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PREFACE 

Magnetism is an open field in which physicists, electrical engineers, materials 
scientists, chemists, metallurgists, and others practice together. This book is 
intended as a modern text for an advanced undergraduate or graduate level 
course in magnetic materials. It should appeal to readers with a broad range 
of backgrounds. It begins by laying a foundation of the most widely used 
concepts of magnetic materials and proceeds to describe their application in a 
number of areas of current importance. The text leads, hopefully, to a point 
from which the current literature in much of the field can be read with a critical 
appreciation. 

As the title indicates, the text makes an attempt to be current. This is evident 
in the chapters on amorphous magnetism (Chapter 11) and nonocrystalline 
materials (Chapter 12), and perhaps more so in the last three chapters: charge 
and spin transport (Chapter 15), surface and thin-film magnetism (Chapter 16), 
and magnetic recording (Chapter 17). Part of the price paid for these chapters 
of current interest is the volatility of their content. An attempt has been made 
at distillation in order to cover those aspects that are more enduring. The rest 
will soon be of historical value only. Some of the examples and problems in 
the text are presented with computer solutions that allow the student to 
explore and learn more actively and hence, more thoroughly. There has been 
a deliberate attempt to rely heavily on figures and to include extensive data 
from the current literature. 

The prominent place of the word "materials" in the title indicates that this 
is not a book about the physics of magnetism, although there is some of that. 
It is about understanding magnetic materials, particularly those that are of 
technical importance. Thus, there is little coverage of many interesting ma- 
terials and phenomena that are limited to extremely high fields or low 



temperatures. The emphasis is on the science and engineering of materials that 
are subjectively regarded as easeful. 

An understanding of modern magnetic materials cannot be achieved without 
elements of metallurgy, the physics and chemistry of solids, as well as concepts 
from electrical engineering. For example, the most advanced developments in 
magnetic recording, or in permanent magnets, are based squarely on careful 
control of microstructure. Recent electronic structure calculations shed new 
light on the interplay of magnetic moment formation and chemical binding that 
is changing the ways magnetic materials are designed and processed. The design 
of high-performance magnetic devices is not possible without micromagnetic 
computer calculations of magnetization and field distributions. The modern 
magnetician must be facile in appreciating and integrating concepts and data 
that cut across tranditional disciplinary boundaries. 

The treatment of magnetism and magnetic materials presented here reflects 
the importance of process in addition to product or result. In general, a result 
often depends on the route by which it was reached. This is as true for the 
derivation of a formula as it is for the properties of a fabricated material or 
device. Most calculated results are relative in the sense that they depend 
strongly on the assumptions and methods used to derive them. The more 
fundamental the result, the more paths lead there. But with approximations, 
different assumptions and different methods lead to different results. Experi- 
mentalists work with real materials that are approximations to the ideal, pure 
crystals treated in many texts. Hence, the world of the materials scientist - the 
theories, models or experimental measurements of real material behavior - is 
rarely a "conservative" one; the endpoint or conclusion is generally a function 
of the path taken. The challenge is to map out the shortest paths to the most 
important places. 

The selection of topics in a text such as this is a humbling exercise. Authors 
struggle under competing tensions: seeking broad coverage on one hand and 
acknowledging personal limitations on the other. Even after selection of the 
material to be covered, it is impossible in any one text to shape the material 
into a sequence suited to a variety of learning styles. Most people learn from 
the particular to the general, from examples to principles. An attempt has been 
made, therefore, to begin each chapter with a relevant experimental observa- 
tion to motivate the treatment. However, the book as a whole cannot follow 
this paradigm; one cannot thoroughly treat the results of magnetism, such as 
soft or hard magnetic materials or magnetic recording, without first covering 
the fundamentals of magnetostatics, anisotropy, domain walls, and so on. The 
first chapter is a modest effort to motivate the reader with a foretaste of some 
of the exciting topics to come while at the same time establishing a common 
platform of preparation. One of the major compromises in subject organization 
is the interruption of the largely phenomenological approach with three 
chapters (3-5) intended to answer the questions "Where do magnetic moments 
come from and how do they  interact?"^ well as "How does magnetism reflect 
the different types of bonding in different materiais?" These chapters may be 
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passed over by those already well prepared in the physics of magnetism or by 
those interested only in the phenomenology of magnetism. Otherwise, this is 
an appropriate place to cover such fundamental material. 

The sequence of chapters is chosen to give the student an appreciation of 
the energies appropriate to understanding the behavior of magnetic materials. 
After a coverage of magnetostatics (Chapter 2), exchange interactions (Chap- 
ters 3-5), magnetic anisotropy (Chapter 6), and magnetostriction (Chapter 7), 
the reader is in a position to understand quantitatively the concepts of 
magnetic domains and domain walls (Chapter 8). This provides adequate 
preparation to grasp the details of the magnetization process (Chapter 9). The 
spectrum of magnetic behavior from soft to hard magnetic materials is treated 
in the sequence of chapters from 10 to 13. After treating the technical properties 
of soft magnetic materials, both crystalline and amorphous, in Chapter 10, 
more aspects of the physics of amorphous magnetism are covered in Chapter 
11. Nanocrystalline materials (commonly derived from amorphous precursors) 
and issues related to the effects of magnetic exchange interactions in small 
structures are treated in Chapter 12. Hard magnetic materials, often based on 
isolated nanocrystalline magnetic particles, are then covered in Chapter 13. 
Magnetic ordering and field annealing, important in many soft and hard 
materials, are covered in Chapter 14. Electronic and spin transport in magnetic 
materials, a field presently experiencing explosive growth in fundamental 
understanding and applications, is treated in Chapter 15. Some of the aspects 
of magnetism unique to surfaces and thin films are described in Chapter 16. 
Perhaps the single most important application driving modern magnetic 
materials development -namely, magnetic information storage, both media 
and transducers-provides an important opportunity to apply much of the 
material in earlier chapters. Magnetic recording physics and materials are 
covered in the final chapter, 17. 

The text uses mks/SI (meter-kilogram-second/Syst6me Internationale) 
units primarily with many important equations and quantities given also in cgs 
(centimeter-gram-second) units. It was not possible to convert all of the data 
borrowed from the literature to mks units. This may be a reminder to the 
reader that in this field, two (or more) languages are still spo%en, often in the 
same sentence. 

It is hoped that this text will contribute in some measure to the growing 
appreciation of the field of magnetic materials as a paradigm of the new 
scientific order in which the stubborn disciplinary barriers of physics, chemis- 
try, mathematics, and metallurgy are not only breached but also reformed as 
bridges for scientific understanding and technological development. 

&Iassac/zusetts Institute of Technology 

June 1999 



ACKNOWLEDGMENT 

This text would not have been realized without input from numerous friends 
and colleagues. I would like to begin by thanking by thesis advisor, Helmut 
Juretschke, who introduced me to the exciting field of magnetism and magnetic 
materials. I am most grateful to my colleagues at Allied Corporation, especially 
Souk Hasegawa, and IBM, most notably Dick Gambino and Tom McGuire, 
who shared with me the riches of their magnetic experiences. Particular 
gratitude goes to my students, postdocs and other colleagues over the years at 
MIT who have helped me learn various aspects of this fascinating field. I would 
especially like to thank Nick Grant, who saw a need for returning magnetism 
to the Department of Materials Science and Engineering, and mentored me in 
how to make it work here. I have been privileged to teach much of the material 
in this book to graduate students at MIT since 1989. Also, with generous 
support from the National Magnet Lab through Jack Crow, Reza Abbascian 
hosted my sabbatical at the University of Florida in 1994, where much of this 
material was given as a graduate course. Hans-Joachim Giintherodt graciously 
hosted my 1997 visit to the University of Basel, where, with the support of the 
Swiss National Science Foundation, much of the material was presented to the 
diploma and graduate students. I am truly grateful for these valuable experi- 
ences. 

Thanks go sincerely to my editors at Wiley, Greg Franklin, John Falcone, 
and Rosalyn Farkas who had faith in the project as well as patient hope for 
its delivery before the new millennium. The anonymous, Wiley-selected re- 
viewers of the early drafts were extremely helpful in their specific comments 
and broader recommendations. 

Particular and heartfelt thanks go to those friends and colleagues who 
selflessly read, corrected, and commented on drafts of various chapters. These 



include Ami Berkowitz, Neal Bertram, Chia-Ling Chien, Migene! Ciria, Arthur 
Clark, Jeff Childress, Dennis Clougherty, Jim Cullen, Dick Cambino, C.  D. 
Graham, Kin Ha, Hans Hug, Dave Lambeth, Laura Henderson Lewis, Mike 
McHenry, Tadashi Mizoguchi, Jagadeesh Moodera, Agustin del Moral, David 
Paul, Dan Pierce, Fred Pinkerton, Caroline Ross, John Unguris, and Hongru 
Zhai. P deeply appreciate the time they took to improve the treatment of 
various topics and search out errors. While much of the material presented 
here has appeared elsewhere, the selection, arrangement, and presentation of 
the material is, for better or worse, my own. I apologize in advance to those 
whose important contributions have been overlooked here because of my own 
unfamiliarity with them or my inability fully to appreciate their significance. 

H am extremely grateful to Mrs. Lee Ward, who worked tirelessly on the 
drawings and patiently accepted my suggestions and reversals of opinion on 
many of the figures. 

Special thanks go to Mr. Robin Lippincott, who worked with the manu- 
script as it evolved, through several generations of hardware and software, 
from class notes to its present form. The formidable task of keeping track of 
the references, figures, tables, and permissions as material was rearranged, was 
accomplished only by his tireless work. Robin dealt calmly with my unending 
revisions and changes of notation. He also applied his own professional writing 
skills to editing my drafts. Although his literary style soars above the dry 
technical genre, he was still able to detect and expunge many of my awkward 
and incorrect constructions. Thank you so much, Robin. 

Finally, I would like to thank my wife, Carol, and children, Kevin, Meghan, 
and Kara, who shared my time with this book for too many nights, weekends, 
and years. Their love and encouragement made it easier to persevere when the 
task grew bigger than H ever would have imagined. 

Massachusetts Institute of Technology 
June 1999 



SYMBOLS 

Exchange stiffness constant, area 
Lattice constant, first Bohr radius 
Flux density or magnetic induction, B = +/area 
Magnetoelastic coupling coefficient 
Curie constant 
Speed of light 
Elastic stiffness constant 
Grain size 
Sample size, film thickness 
Energy, Fermi energy 
Kinetic energy 
Electronic charge, strain 
Helmholtz free energy, force 
Helmholtz free energy per unit volume, frequency 
Gibbs free energy 
Gibbs free energy per unit volume, Lande g factor 
Magnetic field intensity due to macroscopic currents 
Hamiltonian 
Coercive field, coercivity (used when .HC = iHJ 
Flux density coercivity, field at which B = 0 
Intrinsic coercivity, field at which magnetization vanishes 
Planck's constant, Planck's constant/2n 
Current, moment of inertia 
The imaginary number (- 1)'" 
Current density or total angular momentum; scalar and vector 
Magnetic exchange integral 



Total angular momentum quantum naambelr s f  electron, atom 
Uniaxial magnetic anisotropy energy coeficient, surface current den- 
sity (current per unit length) 
Wavenumber, wavevector, of magnitude 2n/A, magnetomechanical 
coupling coefficient 
BoPtzmann constant 
Orbital angular momentum operator, quantum number 
Orbit angular momentum quantum number, correlation length 
Exchange length 
Dipole coefficient 
Magnetization density, total magnetic movement per unit volume 
Mass 
Quantum number for the z component of orbital or spin angular 
momentum 
Quantum number for the z component of total angular momentum 
Number of atoms, domain walls, particles, and other quantities 
Number per unit volume 
Magneton number = number of Bohr magnetons per atom or 
molecule 
Momentum 
Activation energy 
Charge 
Quadrupole coefficient 
Radius 
Radius 
Spin operator, spin quantum number of atom 
Spin quantum number of electron 
Temperature, torque, kinetic energy 
Curie temperature 
NCel temperature 
Time, thickness 
Internal energy 
Internal energy per unit volume 
Volume 
Velocity 
Work done in a given process 
Width of sample or region 
Cartesian coordinates 
Direction cosine of magnetization vector 
Direction cosine of strain direction 
Gyromagnetic ratio 
Domain wall thickness 
Classical skin depth 
Dielectric constant of free space 
Frequency 
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h 
h, h, 
CL, Pi 
PB 
CLm 

X 
P, P m  

(3 

(T, 0" 

T 

U 

cP 
4) 
4J 
Y 
W, 0 

Circular constant, 3.14159 
Twofold rotationally symmetric bonding, antibonding molecular 
orbitals 
Symmetry invariant magnetic anisotropy constant 
Wavelength, molecular field coefficient 
Magnetostriction, saturation magnetostriction 
Permeability, initial permeability 
Bohr magneton, magnetic moment of the electron 
Local magnetic moment 
Paramagnetic susceptibility, spin wavefunction 
Electrical resistivity, mass density 
Electrical conductivity, surface energy density, specific magnetization 
Axially symmetric bonding, antibonding molecular orbitals 
Relaxation time 
Poisson's ratio 
Azimuthal polar angle 
Orbital wave function 
Spatial wavefunction 
Spatial and spin wavefunction 
Angular frequency 2nv, angular velocity vector 
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CHAPTER 1 

INTRODUCTION AND OVERVIEW 

This chapter serves as an introduction to magnetism and an overview of the 
aspects of magnetic materials to be covered in this text. It reviews many 
elementary concepts (Maxwell's equations in differential and integral form, 
units, concepts of magnetic fields and magnetic moments, types of magnetism, 
and generic applications) that may be familiar to some readers. 

1.1 INTRODUCTION 

The Chinese are believed to have first used a lodestone compass, what they call 
shao shih or tzhu shih, meaning loving stone (hence the French l'aimant, 
attraction or friendship, for magnet), more than four millennia ago. The shao 
shih is a ladle-shaped magnet that balances and pivots on a brass plate. The 
handle of the ladle is the north-seeking pole of the compass. The English word 
magnet came from Magnesia, the name of a region of the ancient Middle East, 
in what is now Turkey, where magnetic ores were found. 

The Chinese knew abstract binary concepts such as yin/yang and male/ 
female, as well as understanding the concrete binary process of counting by the 
presence or absence of a bead in an abacus. But the development of a magnetic 
abacus, that is, a computer with binary magnetic information storage, took 
thousands more years to achieve. The late Dr. An Wang pioneered the use of 
magnetic core memories in his early Wang computers. These magnetic memo- 
ries (see Section 17.6.1) were tiny toroids of ferrite that could be individually 



magnetized cloclcwise or coannterclock~se by si~~iqunBtaneous current pulses 
passing through two orthogonal wires defining a core address on a grid. AWer 
a current pulse of critical magnitude (related to the coercive field of the core) 
at a given address, the core remained magnetized (a remanent magnetization 
in a given direction persists in zero field). The core could be read or overwritten 
by later pulses. 

Today, information technologies ranging from personal computers to main- 
frames use magnetic materials to store information on tapes, floppy diskettes, 
and hard disks. The dollar value of magnetic components coming out of Silicon 
Valley is greater than that of the semiconductor components made there. Our 
seemingly insatiable appetite for more computer memory will probably be met 
by a variety of magnetic recording technologies based on nanocrystalline thin- 
film media and magnetooptic materials. Personal computers and many of our 
consumer and industrial electronics components are now powered largely by 
lightweight switch-mode power supplies using new magnetic materials technol- 
ogy that was unavailable 20 years ago. Magnetic materials touch many other 
aspects of our lives. Each automobile contains dozens of motors, actuators, 
sensors, inductors, and other electromagnetic and magnetomechanical compo- 
nents using hard (permanent) as well as soft magnetic materials. Electric power 
generation, transformation, and distribution systems rely on hundreds of 
millions of transformers and generators that use various magnetic materials 
ranging from the standard 3% SiFe alloys to new amorphous magnetic alloys. 
Finally, magnetic materials are the backbone of expanding businesses: elec- 
tronic article surveillance, asset protection, and access control. Tiny strips or 
films of specially processed magnetic materials store one or more bits of 
infomation about an item or about the owner of an identification badge. 
Access to secure areas or inappropriate removal of merchandise or property 
can be monitored and controlled. 

The purpose of this text is to introduce readers to the basic concepts needed 
to understand magnetism, magnetic materials, and their applications and bring 
readers to a point from which they can appreciate the technical literature. The 
text moves from an exposition of the principles of magnetism to a consider- 
ation of some of the major classes and applications of magnetic materials. The 
introductory chapters consider magnetism from three perspectives: 

1. What requirements do Maxwell's equations place on magnetism? 

2. And does classical electron theory indicate? 

3. Why is quantum mechanics needed to understand magnetism? 

The major energies controlling magnetic processes, domain wall formation, 
and technical magnetism are considered next. These principles are then applied 
to specific magnetic materials used in various devices. Several chapters are 
dedicated to the properties of specific magnetic materials in three classes: soft, 
nanocrystalline, and hard magnetic materials. Processing and annealing are 
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covered. A number of more advanced topics are included to meet the needs of 
specific audiences. Throughout the text the treatment is intended to be 
empirical, moving from observation to understanding. An effort is made to 
build new concepts on familiar ones. 

It is worth reviewing what may be three fairly familiar observations related 
to magnetism. Their quantitative understanding will lead to a discussion of 
Maxwell's equations. 

1.2 OBSERVATIONS RELATED TO MAGNETlC FIELDS 

1.2.1 Field of a Current-Carrying Wire 

When a current passes through a length of wire, a magnetic field having a 
direction indicated by the right-hand rule is generated (Fig. 1.1). Here the 
thumb indicates the direction of the positive current I and the fingers indicate 
the direction of the magnetic field lines B. It is important to know the 
magnitude and direction of this field as well as its dependence on current and 
on distance from the wire. 

1.2.2 Field of a Solenoid 

If a length of current-carrying wire is formed into a solenoid, a field can be 
observed about the solenoid (Fig. 1.2). The topology of the field has the 
cylindrical symmetry of a torus, and its sense is again given by a right-hand 
rule. With the fingers this time indicating the direction of the current, the 
thumb gives the direction of the magnetic field inside the solenoid. The field 
outside follows from the symmetry of a torus. 

Because solenoids are often used to provide fields for testing magnetic 
materials, it is important to be able to calculate the strength of the field along 
the axis of the solenoid. 

Figure 1.1 With thumb in direction of current, direction of magnetic B field about a 
current-carrying wire is given by the direction of the fingers according to the right-hand 
rule. 
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Figure 1.2 Direction of magnetic B field about a current-carrying solenoid is given by 
the right-hand rule. 

It is believed that the magnetic field of the earth results from a current in 
its molten iron core. What would the direction of such a current have to be for 
the black end of a compass needle like that in Figure 1.2 to point to the 
geographic north pole? 

1.2.3 Voltage Bnduced in a Coil 

If a bar magnet is removed from inside a coil as shown in Figure 1.3, a voltage 
pulse will be detected across the windings of the coil. The voltage results from 
a change in magnetic flux inside the coil. This induced voltage is a result of 
Lena' law --if there is a change in flux in a coil, a voltage is induced in the coil 
with a sense that would produce a current whose magnetic field opposes the 
initial change. Note that the voltage in Figure 1.3 is such that its current would 
create a field coming out of the coil (in the direction opposite the change 
caused by the motion of the bar magnet). The sense of the voltage is also given 
by a right-hand rule with assignments similar to those in Figure 1.2, except 
now B is replaced by --dB/&. 

Figanre 1.3 A change in flux through a coil results in a voltage in that coil whose sense 
is such that its current would create a field opposing the initial change. 
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The voltage induced by a change in flux is responsible for the operation of 
generators and transformers as well as for the material behavior known as 
diamagnetism. 

Observations similar to 1 and 2 above were first reported by Hans Christian 
Oersted, and in the early nineteenth century Andrt Ampere was able to 
describe them mathematically. Observation 3 was first recorded by Michael 
Faraday, who used it to write the mathematical form of the law of magnetic 
induction. 

In order to be able to calculate the magnitude and direction of the fields 
described here qualitatively, the set of magnetic and electric fields must be 
defined and the equations that relate them to each other and to charge and 
current distributions, must be understood. 

1.3 QUANTITATIVE DESCWlPTlON OF MAGNETIC FIELDS 

Primarily mks (or Systtme International, SI) units will be used in the text. 
However, because the literature abounds with data in cgs and other units, cgs 
equations and quantities will often be given along with mks. An Appendix to 
this chapter summarizes the equations and conversion factors for the import- 
ant magnetic quantities in mks and cgs units. 

1.3.1 Constitutive Relations 

The simplest and most intuitive equations needed are the constitutive relations 
that describe how a material responds to electric or magnetic fields. Ohm's law, 
I = V/R, relates current I and voltage V by the resistance R. Converting to 
intensive variables gives J = oE, where J is the current density (amperes per 
unit area), E the electric field (volts per unit length), and o is the conductivity 
of the material (the conductivity is the inverse of the electrical resistivity, 
o = p - I  = l/RA, where 1 is the conductor length and A is its cross-sectional 
area). 

It is known that an electric field can cause positive and negative charges in 
a material to be displaced relative to each other creating an electric dipole 
moment p (coulomb-meter). The definition of p, is charge (+ and - q) times 
separation distance, p,  = qd. The macroscopic dipole moment density is given 
by P = np, C/m2 (coulombs per square meter), where n = N/V = num- 
ber/volume. P is related to E by an electric susceptibility x,: 

and the electric displacement field D is related to E and P through the 
permittivity tensor E = E~ = 8.85 x 10-12F/m (Farads per meter): 
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Similarly, materials generally respond to an applied magnetic 6eld M with 
a change in their magnetic dipole moment pm. The macroscopic magnetic 
dipole density or magnetization, M = np,, is given by 

where X, is the magnetic susceptibility. 
The magnetic flux density B is related to M and H by the permeability 

p = prpo with pO = 4z x 10-'henrylm 

Therefore p, = l + x,. The parameters pr and X, are different ways of 
describing the response of a material to magnetic fields. In general, the 
permeability and susceptibility are tensors because they relate two vector 
quantities that need not be parallel. In SI units, poM has the same units as B 
(tesla) and in cgs units, 4zM has the same units as B (gauss). 

The magnetic response M of the sample to H causes B/po to differ from N 
inside the material. Thus 14 is the cause and M as the material effect. B is a 
field that includes both the external field poM, due to macroscopic currents, 
and the material response, p,M, due to microscopic currents. B is important 
technically because it is the magnetic flux density &/AWb/m2 (webers per 
square meter) and it is the change with time of flux density which gives rise to 
an electric field or to a voltage (Faraday's law, explained below). Ferromagnets 
represent a low reluctance path for magnetic field lines; hence they draw in the 
flux of a nearby field and add to it by their magnetization (Fig. 1.4). 

A better understanding is needed of the atomic magnetic moment, p,  = M / n  
anallogous to the electric dipole moment, p ,  = P,/n. An explanation will be 
sought for the strength of the atomic magnetic dipole moment strength after a 
review of Maxwell's equations and their consequences. 

Figure 1.4 The B field in a vacuum is proportional to H. However, inside a material 
there is an additional contribution to B from the sample magnetization M .  



QUANTITATIVE DESCRIPTION OF MAGNETIC FIELDS 7 

1.3.2 Maxwell's Equations 

The B, H, and E  fields are related to each other and to charge and current 
densities p and J by a fundamental set of differential equations described by 
James Clerk Maxwell in 1865: 

SI: P V - E  = - V . B  = 0 
E 

dB 
V x E =  -- P ~ E ~ E  V  x B = p , J + - - - -  

at at 

cgs: 

SI units are defined such that B  is the more important field [as will be seen 
later, it is the B field that determines the energy of a magnetic moment, 
U = - p ;  B (joule)] whereas cgs units are defined with H playing the major 
role [U = - p ,  . H (erg)]. 

The general form of these equations is such that a characteristic of a given 
field, such as its divergence or its rotational quality, is equated to a source term, 
namely, charge or current density or to a time change in a complementary field. 
Figure 1.5 illustrates diverging and curling vector fields as well as fields that 
have neither a divergence nor a curl. Comparing Eqs. (1.5) and Figure 1.5, it 
is clear that B fields can never terminate at a source, V . B  = 0 (unless a 
magnetic monopole were discovered) but they may show a curling character 
in the presence of a current density, J. 

The Maxwell-Ampkre equation, V  x B = p, J + p,~,dE/at indicates that a 
circulating B  field results from a free current density or from an electric 

Figure 1.5 Topology of three different classes of vector field, F: (a) diverging (having 
a source) but not curling; (b) neither diverging nor curling; (c)  divergenceless but 
curling. 



polarization current. The B field curls around J in a right-hand sense (Figs. 1.1 
and 1.2). The Maxwell-Faraday equation, curl E = V x E = - dB/da requires 
that a time dependent B field gives rise to a spatially rotating E field normal 
to the direction of the change in B, for instance, -(aB/at)e, = (aE,/az - dE,/ 
ay)e,, where ex is a unit vector in the x direction. The electric field curls around 
the direction of -dB/dt in a right-hand sense (Fig. 1.3). The negative sign in 
the Maxwell-Faraday equation is a manifestation of kenz' law; a changing B 
field induces a back electromotive force (EMF) opposing the current change 
that gave rise to the B field change. Alternatively, a changing B field induces 
an electric field whose current generates a magnetic field that opposes the 
change in the first B field. 

There will often be interest in the use of Eqs. (1.5) to describe fields due to 
a given charge or current distribution. In these cases, the integral forms of 
Maxwell's equations are more useful. 

Div E = V .  E = PIE implies that charge density is the source of a diverging 
E field (Fig. 1.5). This can be seen more clearly on integrating this differential 
equation over a volume containing the charge density. Integrating both 
divergence Eqs. (1.5) over a volume enclosing the source charge distribution 
gives 

A theorem due lo Gauss, 1 (V . q d 3 x  = I F .  d A ,  where P is a vector field, 
converts the volume integrals on the left-hand side (EHS) of Eqs. (1.6) to the 
integral of the normal component of the vector field over the surface enclosing 
that volume: 

These equations say that the normal component of a field leaving a closed 
surface integrated over that surface (i.e., the field emerging from a volume) is 
equal to the total amount of source charge inside that volume. V - B = 0 implies 
there can be no net outflow of B over any closed surface, therefore no sources 
of B, no magnetic monopoles. Magnetic poles always come in pairs, usually 
designated north and south, called dipoles. 

To get the integral forms of the curl equations (IS), integrate them over a 
surface chosen to change the magnetic and current flux densities B and J to 
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flux, 4 = B .  A, and current, I = J .  A (neglect the electric displacement term): 

A theorem due to Stokes, {(V x F) . dA = { F . dl, converts the area integrals 
of the curls to line integrals of the vector field, F along the path enclosing the 
original area: 

B . d l =  /,lo J " d A = p o J  

Equations (1.7) and (1.9) are integral forms of Maxwell's equations. The 
latter two, originating with Faraday and AmpGre, respectively, are at the 
foundation of our traditional understanding and application of magnetism. 
Equations (1.9) say that the line integral of an E or B field about a closed path 
depends on the normal component of the complementary field passing through 
the surface area defined by that path: 

Faraday-the normal component of a time-dependent B field passing 
through an area A induces a voltage along the closed path about that 
area. 

Amp2re - the normal component of a current density J passing through an 
area A gives rise to a B field circulating around that area. 

