting in the maternal germ line.

The honeybee and Nasonia results indicate that, in con-

trast to diploids, the paternally inherited genome is

always necessary for female development in haplodi-

ploids and, actively or passively, promotes the activation

of tra.

Conclusions and outlook
Much has been learned about sex determination in

mammals [68] and plants [69–71], but comparative work

on a variety of insect species has been particularly fruitful

for understanding how sex determination regulation

evolves. Twenty-five years ago Nöthiger and Stein-

mann-Zwicky [5] proposed that sex determination in

all insects is based on a single principle. We can conclude

that these authors were partly correct. The sex-specific

regulation of dsx splicing by tra appears to constitute a

conserved gene axis in all insects. Clearly, the central

gene around which diversity evolves is not Sxl, as was

suggested from studies in Drosophila, but tra. A striking

example of the central role of tra in the evolution of insect

sex determination is the complete reversal in the paternal

regulation of tra upon the separation of Hymenoptera and

Diptera.

Although Drosophila has XX–XY sex determination,

its processing of the primary signal and regulation of

tra is different from all other flies with this mode of

sex determination. A number of other insect groups

likely rely on sex chromosome dose as primary signal,

such as species with XX–XO sex determination (e.g.

grasshoppers (Orthoptera)), ZO–ZZ sex determination

(e.g. some Lepidoptera [46��]) and paternal X chromo-

some inactivation (e.g. coccids (Homoptera) and Sciarid

flies [1��]). Whether and how tra regulation occurs in

these groups remains an interesting unanswered ques-

tion. In general, a broader taxonomic screen of how

primary signals are processed by tra would be worth-

while as our current knowledge is virtually restricted to

Diptera and Hymenoptera. Exploiting next generation

sequencing technology will greatly expedite such an

endeavor.
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