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1 Introduction

This note consists of a short derivation about the calculations of the propagation
of errors. Two alternative schemes are discussed. The former views individual
measurements as statistically independent events and the latter treats them as
maximally correlated ones from a pessimistic viewpoint.

2 Derivations

Firstly, consider the following question concerning error propagation. There are
two measured quantities, namely, x and y with respective uncertainties ∆x and
∆y. By definition, here, ∆x and ∆y are positive definite. There is a third
quantity z = x+ y. Now, we proceed to evaluate the uncertainty of z.

By definition, the uncertainty of a measurement is its standard deviation σ.
For instance, for quantity x

∆x ≡ σx =
√
〈x2〉 − 〈x〉2 =

√
〈(x− 〈x〉)2〉, (1)

where 〈· · ·〉 indicates the expectation value of a quantity.
It is straightforward to show that

∆z ≡ σ(x+y) =
√
〈(x+ y)2 − 〈x+ y〉2〉 =

√
σ2
x + σ2

y − 2σxσyρx,y, (2)

where

ρx,y =
Cov(x, y)

σxσy
(3)

is known as Pearson correlation, and covariance Cov(x, y) is defined as

Cov(x, y) = 〈(x− 〈x〉)(y − 〈y〉)〉. (4)

It can be shown that the range of Pearson Correlation1 is −1 ≤ ρx,y ≤ +1,
where ρx,y = ±1 indicates that x and y are completely (anti-)correlated, and
ρx,y = 0 indicates that they are uncorrelated.

1https://en.wikipedia.org/wiki/Pearson correlation coefficient
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Subsequently, one may conclude that for independent (and therefore uncor-
related) measurements of x and y,

σz =
√
σ2
x + σ2

y. (5)

The above formula is what one usually finds in textbooks.
In reality, however, it occurs that measurements are correlated to a certain

degree. For instance, an uncalibrated thermometer may always give overesti-
mated measurements. The worst scenario takes place when ρx,y = +1, or in
other words,

∆z = ∆x+ ∆y. (6)

It is not difficult to extend the above arguments to the elementary opera-
tions summarized in the following Table.1. We note that for the last two cases

Table 1: The table for error propagation for elementary operations.
Elementary operation σz ∆z

z = x+ y
√
σ2
x + σ2

y ∆x+ ∆y

z = x− y
√
σ2
x + σ2

y ∆x+ ∆y

z = x× y |z|
√(

σx

x

)2
+
(
σy

y

)2

|z|
(

∆x
|x| + ∆y

|y|

)
z = x

y |z|
√(

σx

x

)2
+
(
σy

y

)2

|z|
(

∆x
|x| + ∆y

|y|

)
of mulplication and division, one may reformulate the expressions in terms of
“relative error” as follows

σz
|z|

=

√(σx
x

)2

+

(
σy
y

)2

, (7)

and
∆z

|z|
=

(
∆x

|x|
+

∆y

|y|

)
. (8)

For the general case z = f(x, y), by using the expansion

z = 〈z〉+
∂z

∂x
(x− 〈x〉) +

∂z

∂y
(y − 〈y〉) +

∂2z

∂x∂y
(x− 〈x〉)(y − 〈y〉) + · · · , (9)

and therefore one finds, up to first order terms

〈z2〉 = 〈z〉2 +

(
∂z

∂x

)2

σ2
x +

(
∂z

∂y

)2

σ2
y + 2

∂z

∂x

∂z

∂y
Cov(x, y). (10)

As a result, we have

σz = 〈z2〉 − 〈z〉2 =

√(
∂z

∂x

)2

σ2
x +

(
∂z

∂y

)2

σ2
y + 2

∂z

∂x

∂z

∂y
σxσyρx,y. (11)
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It is thus straightforward to demonstrate the results shown in Tab.1 by using
Eq.(11). In particular, for uncorrelated measurements,

σz =

√(
∂z

∂x

)2

σ2
x +

(
∂z

∂y

)2

σ2
y. (12)

For completely correlated measurements

∆z =

∣∣∣∣∂z∂x
∣∣∣∣∆x+

∣∣∣∣∂z∂y
∣∣∣∣∆y. (13)

Last but not least, consider the case where multiple independent measure-
ments are carried out for the same physical quantity x. In what follows, one
shows that the uncertainty of the resulting x obtained by averaging the mea-
sured values is inversely proportional to the square root of the number of mea-
surements, n. In other words, for z′ = x1 + x2 + · · ·xn, by using Eq.(12) we
have

σz′ =
√
σ2
x1

+ σ2
x2
· · · =

√
nσx, (14)

where one has simply assumed that the standard error of each measurement
is σx. Also, since the measurements are independent and therefore their co-
variances vanish. Subsequently, the resulting uncertainty for the quantity x is
actually one in n parts, namely, for the algebraic average z = z′

n , we have

σz =
σz′

n
=

σx√
n
. (15)

The above result is well-known in literature. We note that, in this context,
increasing the total number of measurements for completely correlated mea-
surements does not improve the related precision, as expected.

3 Pedagogical practice

In practice, we would recommend adopting the rightmost column of Tab.1 for
the following reasons. Firstly, according to the above analysis, it estimates the
worst-case scenario, which is as much as “physical” compared to the ansatz of
“uncorrelated measurements .”Secondly, the formulation of the last column is
easier for the students to memorize. Last but not least, it can be connected
directly to the more intuitive illustrations. It is of two folds. Consider the
measurement of x and y with 〈x〉 = 〈x〉 = 1, ∆x = 0.1, and ∆y = 0.2. One
immediately finds 0.9 ≤ x ≤ 1.1 and 0.8 ≤ y ≤ 1.2, which leads to 1.7 ≤
z(= x + y) ≤ 2.3. The latter can be rewritten as 〈z〉 = 1

2 (1.7 + 2.3) = 2 and
∆z = 1

2 (2.3 − 1.7) = 0.3 = ∆x + ∆y, by taking the algebraic average and
half of the interval. It is identical to the formulae developed in terms of ∆z.
Also, Eq.(13) is simply a slightly modified version of Taylor’s expansion of a
multivariable function in terms of the partial derivatives, and most students are
supposed to be familiar with it.
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4 Conclusion

The basic formulae for the derivation of error propagation are somehow missing
regarding existing materials for college physics experiments. Hopefully, this
brief note is meaningful in filling such a gap.
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