It is often of interest to consider magnetostatic situations where aE/dt = 0 
and aB/dt = 0 (i.e., V x E = 0). But allowance should be made for the existence 
of currents, J # 0 (that is why this case is sometimes called magnetoquasistatics; 
charges can still move, but the fields are independent of time). In this case, 
Maxwell's differential equations become 

SI: P v . E = -  V.B=O 
E 

V x E = O  V x B = p , J  

cgs: 



The integral forms s f  MaxweBB's raagnetoquasistatic equations are given by 
Eqs. (1.7 and 1.9) with aj /at  = Or 

cgs: B.dA = 0 

This last set of equations (1.11) indicate that there is no net voltage along a 
path enclosing a static magnetic flux. Complete magnetostatics apply in the 
limit that there is no current flowing. Equations (1.10) apply with J = 0. The 
vanishing of V x B suggests that B can be derived from a magnetostatic scalar 
potential, 4,: B = -V+,, because the curl of a gradient is always zero. This 
case is treated in Chapter 2. These foms  of Maxwell's equations form the basis 
of electrostatics and magnetostatics. 

The most fundamental applications of these equations to magnetism are 
now reviewed. 

1.4 MAGNETISM AND CURRENTS 

1.4.1 Magnetic Field about s Straight Current-Carving Wire 

Consider the situation described in Figure 1.1. To get a quantitative measure 
of the B field due to the current in the wire, go to the last of Maxwell's 
equations V x B = p,J. Symmetry suggests that B circulates around the wire, 
so it can be assumed that B is circular and has a constant value at a distance 
R from the wire (Fig. 1.6). 

Therefore, construct a circular surface of radius R > r normal to the 
direction of current I  and use the integral form of the Maxwell-PampGre 
equation, (1.9). From Figure 1.6, the integral of B around the circle of radius 
R is 2nRB. The area integral of the RNS gives po l .  Hence 

where B has units henry-amperes per square meter (HA/m2, which is defined 
as Wb/m2 or tesla). With units Wb/m2, it is natural to define B as +/A where 
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Figure 1.6 Right-hand rule for direction of magnetic field circulating about a current- 
carrying wire. Construction for calculation of strength of B field is shown on right. 

4 is the number of magnetic flux lines and A is the perpendicular area through 
which they pass. Alternatively, it is possible to speak in terms of the magnetic 
field H = Blp, (A/m) generated by the current 

In this text, the symbol H will be used for the magnetic field created 
exclusively by macroscopic currents or, as will be seen in the next chapter, by 
magnetic charges. The B field will be used for the magnetic field when 
microscopic currents contribute to the flux density, specfically, situations for 
which the contribution of the magnetization is important: B = po(H + 111). 

The same result as Eq. (1.12) follows by integration of Ampkre's differential 
equation, V x B = p,J. It is done most conveniently in cylindrical coordinates. 

Integrating from 0 to R 

gives 

Noting that J, is the current per unit area nR2 gives Eq. (1.12) (C = 0 because 
B vanishes at R = co.) 
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A more useful form of Eq. (1.12) is the differential vector sonuntion to 
Maxwell's Amp6re equation, the Biot-Savart law: 

Note that Eq. (1.14) gives the correct direction for the B field relative to the 
current density segment and the distance from that segment to the observation 
point. 

1.4.2 Moment of a Current Loop 

The straight wire of the previous example (Fig. 6.6) is now formed in a loop. 
The magnetic field shape about the current loop is toroidal as can be deduced 
from the right-hand rule for a current-carrying wire (Fig. 1.6). A closed current 
loop has a jarjield given by 

21A cos 8 I A  sin 8 
y 3  %+y3"0 

where e, and e, are unit vectors in the P and 0 directions, respectively, and A 
is the area of the loop. (This equation will be derived later.) At large distances, 
the field of a current loop is the same as that of a small bar magnet, a magnetic 
dipole (Fig. 1.7). 

A solenoid is now formed consisting of IV of these loops, each carrying a 
current I. The field inside the solenoid can be calculated simply by integrating 
the Maxwell-Ampere equation over an area normal to several adjacent turns 
(Fig. 1.8): 

The sense of the line integral along the boundary of the area element is 
determined to be clockwise by the right-hand rule with respect to enclosed 
current. 

Inside the solenoid the B field is strong because the field lines are com- 
pressed; outside the solenoid the B field is weak because the field lines are 
spread out. The return field just outside the middle of an infinite solenoid is 
zero; along the outside branch of the rectangular path in Fig. 1.8, B.dl is zero. 
Therefore, for the closed line integral of B, it follows that 
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Magnetic 
dipole field 
from 
current 
loop 

Magnetic 
dipole 

Figure 1.7 Upper left, magnetic field about a loop of current-carrying wire. Right, 
shape of dipole field about a current loop (above) and about a permanent magnet 
(below). 

Finally, this suggests B1 = p,NI or 

( B  = H = 0.4xNI/1, practical units: H given in oersteds for I in ampere, 1 in 
centimeters). 

Solenoids are often used as sources of magnetic fields in the laboratory and 
are sometimes filled with a soft iron core ( p  >> po) to increase the magnetic field 
they produce. 

X X  x x x x x x  
Bin 

0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Figure 1.8 Cross section through a long solenoid (as in Fig. 1.2) showing path and 
sense of integration for calculating field inside solenoid using Eq. (1.16). 



Equations (1.1 8)-(1.17) give the field, H = Blp,, generated b y  macroscopic 
currents in different configurations. They may also apply to the fields generated 
by microscopic currents to give B = pOH. The fact that the magnetic moments 
of materials arise from microscopic, atomic-scale, currents is now justified. 

1.4.3 Origin of Atomic Moments 

What is the microscopic origin of magnetism in materials? What is the atomic 
magnetic moment p,? Ht will be shown that atomic magnetic moments come 
from microscopic current loops. 

Consider a line of N circular atomic current loops with a common axis 
(Fig. 1.9). This represents a number of atoms with their atomic orbitals aligned 
along a given direction in a material. The solenoid equation, Eq. (1.171, can be 
applied to this model where N/1 is the number of atomic current loops per unit 
length. With no field applied by any external currents H = 0, so the B field 
along the axis of this atomic-scale solenoid is B = p,(H + M )  = p,M. Thus, 
Eq. (1.67) gives the field inside this "material": 

But M = np, and n = NIAE, where A is the area of the atomic current loop. 
Thus 111 = NI/E = (M/Al)pm implies 

4nBA I A 
Pm = 7 cgs, pm = - practical 

10 

Figure 1.9 Schematic representation of a number of atomic current loops, each of area A. 
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with units Am2. This is a crude plausibility argument for a very important 
relation. Thus, atomic magnetism has its origin in microscopic currents and the 
atomic magnetic moments can be calculated if the currents and the areas they 
enclose are known. Another microscopic current, in addition to electron orbital 
motion, also important to magnetism, is one due to the intrinsic angular 
momentum or spin of electrons. Spin will be discussed in Chapter 3. For now, 
note that I A  can be replaced by p, in Eq. (1.15) for the field of a current dipole: 

2pm cos L9 p, sin 6 
er + y3 ee 

From here on, the symbol p, will be used instead of p, for the atomic 
magnetic moment. The p, notation was used till now in order to avoid 
confusion with the permeability and also to draw attention to the analogy 
between electric, p,, and magnetic, p,, dipole moments. 

The magnitude of p, = p, can be estimated for a hydrogen atom in 
the Bohr model. I A  z e(w/2n)nri and take w = vlr, with the electronic 
velocity given by v = (2E/m)'I2 (where E is the electronic energy of the 1s 
electron in hydrogen). This gives for the orbital magnetic moment, 
pm = I A  z 9.27 x 10-24(Am2). 

Now consider a magnetic material to be made up of about n z 1Oz9/m3 
atoms per unit volume, each with a circulating current I which makes the atom 
behave like a magnetic dipole. The magnetization M = n p ,  of this assembly is 
thus of order lo6 A/m or B = p ,  M z 1 T [in cgs, B, z 4nM, = 10 kilogauss 
(kG)]. For comparison, the saturation magnetizations, B ,  = p,M, (all atomic 
moments aligned) of metallic Fe, Co, and Ni are about 2.2, 1.7, and 0.6 T, 
respectively. 

1.5 TYPES OF MAGNETISM 

This value B z 1 T represents an upper limit to the magnetization density for 
our hypothetical hydrogenic material. B = 1 T is typical for a magnetic 
material in which all atomic moments are aligned. But atomic magnetic 
moments are not necessarily aligned in all materials. 

The way the local atomic moments couple to each other, parallel, antiparal- 
lel, or not at all, provides the first way of classifying magnetic materials. The 
individual atomic moments ,urn may be randomly oriented if they do not 
interact with each other. In this case X p, = 0 in zero field. Such uncoupled 
magnetic moments may be aligned partially (depending on thermally induced 
agitation) in an applied magnetic field H. This weak field-induced magnetiz- 
ation behavior defines a paramagnet. Alternatively, the atomic dipoles may 
couple somehow to each other and cooperatively align so X p, # 0 even in the 
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absence of an applied field. This defines an ordered magnetic material, 
examples of which are ferromagnets, antiferromagnets, and ferrimagnets. 

1.5.1 Weak Magnetism 

The magnetic susceptibility xm is usually used to describe weak magnetic 
responses to H (Fig. 1.10) as in paramagnetic and diamagnetic materials. The 
magnitude of jym is usually & low4 to (dimensionless in SI). (It will be 
seen later that diamagnetism is not a matter of aligning preexisting atomic 
magnetic moments but rather an electronic response to B that creates a new 
atomic or molecular magnetic moment.) A material with a paramagnetic 
susceptibility of lo-' would show a magnetization M = 1 A/m in a field of 
lo5 A/m (applied field B, = 0.1 T). This value of magnetization corresponds to 
a flux density poM of order T, which is much less than the 1 T that our 
hydrogenic model suggests for fully aligned moments. What is keeping the 
moments in a paramagnet from aligning in an external field? Perhaps it is 
thermal energy, kB T 

The degree to which a paramagnetic moment will respond to a field can be 
appreciated by considering the potential energy U of the moment pm in an 
applied field B:  

[In mks units the energy is written as -p;  B because the factor p, needed to 

Figure 1.10 Field dependence of magnetization response in paramagnets and diamag- 
nets. Inset shows a schematic of the distribution of local moments in the paramagnetic 
case. 
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relate pm to a flux density has been put with the field H. If pm were defined as 
po IA (Wb/m2), then the energy would be - pm - H.] 

Using the value p, z A m2 calculated above for a hydrogenic orbit 
gives U x 9.3 x J = 6 x eV (for B = 1 T, i.e., H = 8 x lo5 A/m). 
This energy is very small compared to thermal energy at room temperature, 
kBT x 4 x J = & e ~ ,  so it is not expected that a 1-tesla field would 
produce much magnetic response in a paramagnet. One can even crudely 
estimate the fraction of saturation that would be measured in a thermally 
disordered paramagnet by multiplying np, by the scale factor (U/kBT) = pmB/ 
kBT: xm = M/H sz np,(U/kBT)/(B/po) = , u , n , u ~ k , ~  z 9.3 x lop4. So it can be 
seen why paramagnetic susceptibilities are so small. The field has only a weak 
linear effect in aligning the moments because thermal energy is large relative 
to the magnetic energy. (Proper derivations of susceptibilities will be given in 
Chapters 3 and 4.) 

1.5.2 Ferromagnetism 

Ferromagnetic materials are characterized by a long-range ordering of their 
atomic moments, even in the absence of an external field. The spontaneous, 
long-range magnetization of a ferromagnet is observed to vanish above an 
ordering temperature called the Curie temperature T, (Fig. 1.llb). 

The relative magnetic permeability p, = p/po(= 1 + x,,J is used more often 
than susceptibility to describe the magnetic response of ferromagnetic materials 
to H. This is because ferromagnets are useful in electromagnetic devices where 
it is B, or more specifically aB/Bt, that is important in producing a voltage (see 
Faraday's law, explained below). 

Ferromagnets are useful because a large B sz 1-2 T is produced by a fairly 
small field, H z 100 A/m (B z low4 T = 1 gauss, e.g., 10 turns/cm carrying 
only 0.1 A!) (Fig. 1.11). The full magnetization of ferromagnets M z B/po of 

Figure 1.11 (a)  Magnetization of a strongly magnetic material (e.g., a ferromagnet) 
versus field; (b) temperature dependence of the saturation magnetization. T, is the Curie 
temperature. 



I! 8 INTRODUCTION AND OVERVlEW 

order lo6 A/m ES just what our simple atomic model estimated for fully aligned 
moments. Where does the energy for magnetic alignment in a ferromagnet 
come from? For a paramagnet, M was found to be of order np,(U/k,T). Is 
not the moment-disordering effect of thermal energy just as strong in a 
ferromagnetic solid; could there be something other than an external field 
contributing to the tendency to align the local moments? 

Pierre Weiss thought long and hard about this problem and eventually 
concluded that in ferromagnetic materials there must exist a giant "molecular" 
field, AT,,,,, that is present even when no external field Hex, is applied: 
H = Next + HmO1,,. H,,,,, overcomes the thermal agitation and essentially 
aligns all the atomic moments in a ferromagnet so that M = np, = Ms instead 
of M z np,(U/k,T) as in a paramagnet. The molecular field will be examined 
in Chapters 4 and 5. 

But if ferromagnets have such strong magnetizations, why do two pieces of 
iron not attract each other the way they are attracted to a permanent magnet? 
Mow is iron magnetized or demagnetized? Weiss came up with an hypothesis 
for that, too. He postulated the existence of magnetic domains, regions 
(ranging in size upwards from approximately 0.1 pm) in a ferromagnetic 
material over which all moments are essentially parallel (Fig. 1.12). Domains 
are separated from each other by domain walls, surfaces over which the 
orientation of p, changes relatively abruptly (within about 10-IOOnm). The 
domain walls will be the subject of Chapter 8 and domains will be examined 
more closely in Chapter 9. 

The magnetizations in different domains have different directions so that 
over the whole sample their vector sum may vanish. Figure 1.83 is an image of 
the magnetic domains at the surface of a body-centered cubic (BCC) 3% SiFe 
crystal. (The image was taken with a scanning electron microscope fitted with 
a special detector to reveal magnetization direction; see Chapter 16.) Hn this 
figure the (100) directions of the crystal are parallel to the figure edges. It is 
not a coincidence that M inside the domains is parallel to these crystallo- 
graphic directions. The coupling of the direction of M to the crystal axes is 

Figure 1.12 Simplified picture of magnetic domains in an iron crystal and the spatial 
variation of the atomic moments within the wall shown in an expanded view. 
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Figure 1.13 Magnetic domains at the surface of a 3% Si-Fe crystal taken by scanning 
electron microscopy with spin polarization analysis (SEMPA; see Chapter 16). Crystal- 
lographic (100) axes lie in the image plane along the horizontal and vertical directions. 
Left panel shows magnetic contrast when the instrument is sensitive to the horizontal 
component of magnetization; dark is magnetized to the left, light to the right. In the 
right panel, the contrast is sensitive to vertical component of magnetization; dark is 
magnetized down, light is magnetized up. (Courtesy of R. S. Celotta et al.) 

called magnetocrystalline anisotropy (Chapter 6). Note also that domains often 
form so as to create closed flux loops. This minimizes magnetostatic energy 
(Chapter 2). 

In an ideal magnet, does it matter much where the domain wall lies? If the 
potential energy of a domain wall were independent of its position, it would 
only take a relatively weak field to move the wall, much as it is relatively easy 
to move a ripple in a carpet. In some soft magnetic materials, domain walls 
can be moved with fields of order 0.1 A/m. However, defects such as grain 
boundaries and precipitates cause the wall energy to depend on position, so in 
most materials, higher fields are required to move domain walls (Chapter 9). 
It is now possible to understand, at least qualitatively, the B-H loops of 
ferromagnets and connect them with domain wall motion and other magnet- 
ization processes. But before describing the B-H loop of a ferromagnet, the 
classification of strongly magnetic materials should be completed. 

1.5.3 Antiferrornagnetism and Ferrimagnetlsm 

In some magnetically ordered materials (i.e., materials with atomic magnetic 
moments having long-range correlation in their orientations) the atomic 
moments couple in antiparallel arrangements with zero net moment, rather 
than parallel as in a ferrornagnet. Such materials are called antiferrornagnets. 
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In a crystalline  material, the structure dictates how the antipasalllea spins are 
arranged. Many transition metal monoxides assume the rocksalt structure and 
are antiferromagnetic with alternate { 1 B 11) planes oppositely magnetized. 
Chromium has the BCC structure with the body-center atoms having one 
direction of spin (parallel to <100)) and the corner atoms having the opposite 
direction. (Actually, the period of the magnetic fluctuation is incommensurate 
with the crystal lattice by about 5%.) Antiferrornagnets have limited technical 
application because their net magnetization is zero; they produce no external 
field and the direction of the atomic moments is not easily affected by an 
external field. 

When two antiferromagnetically coupled sublattices in a material have 
unequal moments - usually because different species are found on the different 
sites-the net moment is not zero. Such materials are called ferrimagnets. An 
example is magnetite, Fe,O,, for which iron ions of different valence are found 
at sites of different coordination. Ferrimagnets are very important technically 
because of their good high-frequency properties. They will be covered in 
Chapters 4 and 11. 

1.6 TECHNICAL MAGNETIC MATERRALS 

1.6.1 B-N Loops and Magnetic Domains 

Consider a magnetic material in the demagnetized state 4B = 0, H = 0 in 
Fag. 11.114). 

Figure 1.14 Hysteresis loop of a magnetic material showing the variation of B with 
changing H. Initial magnetization curve from the demagnetized state is shown with the 
initial permeability pi indicated. The remanence B, and coercive field Elc are indicated. 
The approximate domain structures are indicated at right for demagnetized state and 
for approach to saturation. 
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Application of a weak field produces motion of domain walls such as to 
expand the volume of those domains having the largest component of M along 
H. (The macroscopic form of the energy of an atomic moment p, in a B field, 
U = -pC1,.B, is NU = -M.BK where V is the volume of the domain of 
magnetization density M.) The initial induction B produced in response to a 
small field H defines the initial permeability pi = (B/H),=,. (The initial 
permeability can be as great as 105p, z 10-I in some materials. This is quite 
a contrast to a paramagnet where 1 + X, > 1 and typically of order to 
lop4.) At higher fields B increases sharply and the permeability increases to its 
maximum value p,,,. When most domain wall motion has been completed 
there often remains domains with nonzero components of magnetization at 
right angles to the applied field direction. The magnetization in these domains 
must be rotated into the field direction to minimize the potential energy 
- M - B .  This process generally costs more energy than wall motion because it 
involves rotating the magnetization away from an "easy" direction [which may 
be fixed in the sample by sample shape (Chapter 2), crystallography (Chapter 
6), stress (Chapter 7), or atomic pair ordering (Chapter 14)]. When the applied 
field is of sufficient magnitude that these two processes, wall motion and 
magnetization rotation, are complete, the sample is in a state of magnetic 
saturation B, = po(H + M,) (in cgs units B, = H + 4nMs). 

On decreasing the magnitude of the applied field, the magnetization rotates 
back toward its "easy" directions, generally without hysteresis (i.e., rotation is 
a largely reversible, lossless process). As the applied field decreases further, 
domain walls begin moving back across the sample. Because energy is lost 
when a domain wall jumps abruptly from one local energy minimum to the 
next (Barkhausen jumps), wall motion is an irreversible, lossy process. The 
B-H loop opens up, that is, it shows hysteresis, when lossy magnetization 
processes are involved. The induction and magnetization remaining in the 
sample when the applied field is zero are called the residual induction B, and 
remanence M,, respectively. The reverse field needed to restore B to zero is 
called the coercivity or coercive field H,. It is a good measure of the ease or 
difficulty of magnetizing a material. (The field needed to restore M to zero is 
called the intrinsic coercivity, ,H,. The distinction between H, and ,H, is of 
importance only in permanent magnets because in a soft magnetic material 
H, << M so that M = 0 for essentially the same field that gives B = 0.) Cyclic 
application of an applied field causes the material to respond in the way 
described by its B-H loop. The magnetization process, both static and 
dynamic, is described in Chapter 10, and applications to soft and hard 
magnetic materials are presented in Chapters 11 and 12, respectively. 

1.6.2 SoR Magnetic Materiais 

When the magnetization processes (domain wall motion and domain magnet- 
ization rotation) occur in weak fields, H ,  < lo3 A/m (readily generated by a 
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modest current though a few turns of wire), the material! is called a soft magnet. 
In some very soft magnetic materials such as certain crystalline NiFe alloys 
(permalloys) or amorphous metallic alloys, R, can be as low as P.OA/m 
(12mOe). The earth's magnetic field is about 0.4 Oe or 30A/m. Other soft 
magnetic materials include pure Fe, Fe with up to 3 or even 6% Si, Ni, many 
FeNiCo alloys, and ferrites such as (MnZnO)Fe,O, or (NiZnO)Fe203. 
Applications of soft magnetic materials exploit the large flux changes (propor- 
tional to aB/at z wB,) that occur in these materials with relatively weak 
changes in applied field. Soft magnetic materials are used in transformers both 
large (tens of tons) and small (ounces), in inductors, motors, and generators 
and as field sensors in magnetic recording or as stress/strain gauges. 

The area inside the B-N loop, of order 4B,N,, is the energy per unit volume 
lost per cycle in magnetizing the material. It is called the hysteresis loss. (The 
product BH has units Wb . A/m3 = J/m3.) In AC (alternating-current) applica- 
tions the power Boss is the frequency times the AC Poop area (J/m3.s). Soft 
materials are covered in Chapter 10. 

6 -6.3 Hard Magnetic Materials 

In some magnetic materials the coercivity can be as high as 2 x PO6 A/m 
(25,000 G). This is the case if the material has defects that strongly impede wall 
motion or if it consists of single domain particles with such high magnetic 
anisotropy that the direction of magnetization is changed only by very large 
fields. Such materials resist demagnetization (once magnetized) and therefore 
are called hard or permanent magnets. Hard magnets are generally used in 
applications where they resist a negative applied field that pushes them back 
along the demagnetization part (second quadrant) of their M-M loop. Because 
they resist demagnetization in the presence of a negative field, hard magnets 
exert a repelling force against the source of a negative imposed field. Thus, 
permanent magnets store energy like a spring; they excert a restoring force 
without contact. The energy stored in a permanent magnet is related to the area 
inside the second quadrant of the B-H loop (Fig. 1.14). The (BN),,, quality 
factor commonly used to rate permanent magnets is the maximum value of the 
BM product along the B-H curve in second quadrant. 

Hard magnets are used in many motors and actuators; they also find 
applications in frictionless bearings, microwave generators, and lenses for 
charged particle machines. Common permanent magnets are Alnico, hexagonal 
ferrites such as BaB.4Fe,03 and the newer rare earth magnets based on 670, 
Sm or Nd2Fe,,B. Permanent magnetic materials are covered in Chapter 13. 

1.6.4 Recording Media 

In between these two extremes of soft and hard magnets lie magnetic recording 
media. They will remain magnetized in the face of ambient fields from nearby 
components or electrical currents but can be reversed by application of a 
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suitable field H  > H ,  with lo4 < H ,  < lo5 A/m (which is of order several 
hundred to several thousands of oersteds). In analog recording the degree of 
magnetization changes with position in proportion to the amplitude of the 
signal to be stored. In digital recording, use is made of the binary quality of 
the magnetization when there is a preferred axis of magnetization. A magnetic 
recording medium is usually made of an array of microscopic, independently 
magnetizable elements. The y phase of Fe20,, often coated or impregnated 
with cobalt, has been one of the most widely used materials for magnetic 
recording. This material can be processed to give rod-shaped particles about 
10 nm in diameter and 100 nm in length. These particles are coated onto Mylar 
tape or onto aluminum disks (Winchestera technology) to make magnetic 
recording tapes and hard disks. More recently, high-density magnetic record- 
ing materials have been made of thin films, including COP alloys, doped CoCr, 
metallic CrO,, and (FeCo),,Tb2,. Digital or analog information can be 
written on the surface of a magnetic medium using a small electromagnet 
capable of magnetizing the recording medium on a scale measured in micro- 
meters. Reading the information can also be done with the same write head or 
with a special read head using the magnetoresistance effect (Chapter 14). Keep 
in mind that these heads write and read magnetic fields on a scale of 
micrometers! This microscopic control of magnetization is amazing, especially 
when you compare it with electrical power transformers weighing tons and 
handling megawatts of power. Both of these extremes of magnetic material 
application operate on the principles contained in Maxwell's Ampere and 
Faraday equations. Magnetic recording is treated in Chapter 17. 

1.7 GENERIC APPLICATIONS 

This introductory chapter began with a description of three simple and 
fundamental magnetic observations: the magnetic field about a wire, that inside 
a solenoid and the voltage induced in a coil by a flux change. So far discussed 
are mostly the first two effects, related to the magnetic fields produced by 
currents (Ampere's law). Attention is now given to the third observation, the 
appearance of a voltage in a conducting loop through which the magnetic flux 
chnges. This is Faraday's law of induction. 

1.7.1 Inductors and Transformers 

Inductors are circuit elements that resist a change in current (LdIldt = Ldzq/ 
dt2) just as inertial mass resists an acceleration m d2x/dt2. Inductors are most 
commonly found as multiple windings of a current-carrying wire (Figure 1.15). 

For a sinusoidal current I = I, sin a t ,  the electrical equation of motion 
LdI/dt + RI = V(t) gives for the voltage across an inductor VL = LI,a cos o t .  
Thus I and V' are 90" out of phase. The current in the windings can also give 
the flux density in the core of the inductor [Eq. (1.6)] B = pNI/1, where both 
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Figure 1-15 (a)  Inductance of a hollow inductor; (b) inductance of a coil filled with a 
magnetic core. 

I and B are time-dependent. From this expression for induction, an alternate 
expression can be derived for the voltage in the circuit using Faraday's law: 
I/ = - NA dB/& = - N2Awpl, cos(wt)/l. Comparing the two expressions for 
the voltage, Ll,w cos wt and pN2AwIo cos(wt)/l, it can be seen that the value 
of the inductance for an air-filled core is given by 

where N is the number of turns, A the winding area, and 1 the length as 
illustrated in Figure 1.15. Comparison with Figure 1.8 shows that as current 
goes from zero to I ,  the number of magnetic flux lines inside the coil increases. 
By the Maxwell-Faraday equation, induces a voltage in each of the N 
windings that opposes (by kenz' law) the current change producing the flux 
change. Thus inductors oppose changes in current; they provide electrical 
inertia. 

Clearly, if the inductor is filled with a high-permeability magnetic core, then 
po in Eqs. (1.21) becomes p = popC1, with p,. >> 1. In this way the inertial effect 
can be enhanced by orders of magnitude or the same inductance can be 
maintained with fewer turns and/or smaller inductor area. 

A transformer is a pair of inductors coupled only by each other's flux 
changes (Fig. 1.16); a change in current in one set of turns induces a voltage in 
the other. When the inductors are linked by a soft, high-permeability core (Fig. 
1.166), the linkage or mutual inductance is strongly enhanced. Electrical signals 
can be transferred through the transformer with their DC (direct-current) 
components blocked. Also, large differences in AC voltage or current can be 
generated across a transformer depending on the ratio of turns N,/N,. As was 
the case for the inductor, the primary current can be related by Eq. (1.16) to 
the flux density linking the two sets of turns B = pN,I/Z. This time dependent 
flux density induces an EMF in each set of turns = - NiA dB/dt ,  where i = 1 
or 2 for primary or secondary windings. From these equations it is clear that 
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Mutual inductors 
weakly coupled 

(a) 

Strongly coupled 
+ transformer 

(b) 

Figure 1.16 (a) Two coils near each other are coupled by the flux associated with a 
current through one of the coils-changes in the flux induce a voltage in the second 
coil; (b) the coupling between two coils is strongly enhanced if they are filled with a 
magnetic material that concentrates the flux linking the two coils-this is a trans- 
former. 

V2/Vl = N2/N,. If the transformer is purely inductive [i.e., Ld2q/dt2 + Rdql 
dt + Cq = V(t), with R = C = 01, there is a 90" phase shift between the current 
and voltage. In this case the energy lost in the transfer J IVdt over a complete 
cycle, is zero. In reality not only do the electrical windings have resistance but 
the magnetic core material itself does not perfectly link N, and N,. The core 
also contributes to the loss of the equivalent circuit of the transformer. The 
phase lag then differs from 90°, and IIVdt gives the loss per cycle in the 
transformer. The loss is made up of core loss and coil loss. The core loss is 
related to the B-H loop area at the frequency of operation of the transformer. 
Transformer core loss represents a significant fraction of the national electricity 
bill. It has been estimated at tens of billions of dollars per year for distribution 
transformers alone (and they are among the most efficient). 

1.7.2 Shielding 

Finally, a word about shielding. It is known that good metals, o z 107(Q.m) 
(p = lOpQ.cm), can shield high-frequency electromagnetic fields by the skin 
effect 6 = [2/(pooo)]112. If a magnetic material is used as a shield, po becomes 
pop,, p, >> 1 and the shielding can be much more effective. In addition, 
magnetic materials can block DC or low-frequency magnetic fields, which 
nonmagnetic metals cannot do. They do this by channeling flux lines through 
the highly permeable material and reducing the flux density in the adjacent 
space. Soft magnetic materials (often a Ni-rich FeNi alloy called mu-metal, or 
amorphous magnetic alloys) are used to shield the cathode ray tubes in 
televisions, computer monitors and oscilloscopes from the earth's magnetic 
field H z 30 A/m ( ~ 0 . 4  Oe) and from fields created by other current-carrying 
elements. 
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TABLE 1,l iMKS/SI amdl CGS Urnids and Cowversiom Bi'acUaas far 
Common Magnetie Quamdties 

MKS, SP CGS Conversion 

H = WI/l  (A/@ 0.4nNIll (Oe) 79.4 A/m = l Oe  
B = B = po(N + M )  (T) B = H + 4nM (4;) 1 T = 1Q46 
A4 = M = x,H (A /m)  = x,H (A/mb 79.6 A / m  = 1 O e  
LL = PO(' + xrn) (Wm) 1 + 4nxm (none) 
pm = pm = iA  (Am2)  iA (emu, G . cm3) 
U = -p;B (9) -P;H derd 1Q7 erg = 1 J 
u = - M . B  (J /m3)  - M .  H (erg/cm3) 10 erg/cm3 = 1 J/m3 

It is hoped that this chapter has given the reader a survey of the broad range 
of issues involved in the study of magnetism and magnetic materials. The next 
chapter takes a more careful look into the issues and concepts touched on here. 
Chapter 2 begins by examining the macroscopic fields produced by magnetized 
materials. This is the field of magnetostatics. 

1.8 SUMMARY 

Table 1.1 gives the equations for some of the important magnetic quantities in 
mks and cgs units, as well as the conversion factors between them. Note that 
units derived from proper names (e.g., gauss or tesPa from Karl Friedrich Gauss 
and Nicola Tesla) are abbreviated with capital letters (G or IF, respectively) 
while simple quantities such as meters and seconds are not. The value of the 
permeability of free space is ,uo = 4n x (H/m). 

Some other important relations are given in Table 1.2. 
Maxwell's equations in differential and integral form are given in the two 

systems of units given in Table 1.3. 

TABLE 1.2 Equations for Field About a Wire swd a Solenoid iw 
MKS and CGS Units 

MKS,  SI GGS 

Field about wire B = po i/2nR ( T )  H = 2i/cR (Oe)  
Solenoid B = po Nil1 ( T )  H = 0.4nNill (Oe) 
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TABLE 1.3 Maxwell's Equations in Differential and Integral Form in MKS 
and CGS Units 

M K S ,  SI 

V . E  = P I E  
V . B  = 0 
v x E =  - a ~ / a t  
v B = p0 J + pO&a~/at  
J E.dA = ( I / & )  J p(x - x']d3x' = q/e  
J B . ~ A  = o 
JE .d l=  -a/atjB.dAf = -aq5/at 
J B - d l =  poJJ.dA1= poI 

CGS 

V . E  = 4np/& 
V - B = O  
v x E = - c - l a ~ / a t  
v x H = ( 4 7 ~ 1 ~ ) ~  + ( & / ~ ) a ~ / a t  
J E.dA = (4nle) J p(x - x']d3x' = 4nql~  
J B - ~ A  = O  
1 E.  dl = -(i/c)a/at J B.  IIIA' = - (l/c)aq5/at 
J B . dl = (4npo/c) J J .  dA' = (4npo/c)I 

APPENDIX: GAUSS AND STOKES THEOREMS 

A theorem due to Gauss, j(V.F)d3 x = jF.dA, provides a useful way to 
convert the volume integral of the divergence of a vector field F to the integral 
of the normal component of the vector field over the surface enclosing that 
volume. Figure lA. l  illustrates this in Cartesian coordinates. 

A theorem due to Stokes, j(V x F) -dA = j F-dl,  converts the area integral 
of the curl of F to a line integral of F along the path enclosing the original 
bounded area (Fig. 1A.2). 

Figure Al.l Graphical illustration of the meaning of Gauss' theorem. 

PROBLEMS 

1.1 What is the field in the middle and at the end of a 20-cm-long solenoid 
(2 cm in diameter) uniformly wound with 200 turns of wire carrying 0.5 A. 
Give fields B and H in SI and cgs/emu units. 
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Figlare A1.2 Graphical illustration of the meaning of Stokes' theorem. 

1.2 Calculate the magnetic field inside a toroid of circular cross section (see 
diagram) with inner radius r ,  = 3 cm and outer radius r ,  = 4 crn would 
uniformly with 100 turns of wire carrying a current of 1.0 A. Plot the field 
as a function of r for 3.1 < r < 3.9 cm. 

1.3 For what values of d r  = r ,  - r ,  and r,, = ( r ,  + r2)/2 is the variation of 
the field less than PO% across the inside of a toroid? 

1.4 Carry out the steps described after Figure 1.9 to estimate the magnetic 
moment of a hydrogenic orbit in the Bohr model. 

1.5 Use Eq. (1.14) to sketch the vector components of the magnetic field 
along the axis, 45" off the axis and on the plane of a current loop at a 
distance of twice the radius of the loop. 

Bozorth, R. M., Ferromagnetic Materials, Van Nostrand, New York, 1955; IEEE 
Press, New York, 1993. 

Chikazumi, S., Physics of Magnetism, Wiley, New York, 1965. 
Chikazumi, S., Physics of Ferromagnetism, Oxford Univ. Press, Oxford, 1997. 
Craik, D., Magnetism: Principles and Applications, Wiley, New York, 1996. 
Cullity, B. D., Introduction to Magnetic Materials, Addison Wesley, New York, 1973. 
Jiles, ID. C., Introduction to Magnetism and Magnetic Materials, Chapman & Hall, 

London, 1991. 
Livingston, J. D., Driving Force: 7he Natural Magic of Magnets, Harvard Univ. 

Press, Cambridge, MA, 1996. 
Mattis, D. C., Theory of Magnetism, Harper & Row, New York, 1965. 
White, R. M., Quantum Theory of Magnetism, McGraw Hill, New York, 1970. 



CHAPTER 2 

MAGNETOSTATICS 

This chapter treats the magnetostatic fields about magnetized samples, the 
energy associated with those fields, and how they combine with externally 
applied fields to influence the magnetization process. An appendix is included 
to help the student in designing simple magnets and estimating the fields they 
produce. 

2.1 OBSERVATIONS OF MAGNETOSTATIC EFFECTS 

If you measure the magnetization of a polycrystalline ferromagnetic sample 
measuring 1 x 1 x 5 mm, you notice very different behavior for application of 
the field along the long axis as opposed to the short direction (Fig. 2.1). A 
greater external field is needed to achieve the same degree of magnetization for 
fields applied in the short direction compared to the long direction. What is it 
about the shape or aspect ratio of a sample that makes the magnetization 
process easier or harder? How does one determine a true material parameter 
from such different experimental results? 

Before answering these questions, let us look at another related observation. 
Two cylindrical samples of equal volume and comprised of the same 

permanent magnet composition are tested in an application. One is shorter and 
wider; the other, longer and narrower (Fig. 2.2). One end of the permanent 
magnet is to be placed at a fixed distance from an object that is to be 
magnetized. Space is a limitation. It is found that the long, thin magnet is more 



Figure 2.11 Magnetization curves for a polycrystalline ferromagnetic sample with field 
applied in different directions. 

effective in magnetizing the object to the required level; the shorter one fails to 
provide a sufficient field. How can you calculate the appropriate shape that will 
provide the required field? 

One more example of magnetostatics is given. When the B-H response for 
a ring or toroid of a polycrystalline magnetic material is measured as in Figure 
2.3a, the hysteresis Poop may resemble that shown in Figure 2.3b. The sides of 
the Poop are steep where they cross B = 0 and then may sound gradually 
toward saturation. Because this sample configuration is a closed path, the flux 
is contained almost entirely within the sample, there are no stray fields outside 
the sample. However, if a gap is cut in the toroid (Fig. 2.3~1, the B-H loop 

Figure 2.2 Dipole fields at a fixed distance from the ends of two permanent magnets 
of the same volume but different shapes. 
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Figure 2.3 Demagnetization observed: (a)  a closed toroidal magnetic sample and (b) 
its B-H loop; (c )  a toroidal magnetic sample with a gap; (d) its B-H loop. 

changes dramatically. It appears to be sheared over as shown by the curve in 
Figure 2.3d. The slopes of the branches near B = 0 are decreased and a higher 
field is required to achieve a given degree of magnetization. The "shearing" of 
the B-H loop is more dramatic for a wider gap in a toroid sample or for a 
shorter sample aspect ratio in a straight length of material. 

This shearing effect on the B-H loop is related to the surfaces created on 
introduction of the gap in the toroid. When a magnetized sample has surfaces 
through which flux lines emerge with a normal component, "free poles" exist 
at the end surfaces (see Fig. 2.4). A magnetic field emanates from the north 
poles and terminates at the south poles. Depending on the shape and aspect 
ratio of the sample, the closing path of least energy for part of this dipole field 
is through the sample. To the extent that this field passes through the sample, 
it opposes the magnetization that set up the surface poles in the first place. The 
magnetic pole strength per unit surface area o is given by the component of 
the magnetization at the surface that is normal to the surface: 

where n is a unit vector normal to the surface. The surface pole density o has 
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Figure 2.4 Schematic of magnetized sample as a composite of microscopic dipoles. 

units of monopoles q, per unit surface area or, equivalently, dipoles q, - d per 
unit volume. o gives rise to a vector magnetic field on both sides of a surface. 
The H field lines emanate from north (+) poles and terminate on south (-) 
poles (Fig. 2.5). 

The field from the surface poles that passes through the interior of the 
sample is called the demagnetizing field. Its strength and direction generally 
vary with position inside the sample but are often assumed to be constant (they 
are constant only inside an ellipsoid). 

For a flat, charged surface of infinite extent in one direction (perpendicular 
to the paper in Fig. 2.5) and finite in its other direction (bounded by r ,  and 

t t t t t t t t + t t t t t t t t t t  --- 
t t t t t t t t t t t t t t t t t t t  ( r  r r r i r  i t i r i r r  r rr r  > 

--) ---------------- t- 

Figure 2.5 Magnetic dipoles inside a magnetized sample, upper left. Upper right, free 
poles at surfaces and field lines that they give rise to. Lower left, geometry for 
calculation of field components due to surface charge. Lower right, variation of the 
magnitude of the internal field with position inside a thicker sample. 
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r,), the field components parallel and perpendicular to the charged surface are 
given in SI units by 

where r,, r,, and 8 are as defined in Figure 2.5. In cgs units the right-hand 
side expressions in Eqs. (2.2) and (2.3) must be multiplied by 4n, and M is in 
electromagnetic units per unit volume (emu/cm3). [Equations (2.2) and (2.3) 
are exact two-dimensional forms of the 3D field due to a surface charge which 
will be given later.] Note that the parallel field component vanishes along a 
line perpendicular to the surface through its middle ( r ,  = r,). For a very thin 
dipole sheet, the field H, from each surface right at the surface (9 = x) is given 
by -M.n /2 ,  so the internal or demagnetizing field from both surfaces is 
- M ( -  4nM in cgs). For a thicker sample, the field from each surface drops off 
with distance from the surface, so the internal field varies approximately as 
sketched in the lower right of Figure 2.5; the demagnetization field is strongest 
near the charged surfaces of the sample and weaker in the middle. 

2.2 BOUNDARY CONDlTlONS ON B AND H 

It is very useful to be able to relate the strength and orientation of the B and 
H fields across an interface. The boundary conditions on B and H are derived 
from Maxwell's equations. 

Figure 2.6 Construction for determining boundary conditions on the flux density B 
from Maxwell's equations: (left) perspective view of a pillbox with top and bottom 
surfaces on opposite sides of an interface between two magnetic media characterized by 
,u, and p,; (right) boundary conditions on B demand that normal co~nponent of B be 
continuous across an interface. 



For the flux density Bj the integral form of B - B  = 0 and Gauss9 theorem can 
be used to write the following, as in Eq. (1.7): 

B . d A  = 0 (2-4) 

We construct a pillbox that intersects the interface between media 1 and 2 
(Fig. 2.6a) and whose area elements dA have, by convention, normals directed 
outward from the pillbox. Equation (2.4) says that the net flux emerging from 
the pillbox is zero. In the limit that the height h of the pillbox shrinlcs to zero, 
the only contributions to the surface integral come from the normal component 
of B passing through the top and bottom surfaces: 

Mere 8, is the angle between the B field in each medium and the surface normal 
a, not the pillbox normal. Equation (2.5) can be written 

In other words, the normal component of the B field is continuous from one 
medium to an adjacent one, regardless of their permeabilities (Fig. 2.6b). Also 
from Eq. (2.61, the normal components of Hl and Hz are related by 

That is, the normal component of the H field is discontinuous across a surface 
at which a normal component of M has a discontinuity. Near the center of a 
magnetically charged surface, the perpendicular components of the field due to 
the surface charge are equal and opposite (Eq. 2.31, so the normal component 
of the H field outside a sample is equal to half the normal component of 
magnetization inside: 

This is consistent with Eq. (2.3). 

For another boundary condition on the H field, the integral form of V x H = J 
and Stokes theorem are used to give [cf. Eq. (1.10)]: 

with the integration path crossing the material interface (Fig. 2.6~).  
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Figure 2.7 (a)  Construction for determining boundary conditions on H from Max- 
well's equations. An edge view of a right-handed, closed line element with long segments 
on opposite sides of the interface. Note the difference between n, the interface normal, 
and n', the normal to the area enclosed by the path of integration. (b) Boundary 
conditions on M deduced from Maxwell's equations demand that the tangential 
component of H be continuous across an interface unless there are surface currents 
present. 

The normal n' to the area enclosed by this path is determined by a 
right-hand rule; n' is tangent to the interface. Again, as the dimension of the 
rectangular path normal to the material interface shrinks to zero, Eq. (2.7) 
becomes 

where Oi is the angle between the Hi field in medium i and the interface normal 



~a and 1 is the length of the rectangle along the surface. We can write 
Eq. (2.8) as 

where K is a surface current density, ill (A/m), in the interface plane parallel to 
BE' and R has the magnitude 

Equation (2.9) states that the tangential components of H are continuous 
across the interface in the absence of an interfacial current density (Fig. 2.7b); 
otherwise they differ by the amount of that current density. 

We summarize these boundary conditions on B and H. Across an interface 
between two media with different magnetic properties the normal component 
of B =  p,,(M + A4) is always continuous and the tangential component 
of H is discontinuous by the magnitude of the transverse surface currents. 
These boundary conditions will help us to understand the phenomena in 
Figures 2.1-2.3. 

Let us be clear about the nature of the surface current K defined in Eq. (2.10). 
The constructions in Figure 2.7 are drawn for convenience to express the 
mathematical process of limitation of the integration path in the direction normal 
to the interface. Expressing the RHS of Eq. (2.8) in Cartesian coordinates 
gives 

where e, is a unit vector in the z direction. Choose the y direction normal to the 
interface so that the limits of y integration go to zero. If J were concentrated like 
a Dirac delta function, 6(y)  at y = 0, then 9 could be expressed as 

where K , ( x )  has dimensions of current per unit length in the x direction and the 
Dirac delta function has dimensions of inverse length. In this case the integral in 
Eq. (2.11) reduces to 

and Eq. (2.10) follows. Thus, K is the average current along the surface per unit 
length transverse to the current path. It is concentrated right at the surface. If the 
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Figure 2.8 B and H fields in and around a uniformly magnetized bar of length L and 
width W (infinite extent out of paper). At the left is sketched the magnetized bar and 
its surface poles (or the equivalent surface current around the bar), which are the 
sources for the H and B fields, respectively. Only one quarter of the bar is sketched at 
right because of the symmetry of the situation. [After Bertram (1994).] 

surface current were distributed over a depth dy, then the tangential field H ,  
would change gradually over that depth (see Problem 2.1). 

Figure 2.8 (Bertram 1994) provides an excellent pedagogical summary of the 
important issues in magnetostatics that have been presented. It is the output 
of micromagnetic calculations of the field distribution inside and around a 
uniformly magnetized bar. Only the upper right quadrant of the bar, of finite 
extent out of the paper, is shown. Note that the surface charges are sources for 
the H field inside and outside the sample. An equivalent current through the 
surface windings is the source of the B field inside and outside the sample. 
Further, outside the sample the B and H fields are equivalent to each other: 
B = p,H (SI) and B = H (cgs). Note also that the boundary conditions on B 
(normal component continuous across surface) and H (tangential component 
continuous across surface) are properly satisfied in these calculated fields. M is 
proportional to B - H, which in this case is uniform inside the bar. The 
boundary conditions on B and H are properly satisfied. 

The H field inside the magnetized sample in Figure 2.8 opposes the state of 
magnetization in which the sample is held. In a sample that is not so 
constrained, this internal field would tend to demagnetize the sample. We now 
consider such demagnetizing fields separately. 



2-9 DEMAGNETBZONG FIELDS AND FACTORS 

Demagnetizing fields hold the key to an understanding of the observations 
described in Figures 2.8 -2.3. 

At the end of a sample that is assumed to be magnetized perpendicular to 
the ends without application of an external field, Eq. (2.7) indicates that fields 
exist inside Hi = -Mi/2, and outside, H, = Mi/2, the sample. Just inside 
the surface, Bi = po(Hi + Mi) = p0Mi/2. Just outside the surface B, = 
po(No f M,) = p,Mi/2 with Mo = 0. [Note that Bi = p,(Hi + Mi) = 

,u,poHi, i.e., either poMi is added to poHi to give Bi or the permeability of the 
medium, &po times Hi  gives B,.] If an external field is now applied to change 
Mi, its magnitude adds to Hi and H,: 

M .  Mi 
hi, = Happ, + 2 and Hi = Happl - - 2 2 

(SH) (2.13a) 

Ho = If , , , ,  + 27cMi and Hi = Hap,, + 2zMi (cgs) (2.83b) 

In other words, the H field inside the material is equal to the field outside 
reduced by half the amount of magnetization normal to the surface. (If the 
sample is thin in the direction of Mi, then there are contributions to the 
internal field of -Mi/2 from each surface.) It is now shown how this explains 
the introductory examples. 

What happens in Figures 2.1 and 2.3 is that the field from the poles at the 
surfaces (Fig. 2.4) opposes the magnetizing field so the internal field that M 
responds to is less than the applied field. This surface pole field or dipole field 
is the demagnetizing field H, mentioned earlier. The internal field is sometimes 
written 

Comparison with Eq. (2.13) shows that N, = -Mi/2 for each surface normal 
to Mi. If the magnetization is zero H, = 0, but as M increases H, becomes 
more negative. 

We have so far assumed M is normal to the surface. More generally, 
H, = - M . n ,  where pa is the surface normal. For an arbitrarily shaped sample, 
the demagnetizing field for a given direction of M relative to the sample axes 
may be approximated as 

The constant of proportionality N is called the demagnetization factor and, in 
general, it is a tensor function of sample shape. If the ends are flat and Mi is 
normal to the surface, N = 1. For ellipsoids N is a diagonal tensor and can be 
calculated because for those shapes, the internal field turns out to be uniform. 
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N can be measured fairly well, or at least approximated, for most other shapes. 
It tells us the component of flux density normal to the surface for a given shape 
and direction of magnetization. It expresses the effect of the unit vector IZ in 
Eq. (2.1). 

Equation (2.15) says that the greater the magnetization of the sample, the 
more the field from the surface poles opposes the external field. Thus, for soft 
magnetic materials, where a large magnetization results from a relatively weak 
external field, the internal field can be much less than the applied field even if 
the shape factor N is very much less than unity. However, for permanent- 
magnet materials, where very large external fields are required to achieve 
appreciable magnetization, shape effects become important only for much 
smaller-aspect-ratio, larger N, samples (Fig. 2.2). 

We can quantitatively interpret Figure 2.3 using Eq. (2.14) and the consti- 
tutive relation Bi = pO(Hi + M), where Bi is the induction inside the material 
and H i  is the internal field, Hi = Hap,, - N M .  Eliminating M between these 
equations gives 

On a familiar B,/Ha,,, plot (e.g., Fig. 2.3d or 2.9a), Eq. (2.16) is a straight line 
with slope p0/N. Along the straight line of slope po/N that passes through the 
origin, H ,  = 0. The coercivity is defined as the external field needed to reduce 
B, to zero. From Eq. (2.16), this gives Hap,, = H ,  = (1 - N)Hi .  If H, f 0, the 
remanent flux density is given by Eq. (2.16) with Hap,, = 0, namely, 
B, = - - p o ( l  - N ) H , / N  = -p,H,/N. A plot of B versus Hi can be generated 
from the B versus Hap,, curve by shearing the latter so the line of slope po/N 
in Figure 2 . 9 ~  becomes vertical and the vertical in Figure 2 . 9 ~  takes on a slope 
of po(l - N ) / N  (Fig. 2.9b). [This slope is given by Eq. (2.16) with H,,,, = 0.1 
The intersection of this "load line" with the B,-Hi loop indicates the re- 
manence that actually would be measured in the Bi-Hap,, loop for a sample 
of a given geometry. 

It should be clear from Figure 2.8 and from Eqs. (2.2) and (2.3) that the 
demagnetization field is generally a function of position and magnetization 
orientation inside a sample. Hence, as was stated above, N should be a tensor 
function of position and orientation in a given sample. However, N is a 
double-valued or triple-valued diagonal tensor for magnetization along the 
principal axes of an ellipsoid. For a truly ellipsoidal specimen in a uniform field 
oriented along one of the major axes, the magnetization is uniform throughout 
the sample. This is not true for samples of other shapes where the magnetic 
response is greatly reduced by dipole fields near corners of rectangular 
specimens. 

For an infinitely long cylinder of arbitrary cross-sectional shape, magnetized 
along its length, N = 0. If it is magnetized perpendicular to its length, N = i. 



Figure 2.9 Schematic representation of demagnetization effect on 63-Hap,, loops (a) and 
on B-Hi loops (b). The dashed lines rotated into the vertical axis in each case relate 
one loop to the other. 

A sphere has N = along each of its three orthogonal axes, as will be shown 
later. An infinite sheet has N = 1 if it is magnetized normal to its surface and 
N = 0 if it is magnetized in plane. Note that the demagnetization factors in 
three principal orthogonal directions add up to unity: N, + N, + N, = 1 
(C Ni = 4n in cgs units); the trace of the demagnetization tensor is 1 (or 4n in 
cgs units). Clearly, it costs less field energy to magnetize ferromagnetic 
materials along their long directions, preferably in closed circuits, because then 
there are no surface poles to cause opposing fields. 

The exact demagnetization factors for various ellipsoids have been calculated 
for magnetization along the three axes, for arbitrary aspect ratios (Osborn 
1945). Here, as for the simple cases cited above, N, + N, + N, = 1. These 
equations may be used as approximations for samples of similar geometries. 

For a prolate ellipsoid with major axis rn times as long as either of its two 
minor axes and magnetized along the major axis 

For a prolate ellipsoid magnetized along a minor axis 

N = N  = {m- In[ m + (m2 - Q1)"']] (2.18) 
2(m2 - 1) m(m2 - m - (m2 - 1)')"' 

For m >> 1, this becomes N, = N, = i (1  - (lnL2m - P])/m3). 
For oblate ellipsoids having two long axes m times the length of the axis of 

symmetry and magnetized parallel to a long axis 

and if m >> I, this becomes N ,  = N, = (n/4m)(l - 4/nm). 
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For an oblate ellipsoid magnetized along its short axis 

1 
N, = - 

m2 - 1 (m2 - 1)'12 
arc sin [(m2 ~ 1 ) ' 1 2 ] )  (2.20) 

and if m >> 1, this becomes N ,  = 1 - n/2m + 2/m2. 
For a more general ellipsoid of principal axis lengths a, b, and c with a >> b, c, 

and for magnetization in the a direction, N is given by 

Table 2.1 summarizes results of these equations for various aspect ratios. 
Figure 2.10 shows the demagnetization factors calculated for ellipsoids and 
cylinders magnetized along their long axes for various dimensional ratios. The 
curves for nonellipsoidal bodies depend on the permeability of the material. 

There is an approximation for a two-dimensional problem where the field is 
essentially uniform in the third direction. The demagnetization factors are 
taken from the demagnetization fields calculated from Eqs. (2.2) and (2.3). For 
example, in Figure 2.11, for in-plane magnetization, it may be assumed that the 
field due to the end poles is independent of the coordinate parallel to the length 
of the fact on which the poles lie. For magnetization along the z direction, the 

TABLE 2.1 Demagnetizing Factors N for Rods and Elllipsoids Magnetized Parallel 
to Long Axis 

Dimensional Ratio Prolate Oblate 
(LengthIDiameter) Rod Ellipsoid Ellipsoid 

Source: Bozorth, IEEE Press, 1993, p. 849 



H parallel to long axis 

Dimensional ratio, m = long axis /short axis 

Figure 2.10 Demagnetization factors for ellipsoids and cylinders with field applied 
parallel to long axis, with aspect ratios closer to unity. [Bozorth, 0 IEEE Press (1993)l. 

y-independent demagnetization factor derived from Eq. (2.3) is 

and for magnetization along the y direction, the z-independent factor is 

Figure 2.11 Two-dimensional approximation for demagnetization factors, left, and 
schematic of thin film, right. 



MAGNETIZATION CURVES 43 

If the dependence on the third dimension becomes significant, additional 
factors of (2h/w)lI2 and (2w/h)lI2 should appear in Eqs. (2.22) and (2.23), 
respectively. 

As a cautionary note, it is emphasized that N is not a constant inside any 
magnetized sample that is not an ellipsoid; N is merely approximated. Consider 
a thin film of dimensions w : h : t 25 : 5 : 1 (Fig. 2.11, right). Equation (2.21), for 
magnetization along the z direction of a triaxial ellipsoid indicates a demag- 
netization factor of N, w 0.0145. The two-dimensional approximation, Eq. 
(2.22), gives N ,  w 0.025. Use of Eq. (2.22) with the factor (2h/w)lI2 gives 
N ,  w 0.0155. If the film is assumed to be a prolate ellipsoid of aspect ratio 
m = w/(th)'I2 w 11.2, Table 2.1 indicates N ,  w 0.02. The large disparity in 
these various approximations is due to the square shape and small aspect ratio 
of this thin film. 

The preference for the magnetization to lie in a particular direction in a 
polycrystalline sample is given by the shape anisotropy. The shape anisotropy 
field is proportional to the difference in the demagnetization fields in two 
orthogonal directions: 

H,,,,, = M ( N ,  - N,) = M A N  

In the two-dimensional approximation for the dimensions given above, if 
M = 64 kA/m = (800 G), then H ,,,,, w 10.2 kA/m (128 Oe). 

2.4 MAGNETIZATION CURVES 

It is possible to calculate the shape of the M-H curve for magnetizing a 
single-domain sample against its demagnetizing field (i.e., magnetizing in a hard 
direction) if a value is known for N.  The magnetostatic energy density is 

urns - ---- - urn, = - M -  Hd = - MsHd cos 8 = + M: cos28 (2.25) v 

because H, is parallel to the short sample dimension and is given by 
H, = - A N M s  cos 0; 8 is the angle between M and the direction of the applied 
field. The factor of reflects the fact that the energy is actually the result of a 
moment-by-moment assembly of the sample in the sense of J MdM = $M:. 
This energy is minimum for M in the easy (long) direction (8 = 90") and 
maximum for M in the hard direction, 0 = 0". See Figure 2.12, H = 0 curve. 
The Zeeman energy density due to the magnetization orientation in the applied 
field is 



Figure 2.12 plots the sum of the two energies, u = u,, + u,  versus 8 for various 
values of applied field. 

The magnetization takes on an orientation that minimizes the total energy 
density u. The minimum energy is found at a value of 8 for which dulde, 
the negative of the torque on M ,  is zero and u has positive curvature. The 
torque is zero when the energy is an extremum: 

Divide both sides of Eq. (2.27) by sin 8 except when sin 8 = 0. But sin 8 = 0 for 
M parallel to H,  that is, at and above the saturation field H,, where it is known 
that the shape of M-H is flat. Below saturation Eq. (2.27) gives 
N M ,  cos 8 = H. The component of M ,  of interest is that parallel to H, namely, 
M(H) = M ,  cos 8; hence 

The stability condition, u" > 0, is - NM: cos28 + MsH cos 8 > 0. It cannot 
be met for 135" < 8 < 180" and can always be met for 45" c 8 < 90". The 
stable range extends down to 8 = 0 for H > NM, .  This is clear by considering 
Figure 2.12. 

Equation (2.28) is the equation for the M-H loop in the hard shape 
direction. For H c H,,,,,,,io,, the magnetization increases linearly with H. M 

Figure 2.12 Variation of magnetostatic plus Zeeman energy density with 0 for 
increasing values of applied field (arbitrary units). Note how the stable energy minimum 
moves from n/2 toward zero as applied field increases. 
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Figure 2.13 Schematic representation of a magnetic material having purely uniaxial 
anisotropy in the direction of the easy axis (EA). Dashed lines indicate magnetization 
configurations for H = 0. Application of a field H transverse to the EA results in 
rotation of the domain magnetizations but no wall motion. 

reaches the value M, when H = NM, = H, (Fig. 2.13). Note that the demag- 
netizing factor can be determined from the field at the knee of the M-H curve 
if Ms is known and if there is no anisotropy other than shape. Alternatively, 
Ms can be determined from the saturation field if N is known. The simplest 
case is magnetization normal to a thin film, N = 1 (N  = 4.n in cgs). In that case 
the material does not saturate until H = M, (or 47cMs, cgs). This field is about 
0.6 T for pure Ni, 1.0 T for Ni,, Fe, ,, and 2.2 T for Fe. 

If domain walls parallel to the easy direction are present, this simple result 
is unchanged because the hard-axis field causes no wall motion and rotates the 
domain magnetization by equal amounts (Fig. 2.13). 

Even for application of a field along an axis of relatively easy magnetization 
(Fig. 2.14), in a multidomain sample, the demagnetizing factor can shear over 

Figure 2.14 (a )  A demagnetized sample for which shape is a factor responds to an 
applied field at the cost of increased demagnetization factor and increased magneto- 
static energy; (b), the changing demagnetization factor causes the M-H loop to be less 
than linear in the external field. 



an M-H loop. The wall motion that results from application of the field will 
be justified in Chapter 10. The internal field seen by the material is the applied 
field plus the demagnetizing field [Eq. (2.14)]. Note that as the shape of each 
domain changes, its demagnetizing factor changes (Fig. 2.14~). The M-H curve 
is no longer linear in H but is sublinear (Fig. 2.14b) due to the increasing 
demagnetizing factor of the larger domain, which represents most of the 
sample. 

Equation (2.15) may be written as M(H) = -H,/N = -(Hi - H,,,J/N, so 
the slope of the magnetization line at zero internal field is 1/N (which is vertical 
if there are no shape effects). [A similar result applies for the B-H curve, Eq. 
(2.16).] M(H) increases with increasing field to the extent that Hi = 0 is 
maintained during the magnetization process, that is, the demagnetization field 
exactly cancels out the applied field until saturation is reached. Thus the loop 
is sheared over by the sample's shape as indicated in Figure 2.14b. Note that 
it is not possible from this measurement alone to distinguish shape anisotropy 
from some other source of anisotropy. 

Example 2.1 In soft magnetic materials where the anisotropy is weak, even 
small demagnetizing effects, N z to can have a strong effect on 
measured M-H response or susceptibility. In the case of thin ribbons of 
amorphous magnetic material (25 pm thick and 3-6mm wide), changes in 
length from 5-10 cm dramatically alter the M-H curves (Fig. 2.15) and can be 
readily accounted for. 

We can calculate the demagnetization effects on the M-Hex, loop by 
expressing the measured magnetization in terms of the external and demag- 
netizing fields 

M = xHi = x(Hex, - NM) (2.29) 

0 1 .o 2.0 3 .o 4 .o 
Field (Oe) 

Figure 2.15 Magnetization for transversely annealed amorphous alloy ribbons of 
various aspect ratios. [After Clark and Wun-Fogel, 1989.1 
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Note that the magnetization results from the internal field, not the applied 
field. Equation (2.29) leads to the definition of an effective or apparent 
susceptibility X, for a sample of a given shape: 

This equation expresses the same effect that is described by Eq. (2.16), but in 
different parameters. See Problem 2.5. 

Figure 2.15 shows how sensitive the observed M - H  characteristics of high- 
permeability or high-susceptibility materials are to very small changes in N .  
The effective susceptibility, which measures the initial slope of M-He, , ,  is 
sharply reduced in shorter samples even though N is of order 

The data for the longest sample in Figure 2.15 give a slope of order 
1.0 T/p, 80 A/m = lo4 or, from Eq. (2.16), N, = 6.3 x lop5.  Approximating 
the ribbon as an extremely prolate ellipsoid, Eq. (2.21) gives N ,  = 3.6 x lop5. 
An assumption of prolate ellipsoidal shape with m = 100/(4-0.025)112 = 316 
gives N ,  = 5 x lop5 from Table 2.1. Cutting the ribbon length from 10 to 5 cm 
increases N derived from the data by a factor of 3.5. 

2.5 MAGNETOSTATIC ENERGY AND THERMODYNAMICS 

The shape effects or demagnetizing effects described in this chapter can be 
thought of as resulting from the dipole energy of the magnetized sample, that 
is, the energy needed to assemble the atomic dipoles that constitute the 
macroscopic magnetic dipole that is the sample. It costs energy to place dipoles 
adjacent to each other if they have the same orientation as in Figure 2.16~. This 
energy is stored in the fields about the dipole configuration. The energy cost is 
less when you assemble dipoles head to tail as in Figure 2.16b. Two end-to-end 
dipoles have a negative energy that gets more negative the closer they are. Let 
us make these concepts quantitative. 

It is a familiar result that the potential energy of interaction of a magnetic 
dipole p, with an external field B, = p,H is given by the quantity 
U = - p, . B,. The same result can be extended to a rigid assembly of dipoles. 
The potential energy per unit volume for a macroscopic sample of magnetiz- 
ation M = Np,/V in an external field may be written as 

When the magnetic field of interest is not external, but is due to the 
magnetization itself, H,, the factor of one-half (which occurs in all self-energy 
problems) must be included in Eq. (2.31). The factor of 4 enters because dipole 
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Figure 2-16 Assembly of dipoles in high-energy configuration (a)  and low-energy 
configuration (b). 

pair interactions must not be counted twice; application of Eq. (2.31) to 
self-energy effectively counts each dipole once as a source of field and once as 
a magnet in the field. The correct magnetostatic energy density is 

u = 2nNM2 (cgs) 

Equation (2.32) represents the work done in assembling a given state of 
magnetization in a sample. For example, an infinite sheet magnetized perpen- 
dicular to its plane has energy density u = p , ~ 2 / 2  (u = 2nM2 in cgs). These 
relations are very useful. 

It is appropriate to examine more carefully the process of magnetizing a 
sample. Consider the magnetization curve in Figure 2.17. For the process of 
magnetizing the sample from the demagnetized state to any point (MI, B,),  
three energy densities can be defined: the potential energy of the magnetized 
sample in B,, --M,B,, as well as the energies A, and A,. 

It should be clear from Figure 2.17 that integral expressions for A, and A, 
can be written as 
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Figure 2.17 Magnetization curve for sample brought from demagnetized state to M I  
in field increasing from B = 0 to B = B,. 

and 

where M(B) and B(M) are functions defining the magnetization curve in terms 
of the independent variables B and M ,  respectively. What is the physical 
significance of these two contributions to the energy density? If A,/A,  is small, 
the material is considered to be easily magnetized, thus not much work needs 
to be done to magnetize the material. A ,  is the work done by thefield to bring 
the sample to the state of magnetization M,. 

Consider a magnetic sample of cross section A and volume A1 inside a solenoid 
of N turns over the length 1 of the sample. The electrical work dw per unit volume 
expended to magnetize the sample quasistatically to a given level of magnetiz- 
ation is given by 

dW -- Vdt 
- dw = i ---- (energylvol) 

A1 A1 

The current i produces an H field in the solenoid [Eq. (1.8)] of H = Nil1 (A/m) 
[H = 0.4nNill (Oe)]. The back EMF induced in the solenoid by the changing flux 
density in the sample is given by V = - NAdBldt (V = - 10-'NAdBldt in cgs 
units). Hence, the incremental work per unit volume done in magnetizing the 
sample becomes 

dw = HdB = poHdM (2.35) 

where attention has been focused on only the material effect of the applied field 
H, namely, the change, dB = dM. This dzfferentinl energy is the area inside of 
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the rectangular elements between the M-B curve and the M axis in Figure 2.17. 
Its integral is A, as defined in Eq. (2.33). 

If there is no sample present, or if only the field energy aside from the sample 
energy is of interest, then 

This is just the energy per unit volume stored in the field, B = pON. 

The term A, is proportional to the energy given up by the magnetized 
material as it is drawn into a field. Thus, A, represents work done on the 
sample and A, describes work done by the sample. Note that A, and A, are 
functions of the path by which the sample is magnetized. 

The internal energy of the sample is its potential energy, -p,M,H,, plus 
the work done to magnetize it: 

If a sample is already magnetized in the absence of a field (i.e., A,  = 0) and 
properly aligned, when the field is turned on, the sample is drawn into the field, 
lowering its energy by A, = - =M,B,. The internal energy of a magnetic 
sample is decreased in the presence of a field; a magnetic sample can do worlr 
when exposed to a magnetic field. 

In Chapter 6 the values of these integrals A, and A, will be shown to 
depend on the direction in which a crystal is magnetized. Their variation with 
direction defines the anisotropy energies. 

The second law of thermodynamics says that if an amount of heat dQ is 
added to a system, the result is an increase in its internal energy dU and/or the 
system can expand, dV > 0, doing work on its environment: 

where dS is the change in entropy and T is the temperature. For a magnetic 
material, the added heat may show up as a decrease in magnetization, giving 

Note that a decrease in magnetization, dM < 0, is equivalent to an increase in 
entropy in terms of providing a channel for heat input, TdS. Hence the change 
in internal energy for a magnetic system should be written 
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The internal energy of a material increases as it is magnetized by a frield (A ,). 
In situations for which ?: and M are the independent variables, it is the 
Helmholtz free energy, F = U - T S  that is minimized 

In the chapters ahead, expressions for the Helmholtz free energy will be 
minimized with respect to the direction of magnetization to find the equilib- 
rium magnetization direction. When ?; p, and H are the independent variables, 
it is the Gibbs free energy, G = F + p V  - M H Y  that is minimized: 

This free energy decreases as a sample of magnetization M is placed in a field 
( A  2)- 

It is important in many cases to consider also the work done by the material 
as it strains in response to being magnetized (see Chapter 7). This strain, driven 
by a magnetic stress o, will be seen to add a term to dU analogous to - p  d V :  
- o,(dl/E)V = - o, el/: The energy of the material decreases if the strain is of 
the same sign as the magnetoelastic stress. 

2.6 ANALYTIC IMAGNETOSTATICS 

2.6.1 The Magnetostatic Potential 

The existence of a magnetostatic potential is justified in the same way the 
electrostatic potential is. Thus, one way to satisfy V x E = 0 is to allow the 
electric field to be derived from a potential gradient, E = -V4 [because 
V x (V scalar) = 0, always]. If macroscopic current densities J vanish, then 
V x B = 0. The vanishing curl implies that B also can be derived from the 
gradient of a scalar, B = -V&. This definition of the scalar magnetic 
potential is used by Jackson (1965). Here the practice more common in the 
engineering literature is followed. The magnetic potential may be defined from 
V x H = O a s  

Because V . B = poV. ( H  + M )  = 0, (bm satisfies Poisson's equation in the 
absence of current densities: 

where V . M  defines a volume magnetic charge density p,, again in analogy 
with electrostatics. Solutions for 4 ,  may be obtained from the differential Eq. 



(2.43) or, knowing the magnetic charge distribution, from the integral 

In regions where there are no magnetic charges present, 4 ,  satisfies Laplace's 
equation 

It has been shown that in addition to volume ""charges," V . M ,  surface charges, 
A4.n may also contribute to the potential. The most general and useful form, 
then, of the magnetic potential is the following: 

Because H(r) = --V,q5,(r, r'), it foFolPows that 

The sources of demagnetization fields are surface poles, M-n,  and volume 
magnetic charges associated with a divergence of magnetization. Brown (1963) 
has shown that Eq. (2.45) is the solution to Maxwell's equations in the 
magnetostatic limit. The 2D equations used for surface poles [Eqs. (2.2) and 
(2.3)] are special cases of the surface integral in Eq. (2.45). 

It was shown in Section 2.2 that surface charge, M -  n, is a source of H fields. The 
volume term in Eq. (2.45) also satisfies the magnetostatic equation, Eq. (2.43). To 
show this, apply the Eaplacian operator to the R field potential 9,: 

Because the Eaplacian here operates only on the observation coordinates x and 
not the source coordinates x', it may be written 
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I t  is a consequence of Gauss' theorem [see Jackson (1965), p.131 that  

1 v2 7 = - 4 d ( x  - x') 
I x - X I  

Equations (2.41) and (2.43) follow from this. 

The process of creating a magnetic charge distribution costs energy; the 
work done per unit of magnetic charge is the magnetostatic potential 4,, and 
hence the energy of a given pole distribution can be expressed as follows: 

The electrostatic solutions to Laplace's equation for various geometries can 
be carried over to magnetostatics and those of Poisson's equation apply when 
magnetic charge is present. Equation (2.43) is now used to derive the form of 
the potential and hence the H field due to two classical charge distributions: 
(1) that on a uniformly magnetized sphere and (2) that of a periodic, 
alternating magnetic pole density. 

2.6.2 Uniformly Magnetized Sphere 

Consider a sphere of radius a that is uniformly magnetized with no external 
field applied (Fig. 2.18). Inside the sphere, assume the magnetization to be 
parallel to the z axis, M = M,e,. Because the sphere is uniformly magnetized, 
take Bin = ~ t e , .  Using Bin = + M), then fin = ( B : / ~ ,  - M,)e,, which 
is also a constant. 

Outside the sphere there is no magnetization so Laplace's equation, Eq. 
(2.43) applies. Assuming B = 0 at r = co, the solution to Eq. (2.43) has the form 
of a sum of spherical harmonics (familiar from electrostatics): 

1 cos 8 3 cos20 - 1 vmut = Co - + C1 - 
r2 + ' 2  2r3 

+ . . .  
r 

The C values are determined by matching the normal (e,) and tangential (e,) 
components of the I3 and H fields inside and out (derived from 4'" and $Out)  

at r = a:  B: = B:"' and H: = Hyt. 
Using the cylindrically symmetric form of the Del operator, we obtain 



Figure 2.18 Uniformly magnetized sphere of radius a showing coordinate 8. 

Equation (2.47) gives the following for the boundary conditions: 

6, cos 0 
B . 0 " t = [ 3 + 2  r3 + . .] = B: = B: CQS 

a 

and 

C ,  sin 19 

a 
(2.49) 

Clearly, from Eq. (2.481, 6, = 0, C ,  = ce31?:/2, and all higher-order coefficients 
vanish. From Eq. (2.49) and the value determined for C,, it foPPows that 
B: = ( $ ) p o ~ o  (in cgs units B: = 8nMO/3)  and C, = iu0a3Mo/3 (4na3Mo/3 in 
cgs). Thus from Eq. (2.4'91, the fields inside the sphere are 

The Patter is the demagnetizing field and it is due to the free poles at the surface. 
Thus, what was merely stated before, namely that N = B/3 for a sphere, has 
now been calculated. The internal Bin field is reduced from poM by the 
demagnetizing field M,. 

Outside the sphere the result is 

which is a dipole field for a magnetic moment p, = a3M0/3. Figure 2.19 shows 
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H 

(b) 

Figure 2.19 Fields inside and outside a uniformly magnetized sphere: (a) B field whose 
lines form continuous loops inside and outside the material; (b) H field, whose lines are 
not continuous; some may terminate at the surface poles. 

these fields. The B field lines are continuous; those of IB originate and terminate 
on the "poles" at the surface. 

The results in Figure 2.19 should be compared with those for the 2D results 
for the rectangular cross section shown in Figure 2.8. 

2.6.3 Field Due to Periodic Surface Poles 

A useful application of the magnetic potential is to calculate the H field due to 
a periodic array of alternating surface poles such as exist at the surface of a 
multidomain sample (Fig. 2.20). The existence of such domain structures will 
be justified in Chapter 9 after treating the other energies involved in determin- 
ing domain structure. 



(a) (b) 

Figure 2.20 (a), Schematic of cross section of a semi-infinite sample with a periodic 
domain structure; (b), field distribution due to magnetic surface charges. 

If the surface charge density is sinusoidal, only the term n = 1 need be kept. 
For a square surface pole density, more terms in the expansion are required. 

It is possible to solve for 4, by integrating as in Eq. (2.44), over the charge 
density 

p, = + M ,  for 2nD < x < (2n + l)D (2.52a) 

p m =  - M ,  for 2(n + 1) D < x < ( 2 n  + l)D (2.52b) 

Alternatively, general expressions for the magnetic potential can be written by 
inspection: 

thus 

The values of A: and A r t  can be determined by applying the boundary 
conditions for continuity of H ,  = (a+/dx), and Be = pO(-a4/az + M ) ,  across 
the interface [Eqs. (2.9) and (2.6), respectively] 
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thus A:: = A:"', and 

thus 

M l x nkAn sin(nkx) = f - 
2 

with the plus or minus applying depending on the value of x as in Figure 2.20. 
The value of A, can be determined from the second boundary condition, 

(Eq. 2.55), by multiplying both sides by sin(mkx) and integrating over one 
period in x: 

which gives 1% for n odd 
A,= n2k 

( 0  for n even 

Because of the n2 in the denominator of A,, it is usually sufficient to keep only 
one or two terms in the expansion of the field. The reader should verify that 
the H fields derived from 4, inside and outside the material have the form 
shown in Figure 2.20b. Note that the exponential decay length scales with the 
wavelength of the periodic pole distribution. 

The magnetostatic energy per unit surface area of the periodic distribution 
can be calculated from Eq. (2.54), evaluated at z = 0, and from Eqs. (2.46), 
(2.52), and (2.51) to give 

2111, . 2M:d 1 M:d 
Uarea = f x -- s~n(nkx)M,dx = 4 - x- = 2.13- 

0 n odd n2k n2 n3 z2 

For a two-dimensional square pole pattern the magnetostatic energy is reduced 
to 62% of the value for one dimension and for a circular domain pattern the 
energy is reduced by another factor of 72% [see Kittel (1949)l. We will have 
more to say about the magnetostatic fields of various domain configurations 
in Chapter 9. 

2.7 SUMMARY AND EXAMPLES 

This chapter contains descriptions of some common ways in which magneto- 
static effects are observed. Samples are harder to magnetize along their shorter 



directions. These eEects were considered first in terns of a single demagnetizing 
factor A! related to sample shape, then in terms of the three diagonal 
components of the demagnetization tensor. A phenomenoPogical approach was 
taken to understanding the effects of sample shape on magnetization curves, 
indicating that the field at which hard-axis saturation occurs gives the 
demagnetization factor: %Pa = NMs. 

The boundary conditions on B and H fields were helpful in understanding 
magnetostatic effects; the normal component of B must be continuous across 
an interface and the tangential component of H must be discontinuous by the 
amount of surface current. 

After reviewing the plhenomenollogy of magnetostatic energy, attention was 
given to a more analytic approach solving Laplace's equation for a uniformly 
charged sphere and for a periodic charged surface. The sphere has a demag- 
netizing field equal to -$Ws, and the periodic charged surface produces a field 
that drops off exponentially with distance from the surface. 

APPENDIX: MAGNETIC ClRCUiTS 

Many flow or flux phenomena obey a diffusion equation: -D dc8dx = J, 
where, in general, J is the flux, that is, quantity of heat, mass or charge flowing 
per unit time through a unit area; dcldx is the concentration gradient that 
drives the flux; and D is the constant that describes the ease with which the 
medium permits the flux. 

The following table compares some values of the constant D for electrical 
and magnetic fluxes in air and in representative media: 

J = oE C J , ( ~ ~ / E ~  = 377 Q) o,, zz 10 x 106(R.m)-' 

D = EE z0 = 1 / 1 ~ 0 ~ 2  = 8.85 x 10- l2  F/m E, = c /~ ,  z 1-10 for dielectric 

B = p H  p0=4.nxPO-'H/m pC1, z 10-PO6 for Fe 

In the relation J = oE, J is the electrical flux or current per unit area, and 
E is the potential gradient (analogous to ac/ax) having units of volts per unit 
length, so o represents for electrical conductivity what D describes for diffusion. 
Thus, J = I/A is equivalent to V = IR, which is Ohm's law. 

Figure 2A.1 illustrates a flux between two bodies at different concentrations, 
along a path of low impedance or high conductivity. 

In electrostatics I E . d l =  V defines the electromotive force (EMF) which 
satisfies Ohm's law. Similarly, in magnetostatics, the integral of the H field 
around a closed path, E. dl = N I  defines the magnetomotive force (MMF) or 
"pressure" that creates a magnetic response. This MMF also satisfies a 
magnetic Ohm's law: 
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Figure 2A.1 Representation of flux between two bodies at different concentrations or 
potentials. The flow is shown along a path of low impedance. 

where 4 is the magnetic flux (4 = f B  dA) that results from a magnetomotive 
force NI  just as current is the electrical flux or flow that results from an 
electromotive force. Equation (2A.1) defines the reluctance, which is the 
magnetic analog of resistance. 

What is the reluctance R,? It should be related inversely to the permeability 
of a material, its ability to draw in magnetic flux. It can be defined from the 
integral form of N I :  

A single component magnetic circuit gives 

Thus 

1 
R, = -- 

(PA)  

If the medium through which the flux flows is inhomogeneous then the 
reluctance is 

just as 



Thus, from Eq. (2A.11, and writing R, as a discrete sum over various circuit 
elements 

dl. 
NB=$C' 

i piAi 

This last form is most useful for magnetic circuit analysis. It is important to 
note that in a magnetic circuit with the N turns confined to a portion of the 
circuit, the right-hand side (RHS) of (2A.5) or (2A.2) sums over all elements of 
the circuit, including the length containing the turns. This part of the circuit 
provides a back MMF on the magnetic power source, MI. 

The concept of magnetic circuits also applies if the MMF, NI, is replaced 
by a permanent magnet of magnetization per unit area. 1W,I (SH units, A 
amperes). This will be covered in Chapter 14 on permanent magnets. 

Examples are as follows: 

I. What field is produced by one ampere of current passing through 400 
turns on a hollow toroid (r, = 2 cm r, = 3 cm) of circular cross section 
(Fig. A2.2)? The magnetic path length is 24r ,  + r2)/2 = 0.157 m. Answer: 
H = NI/E = 400 x 1/0.157 = 2548 A/m (or H = 32 Oe). This result serves 
as a reference for the second exercise. 

2. A similar toroid with 400 turns is now prepared with a soft iron core 
(p, = p/po z IO2) and a I-cm gap (Fig. 2A.3). How much current is 
needed to produce a field of 0.1 T QH = 1000 Oe or 79,618 A/m) in the 
gap? Answer: We first determine the path length inn the magnet. From 
Example 1 (above): k = 0.157 - 0.01 = 0.147 m. For the core, the cross- 
sectional area is given by A = n[(r2 - r1)/2I2 = 7.85 x 10- m2. Use 
NP = 4004 = I:($/A)(E/p) and keep in mind the B field desired, 
0.1 T = $/A: 

= 913 At (ampere-turns) 1 = 2.29 A 

Figure 2A.2 A hollow toroid of inner and outer radius r, and r ,  has 400 turns of wire 
carrying a current of 1 A. 
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Figure 2A.3 The toroid of Figure 2A.2 has a 1 cm gap and is otherwise filled with an 
iron core having p = 100 pO.  

Here, the flux in the gap is assumed to fill an area equal to that filled by 
the flux in the core. Actually, the flux in the gap flares out to a larger 
area. Note that for the hollow toroid (example 1) the same current of 
2.3 A would give H = 5830 A/m (73 Oe) and the addition of a magnetic 
core with a gap (example 2) gives a field of nearly 80,000 A/m (1000 Oe) 
for the same current. 

It is important to note that if the N turns around the core are bunched 
up over a length shorter than the length of the core (1, = 0.147 m in this 
case), the resulting gap field is generally the same. This can be seen by 
breaking 1, into two parts I, and 1, = 1, - l,, with the N turns confined 
to I,. The circuit equation term I,/p,, is replaced by I,/p,, + 12/p,,, which 
is equal to l,/p,,. The result would be different if the permeability or 
cross-sectional area of the unwrapped part of the core were different from 
the wrapped portion. 

PROBLEMS 

2.1 Assume that an interface, similar to that sketched in Figure 2.7b but with 
pl/10 = p2 = pO, is carrying a current [O,O, J(y)] = 2Jo(y/h + 4) and h is 
not necessarily small: 
(a) Sketch the dependence of the current density on y. 
(b) What are the boundary conditions on an N field [H,(y), H,(y), 01 

across the interface. 

(c) Sketch your result and justify it in terms of the field generated by the 
current distribution. Make sure that your result behaves properly as 
h approaches zero. 

2.2 You need to make an electromagnet that produces a field of 0.6T in a 
1-cm gap. You use a rectangular core design (20 x 10 cm with the gap on 
one of the 20-crn legs) and make the core out of soft iron with p, z 100. 
The yoke has cross-sectional area = 10 cm2. 



(a) If yon are able to conveniently wind 400 turns s f  copper wire on the 
20-crn leg, how much current will you need to achieve H = 0.6 T in 
the gap? (Neglect edge eEects.) 

(b) What is the flux density in the iron core at this current? 

2.3 Consider a permanent dipole magnet with its north pole a distance h 
away from a sheet of copper. Calculate the magnetic field in the copper, 
and sketch the field in and near the copper sheet when it carries no 
current and when it carries a uniform current I ,  as sketched below. 

Copper 
0 0 0 

Describe the energy required to move a demagnetized ferromagnetic 
sample from negative infinity toward a permanent magnetic dipole at the 
origin having its north pole pointed toward the ferromagnet. Include the 
effects of magnetization of the sample and its energy in the dipole field. 
Then, assuming you can hold the magnetization fixed, remove the 
magnetized sample back to negative infinity considering only its energy 
in the dipole field is changing. What is the energy change in this second 
process? How do these energies relate to A, and A,? 

2.5 Derive Eq. (2.30) by eliminating Hi from the two expressions that led to 
Eq. (2.16). 

2.6 Verify that Eq. (2.45) satisfies Eaplace equation, Eq. (2.48). 

2.7 You formulate a new soft ferrite composition and want to test its low-field 
magnetic properties. You sinter a toroid and a rod from your new 
proprietary composition. The figures below depict the B-H Poops yon 
observe on each. 
(a) What is the remanent induction in each case? 
(b) What is the coercivity in each case? 
(c)  Approximate the effective permeability in each case for a drive field 

of 2 Oe. 
(d) Assume B = H + 4nM FZ 47cM and use M = X H  with Eq. (2.29) to 

estimate the demagnetization factor, N ,  for the rod. 
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Figure P2.7 

(e) Use Table 2.1 to estimate the demagnetization factor of the rod- 
shaped sample which you measure to have an aspect ratio of 10:l. 

You need to calculate the magnetic field parallel to and outside a strip of 
a permanent magnet of length 1. The strip is 115 wide (perpendicular to 
the plane of the figure below) and 11200 thick (in the y-direction, below) 
and you need to know the field at heights of 0.051 and 0.31 for 0 < x < 1. 
Use a three-dimensional formula [Eq. (2.45)] for the field assuming that 
the width is small relative to the length (strip acts like a rod) and also use 
Eq. (2.2) for a two-dimensional approximation (ignoring field spread 
perpendicular to the plane of the paper). The form of the x dependence 
of H(x)  is more important to find than the magnitude of the field. 

Figure P2.8 
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CLASSICAL AND QUANTUM 
PHENOMENOLOGY OF MAGNETISM 

This chapter begins with a classical treatment of the origin and behavior of 
magnetic moments. Then paramagnetism, diamagnetism, and atomic spectra 
are described, as best they can be, in this simple picture. The quantization of 
electron orbital motion and spin are then introduced, as well as the interaction 
between these two angular momenta. These concepts lead to a more accurate 
description of the phenomena already treated classically and provide a solid 
basis for understanding ferromagnetism in simple systems. The consequences 
of bonding in oxides and metals is covered in Chapters 4 and 5. 

3.1 ORBITAL ANGULAR MOMENTUM AND ORBITAL 
MAGNETIC MOMENTS 

It was pointed out that an atomic magnetic dipole moment is given by p, = I A  
[Eq. 1.7)]. Once it was realized that magnetic moments were associated with 
circulating charges, several people, including Einstein, became curious about 
the connection between magnetic moments and angular momentum. (It turns 
out that if a rod of copper is rotated about its cylindrical axis, it is more 
strongly affected by a magnetic field than if it is not spinning. An angular 
momentum is imparted to the electrons that otherwise would have none. This 
angular momentum produces magnetism where there was none before.) It was 
of interest to determine whether the ratio of the magnetic moment p, to the 
mechanical angular momentum L of a system, y = p,,,/L, is a constant; y is 
called the gyrolnagnetic ratio. 
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Let us make an csti-hmate of y for the n = 1 electron in hydrogen using 
the Bohr model (Fig. 3.1). The angular momentum of the electron is 
i% = B x p = mvr,. The magnetic moment is given by p, = IA = er,v/2, where 
r,  is the Bohr radius and the relation cc, = v/r, is used. Thus the gyromagnetic 
ratio for orbital motion is given by 

Note that because e is a negative number, k and p, are in opposite directions 
for electron orbits. This value for y turns out to be exact for materials where 
the magnetism comes from the orbital motion of electrons. It will be seen that 
this y is not valid for many other materials and quantum mechanics is needed 
to fix it. 

The x component of force on an object is given by Fx = - - d U / d x ,  where U 
is the potential energy. Similarly, the torque on an axial vector such as the 
magnetic moment pm is given by T = -dU/dQ, where U is the potential energy 
of the moment in a B field [Eq. (1.8)]. Thus 

This has the magnitude of pm x B or B x p,, but it may not be immediately 
clear what direction to assign to the torque. Note that the torque causes the 
magnetic moment to precess around B in the same way the angular momentum 
axis of a top spinning on a smooth surface precesses around the gravitational 
force. 

A classical picture of this precession can be developed by considering the 
korentz force 

Figure 3.1 (a), Angular momentum of a circulating electron; (b), magnetic moment of 
a circulating electron. 
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Figure 3.2 Classical picture of the Lorentz force effect of the B field on the trajectory 
of a circulating electron. The effect is to rotate the angular momentum vector of the 
initial orbit about B. 

on an electron in circular orbit of radius r in the x-z plane (Fig. 3.2). This orbit 
has angular momentum L in the y direction. Consider the motion at the apex 
of the orbit, v = v,, where F = qv,B, is in the positive y direction (because 
q < 0 and v, > 0). Following this Lorentz force around the orbit shows that L 
changes by AL in the negative x direction; that is, L precesses with angular 
frequency o in the field direction. The magnetic moment vector is oriented 
opposite to L ;  pm = yL = -le/2mlL, and it also precesses with an angular 
frequency o in the field direction. Similar arguments can be made for orbits in 
the other two planes; y-z orbits precess as x-z orbits do, but x-y orbits do 
not. 

Let us calculate the frequency of this precession, called the Larmor frequency 
o,. The torque causes the orientation of the angular momentum vector E to 
change by d L  perpendicular to both B and p,. From Fig. 3.3, d L  = L sin 0d4,  
where d 4  = oLd t ,  thus dL/dt = w,Lsin 0. But the definition of torque is 
T = d L / d t  (analogous to F=dp/d t ) ,  so it is possible to write 
o L L  sin 9 = - p m B  sin 0 [Eq. (3.2)]. Therefore 

This is called the Larmor frequency. 
So the sign of the torque is now known; it is such as to cause an angular 

rotation of the magnetic moment vector with co, parallel to B; wL would be 
antiparallel to B for a positively charged particle. The expression w, = - yB is 
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L sin @ 

Figure 3.3 Construction for relating the change in angular momentum to the pre- 
cession frequency. 

the basis for magnetic resonance. A radiofrequency (RF) field incident on a 
precessing moment in a quasistatic magnetic field B can be absorbed if the R F  
frequency satisfies o = yB. The value of y [Eq. (3.111 corresponds to a 
frequency f = 14 GHz/T. For an applied field B = 4.0 T (10 kOe), this implies 
that magnetic resonance occurs for microwaves of a few centimers in length. 
As an exercise, compare the physics of magnetic resonance with that of 
cyclotron resonance o = (e/m)B. 

A classical explanation of the origin of diamagnetism will now be given (see 
also Fig. 1.5). Diamagnetism is present in all matter but is often obscured by 
paramagnetism or ferromagnetism. Diamagnetism does not require that the 
atoms have orbital moments or unpaired spins; it occurs for filled or partially 
filled orbitals. 

It was shown above that the Larmor precession is the additional angular 
frequency acquired by an orbiting electron when a magnetic field is turned on. 
It was possible to explain it by resorting to the classical Eorentz force. The 
Larmor frequency o, for an electron orbit is always in the direction of B. Thus, 
w, corresponds to a new, field-induced angular momentum, d L  = 1. o, (here I 
is the moment of inertia tensor, which, in simplest terms, has magnitude r2rn). 
(Here is where this classical explanation of diamagnetism is clearly wrong. 
Where does the extra angular motion come from in diamagnetism? If angular 
momentum is conserved, the net must be the same before and after B is turned 
on. Classical arguments cannot answer this question; quantum mechanics is 
needed.) Because the magnetic moment is related to the angular momentum of 
an orbiting electron, dL gives rise to a field-induced change in the moment 
dy, = y d L  (opposite to d L  because y t 0). Thus, d p ,  = (e/2m)(r2rn)le/ 
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2mlB = -(e2r2/4m)B. But not all components of the moment of inertia I re- 
spond to the field; only those corresponding to motions in the plane perpen- 
dicular to B do. Hence, only two components of r2 = x2 + y2 + z2 = 3x2 are 
of importance, namely, those that contribute to the moment of inertia about 
the field axis: 2r2/3. Therefore, dp, = -e2B(r2)/(6m) and for a number N ,  of 
these atomic oscillators per unit volume 

A summation over the different orbitals in each atom has been included in Eq. 
(3.5). Note that < r 2 )  is the average value of the orbital area divided by n. 

Figure 3.4 shows the atomic magnetic susceptibilities of most elements; the 
negative values are the susceptibilities of materials for which diamagnetism 

Atomic Number 

Figore 3.4 Magnetic susceptibilities of the elements in atomic units. Negative values 
of x indicate that the diamagnetic part of the susceptibility is greater than the 
paramagnetic part [After Bozorth, copyright IEEE Press (1993)l. 



dominates pararnagnetism. (The atomic susceptibility x is related to the 
experimental volume susceptibility, K = M / H  (moment per volume per field) 
by x = rcA/p,, where A is the atomic weight and p, is the mass density; XM is 
the magnetic moment per gram atomic weight, which, when divided by 
Avogadro's number, gives the component along the field direction of the 
magnetic moment per atom.) Table 3.1 lists the diamagnetic susceptibilities of 
rare gases and alkali metal ions. [The units in this table are cm3/mol, so 
you must convert to units of m3/mol and remember that in cgs units it is 4 . n ~  
that corresponds to the SI X. So, for helium, the table indicates 
xd = -2.4 x 80-I' rn3/mol). If <r2> zz a: is assumed for the helium atom, then 
Eq. (3.5) gives X, = -2 x 10-l1 (m3/mole). The accuracy of this result is 
impressive for a simple model. Clearly, for atoms of larger radius, X, increases 
in magnitude. 

An alternate classical derivation of diamagnetic susceptibility is given by Feyn- 
man et al. (1964). He considers a quasistatic switching on of the B field and 
calculates the voltage SE-  dl applied to an electron orbit in a plane normal to B. 
Integrate the Maxwell-Faraday equation over the area of the orbit: 

giving: 

The tangential electric field E = -(aB/at)r/2 gives a torque r x P = -1elEr 
parallel to B which changes the angular momentum L (later it will be shown that 

TABLE 3.1 Diamagwe~c Susceptibilities grn, of Various Atoms and Ions a in CGS Units 

- Xm - X m  - X m  

Element cm3/mol) Element cm3/mol) Element cm3/mol) 

"Ions in each row have the same electronic configuration. Values from Kubo and Nagamiya, 
McGraw-Hill, New York, 1969, p. 439, except where indicated by asterisk, which are from Condon 
and Odishaw, Handbook of Physics, McGraw-Hill, New York, 1958, pp. 4-130. Calculated values 
are given in parentheses. 
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angular momentum can arise from sources other than orbital motion): 

Integrating over the time to turn on the B field gives the additional angular 
momentum AL = lelr2B/2 which describes a field-induced orbital magnetic mo- 
ment Ap,, = yAL = -e2r2B/4m. From which, as above, X, = - , L L , N ~ ~ < ~ ) ~ /  
4m = -p,Ne2(x2 + y2)/6m. The minus sign is important. 

This treatment makes it clear that if the B field is decreased from a finite value to 
0, the diamagnetic response is to create a positive moment that opposes the field 
change. Thus diamagnetism is seen simply as a manifestation of Lenz law: moving 
charges respond to a change in field by changing their motion so as to set up a 
field (response) that opposes the initial change. 

The lower panel of Figure 3.5 shows the temperature dependence of the 
atomic or molecular magnetic susceptibility in a number of important diamag- 
netic materials. It should be noted that the diamagnetic susceptibility is largely 
independent of temperature; paramagnetic susceptibility, covered in the next 
section (and shown in the top panel of Fig. 3.5), generally varies inversely with 
temperature. 

To try to understand the lack of temperature dependence exhibited by the 
diamagnetic susceptibility, let us first compare the potential energy of the 
diamagnetic moment with the thermal energy. Using for the diamagnetic 
moment ,urn = x B / ( ~ ~ N , ) ,  leads to the energy of a diamagnetic moment in a 1-T 
field 

But k,T is of order 4 x J at room temperature (RT) (6 x J at 
4.2K). (In cgs units pmH = x H ~ / N ,  = 1.7 x lop2'  erg and kB7: of course, is 
0.025 eV = 4 x 10-l4 ergs at RT). Clearly, lcBT >> p,H at most temperatures. 
But this has nothing to do with why diamagnetism is independent of tempera- 
ture. The diamagnetic susceptibility does not come from alignment of a 
preexisting moment that can be thermally disordered. Diamagnetism is tem- 
perature independent because it results from an interaction between a magnetic 
field and the velocity of electronic charge. The electron velocity is a function 
of the energy of the electronic states and hence is essentially independent of 
temperature. Nevertheless, it is interesting to note that diamagnetism persists 
even though it is much weaker than k,?: Most solids are not made of 
independent, diamagnetic atoms. 

Simply put, diamagnetism is a manifestation of Lenz law, namely, that if you 
apply a field to a system of moving charges, their motions change in such a 
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Figure 3.5 Temperature dependence of paramagnetic and diamagnetic susceptibility in 
some materials. [After Bozorth, copyright IEEE Press (1993)l. 

way that they create a magnetization that opposes the original field. Diamag- 
netism is stronger for large electron orbits uninterrupted by scattering. A 
superconductor is characterized by macroscopic orbits and is the strongest 
possible diamagnet. For a superconductor below its lower critical field, 
xd = - 1147~ (cgs). The new magnetization is the diamagnetic response of the 
system M = xdH, with x, c 0. (An electron does not have to have spin or 
angular momentum to show diamagnetism; only charge and a component of 
velocity perpendicular to B are necessary. Even a linear electron trajectory will 
acquire angular momentum in a B field according to the classical argument.) 
Are you curious where the added angular momentum comes from? It does not 
come from the field because B is not weakened, only opposed, and angular 
momentum is conserved. If this appears unusual, good! Unfortunately, the 
classical model so far described cannot explain it; the treatment is naive even 
though it gives the correct numerical answer. 
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Nonzero susceptibilities cannot be proved classically for an ensemble of atoms 
in thermal equilibrium with their surroundings. The reason for this is 
that the magnetic field does not change the motion of a particle in a way that 
affects the energy. This is because energy is changed by work F.dx, and a 
magnetic field classically affects electron orbits by the Lorentz force, 
F = q[E  + (v x B)]; the magnetic force on a classical particle is always perpen- 
dicular to its velocity. The classical statistical average of a particle's variables of 
motion is given by 

Since the energy E is independent of B (other than effects of a preexisting 
magnetic moment), (v)  also must be independent of B. What this means is that 
the angular momentum imparted to a particle by a magnetic field does not come 
from work done by that field. Classically, the angular momentum comes from the 
surroundings of the particle so the surroundings are left with an equal and 
opposite angular momentum. The net effect is zero. This problem was identified 
by Niels Bohr in his PhD thesis and independently a few years later by a Miss 
Van Leeuwen in Leiden. It is only resolved by a quantum mechanical treatment 
of magnetism. A quantum mechanical derivation of diamagnetism is outlined in 
an appendix to this chapter. 

3.3 CLASSlCAk PARAMAGNETISM 

It has been shown that an applied B field perturbs the orbit of a moving 
electric charge in such a way as to create a diamagnetic response. Atten- 
tion is now given to the effect of a magnetic field on a preexisting orbital 
or spin moment. (Even though spin has not yet been discussed as a source 
of magnetism, it should be appreciated that magnetic dipole moments can 
arise from orbital or spin angular momentum.) Experience indicates that 
magnets align with fields. Yet the torque T = p, x B is orthogonal to B 
and p,. How, then, can the field align a magnetic moment that is already 
present in order to reduce its potential energy U = -p,.B? As it turns out, 
the jield alone is not enough. Scattering processes interrupt the precession of 
the magnetic moment and allow it to relax to a lower energy orientation 
relative to B. 

The angular momentum L of a top precesses about the gravitational field and 
becomes parallel to it only if there is n ,fFictionnl force (Fig. 3.6); otherwise the 
torque never lowers the energy of the top, it continues to precess. In magnetic 
metals, angular momentum scattering takes place every few nanoseconds. This is 
the frictional effect that allows ti, to align with B. (Electrons get scattered, i.e., 
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Figure 3.6 (a )  A top precesses under the torque produced by the action of a 
gravitational force; (b) precession of magnetic moment under the action of a magnetic 
field; (c),  same as center but with scattering present. 

change their linear momentum, every P O - l 4  s in Cu at RT, so from these numbers 
you can conclude that only about one in lo5 scattering events alters the spin.) On 
the timescale of unaided human observations, magnetic moments quickly align 
with applied fields rather than precess about them indefinitely. If you do an 
experiment fast enough, f 3 (1 nanosecond)-' zz CHz, you can detect the 
precession; this is done in magnetic resonance. For experiments at longer time 
scales, p, or M appears to align with the applied field. 

Paramagnetism describes the behavior of materials that have local magnetic 
moments but no strong magnetic interaction between those moments (energy 
of interaction << k,T). Examples of materials exhibiting classical paramag- 
netism for noninteracting moments include the diatomic molecules B, (the 
highest occupied molecular orbital is n2), 02(n*2), some salts such as iron 
ammonium alum [Fe3+ in A120,(NH2)], and ferromagnetic materials well 
above their Curie temperatures. All of these materials have unpaired electrons 
(a nonzero spin magnetic moment) and/or a net orbital angular momentum. 
The important question is this: "'How do noninteracting magnetic moments 
respond to the field B at low frequencies when thermal effects are considered?" 

The treatment for magnetic response to a B field is exactly parallel to 
dielectric response to an E field and involves thermodynamics and statistical 
averages. It is worth repeating even though it is a classical result. First, the 
potential energy U of a magnetic dipole p, in a B field is given by Eq. (1.6). 

In a classical solid, the atomic moments can take on any possible orienta- 
tion in space relative to B (Fig. 3.7), that is, 8 is a continuous variable. The 
probability of occupying one of these energy states Ei = - p m B  cos ei at 
temperature T is given by the Boltzmann factor: 

LLB;] (Pm ;f o; Bi) P =  Cexp -2 = Cexp 

(Even though the electrons within each atom or molecule obey Fermi-Dirac 
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l B = 0  Increasing B 
m 

Figure 3.7 Left, a degenerate energy level (B = 0) for a random distribution of spins 
broadens in energy as a magnetic field is applied. In the presence of a field the moment 
orientation relative to B defines the energy. Far right, the probability of occupation of 
the distribution of energy states is a function of energy and temperature; probability 
should be normalized to unity at E = 0. 

statistics in filling the states that give the magnetic moment, the moments of 
the different molecules are separate and distinguishable, so Maxwell-Bol- 
tzmann statistics apply). 

The component of pm in the field direction, p;e,, is given by 
(pm) = pm<cos 0), hence the probability of observing a particular orientation 
of pm relative to B is given by 

pm B cos O 

J[.xP kBT I 
where dS2 = sin 8 d8 d4 .  Carrying out the d+ integral and making the substitu- 
tions s = pmB/k,T and x = cos 8, Eq. (3.10) gives 

This can be expressed as 
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where L(s) is the Langevin function for s = pmB/kBT and is shown in Figure 
3.8. For a number of moments per unit volume given by N,, the magnetization 
density is 

When s x 0, by L'Hbpital's rule L(s) x s/3 = pmB/3kBT: 

where C = p o p ~ ~ , / 3 k B  is called the Curie constant because it was Pierre Curie 
who first observed that the susceptibility X, goes as 1/T at sufficiently low fields 
(s w 0) for many paramagnets. Also note that in this regime A4 is linear in H 
(cf. Figs. 3.8 and 1.6). The top panel of Figure 3.5 plots the paramagnetic 
susceptibilities of several elements. 

Example 3.1 It is possible to calculate X, at room temperature for diatomic 
oxygen for which the magnetic moment is 2pB (due to spin) from the unpaired 
electrons in the doubly degenerate n* highest occupied molecular orbital. The 
result is x = 3.5 x (dimensionless) or 2.1 x mol- l 5.4 x lo-' m3/ 
mol. Figure 3.4 gives p, = 2 x lou3  corresponding to x = 1.2 x 10-8mol-'. 
The result of the calculation is too large by a factor of nearly 2. The 
diamagnetism that is included in the experimental data of Figure 3.4 have not 
been subtracted from the calculated result. 

Figure 3.8 Langevin function versus s describes the universal behavior of classical 
paramagnets. 
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In very strong fields or at low temperatures such that s = a, the Langevin 
function becomes L(s) = 1, so M = N,p,, which defines the saturation mag- 
netization. 

Our simple classical model accounts reasonably well for some of the most 
important observations (T and H dependence) of paramagnetism. Further, 
classical paramagnetism M = x,H is similar to classical dielectric polarization 
P = x,E in the form of its temperature and field dependence. More accurate 
calculations, which can be done in many cases, involve corrections beyond the 
scope of a treatment at this level. 

3.4 MAGNETISM AND SPECTROSCOPY 

Much of our understanding of atoms and their quantized energy levels was 
known in the nineteenth century from analysis of atomic spectra, well before 
the birth of quantum mechanics. It was appreciated that the spacings of the 
major groups of lines in atomic spectra were fairly well described by two sets 
of integers n and k related to 2 degrees of freedom of the "atomic oscillators," 
as they were called. 

Balmer observed that the visible spectrum of hydrogen followed a frequency rule 
v = A(l - 4/n2). Later it was realized that this was the rule v c~ (l/n? - lln?), 
where nf and ni are the integer numbers for the final and initial states, 
respectively. For the Balmer series, n? = 4 (for the Lyman series, nf = 1 which is 
in the ultraviolet; for Paschen, nf = 3; Blacket, nf = 4; and Pfund, nf = 5, in the 
infrared). 

In 1905, Henri Poincare observed: 

Our first glance at the distribution of the [spectral] lines makes us think of the 
harmonics that are met with in acoustics, but the difference is great; not only are 
the [spectral] wave numbers not successive multiples of the same number, but we 
do not find anything analogous to the roots of those transcendental equations to 
which we are often led in physical mathematics.. . . The laws [of spectra] are 
simpler, but they are of an entirely different nature.. . . Of that, we have not taken 
account, and I believe that therein lies one of the most important secrets of 
nature. 

A planetary model was unable to explain fixed spectral energies, fixed orbital 
energies. 

Niels Bohr borrowed Planck's quantization of action jp.dZ = nh giving 
mvr = nh/2n, which, when combined with the classical mechanics relations, 
mv2/r = ke2/r2 and E = T + allows elimination of v and r to give E = - K/ 
n2 and r = n2r,, with K = 2.18 x 10-lsJ  and r, = 0.53 x 10-lo m. Thus 
there are only certain energy levels that can exist, governed by the integers n. This 
energy quantization will be pursued and its implications for magnetism will be 
described in the next two chapters. 
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A quarter of a century before quantum mechanics revealed the significance 
of these integers (principal quantum number n and orbital angular momentum 
quantum number 1 = k - I), their significance was being studied by Michael 
Faraday in England and a group in Leiden by applying static magnetic fields 
to the gas discharge tubes from which the spectra were excited. The race was 
won by the same laboratory that was to discover superconductivity a little 
more than a decade later, the Leiden group. 

Peter Zeeman, a student of Hendrik Eorentz in keiden, observed (in 1896) 
that the lines of the optical spectra emitted from a gas in a strong magnetic 
field showed field-dependent splitting that differed when viewed along the field 
axis or normal to it (see Fig. 3.9, where the axes are rotated for convenience 
from the orientation shown in the related Fig. 3.2). The B field is applied along 
the z axis. The Zeeman split lines had frequencies o = o, + yB. The charac- 
teristic directions of polarization observed for the Zeeman lines are also shown 
in Figure 3.9. 

Lorentz was able to give a simple explanation of the splittings in terms of 
the classical theory of oscillating electrons. [Lorentz and Zeeman shared the 
Nobel Physics prize in 1902 for this work. Bohr's theory of the atom did not 
come until 1913, but Lorentz knew about 9. 9. Thompson's experiments with 
electrons (1897)l. Lorentz' classical explanation followed that given above 
(Section 3.3) for precession. Consider an orbit in the x-y plane. Whether the 
angular frequency o of such an electron orbit has a positive or negative 
projection along the z axis, Ao is in the direction of the field. Hence, for o < 8, 
Iol decreases and for o > 0, lo1 increases. When viewed along B, the Pine 
upshifted in frequency is circularly poParized counterclockwise about B and 
vice versa for the downshifted line. So both the line shift and polarization 
viewed along B were accounted for by classical free electron theory using the 
Lorentz force. 

Figure 3.9 Simplified sketch of Zeeman's experimental observation of the effects of a 
magnetic field B, on optical spectra. Only the effects on an x-z orbit are shown. 
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When this same orbit is viewed perpendicular to B, the same shifts result, 
but from the sense of oscillation, only vertical polarization is observed. 
Oscillations in the z direction have not been considered because they are 
unaffected by B; this explains the unshifted line viewed perpendicular to B. The 
frequency shift is the Larmor frequency o, = (e/2m)B : 

Here w, is the additional frequency acquired by an orbit having angular 
momentum L. in a magnetic field and it shows up as a precession of the orbital 
angular momentum about B if L is not parallel to B. Note that the added 
frequency, + 14 GHz/T = 1.4 x SO1' SIT, is a small shift (for laboratory values 
of B) on a visible optical spectral line for which v = 6 x 1014 s-l. (It was 
recognized by Sommerfeld that this orbital angular momentum of the electrons 
was the additional degree of freedom that necessitated a new quantum number 
k in addition to the principal quantum number n of the Bohr model. 
Sommerfeld's definition of k is no longer used; instead, the letter I ,  which has 
the value k - 1, is commonly used to describe the orbital angular momentum 
quantum number.) 

Figure 3.10 shows the level splitting scheme for a d -, p transition in the 
vector model of the atom. Each level splits in a B field into 21 + 1 components 
depending on its magnetic quantum number m,. The usual dipole selection rule 
Am, = 0, + 1 indicates three allowed lines at v - Av, v, and v i- Av. Note that 
the sense of polarization, which is readily understood from the classical picture 
above, now comes from the conservation of angular momentum during the 

A", = + I  0 - I  

Figure 3.10 Electronic level structure for d + p transitions in zero field and in the 
presence of a magnetic field. Allowed transitions and their polarizations are shown. 
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transition. When Am, = OI ~ X I W ~ S  result that are linearly polarized paralllel to the 
field (n). Whew Am, = + 1, observation reveals right or left circularBy polarized 
light whew viewed along the field axis. The change in angular momentum from 
initial to final electron states is balanced by the angular momentum of the 
emitted photons. Of course the circular polarization seen when viewed along 
B appears as linear polarization perpendicular to B (o) when viewing perpen- 
dicular to B (Figs. 3.9 and 3.10). (These small changes in the state of 
polarization of light emitted in a magnetic field give us a preview of the 
microscopic mechanisms, selection rules, and transitions, involved in the 
Faraday and Kerr effects that are of technical importance.) 

But there were many spectral lines whose field-induced splittings were more 
complex than the simple three-line patterns korentz was able to explain. These 
more complicated magnetic-field-induced splittings became known as the 
anomalous Zeeman effect, and their explanation lies in quantum mechanics, 
which is treated next. 

3.5 QUANTUM MECHANICS AND MAGNETISM 

Earlier in this chapter the magnetic moment of hydrogen (Is1) was calculated 
in the classical, Bohr model to be pC1, = IA = 9.27 x 10-24A.m2. It was 
assumed that the position, r = a,  = 0.52& of the point electronic charge, 
q = - e = - 1.6 x 10- l 9  C, was known as it traveled, presumably in a circular 
orbit, with a velocity given exactly by v = (2E/m)11'. At the atomic scale, none 
of what was just said can be accurate: position and momentum cannot be 
known simultaneously with arbitrary accuracy (Heisenberg's uncertainty prin- 
ciple; see Appendix, Chapter 4), the electronic charge is distributed in space, 
not localized at a point, and to the extent that the Is%elctron can be described 
classically, it travels in a straight line through the nucleus (an s electron has 
zero angular momentum), not in a circle. Further, at the atomic or quantum 
level, variables such as position, momentum, and energy cannot take on a 
continuum of values; rather a set of discrete values is found to describe what 
is observed. 

Replacing the classical angular momentum L = r x p for an electron (which 
is needed to calculate the orbital magnetic moment, p, = yk) with the 
appropriate quantum mechanical form must be justified. The way this is done 
is given by Schrodinger's equation. The part of the Schrodinger equation that 
describes the angular variables of a quantum mechanical wave/particle in a 
central potential is given by 

This equation separates into one equation for the magnitude of the angular 
momentum, ILI and another for its z component L,: 
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and 

L,@ = hm,@ 

Here, h = 1.05 x 10-34J/s is Planck's constant divided by 2n. The 
E;"' = AT1QrnI are spherical harmonics, AT' are related to the associated 
Legendre polynomials, and Qrnl = e'"l4. The convention that capital (uppercase) 
letters, L, designate operators and small (lowercase) letters, 1, designate 
eigenvalues will be followed. 

The first important point in Eq. (3.16) is that the classical expression for the 
value of angular momentum, L = v x p, is now replaced by a discrete set of 
allowed values, h[1(1 + 1)I1l2, where 1 is the orbital angular momentum 
quantum number. Further, the component of L in some direction (usually set 
by a field) is also quantized and has the values hm, where m, takes on the 
integer values in the range -1 < m, < I .  The appearance of Planck's constant 
sets the lower limit to the magnitude of angular momentum (of order 

J/s). In a central force potential, the quantum mechanical angular 
momentum is a constant of the motion, a good quantum number; it commutes 
with the Hamiltonian, and it is conserved. 

The magnetic moment due to orbital motion is no longer the classical value, 
p, = y(u x p), but instead 

and 

These formulas indicate that the magnitude of the magnetic moment is of order 
yh, which is about A.m2 (essentially what was calculated classically). 

One of the key factors that necessitated the development of quantum 
mechanics was the accumulation of spectral data such as the Zeeman splittings 
described earlier in this chapter, and the more complicated aspects of those 
spectra that became apparent as higher-resolution spectrometers were avail- 
able. This leads now to a different kind of angular momentum that is known 
to play a major role in many magnetic materials: spin. 

3.5.1 Spin 

Earlier in this chapter, it was shown that certain lines in the optical spectra of 
many materials split in a magnetic field into three lines characterized by 
frequencies cc, = w, and a, + yB with y = e/2m. This could be explained by 
assuming that the three-fold degeneracy of a p state (1 = 1 and degeneracy of 
21 + 1) was lifted by the magnetic field. 

The Zeeman contributions to the line energies E,, were AE = hAw = (eB/ 
2m)hm,, where m, = 0, +I .  But this picture of the Zeeman effect was not 
complete. It turned out that many lines showed more complex splittings. These 
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cases were known colectiveBy as the "anomalous" Zeeman effect because they 
could not be explained by the orbital angular momentum of the classical 
electron. 

The anomalous Zeeman effect demanded a new quantum number, but its 
meaning was a matter of considerable controversy. Uhlenbeck (a graduate 
student of Ehrenfest9s in Leiden) recognized that the new quantum number had 
to describe an extra electronic degree of freedom; specifically, the electron must 
have some dynamics in addition to translational motion (r) with angular 
momentum (8,4). In 1924, Uhlenbeck and his friend Sam Goudsmit (an expert 
in atomic spectra) proposed that the electron has an intrinsic angular momen- 
tum called spin. It turned out that the new angular momentum of the electron 
has a gyromagnetic ratio that is twice that determined above for orbital motion 
pL/L = yL = e/2m: 

Thus, by analogy with Eqs. (3.17), the result for an atom of spin S is 

and 

The concept of spin has been introduced. But Schr~dinger's equation says 
nothing about spin. It took Dirac to incorporate korentz covariance into a 
wave equation (now bearing Dirac's name) that predicts electron spin. The 
Dirac equation will not be considered here. It is enough to know that our 
previous wavefunctions $(I-) can have a new multiplicative factor ~ ( s )  to 
describe the probability amplitude for occupation of different spin states: 
Y ( r ,  s) = $(r)~(s) .  The spin wavefunction ~ ( s ) ,  in complete analogy with Eq. 
(3.16), satisfies 

S2x = kt2s(s + 1 ) ~  and S,X = h m , ~  (3.20) 

where m, can take on discrete values from +s to -s, e.g., for s = $, m, = +: 
(unlike m,, which can take on only the integer values in the range 
- 1 < m, < 1). 

According to Eq. (3.20), when the component of intrinsic (spin) angular 
momentum of an electron is measured along a field direction, the result is 
hm, = f h/2. The magnetic moment associated with this spin is p, = yskt/2, 
where ys  = 2y = elm. Thus the spin magnetic moment s f  a single electron is 
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p, = +eh/2m, which shows up so often it is given the name Bohr magneton: 

The number that was estimated earlier for the orbital moment of the 1s 
electron in hydrogen is identical to this value because the quantum of orbital 
angular momentum is twice that for spin angular momentum and the orbital 
gyromagnetic ratio is half that for spin, y, = 2y,. 

A spin magnetic moment precesses in a B field just as does an orbital moment 
except again the gyromagnetic ratio must be that for the spin: w, = y,B = eB/m. 
For an electron in a 0.1 T (1 kOe) field oP/27c =2.8  x l o 9  Hz (3 GHz) which is a 
microwave of about 10 cm wavelength. Nuclear resonances are nearly 2000 times 
slower (MHz, radio waves) than electron resonances because the mass of a proton 
is 1836 times that of an electron. 

Because both kinds of moments, orbital and spin, can contribute to the total 
magnetism of an atom, a weighting factor is needed that gives their relative 
contributions. It is called the g factor: g = 1 for purely orbital magnetism 
(s = 0) and g = 2 for purely spin magnetism (1 = 0). 

If the spin-orbit interaction (a very important interaction that will be 
described later) were neglected, the spin and orbital angular momenta of the 
various electrons would be independent of each other. L and S have fixed 
magnitudes, and their projections on a specified axis are constant. Under this 
assumption, the orbital and spin angular momenta can be measured indepen- 
dently; they obey Eqs. (3.16) and (3.20), respectively. The appropriate quantum 
numbers would be n, 1, m,, s, and m,. 

However, when considering the effect of spin-orbit coupling, the spin and 
orbital angular momenta of the individual electrons are no longer independent, 
but instead their vector sum, J = L + S, becomes a constant of the motion; J 
precesses about the field direction. J is quantized and has the following 
expectation (measured) values: 

Thus four quantum numbers are now needed to fully describe the state of a 
quantum system. In many cases the appropriate quantum numbers are n, j, mi, 
and m,. 

The coupling of the motion of L and S by the spin-orbit interaction makes 
it more difficult to determine the relative spin and orbital contributions to the 
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total magnetic moment kt,. The diEculty can be appreciated by considering 
Figure 3.6 1. Clearly, the total angular momentum, J = B, + S2 is conserved. It 
is now J, not E, that is acted on by a torque: T = dJ/dt. It has been shown that 
the magnetic moments for % and S have different scale factors e / 2 m  and e lm ,  re- 
spectively; thus the total magnetic moment is given by p, = Ceh/2rn]Clz + 2s,]. 
In general pJ = pL + ps is not collinear with J~ Because k and S are coupled, 
they have fixed projections on J. Therefore, p, and p,, also must have constant 
projections on J and so must their vector sum pJ .  All that can be measured is 
the component of p, on J, designated in Figure 3.11 as p i .  In general, 
p; = gp,mj with (as you may confirm in Problem 3.4) the kandt g factor given 
'QY 

This quantum mechanical treatment of electronic states is now applied to 
the problem of the "anomalous" Zeeman spectra that was introduced in 
Chapter 3. The Zeeman splitting of different states proceeds as in Figure 3.12 
with field-induced splittings given by AE = gyB<J,> = gp,lnjB. 

The level scheme for sodium (3s' ground state: 2S,12) is shown in Figure 
3.83. Note the differences here from the normal Zeeman effect (Fig. 3.10). The 
simplest expression for the energy of a moment (orbiting electron) in a field is 
U = - p, . B. But now p, = (ge/2rn)J = (gehl2m)m j ,  where h m j  is the expecta- 
tion value of J in the field direction. Values for g m j  are shown for the various 
Zeeman-split lines. At the left of the figure is shown the spectroscopic notation 
for each state; the definition is in the box at the lower left. 

The longer wavelength Dl line splits into four components while D, splits 
into six. Because the magnitude of the energy splittings (AE -- g m j )  of 2S,12 

Figure 3.11 (a)  Vector diagram of total angular momentum J and its component spin 
and orbital momenta. These mechanical moments scaled with their respective g factors 
give rise to the magnetic moments, pJ, p,, ,us. (b) because p,, and ps precess about $; 
p, precesses about J, and what is measured is piLli. 
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Figure 3.12 Zeeman splitting of a total angular momentum state in a B field. 

are different from those of the 2P,,2 and 2P3,2 states, these lines all have 
different energies. The polarizations shown in Figure 3.13 are for viewing 
perpendicular to B. When viewed parallel to B the o components are circularly 
polarized and the .n components are not observed. The polarization is readily 
understood from the classical description of the normal Zeeman effect earlier 
in this chapter. The Larmor precession frequency measures the energy differ- 
ence between any two adjacent split states for which mj = 1: AE = hop = 

yhB = gp,B = gehB/2m. 

1 I A n a r n a l o u s  Z e e m a n  E f f e c t  
Na - 0 L i n e s  

( 1 S ~ 2 ~ ~ 3 S l )  

Figure 3.13 Fine structure for sodium in B = 0, (left), and B # 0, (right). Allowed 
transitions and their polarizations are also shown. 
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Attention was drawn to the sole of the spin-orbit interaction in coupling L 
and S so that the total angular momentum d becomes the conserved quantity. 
Spin-orbit coupling is of ternendous importance not just for the interpretation 
of atomic spectra but also for a host of magnetic phenomena that are key to 
most applications of magnetic materials. Spin-orbit coupling is at the root of 
magnetocrystalline anisotropy, magnetostriction, magnetooptic effects (Kerr 
and Faraday), anisotropic magnetoresistance, ferromagnetic Hall effect and 
magnetic resonance damping. For these reasons, the origin of this ubiquitous 
interaction will be reviewed. 

In simplest terms, the spin-orbit interaction describes the effects of an 
electron's orbital motion on the orientation of its spin. From the electron rest 
frame (moving about the charged nucleus (Fig. 3.14) it "sees" a positive charge 
in motion just as the sun appears to be in motion about a casual observer on 
the earth. Hence the electron is situated near the center of a current loop, which 
generates a magnetic field that causes a preferred direction of orientation for 
the spin magnetic moment of the electron. 

The B field due to the apparent orbital motion of the nuclear charge as seen 
b y  the electron is first calculated. According to the Biot-Savart form of 
Ampkre's Paw LEq. (1.1411, the magnetic field due to the relative nuclear motion 
is given by 

This B field can be expressed in terms of the Coulomb field of the nucleus, in 
which the electron moves: 

Hence 

Making use of the definition L = r x p leads to 
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Figure 3.14 Diagram on left, depicts an electron orbiting about the nucleus. In the 
diagram on the right, from the electron's rest frame, the nucleus appears to be orbiting 
around the electron and hence producing a magnetic field in the sense indicated. The 
interaction of the electron spin with its orbitally induced magnetic field is the spin-orbit 
interaction. 

The potential energy of the spin moment p, = -g,uBm, = -gpBS/h  in this 
field is 

Using gp, = ehlm for spin, and returning to the frame of reference in which the 
nucleus is at rest, finally gives 

1 iav 
AE,, = - - - L . S  

2m2c2 r ar 

[The relativistic correction factor of +, the Thomas precession, has been 
included here; see, e.g., Leighton (1959).] 

By expressing the relative electron-nuclear motion in terms of L, it is clear 
that for an s electron that i s  classically traveling on a linear trajectory through 
the nucleus, no B field is experienced. However, when L # 0, the B field created 
by this relative motion is stronger the more open is the electronic orbit, 1 >> 1. 
The coefficient that describes the strength of the spin-orbit interaction makes 
this effect stronger in heavier atoms [implicit atomic number Z in V(r)] .  

Exercise The magnitude of AEsu is estimated for a p electron in a hydrogenic 
potential, V = - (1/4nso)(e2/r): 

eL 
AE,, = 2 2 , A . s  

87c&,m c r 

Using < F 3 )  = 1 / ( 3 ~ , ) ~ ,  and remembering that L and % are operators so that 
their product is of order h2, leads to 

AE,, = J = 1 W 4  eV/atom 
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The B field seen by the %p ellectrsna in this case is 

Thus, spin-orbit effects are of a strength that can be sensed by typical applied 
fields. 

3.5.3 Hund's Rules 

Having added a fourth quantum number to the previous three, n, I, and m,, it 
is now necessary to expand the auJbau principle accordingly. In what sequence 
are states filled? No two electrons in an atom can have the same set of quantum 
numbers (Pauli's exclusion principle). Clearly the states of lowest energy are 
occupied first. In a purely central potential the energy depends only on n, so 
electrons first fill states of lowest n. But in many-electron atoms, the electrons 
see more than just the nuclear charge; they also see the charge of the other 
electrons. This makes orbitals of different angular momentum take on different 
energies; the orbital degeneracy is partially lifted by electron-electron interac- 
tions. Because low angular momentum electrons spend more time near the 
nucleus than high-angular momentum electrons do, the 1 levels [ I  = O(s), l(p), 
2(d), . . . , n - l] are filled lowest 1 first for each n. But each 1 orbital has 
2(21 + 1) different states corresponding to 21 + 4 different values of m,; each 
one has two possible orientations of its spin value, ms = $-4. What subtle 
interactions can lift these degeneracies, namely, cause one rn, state to be favored 
over another? The answer will become clear below. Hund noticed a pattern in 
atomic spectra indicating that there is a preferred sequence of filling the 
2(21 + 4) orbital states. He did not know why because he did not know 
quantum mechanics, but what he observed led to these rules that bear his 
name: 

1. Quantum states are filled so as to maximize s = C, m,. This rule forces 
electrons into different orbital states thereby tending to minimize their 
Coulomb repulsion. The energies here can be up to a few electronvolts 
(eV>. 

2. If rule 1 does not determine the occupancy, the state filling is such that 
I = C m, is maximized. This also keeps electrons in orbits which circulate 
in the same sense and have lower probability near the nucleus, again 
tending to minimize their Coulomb repulsion. This correlation among the 
motions of different electrons is particularly strong for atomic (as 
opposed to molecular orbital or free electron) wavefunctions. The ener- 
gies involved can be up to 0.5 eV. 

3. Finally, 1 and s combine by subtraction when an energy level is less than 
half filled, j = 11 - sl, and by addition if more than half filled. This 
condition tends to minimize the spin-orbit energy, 5 l i . s i ,  specifically, 



QUANTUM PARAMAGNETISM AND DIAMAGNETISM 89 

( > 0 for first-half shell and i; < 0 for second-half shell. The spin-orbit 
interaction energy can be of order of eV. The understanding of the 
spin-orbit interactions that partially lift the 2(21 + 1)-fold degeneracy of 
the lth orbital came long after Hund's rules empirically outlined their 
implications. 

Example 3.2 As examples of Hund's rules consider an Fe atom (or Ni2+ ion) 
that has 26 electrons, 8 outside a filled Ar core. These valence electrons fill first 
the two 4s states (lower in energy than 3d because their zero angular 
momentum gives them a strong interaction with the nuclear potential). Five 

5 electrons fill the spin up states m, = 2, 1, 0, - 1, -2 (this gives 1 = 0, s =, so 
far), and the remaining electron occupies s = --+, 1 = -2, giving for the atom 
1 = 2, s = 2. The spectroscopic notation (see Fig. 3.13) is 5D, for multiplicity 
2s + 1 = 5, C li = 2(D) and j = 4. If the iron atom were doubly ionized, it 
would lose its 4s' electrons and remain 'D,; if triply ionized, it would be 6S,,2. 
A Cr atom has two less electrons than Fe, so s = +2, giving for the atom 
1 = + 2, but j = 0 by Hund's third rule. The spectroscopic notation is 'Do .  

In the case of Sm3+ there are six electrons outside a Xe core, to distribute 
among 14 different 4f states. Clearly the states with s = ++ are filled in 
sequence - 3, -2, - 1, 0, 1, 2 giving s = 3, 1 = 3, and j = 0 or 7Fo. 

It should be clear that Hund's rules (1) are based primarily on Coulomb 
repulsion (of order 1 eV per atom) and secondarily on spin-orbit interactions 
(=10-4eV/atom) and (2) account for the existence of atomic magnetic 
moments, even in some atoms with an even number of valence electrons. Hence 
Hund's rules make up what is sometimes called intraatomic exchange, the effect 
responsible for atomic moment formation. 

The next chapter will consider what happens to Hund's rules in a solid. For 
now it is instructive to consider diatomic oxygen, 0, (see Fig. 5.3 for its 
molecular orbital structure). Remember that its eight 2p electrons filled the 
doubly degenerate n4 molecular orbital (MO), the single 3a2 MO, and half of 
the doubly degenerate n*2 MO. The partially filled n* orbital allows Hund's 
rule to come into play so the two electrons have the same spin and 0, has a 
net magnetic moment equivalent to two unpaired spins. 

3.6 QUANTUM PARAMAGNETISM AND DIAMAGNETISM 

The basic question here concerns the response to an applied field at various 
temperatures for a large number N, per unit volume of local magnetic 
moments p,, which can now include both orbital and spin components. This 
sort of problem always involves writing the Boltzmann factor for the fractional 
occupation of the various states of energy Ei as a function of temperature. 
Before going on you might do well to review the approach and method used 
in Section 3.3 for the classical paramagnet. 
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First, it is important to know the energy of the magnetic moment p, in the 
B field: E = -pm. B = - p,B cos 8. The net magnetization of the assembly will 
be N,p,<cos 8). The average of all possible orientations of the p, in this field 
must be determined. Here is where the classical and quantum treatments part 
ways. 

Classical moments can take any orientation relative to B, so (Fig. 3.15) 8 is 
a continuous variable. Quantum mechanics limits the orientations of a spin 
s = j = $ (p, = gpBmj) to one of two orientations up or down, specifically, 
cos 8 = + 1 [Eq. (3.20)]. The magnetic moment must be averaged over the 
various states, weighted according to the probability of their occupancy. 

If there are a total of N particles, each with spin $, the fractional populations 
of the upper and lower energy states N,/N and Nl/N, are written as 

with E ,  = +pmB, El = -p,B, p, = gpB J = pB, and Nl + N, = N. The de- 
nominators in Eqs. (3.32) are the partition function or sum of states (Zustand- 
summe) that normalizes the Boltzmann factors to net unit probability. 

( a  1 C lassica l ( b )  Quantum 

t) Continuous t) ~ i i c r e t e  
ccos 8>=0 <cos&f 0 

Figure 3.15 (a), Classical picture of a continuous distribution of spin orientations in 
zero field and the effect of a magnetic field that drives the spins to lower energy states 
in the field-split manifold; (b) the quantum picture in which only certain spin 
orientations are allowed. 
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(Compare the values of the bare Boltzmann factors with the normalized ones 
in the limit T = 0 and B = 0 for the two states.) 

The magnetization M is proportional to the net spin imbalance per unit 
volume V M = pm(N, - N2) /V:  

where x  = p,B/kT and N ,  = N/K Equivalently 

This function (Fig. 3.16) is different from the Langevin form derived 
classically. The classical magnet is more difficult to saturate and is more easily 
demagnetized. This is because the classical magnetization can orient away from 
the applied field direction continuously but the quantized magnetization can 
do so only at discrete angles that depend on the size of the spin (s = i, 
m, = rth/2; s  = 2, m, = f 2h, f h ,  0, etc.). 

The general quantum mechanical case is not limited to j = +;, as derived 
above. More generally m, = - j ,  - ( j  - I ) ,  . . . , 0,. . . , ( j  - I ) ,  j. If the full 
derivation is followed through, the summation above for N ,  - N ,  is a much 
more complicated function of j and x. It is called the Brillouin function: 

Bj(x)  = - 2j + 1 1 
' j  + coth (T x )  - Z; coth (G) 

2 j  

Figure 3.16 Brillouin function versus x = p,B/k,T for various values of j .  The spin 
limit is given by Eq. (3.33), and the infinite spin limit by the classical Langevin function 
is derived in Eq. (3.11). 
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Here p, is no longer the spin of a single electron p, but can now be yp5 mj or 
yp,[J(J + where y is the Land6 g factor CEq. (3.24)], which indicates 
how the total magnetic moment, p, + p,, is related to the total angular 
momentum b = L + S to which pJ is not necessarily parallel. It is important 
to note that when discussing paramagnetism, it is the magnitude of the total 
moment Ip,l = gp, [ j( j + I)] ' I2 ,  called the efective (paramagnetic) moment, 
that determines the energy of the system in the field. When treating magnetiza- 
tion in ferromagnetic systems, the maximum value of the moment that can be 
aligned in a given direction is of importance. Bn that case p, = gpBmj is the 
relevant quantity. For the sake of generality, the magnetization can be 
expressed as 

where J is understood to be mj for ferromagnetism and [ j ( j  + for 
paramagnetism or exchange interactions (where it is the total magnetic 
moment that govern behavior). 

Figure 3.16 shows the shape of B j ( x )  for various j values, and Figure 3.17 
shows the remarkable fit of this theory to magnetization data in three materials 
whose paramagnetism is due to the presence of various 3d ions having different 
j values. It is important to note that the data scales as the ratio of the field to 
absolute temperature; measurements at lower temperatures are equivalent to 
higher fields as far as this kind of paramagnetism is concerned. In the limit H I T  
approaches infinity, the saturation magnetic moment of the ion results. 

The Brillouin function must be examined in four limits: (I) small x, (2) large 
x, (3) Barge 9, and (4) J = $. 

1. In the limit of small x, the Brillouin function can be simplified using 
coth x = l/x + x/3 .-. to give [from Eq. (3.34)]: 

Thus the susceptibility is given by 

Bf J = $, this reduces to the result derived in Eq. (3.33). For larger 9 it 
approaches the Langevin susceptibility, Eq. (3.131, as it should. 

2. In the high-field, low-temperature limit, that is, the limit of large x, 
coth(x) is unity and the Brillouin function becomes 1. The magnetization 
is saturated at gp, J. 

3. In the limit of large J, B,(x) becomes coth(x) - l/x, which is the 
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Figure 3.17 Magnetic moment versus BIT for (a) potassium chromium alum (Cr3+, 
s = :), (b)  ferric ammonium alum (Fe3+, s = $) and (c) gadolinium sulfate octahydrate 
(Gd3+, s = g), (After Henry, 1952). 

Langevin function. In this case the behavior of M(H, T) should be 
identical to that in Eq. (3.12). 

4. For J = i, B,,,(x) reduces to tanh(x) as was derived for the spin-$ 
case[(Eq. (3.33)]. Here B,,?(x) has an initial slope that is 3 times greater 
than that for the Langevln function; thus the quantum paramagnetic 
susceptibility (small x) for j = is 

Compare with Eq. (3.13) for the classical paramagnetic susceptibility. 

3.6.1 Pauli Paramagnetism 

The paramagnetism of isolated, distinguishable magnetic ions has been dis- 
cussed, but not that of indistinguishable, free electron spins in a metal. Because 
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of the Ferrni distmbntion of electrons (which leaves most electrons far removed 
in energy from an empty state of opposite spin; see Fig. 3.181, it turns out that 
conduction electron paramagnetism is reduced from that of an equivalent 
distribution of moment-bearing ions by the factor Ic,T/E, = TIT, just as the 
conduction electron specific heat is so reduced. This coefficient reflects the fact 
that the only Fermi particles able to change their energy in response to an 
applied field are those within , kBT/2 of the Fermi energy. It also accounts for 
the fact that as temperature increases, more carriers are excited above the 
Fermi level where they can be aligned by the field. Their magnetic response is 
called Pauli paramagnetism because it is the PauPi exclusion principle that limits 
two electrons to each orbital. Thus, from Eq. (3.361, for free electrons in weak 
fields, x << 1, the susceptibility becomes 

which is independent of temperature. 
The Pauli susceptibility can be derived more precisely by considering the. 

spin imbalance in two free electron bands subject to a weak Zeernan splitting 
(P ,  << EF): 

Here Z(E) is the zero-field free electron state density (states per eV per atom) 
and f (E) = {exp[-(E - E,)/kTI + 1) - I ,  is the Fermi-Dirac distribution of 

Figure 3.18 State density for metal in an applied B field where the electrons have 
magnetic moment p, = pB. 
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electrons over the states available. Thus M = p,(N + - N-) gives 

Using the free electron density of states at E,, Z(E,) = 3N,/2k,TF, the Pauli 
susceptibility can be written as follows: 

The absence of temperature dependence in the susceptibility of free electrons 
thus reflects the cancellations of two opposing factors: increased promotion of 
electron spins at higher temperatures to states in which they can align with an 
external field and increased thermal disordering of those aligned spins with 
increasing temperature. 

Figure 3.5 shows the temperature dependence of the magnetic susceptibility 
for a number of different materials. You should be able to distinguish free 
electron (Pauli) paramagnet(s) from Curie paramagnets and from diamagnets. 
Why is the sodium ion diamagnetic whereas the metal is paramagnetic? Why 
then is copper diamagnetic? Examples of the dependence of Pauli paramag- 
netism on density of states can be found in White (1970). 

3.6.2 Quantum Diamagnetism 

Section 3.2 presented a classical rationale for the phenomenon of diamag- 
netism. However, classical systems in equilibrium cannot show diamagnetism 
(or any magnetism for that matter). A quantum mechanical explanation of 
diamagnetism is therefore given. 

The Hamiltonian operator for the kinetic energy of a quantum mechanicai 
system in the presence of a magnetic field is 

The vector potential A is the momentum per unit charge stored in a magnetic 
field (Semon and Taylor 1996). Using the linear momentum operator 
p = - ihV, leads to 

k2 iek e2 
H =  - - V 2 + - ( V . A + A - V )  +-A2 

2m 2m 2m 

If the field is uniform in the z direction, the vector potential may be represented 
as 
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This form satisfies the Coullomb gauge, where V .  A = 0. The Hilarailtonian then 
becomes 

ki2 ieh d a B e2B2 N =  ---V2+- ~ - - y -  -+- 
2 r n ( a y  a x ) 2  8m ( x2  + y2) (3.46) 2m 

The first term gives the kinetic energy (independent of B); the next gives the 
orbital angular momentum L, and it is responsible for orbital paramagnetism. 
The expectation value of the last energy term is recognized as 

and the magnetic moment response to the B field p, = - aE/dB is 

which is identical to Eq. (3.5) derived classically for a system of N ,  particles 
per unit volume. (But ( r 2 )  must be calculated according to the rules of 
quantum mechanics.) 

You will notice that the data for Ni in Figure 3.5 show a Curie-like 
paramagnetic susceptibility above 360°C. What happens at T = 358°C where 
x diverges? Nickel becomes ferromagnetic below 35S°C, which is called its 
Curie temperature T,. Weiss realized that this behavior could be modeled by 
assuming that a very strong internal field taltes over below that temperature 
and allows the atomic moments to couple or act cooperatively despite the 
strong disordering effects of temperature (Weiss and Forrer, 1926). He also 
realized that you could extend the Langevin theory of paramagnetism by 
assuming that the applied field H A  can be replaced by H A  + HE where the 
effective field is given by 

with A >> 1. (Remember, there was no quantum mechanics in 1907 although the 
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quantum paramagnet just described is also amenable to this generalization.) 
When the treatment is carried through the first result [cf. Eq. (3.13)] is that 

M = XH = (C/T)H becomes M = (C/T)(H + AM), so that 

with Tc = AC. This explains the divergence of x at T = Tc rather than T = 0. 
Tc is the temperature that separates the ordered state (T < T,), where the 
internal field dominates the thermal effect, from the disordered state (T > T,), 
where thermal disorder reigns. Unfortunately, A must be of order lo3 to give 
Tc correctly, and such a strong internal field was difficult to justify classically. 

The utility of this model goes further. The concept of an effective field may 
be extended to the argument of the Brillouin function, Eq. (3.35). Examine only 
the J = function, B,,,(x): 

M = N,,LL~ tanh [C~P~(:~+ HE]] 

Because HE contains M, this transcendental equation can be solved graphi- 
cally. The applied field can be neglected relative to HE. The reduced magnet- 
ization, o = M/Nupm = tanh r (with < = pmpOHE/kBT), is then plotted against 
< and o = k B ~ ~ / ~ , p ~ A ~ u  is plotted against 5 to look for their intersection. The 
process is illustrated in Figure 3.19. Note how the slope of the straight line 

Figure 3.19 Construction for the solution, a(<), of the transcendental equation (4.25). 
The linear curve is shown for three different temperatures. The intersection of the linear 
and tanh curves is the solution for the temperature dependence of magnetization. Here 
the offset of the linear curve has been exaggerated to show the effect of an external field. 
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increases with increasing T so that above a certain temperature that turns out 
to be Tc',, no soWution exists (spontaneous magnetization vanishes). If the 
applied field is significant relative to AM, then the straight lines are shifted as 
indicated in the figure. 

Figure 3.20 shows the intersection of the two theoretical curves in Figure 
3.19 for the special case of Bj(x)  with j = $ appropriate to Ni. Data for Ni are 
also plotted. Such a plot of reduced magnetization versus reduced temperature 
is a useful way of comparing the magnetic behavior of different materials. 
When Brillouin functions corresponding to J > $ are used in Eq. (3.46), the 
solutions show less curvature than that for J = 4. The solution for J = co is 
shown as a dotted line. Because the spontaneous magnetization (the magnet- 
ization that appears in the absence of an external field) is a magnetic order 
parameter, it is not surprising that Figure 3.20 resembles an order-disorder 
curve for a cooperative process. If the graph were to extend above the Curie 
temperature, one could plot the inverse susceptibility, Eq. (3 .39,  which would 
be a straight line of positive slope originating at T,. In actual practice, the 
magnetization curve can have a small tail of weak spontaneous magnetization 
extending into the paramagnetic region, and the inverse susceptibility can show 

Figore 3.20 Reduced magnetization versus reduced temperature for nickel [open data 
points, from Weiss and Forrer (1926) and Brillouin function, B,,,(x) (solid line]. The 
dashed line is the classical solution for J = co. 
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positive curvature before going to zero. These effects can be due to short-range 
magnetic order (Smart 1970). 

In the special case of J = & it is not necessary to solve Eq. (3.46) graphically 
or with a computer. It can be done analytically (Whitaker 1989). 

Table 3.2 lists the observed saturation magnetizations M,, low temperature 
moments (unpaired spins per atom), and Curie temperatures for several 
magnetic materials. While the mean-field theory presented above gives the 
shape of the M(H,  T) curves, it is phenomenological and, therefore, cannot 
predict the values of M ,  and it is orders of magnitude off in calculating the 
ordering temperature, Tc = AC. Only a microscopic theory can give accurately 
M ,  or Tc. 

Note from the data for Mn, Fe, Co, Ni, and Cu ferrites that the moment per 
formula unit n, decreases in nearly integral steps with increasing atomic 
number of the divalent species and the magneton numbers take on nearly 
integral values (mean deviation from nearest integer is 0.2). This might be 
expected for an integral number of unpaired spins per atom or per formula unit 
as the d states fill (p, = 0 for dl0) with increasing atomic number. For metallic 
Fe, Co, and Ni, the magneton numbers also decrease with increasing number 
of valence electrons but not by near-integral steps. Further, n, does not have 
near-integral values (mean deviation from p,/big = 2, 1, 0 is 0.5 and from 
nearest integer is 0.3). Metals in fact are a little more difficult to understand 
than insulators. Therefore, magnetism in the transition metal oxides will be 
examined in Chapter 4; further treatment of metals will be deferred until 
Chapter 5, after introduction of more ideas about magnetism and bonding in 

TABLE 3.2 Fundamental Magnetic Data for Various Crystalline Ferrornagnets 

M, (290 K) Ms (0 K) %a = M,/PBN, Tc(T,) 
Substance Structure (emu/cm3) (emu/cm3) (PB) (K) 

Fe 
Co 
Ni 
Ni,oFe,o 
Gd 
DY 
MnBi 
Ni,MnGa 
CrO, 
MnOFe203 
FeOFe,03 
CoOFe,03 
NiOFe,03 
CuOFe20, 

BCC 
HCP, FCC 

FCC 
FCC 
HCP 
HCP 

NiAs(hex) 
Heusler 
- 

Spinel 
Spinel 
Spinel 
Spinel 
Spinel 

"The Quantity n, is called the magneton number, the number of bohr magnetons per atom or per 
formula unit in a material 
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non8oca%ized-e8ec&rorm systems. Before treating these materials it is important to 
describe the quantum mechanics behind the Weiss molecular field, namely, the 
magnetic exchange interaction. 

3.7.1 Magnetization at how Temperature: Spin Waves 

It appears from Figure 3.20 that M,(T) for Ni decreases from its Ms(0) value 
with increasing temperature at a rate that is significantly greater than that 
indicated by the Brillouin function for S = $. The experimental thermal 
demagnetization is well fit by 

At T z 0.1 T, the data show AM/M = -2 x On the other hand, the 
Brillouin function B,,,(x) predicts AM/M = - 2 exp ( - 2 x [ ( i V , / Z , u ~ ) / k , ~ ] }  at 
T = 0.1 T,, much smaller than observed. 

The Brillouin function describes the thermal demagnetization process by 
random thermal fluctuations over the quantum states of the spin system in the 
face of a mean-field expression for exchange (plus a relatively small applied 
field) that tends to maintain the full saturation magnetization. But random, 
uncorrelated thermal spin fluctuations cost appreciable exchange energy be- 
cause of the high degree of local spin misalignment. An exchange-coupled spin 
system, on the other hand, can also reduce its saturation magnetization by the 
formation of spatially correlated collective modes of demagnetization in which 
adjacent spins maintain a greater degree of alignment (Figure 3.21). These 
collective modes of demagnetization are called spin waves or magnons. They are 
for the spin system what phonons are to a crystal lattice: quantized modes of 
thermal excitation that are correlated by the wave nature of the displacement 
variable, AS: for spins and Axi, for atomic positions (i is an atomic site). 

The mathematical treatment of spin waves [(see Kittel (1986) or Barabara 
et al. (1988), for examples] indicates that the energy of excitation of a magnon 
of wavenumber k = 2n/A on an array of spins separated by the distance, a, goes 
as 

h a ,  = 4JS[1 - cos(ka)] 

The long wavelength limit is 

The parabolic energy in Eq. (3.48) indicates quantized energy levels that are 
equally spaced in energy as in the harmonic oscillator problem (which applies 
to phonons and photons as well): 
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Figure 3.21 Data and Brillouin function from Figure 3.20 showing, at low tempera- 
ture, the reduced magnetization falling off according to Bloch's T3I2 law while the 
Curie-Weiss function drops more slowly. Inserts depict spins subject to random 
thermal fluctuations (Curie-Weiss) and spatially correlated thermal fluctuations or 
magnons (Bloch). 

where nk is the number of magnons of wavenumber k. Each magnon gives the 
same magnetization decrement that would result from reversal of one spin, but 
for these collective modes the decrement is distributed over the spin system as 
a wave with a small spin deflection at each site. The number of magnons, n,, 
for the harmonic oscillator at a given temperature follows a Planck distribution 

1 
("') = exp(hwk/kBT) - 1 

The net demagnetization due to all the spin waves is then 

which can be shown to give 
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This is the BBoch Taiz law that describes the low-temperature thermal demag- 
netization data of most systems. This derivation shows that an exchange 
coupled spin system can undergo thermal demagnetization more efficiently in 
a correlated, wave-like manner by conserving exchange energy compared to the 
uncorrelated demagnetization process described by the Brillouin function. 

3.7.2 Curie Temperature Determination 

In practice, the saturation magnetization does not vanish just above T, as 
implied by Figure 3.20. The reason for this is that the susceptibility is very large 
there and short-range ordering of the moments can render the M ( H )  curves 
nonlinear in H in this temperature range. The spontaneous magnetization, 
M(H = 0, T),  does vanish for T 3 T,. It is often easier, therefore, to identify T, 
by inspection of M(H,  T )  curves taken in very weak fields; for smaller values 
of H, M(T)  show a sharper drop at T,. 

However, a more quantitative method, described by Belov and Goriaga 
(1956) and by Arrott (1957) is widely used when an accurate value of T, is 
required. Near T,, the magnetization is small, so a Landau expansion of the 
free energy is appropriate: 

Here, a and are positive functions of temperature. Ht costs energy to increase 
the magnetization in the face of thermal energy; hence the first two magnetiza- 
tion product terms in Eq. (3.50) are positive. The tendency of the magnetiza- 
tion to increase in an external field accounts for the negative sign of the 
Zeeman energy term, -poHM.  Terms of odd order in M and M are not present 
because they do not leave the energy invariant under time reversal. The form 
of energy in Eq. (3.50) can also be derived from the Weiss-Brillouin function 
[Eq. (3.46)] (Arrott 1957, Kouvel and Fisher 8964, Belov and Coriaga 1956). 
The equilibrium magnetization is the value that minimizes f, with respect 
to M: 

The coefficient a can be determined near T, (small M )  for either local moment 
systems or for itinerant magnets. The magnetization is small in weak fields near 
T,, so from Eq. (3.51) 

For local moments, the Curie-Weiss law [Eq. (3.4511 combines with Eq. (3.52) 
to give 

Po 
a =  ( T  - T,) 
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For itinerant magnets, it can be shown (Wohlfarth 1976) that 

ncc T2 - T: 

Thus Eq. (3.51) may be written 

where C is a constant while n = 1 for local moments and 2 for itinerant 
magnets. A plot of M~ versus HIM should be a series of straight lines with an 
M2 intercept of zero for T = T,. Figure 3.22 shows a classic set of data on Ni 
from Weiss and Forrer (1926). The magnetization isotherms in (a) are 
represented in terms of the specific magnetization o (emu/g) = M/p where p is 
the mass density. Each line corresponds in panel (b) to a2-H/o data at a 
different temperature. The linear parts of the 02-H/o curves have zero 
intercept for temperatures near 360°C. T, for Ni is determined from these plots 
to be 358°C. Such plots are called Arrott plots or Arrott-Belov-Goriaga plots. 

The simple model presented here suggesting straight lines is seldom ob- 
served. Various factors can account for deviations from linearity, usually in 
weak fields. Nevertheless, extrapolation of higher magnetization data generally 
gives a reliable value for T,. 

Kouvel and Fisher (1964) show that the M(H, T) data for Ni just below T, 
are best described not by the Curie-Weiss law, but rather by x proportional 
to (T  - Tc)-Y, where y = 1.35. This so-called critical exponent y describing the 
temperature dependence of the susceptibility near the critical point T, touches 
on the topic of critical phenomena in magnetic systems. This subject [well 
reviewed in Domb (1965) and Stanley (1971)l is beyond the scope of this text. 

Hi ( k O e )  Hi ( k O e )  

Figure 3.22 (a) a versus H for Ni based on Weiss and Forrer data (1924); (b) 
Arrott-Belov-Goriaga plot of a2 versus H/a using data in (a). [After Arrot (1957).] 
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It was found that the orbital magnetic moment of a charged particle is 
proportional to the angular momentum of its orbit. The constant of propor- 
tionality is the gyromagnetic ratio, y = e/2rn. It was demonstrated that an 
orbital magnetic moment tends to precess about an applied magnetic field, 
where the Larmor precession frequency is given by yB. This precession 
contributes a field-induced change in the motion of the charged particles. As 
such, it represents a classical explanation of the phenomenon of diamagnetism. 

Paramagnetism is the response to an applied field of nsninteracting mag- 
netic moments. A classical derivation based on a Boltzmann occupation of a 
continuum of energy levels for the moment in a B field gives the Curie law, 
x = C/T  

Table 3.3 outlines some similarities and differences between classical dia- 
magnetism and paramagnetism. 

A free electron model with energy levels based on angular momentum 
quantization was seen to provide a good explanation of the normal Zeeman 
effect. Explanation of the fine structure in optical spectra of materials in 
magnetic fields (the anomalous Zeeman effect) requires introduction of the 
concept of spin. 

Spectroscopic data demanded a better explanation than could be afforded 
by the classical model; quantum mechanics had to be introduced. Quantum 
mechanics affords an explanation of spectroscopic fine structure, reveals the 
need to complement orbital angular momentum with an intrinsic angular 

TABLE 3.3 Comparison sf Various Aspects of Diaaraape~sm and Paramagnetism 

Diamagnetism Paramagnetism 

Classical form xaia = - N,e2po <r2)/6m Xpara  = . 
Source B field acting on any Effect of B field on existing 

charged particle including magnetic moments; hence 
those with L = O(s). core electrons do not 

contribute. 
Temperature xdia is essentially independent x,,,, = C/I:  Curie law. 

dependence of temperature. 
Timescale Occurs instantaneously; Requires a change in 

does not involve a projection of magnetic 
relaxation process but only moment on field direction, 
Larmor precession therefore requires energy 

loss process; paramagnetism 
is observed only on time 
scales longer than the 
relaxation time. 
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TABLE 38.1 Definition and Comparison of  Parameters Describing Linear and 
Rotational Motion 

Linear Rotational 

Displacement x 6 Angular displacement 
Veloci ty  v = dxldt  w = d0/dt Angular velocity 

v = w x r  Linear velocity i n  rotation 
Acceleration n = d2x/dt2 8=d2Q/dt2 Angular acceleration 
Mass m I M o m e n t  o f  inertia 
Force F = m n  . . T = r x F - + T = I d 2 6 / d t 2  Torque  

F = dpldt T= d u d t  
M o m e n t u m  p =mv . . L = r  x p + L = I w  Angular m o m e n t u m  

momentum-spin, and explains the very important spin-orbit coupling 
between the two. 

Quantum mechanics gives a much better model for paramagnetism and 
diamagnetism and allows for incorporation of a strong internal molecular field 
to describe ferromagnetic behavior. 

APPENDIX: LINEAR AND ANGULAR MOTION 

Linear dynamics gives relations between displacement x, force F, mass m, 
velocity v, momentum p = mu, and acceleration, a. In rotational dynamics there 
are analogous quantities defined in Table 3A.1. 

While the velocity vector v is oriented along the direction of motion, w is a 
vector normal to the plane of rotation because it is related to L = v x p by the 
moment of inertia tensor, I. Care must be taken in rotational dynamics not to 
assume that motion is in the direction of torque. Rather, torque induces a 
change in angular momentum in the direction of T. The B field in Figure 3.2 
causes a new motion: precession of the original L about B. 

PROBLEMS 

3.1 Use the Lorentz force to describe how the angular frequency w changes 
for a circular electron orbit (e.g., a classical Bohr orbit) in the xy plane 
when a magnetic field is applied along the z axis. 

3.2 Derive the expressions for total energy En and radius of circular electron 
orbits r, in Bohr's model. Evaluate the constants El and r ,  in SI units. 

3.3 Calculate the classical angular momentum and the magnetic moment for 
a uniform shell of charge-[el and radius r = e2/(4z~,mc2) rotating with 
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angular velocity m. What is the gyro~magnetic ratio for this particle? 
What is the surface velocity? ((This problem was considered by Abraham 
in 1903, more than 20 years before Uhlenbeck and Goudsmit hy- 
pothesized that electrons spin with a gyromagnetic ratio twice that for 
orbital motion). 

Compare essential characteristics of kenz' law (macroscopic) and dia- 
magnetism. How are they similar or different? 

Calculate the dimension at which diamagnetism crosses over to para- 
magnetism for a metal with o = uee2z/rn = (ne2/rn)A/(v) = PO7 (Q - m)- ' 
(z = relaxation time, A = mean free path, (v) = mean drift velocity of 
change carriers). 

(a) Evaluate the ratio of the integrals in the classical expression in the 
notes for (cos 0) 

@) Show that ax) = coth(H) - 1/x goes to x/3 in the limit x approaches zero. 
Discuss 

(c)  Show that L(x )  4 1 for x = m; discuss. 

Show that the units of x = Np,,pi/k,~ and x = Np,e2/6rnCr2 are 
rn3 x N so that if N is number of atoms per unit volume, x is 
dimensionless. However, if N is Avogadro's number (in which case x is 
the molar susceptibility x,,J, it must be multiplied by P06xm3/rn3 to 
compare with 4nx,,, = 4 ? c ~ p i / k , ~  or 4nMe2/6rnc2 Z r2 calculated in cgs 
units. 

Calculate the paramagnetic susceptibility of diatomic oxygen at room 
temperature and compare it with the experimental, room temperature 
(cgs) value x,,, = 3.4 x lop3 .  

Calculate the diamagnetic susceptibility of atomic He assuming r2 = a: 
and compare with the room temperature cgs value x,,,= - 1.88 x 

Derive a classical expression for the diamagnetic susceptibility of an 
electron in a circular orbit by considering the change in its angular 
momentum due to the electric field induced as a B field is slowly turned 
on normal to the orbit plane in time dt .  

Analyze the condition for which the paramagnetic and diamagnetic 
susceptibilities are equal and opposite for a classical Bohr atom with 
orbital but not spin magnetic moment. Discuss. 
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3.12 Calculate the orbital magnetic moment of an electron in a circular Bohr 
orbit. Use CL) = E/h = 1.36 eV/h and o = vlr, = J(2E/m)/r0 and com- 
pare the results. Which one is correct? Why? 

3.13 A very thin film ( t  < mean free path) may exhibit diamagnetism in an 
external field perpendicular to the film plane. Explain how application 
of the field in the plane of the film could change the sign of this effect. 

3.14 Write the electronic configuration (e.g. 3d4), the spectroscopic nota- 
tion (2s+1LJ e.g. 3D,1,) and effective magneton number n,,, = 

gpB[J(J + where g = 1 + [J(J + 1) + S(S + 1) - L(L + I)]/ 
2J(J + 1) for Cr3+, Fe3+ and Co2+. 

3.15 (a) Show that Bj(x) reduces to the Langevin function ax) ,  with 
x = p,,,B/kB?: in the limit J approaches infinity. 

(b) Show that Bll,(x) = tanh(x) 
(c) Show that for x << 1, Bj(x) becomes 

and thus in this limit 

(d) Show that as x approaches infinity, Bj(x) approaches 1, specifically, 
M = N,gpBm,. Describe the physical significance of each case. 

3.16 The Landt g factor is used to account for the fact that p, = pL f pS is 
not collinear with J = L + S because p, = pBm, = (eh/2m)m, whereas 
ps = 2p,ms. Derive the expression for g in terms of the quantum 
numbers I ,  s, and j. Make use of the facts that since L and S precess 
around J, p,, ,us, and pJ also precess around J and it is the projection 
of pJ on J that is measured. 

3-17 What type(s) of magnetism would you expect to find and why in (a) 
NaC1, (b) MnS0,.4H20, (c) Fe30,, (d) H,O (or Ne), and (e) metallic 
Cu? 

Ashcroft, N. W., and N. D. Mermin, Solid State Physics (W. B. Saunders Co., 
Philadelphia, PA, 1976). 

Eisberg, R., and R. Resnick, Quantum Plzysics of Atonzs, Molecules, Solids, Nuclei and 
Particles, Wiley, New York, 1974). 
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CHAPTER 4 

QUANTUM MECHANICS, 
MAGNETISM, AND EXCHANGE 
IN ATOMS AND OXIDES 

The chemical interactions that affect the electronic states and determine the 
physical properties of a material can be described by two limiting bonding 
types: polar bonds and covalent bonds. Polar bonds are formed between 
orbitals that differ significantly in their electronegativity (E, # EC), such as in 
compounds A,C,-, (where A and C represent the anion and cation, respect- 
ively). The orbitals must also satisfy symmetry and overlap conditions in order 
to form a bond. In the formation of a polar bond, charge is transferred from 
the orbital of higher energy (lower electronegativity, the cation) to that of lower 
energy (the anion). As a result of this charge transfer, the charge in the bond 
is biased toward the more electronegative species. The most familiar examples 
of polar bonding occur in oxides. In these cases, the interacting species can be 
treated as charged atoms and their electronic states are generally highly 
localized, atomlike, and readily described by quantum chemistry. Magnet- 
ism in polar bonded materials - insulators and oxides - are treated in this 
chapter. 

Covalent bonds are formed between orbitals on two atoms that have similar 
electronegativities (i.e., similar electronic energies, E, sz E,) as well as satisfy- 
ing symmetry and overlap conditions. In a covalent bond, charge is delocalized 
from each of the atomic sites and builds up between the atoms. Bonding and 
antibonding hybrid orbitals are created. In alloys containing transition metal 
species, covalent bonds formed between partially occupied valence orbitals (i.e., 
near E,) will often involve magnetic states. If 3d states are involved, they 
become more delocalized as a result of covalent bonding. Covalently bonded 
metal, especially those involving transition elements, are more difficult to treat 
than are polar bonded materials and hence will be treated in Chapter 5. 
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It was shown that for isolated atoms?is, Hund's rule dictates the formation of an 
atomic magnetic moment for incompletely filled orbitals. This is a reflection of 
an intraatomic exchange interaction to distinguish it from the interaction 
between atoms in a solid, interatomic exchange, that describes when and how 
strongly these atomic moments couple parallel or antiparallel with each other. 
To account for alignment between atomic magnetic moments in solids despite 
strong thermal disordering effects, Pierre Weiss postulated an internal or 
molecular field H,,, = AM. But to explain the strength of the alignment, the 
molecular field had to be assumed to be much larger than Weiss was 
comfortable with. It was estimated to be of order 109A/m (lo7 0 e  or 
B = 6Q3 T), which is larger than any human-made field. The mechanism of this 
strong exchange interaction will be seen to be an electronic interaction, not 
simply a magnetic interaction. 

This chapter provides a qualitative description of interatomic exchange, 
with some reference to the quantum mechanical expressions that support these 
new concepts. The goal is to understand exchange in some simple systems such 
as magnetic oxides, where the electronic states of the ions may be treated as 
atomic states. The more difficult cases of magnetic exchange in metallic solids 
is deferred to Chapter 5. 

In order to understand magnetism in solids, it is important to know how 
electrons interact with each other and how those interactions aEect spin. The 
two principles that must be understood are the Coulomb repulsion between 
electrons and the constraints imposed by the Pauli exclusion principle. These 
form the foundation for understanding magnetism in solids. 

Consider the effects of the Coulomb interaction e2/rij  on the states of two 
electrons moving in similar potentials V(r)  (e.g., an H, molecule). The 
Hamiltonian operator for the electron pair is 

where the numbers 1 and 2 refer to the spatial coordinates of the two electrons 
with respect to a common origin 0 and r , ,  is their separation; V(1) includes 
-e2/ lr ,  - R,l and -e2/Ir ,  - R21, the interaction of electron 1 with the nuclei 
at R ,  and R 2  (see Fig. 4.1). The constant (4.ne0)-' has been omrnitled from the 
electrostatic interactions. If the interaction between the two electrons were 
negligible, Eq. (4.1) could be separated into two independent equations, each 
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Figure 4.1 Coordinate system for two interacting electrons in double potentials, Vl 
and V2 as in Eq. (4.1). 

involving the coordinates of a different electrons, HO$O = EO$O, with 

Here 4i and 4j  are the solutions for a single electron moving in potential, I/; 
and V;-. If the potentials are the same and if IRi - rjl >> Iri - RiI, then the energy 
levels for the two atoms are the same: E") = E"'. This situation for two 
noninteracting electrons in a common potential is depicted in Figure 4 . 2 ~ .  

The electrons are now allowed to interact with each other and we consider 
the interaction energy to be small compared to EO. The effect of the interaction 
is calculated by first-order perturbation theory. The result is 

where Ci j  is an average of the Coulomb interaction of the two electrons in 
states i and j. The interaction energy raises the energy of the states relative to 
their unperturbed values (Fig. 4.2b). 

4.1 -2 Pasuli Exclusion Principle 

The symmetry of the potential in a quantum mechanical problem determines the 
symmetry of the wavefunction. For example, a Hamiltonian with a central 
potential dictates that the wavefunctions have the symmetry of spherical 
harmonic functions. A symmetric one-dimensional potential necessarily has 
solutions that are either symmetric or antisymmetric functions of the spatial 
coordinate. While this fact is based on group theory, it may be understood more 
concretely by considering that the observables of the system always involve even 
powers of $ (e.g., the probability density is 1 $*$dz). Whether $(x)  = f $(- x),  
the even products of $ have inversions symmetry like the potential. 
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- 2 electronsin 2 separate 
but identical wet Is 

Y a  +,(11+,(2)x- 

E,= E 0 + C i , + J i j  

E, = Eo+Ci j  - J.. I J  I 

lnteracti ng Ferrnions 

H atom 
He atom 

Figure 4.2 Evolution of states for two electrons in a common potential for (a) 
noninteracting, distinguishable, electrons; (b) interacting, distinguishable electrons; and 
(c) noninteracting, indistinguishable electrons, and (d) interacting, indistinguishable 
electrons. In cases (c) and (4, the triplet wavefunctions are superpositions of both states 
1 and 2. 

In a much more fundamental sense, a general multiparticle Hamiltonian 
exhibits a very simple but important form of symmetry. The Hamiltonian is 
unchanged on interchange of the space and spin coordinates of any two 
particles; that is, the Hamiltonian operator cannot distinguish particles. The 
probability densities resulting from two states that differ only by the inter- 
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change of particles (space and spin coordinates) must be indistinguishable if 
the particles are indistinguishable. This demands that the wavefunctions be 
either even or odd under that exchange. 

The wavefunctions describing different types of identical particles (photons, 
electrons, neutrons, etc.) have one or the other of these symmetries (i.e., they 
are either even or odd) when you interchange particles between different states. 
Particles with integral intrinsic spin are called bosons and their wavefunctions 
are symmetric on interchange of space and spin coordinates of any two particles 

Such particles obey Bose-Einstein statistics, and any number of them may 
occupy the same quantum state simultaneously. Examples are photons, helium 
atoms, and certain coupled electron pairs (called Cooper pairs) which are 
important in superconductivity. 

Particles with half-integral intrinsic spin are called fermions and they can be 
described only by wavefunctions that are antisymmetric on interchange of the 
space and spin coordinates of any two particles 

Fermions obey Fermi-Dirac statistics, that is, no two can occupy the same 
quantum state simultaneously. Examples are electrons, protons, and neutrons. 

The "exchange" symmetry of a Hamiltonian operator may be examined by 
considering what is called a permutation or exchange operator: 

It should be noted that P commutes with H  (i.e., H P Y  = P H Y ) ;  therefore 
eigenfunctions of P are constants of the motion. Double application of Pij to 
a wavefunction gives the same wavefunction: 

P 2 Y  = Pi jP i . jY ( l ,  2,. . ., q . .  .) = Y ( 1 ,  2,. . . , ij,. . .) 

so the eigenvalues of P are + 1: 

These exchange symmetries have several important consequences especially for 
what are called "cooperative phenomena" such as magnetism or superconduc- 
tivity. Most important are the following: 

1. Bosons ( P Y  = + 'I?), exhibit an extra attractive force on one another and 
hence are found closer together, and fermions (PY = - Y) exhibit a 
repulsive force and are further apart, relative to equivalent distinguish- 
able particles. 



2. The energy and pressure s f  a system of bosons is less, and ffeerniouas, 
greater than a comparable system of distinguishab%e particles. 

3. If the particles of a system experience an external force but remain 
independent of each other, the quantum states of the system correspond 
to the single-particle states of the various particles. Bosons can all occupy 
the same state and fermions cannot. 

These permutation symmetry properties of identical particles are responsible 
for ferromagnetism, Bose condensation (superfluidity of He and superconduc- 
tivity), the ortho- and para states of hydrogen, and the saturation of covalent 
chemical bonds. 

4.1 -3 Nonlnteractlng, Indistinguishable Eiectrons 

The simplest case of two identical but noninteracting electrons (Fig. 4.2a) will 
be considered. When particles do not interact, the Hamiltonian operator 
describing their behavior can be separated into different parts for the coordi- 
nates of the distinct particles, and Eqs. (4.3.) and (4.4 give the solutions. 

2J One way to .guarantee that such product w efunctions satisfy either 
Fermi-Dirac or Bose-Einstein statistics is to write then as symmetric or 
antisymmetric combinations of the individual wavefunctions 

and two additional symmetric forms 

In Eq. (4.7) the plus sign represents bosons and the minus sign represents 
fermions if only the spatial part of the wavefunction is considered. Also, 4,(1) 
indicates that electron 1 is in state 2 and so forth. Note that two fermions in 
the same state [4,(2)$,(l)] or the same electron in both states [4,(P)(P2(P)] 
results in $- = 0 in Eq. (4.7). 

But spin still has to be included. In the simplest case, the spin and spatial 
coordinates are noninteracting (separable) variables, so the full wavefunction 
again is a product of space +!I and spin x f~~nctions 

Neglecting spin-spin interactions ~ ( s )  can be written by analogy with Eq. (4.7) 
as 

where ~ ~ ( 2 )  stands for electron 2  in a spindown state and so on. The 
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antisymmetric (-) form of the spin function describes a spin singlet state 
(S = 0) 2S + 1 = 1; the symmetric form, a triplet state (S  = I), 2 s  + 1 = 3. But 
there are two other obvious forms for a triplet spin function, namely, 
x + ( 1 ) ~  + (2)  and x - ( 1 ) ~  - (2)  by analogy with the additional spatially symmetric 
functions. These three triplet functions describe the three states m, = 0, f 1. 
Equations (4.7)-(4.9) contain all the assumptions needed in order to show 
the most fundamental and far-reaching connections between bonding and 
magnetism. 

It was indicated that for fermions, the total wavefunction Y ( r ,  s) must be 
antisymmetric on interchange of both space and spin coordinates of any two 
particles. Clearly, if the spatial function is symmetric, then the spin function 
must be antisymmetric and vice versa. What does this mean? Figure 4 . 2 ~  shows 
that even for otherwise noninteracting electrons, the imposition of the Pauli 
exclusion principle requires the lower energy state, which is spatially symmetric 
like an s orbital, to be a spin singlet state (S = 0). Similarly, the higher energy 
state in Figure 4.2c, which is spatially antisymmetric, must be a spin triplet 
(S = 1). 

As argued above, the appropriate singlet or triplet wavefunctions for the 
system of fermions are given by 

and the x values are given by Eq. (4.9). 

4.1 -4 Electron-Electron Interactions 

If the electron-electron interactions are weak, their effects on the situation in 
Figure 4 . 2 ~  can be calculated using perturbation theory. The unperturbed 
fermion functions [Eq. (4.10)], lead, for weak electron interactions, to 

E,  = E0 + Cij  + Jij  

E T = E O  + C . . -  J . .  
XJ 

where 

is the exchange energy of two electrons in states i and j; Ji j  has no classical 
interpretation. Quantum mechanically, it is the strength of the interaction 
between electrons in the two states 4 i ( l ) 4 j ( 2 )  and 4i(2)4j(1).  Either the singlet 
or triplet can be lower in energy depending on the sign of Ji j .  Previously, 
knowledge of the relative energies of bonding and antibonding states in 
molecules was used to assign the triplet spin function to the antisymmetric, 
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antibonding state. This type of calculation was first carried out by PanBi for 
the helium atom and by Heitler and London for the hydrogen molecule. In 
both of those cases, J i j  is negative and the singlet state lies lower. 

When the Coulomb interaction between two electrons is strong, the inte- 
grals Cij [Eq. (4.411 and J i j  [Eq. (4.1111 are no longer perturbations on the 
energy E,  and the ground state of the system can be one of either parallel or 
antiparallel spin. This is represented in Figure 4.2d. 

The effects on magnetism of bonding are now considered in a simple model 
system: a molecule with one electron in the field of two protons at an arbitrary 
separation, R, (H: + He+ at R = 0). The transition from atomic moments due 
to Hund's rule to magnetic moments in molecules showing interatomic 
exchange becomes evident. 

4.1.5 Hydrogen Molecule low, H,+ 

A good model system for illustrating the effects of interatomic distance on 
magnetism, originally studied by Edward Teller, is the hydrogen molecule ion 
W: with variable nuclear separation. The Hamiltonian for this system, with a 
single electron shared between two protons, is 

Here M and m indicate the mass of each proton and of the electron, 
respectively; P and p are their respective momentum operators, and R is the 
nuclear separation and r ,  and r2 are the distances of the electron from the two 
nuclei. The kinetic energy of the nuclei can be safely neglected relative to that 
of the electrons. This is the Born-Oppenheimer approximation (1927). The 
relative potential energy of the nuclei (+ e2/R) will be treated as a constant (it 
involves nuclear vibrations that correspond to energies << 1 eV) to be added 
after solution of the electronic problem: 

Taking the protons at R/2 along the x-axis, Schrodinger's equation becomes 

Because this Hamiltonian has even parity [i.e., H(x, y,z) = H(+ x, + y, + z)] ,  
its wavefunctions must be odd or even functions of the coordinates, so 



EXCHANGE INTERACTIONS 1 d 7 

the form of the hydrogenic eigenfunctions at the two sites + 1312, is taken 
to be 

Because there is one electron to distribute between these two states, a 
normalization factor of I/ J2 is required for each function in addition to the 
normalization factor that already applies to the hydrogenic functions 8,. 

At large separations the symmetric function t,b",orresponds to the atomic 
Is function (see Appendix at end of this chapter), tI/,,, = (mi ) -  112e,r1a. Figure 
4 . 3 ~  shows the evolution of $" from two atomic hydrogen $,,, states at r = co, 
through a bonding state, to a helium ion He+ls  wavefunction at r = 0. The 
antisymmetric function $: evolves also from a hydrogenic form at r = co, 
through an antibonding function at intermediate r, to the $,,, excited state of 
He+. ($: does not evolve to $,,, because it has a node at the origin, 
characteristic of the symmetry of a 2p orbital.) 

Note that for the bonding orbital $",, where the electrons simultaneously 
occupy some common ground between the two nuclei (large overlap), the 
spatial wavefunction is symmetric $, = +,(1)8 ,(2) + 8,(2)+ JI), so the spin 
factor must be antisymmetric xa = x+(l)x -(2) - ~ + ( 2 ) x  -(I); that is, the spins 
are paired off, s = Zsi = 0, for a bonding orbital (singlet state). For the 
antibonding orbital, the two lobes of the wavefunction are separated by a node, 
the spatial wavefunction is antisymmetric ($,), and therefore the spins in the 
two lobes are parallel (a triplet state). 

The preceding simple assumptions about the form of Y(r, s) = $(r)x(s) have 
forced obedience to the Pauli exclusion principle-as two or more electrons 
are confined to the same volume, the more strictly must their spins be paired 
(s, + s, = 0). This is a remarkable result. A Hamiltonian and a form of the 
wavefunction have been assumed that describe a situation where there is no 
explicit interaction between space and spin coordinates; spin does not enter the 
WamilLdlnan at all. The result tells us that a necessary and subtle interaction 
between space and spin coordinates is implied by antisymmetrization. Spatially 
symmetric (bonding) orbitals do not support a magnetic moment whereas 
spatially antisymmetric (antibonding) orbitals do! The Pauli exclusion prin- 
ciple, Fermi-Dirac statistics, and magnetism are intimately connected. 

Edward Teller (1930) calculated the energies of these states at different radii. 
His results are shown in Figure 4.3b. Molecular orbital (MO) notation is used: 
o is an MO having axial symmetry about the bond direction while 7z and d 
denote MOs having one and two nodal planes, respectively, about the bond 
direction. First note that the energy of the symmetric state decreases mono- 
tonically as the two nuclei move together. This provides an attractive force to 
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Figure 4.3 (a) Form of low-energy wavefunctions for H: molecule at different 
internuclear spacings normalized to the Bohr radius and, at r = 0, a He+ atom; (b) 
electronic energy of symmetric and antisymmetric states calculated above as a function 
of nuclear separation r in units of Bohr radii. [After Teller (1930)l. 

stabilize the formation of the molecule. On the other hand, the energy of the 
antisymmetric state is the same at r = oo and r = 0; it dips slightly when the 
nuclei are closer to the positions of maximum antisymmetric charge density. 

Note how the 1s hydrogenic eigenstates evolve with decreasing r: (1) the 
symmetric ls(H), state evolves to a l o  bonding orbital then to a 1s He function 
and (2) the antisymmetric ls(H), state evolves to a o* antibonding orbital then 
to a 2 a p He function. The n = 2 excited states of hydrogen (2s, 2p) evolve as 

1. The symmetric 2s(H), state evolves to a o bonding orbital then to a 2s(He). 
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2. The antisymmetric 2s(H), state evolves to a a* antibonding MO, then to 
3d (He). 

3. The 2p,(H) state evolves to a o* antibonding MO, then to 2p(He). 
4. The 2p,,(H),,, states evolve to K-bonding MOs. 
5. The antisymmetric 2p,,(H), states evolve to n* antibonding MOs to 

3d(He) Symmetry dictates which functions evolve to which. 

Finally, when the repulsive nuclear potential energy e2/R is added to the 
electronic energies, the stability of the H: molecular ion is seen clearly in an 
energy minimum at R = 2a, for the 1s bonding state. 

This sampling of concepts from quantum mechanics and bonding should 
make it clear that when atoms are strongly bonded (charge density concen- 
trated between the atomic centers), antiferromagnetism is most likely. When 
the bonding functions have nodes between the atom centers (antibonding 
states), ferromagnetism becomes possible. 

4.1.6 Heisenberg Hamiltoraian 

In 1923 Dirac showed that for the special case of localized electrons in 
orthogonal orbitals the effect of the Pauli principle was equivalent to the 
introduction of a term in the Hamiltonian of the form 

The subscripts label spins on different atomic sites. This result suggested that 
the spin-dependent energy arising from the Pauli exclusion principle could be 
modeled as a spin-spin interaction in a vector model: 

This expression is universally known as the Heisenberg Hamiltonian even 
though it was first deduced by Dirac and first used extensively by Van Vleck. 
Clearly the Heisenberg Hamiltonian favors parallel spins if J > 0 and anti- 
parallel spins if J < 0. .The exchange interaction as described here is isotropic 
relative to any externally fixed spatial direction. 

Slater (1953) discusses the disadvantages of this Hamiltonian in the proceed- 
ings of the first Conference on Magnetism and Magnetic Materials, which 
make quite interesting reading. The form of the Heisenberg Hamiltonian is 
now accepted to be a valid starting point for theories of magnetism in 
insulators where the magnetic electrons are quite well localized. For more 
extensive discussion of the complexities of exchange integrals, see the articles 
by Anderson (1963) and Herring (1966). 
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The It-Ieiscnbeirg exchange energy has a value of order 0.05 evatorn 
(l10-2"/atom) to account for the fact that exchange breaks down at 
'F, FZ 600 K. Note that this interaction is spatially isotropic, i.e., the important 
variable is the relative angle between spins, not the angle of Si with respect to 
some fixed direction in the material. Further, the exchange interaction has a 
symmetry that is clearly different from that of the dipole-dipole interaction, 
specifically, the potential energy of one magnetic moment in the field [Eq. 
(1.20)] of another. 

4.2 MOLECULAR FBELD THEORY 

Because of the small spatial extent of atomic wavefunctions, especially in 
insulators, it is usually sufficient to consider only nearest-neighbor interactions 
in Eq. (4.171, thus reducing the complexity of the problem significantly. Also, 
in this case it can sometimes be safely assumed that the exchange interaction 
is the same for each nearest-neighbor pair: 

This is still a difficult Hamiltonian to deal with. It can be simplified by 
considering the energy of a particular atom, i, interacting with its j nearest 
neighbors: 

while for the entire material 

The form of EbXch suggests that it may be related to the energy of a magnetic 
moment p, proportional to Si ,  in an effective field, He,, proportional to C S j .  
Thus, the discrete, pairwise interactions can be replaced by assuming that the 
magnetic moment, pt, = gpBSi ,  at site i interacts with a molecular field Me,, 
given by the net effect of the z nearest-neighbor spins: 

where Si  is understood to be an eigenvalue. Comparison with Eq. (4.18) gives 
for the effective field: 
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Here, the sum over z neighboring spins has been replaced by z times the 
average spin value <Si). Using M = N,gpB<Sj) [Eq. (4.19)] gives 

It can be seen that H,,, is the Weiss molecular field H,,, = AM described 
earlier if 

Using the value estimated earlier for the molecular field coefficient, A = 103, J 
is calculated to be of order 2 x lop2'  5, or 0.01 evlatom. That is, exchange 
interactions are weaker than the Coulomb interactions that distinguish levels 
of different principal and orbital quantum number (1 - lOeV), but they are 
stronger that the spin-orbit interaction (10-4eV/atom). Recall from the treat- 
ment of the Weiss molecular field [Eqs. (3.13) and (3.36)] that T, = AC, where 
the Curie constant C = N ~ , U ~ , L L ~ / ~ ~ ~ .  Therefore, from the expression above for 
A, the important relation follows: 

Here, pi = g 2 p i ~ ( ~  + 1) has been used. The values of T, calculated from (4.21) 
using J = 2 x J are of order 1O4-lo5 K, much too large to consider this 
model to be quantitatively correct. Equation (4.21) is useful for the dependence 
it assigns to the Curie temperature and for the insight it provides to the Weiss 
molecular field. Mean-field models generally overestimate ordering tempera- 
tures. 

The effect of the Heisenberg (or the mean-field) interaction is to align spins 
parallel with each other if J (or A) is positive and to give an antiferromagnetic 
arrangement if J (or A) is negative. A few simple sketches should convince the 
reader that the existence of true antiferromagnetism depends critically on the 
topology and dimension of the structure on which the spins are located. 

For the purposes of macroscopic calculations it is useful to write the average 
value of Eq. (4.17) as 

E,, = - 2 C JijS2 cos Qij 

i > j  

where Qij is the angle between the directions of adjacent spins Si and Sj. This 
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semiclassical approach is valid only when 8,,. is small. Pn that case cos Bij may 
be expanded as 1 - 8$/2! ..- so that 

E,, = 3S2 0; + constant 
i >  j 

This equation indicates that the exchange energy between two adjacent spins 
is proportional to the square of the angle between them. In terms of continuous 
variables, this angular change Oij may be expressed as a a0/dx, where a is the 
distance between spins. Equation (4.23) may then be written. as 

where A = s2a2JN:/2 is called the exchange stzffness constant and N: is the 
number of nearest-neighbor atoms per unit volume; A is a macroscopic 
measure of the stiffness of coupling in the spin system. The units of J are those 
of energy while A is measured in energy/length. A value A = 1 to 2 x 10-I' J/m 
(1-2 x erg/cm) is typical for most ferromagnets. 

Equation (4.24) describes only the spatially varying part of the exchange 
energy, which is assumed small compared to the constant term. The coefficient 
A describes the low-temperature spin stiffness and hence can be used to 
characterize long wavelength spin waves and low-temperature demagnetiz- 
ation. The stiffer the spin system, the more slowly it demagnetizes as tempera- 
ture increases. Conversely, a small value of A corresponds to easy thermal 
demagnetization. Demagnetization by spin waves is characterized by a mag- 
netization temperature dependence of T3I2. The constant term as well as the 
spatially dependent part of E,, determine the Curie temperature at which 
long-range spin order vanishes. 

Calculations for specific lattices using Eq. (4.21) give 

3 = 0.54 kTc for simple cubic, s = B/2 

J = 0.34 kg, BCC, s = $ (4.25) 

J = 0.15 kTc BCC, s = 1 

Note that for Fe, & = 1044K, so from the BCC value above s = I, 
J z 2 x 10-21.J gives A = 7 x 10-12J/m. 

It is worth distinguishing again the situations in which an experiment 
measures 1 ,urn 1 = gp, [s(s + from those in which it measures pml, = 

gpBm,. Paramagnetic susceptibility, the exchange interaction, J S i - S j  (which 
gives rise to the Curie temperature), and magnetic contributions to entropy all 
depend on the magnitude of the magnetic moment, called the effective paramag- 
netic moment, peff = gpB[s(s + or gpB [ j (  j + On the other hand, 
the saturation magnetization achieved in a ferromagnet is a measure of the 
projection of that moment on a specific direction. In this case, it is the z 
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component of < J )  that is important, so the ferromagnetic moment is 
Prn = SLl~mj.  

4.3 MAGNETISM IN OXIDES: SUPEREXCHANGE 

Magnetism in oxides is treated before magnetism in metals because the 
electronic states in oxides are more atomlike. The electrons in oxides can be 
described by the same quantum numbers that apply to isolated atoms. It will 
be seen that this is not the case in metals. Hence it is appropriate to discuss 
ferromagnetism in oxide solids from an atomic point of view. 

The Heisenberg exchange interaction, H = - 2 J C S i . S j ,  is used to describe 
the tendency of neighboring localized magnetic moments to align parallel 
( J  > 0 )  or antiparallel ( J  < 0 )  to each other in a magnetic material. The 
strength of the exchange interaction depends on orbital overlap, as will be seen 
shortly. The Heisenberg form of exchange applies to some localized systems, 
but fails even for ionic, oxide magnets such as FeOFe,O,. The magnetic 
behavior of transition metal oxides is governed by a less familiar form of 
exchange, but one that is easier to explain. This case is treated here. 

Consider MnO, whose rocksalt crystal structure has the antiferromagnetic 
structure shown in Figure 4.4. The spins on some nearest-neighbor transition 
metal ions are parallel, (a )  and (b); those on other nearest neighbors are 
antiparallel, (b) and (c). But next nearest neighbors always have antiparallel 
spins: (a )  and (c )  or (c) and (d). Thus the spins within a given (11 1) plane are 
parallel to each other and antiparallel to those on the two adjacent (111) 
planes. The preferred direction of magnetization of a given sublattice in MnO 
is along the [ l o o ]  crystal direction; other preferred directions and even more 
complex spin structures are possible in different antiferromagnetic materials. 

0 Oxygen (anion) 

4B Transition metal 
(cation) 

Figure 4.4 Rocksalt structure common to transition metal monoxides. The spin 
structure of MnO is indicated by arrows on the transition metal ions. 
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There must be a magnetic interaction that couples second nearest neighbors 
so that their spins have opposite orientations. Oxygen (or F, C1, Te, etc.) atoms 
always Pie midway on the line between next nearest neigbors. Next-nearest 
neighbor sites, two lattice constants apart, are too far apart to be involved in 
Heisenberg exchange; there is just not enough wavefunction overlap. Therefore 
some form of mediated or ""indirect" exchange interaction must be operating. 
A model proposed by NCeP, called superexchange, and formulated in detail by 
Anderson (1963), describes this effect quite well. Superexchange operates in 
many ionic oxides and couples localized, usually 3d, moments. 

A simple picture that adequately describes superexchange is shown in Figure 
4.5. Two transition (T) metal ions (e.g., a and c in Figure 4.4) are separated by 
a p ion (represented here by oxygen). The p orbital, which is filled in the ground 
state, can exchange an electron with each of the adjacent 3d orbitals 
(dx,-yZMO~ are shown here). Thus, the bonding is mostly ionic, T2+  and 0 2 - ,  
but some hopping is allowed. The positive and negative phase parts of the 
wavefunction for each orbital are represented by solid and dashed Pines, 
respectively. The doubly occupied p ,  orbital has two electrons of opposite spin. 

Transition \ 3 d  
"\ 

Transition ? f 
Metal '- 

Figure 4.5 Schematic of d and p orbitals important to the superexchange interaction. 
When the oxygen p orbital is in its ground state (two electrons), the electrons there must 
be of opposite spin. When an electron is exchanged or shared by the overlapping 
orbitals between two sites, the spin is conserved as the electron hops from the p-like to 
the d-like orbital. The result is that the two T ions must have opposite spin directions. 
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It is not enough for this to be the ground state; the 3d and p orbitals must 
exchange electrons; that is, some of the excited states of the system must be 
partially occupied. A simpler electronic state picture is shown in the lower part 
of Figure 4.5. When one of the px electrons is excited into an empty d state to 
form a (p-d) o or o* bond, it leaves behind an electron of opposite spin, which 
may be exchanged with the d states of the other T species coupled to this p, 
orbital. If the two d ions have the same ground-state electronic configuration, 
the net effect is an effective antiferromagnetic coupling between the two T ions. 

At its root, the superexchange interaction is a consequence of the different 
symmetry of p and d states. Notice that one of the three p orbitals represents 
two electron states (spinup and spindown) whose spatial wavefunctions have 
360" (single-fold) rotational symmetry. One of the five d orbitals represents two 
states that have 180" rotational symmetry. Thus a p state has spinup and 
spindown electrons concentrated in lobes 180" apart while a d state has 
opposite spin concentrations every 90" rotation about the ion. These symmetry 
considerations, plus the fact that electron hopping conserves spin orientation, 
produce the antiferromagnetic spin coupling between nearest neighbor transi- 
tion metal ions. 

Superexchange applies to transition metal monoxides of the rocksalt struc- 
ture as well as to many of the more complex spinel, garnet, and perovskite 
oxides. 

4.3.2 Iron Oxides 

The physical properties of the most frequently encountered iron oxides are 
listed in order of increasing oxidation state in Table 4.1. 

The electronic states responsible for magnetism in transition metal oxides 
are well-defined states, little affected by their environment once their valence is 
established. A fixed number of valence electrons per atom is transferred to the 

TABLE 4.1 Structure and Magnetic Properties of Iron Oxides 

Magnetic 
Iron Oxide Structure Structure P ~ ( L L B )  (emu/g) TN(K)  

FeO Rocksalt Antiferro- 4 - - 

magnetic 

yeFeZ03 Metastable Ferrimag- 5.0 74 863-945 
maghemite defect spinel netic 

FeO . Fe203 Spinel Ferrimag- 4.1 84 8 50 
magnetite netic 

a-Fe,03 Corundum Antiferro- 5 0 - 

hematite (hexagonal) magnetic 



anion lattice leaving cations with atom-like electron configurations whose 
moments can be estimated froan Hund9s rules. For example, the iron ions in 
Fe,03 have a valence of + 3  and an electronic configuration 3d5.  The Fe3+ 
moment is p, sz 5pB. The valence electron configuration of Fez+ in FeO is 3d6 
and its moment is p, M 4pB because 

The most stable phase of Fe203, hematite designated a-Fez03, has the 
corundum (hexagonal) structure with linear Fe3+-0'--Fe3+ ligands. It is 
antiferromagnetic with the moments of the two Fe ions opposing each other. 
Magnetite, Fe30,, more accurately written as FeO - Fe203, assumes the more 
complex spinel structure, and it contains one Fe2+ ion in addition to the two 
trivalent Fe ions per formula unit. Therefore, it cannot be antiferromagnetic. 
Maghemite is a defect spinel and is the magnetic oxide used often in recording 
tapes. 

4.3.3 Spinel Structure 

Spinel ferrites such as Fe304 have a complex cubic unit cell, subunits of which 
are shown in Figure 4.6. Oxygen atoms occupy four of the vertices of each of 
the eight small cubes which make up the unit cell. There are two distinct types 
of sites which the transition metal ions can occupy, tetrahedral (A) sites and 
octahedral (33) sites. Of the 6 4  possible tetrahedral sites in the spinel unit cell, 
only eight are occupied. Of the 32  possible octahedral sites, only 84 are 
occupied. Therefore, in each formula unit, Fe304, one A site and two B sites 
are occupied. The A-occupied sub-cells are tetrahedrally arranged within the 
unit cell and the B-occupied cells are arranged in a complementary tetrahedron 
(Fig. 4.6). 

0 Oxgen 
(anion 1 

O Octahedral @ Transition Metal 
Site Tetrahedral Site 

Figure 4.6 Spinel structure showing transition metal sites that are octahedrally and 
tetrahedrally coordinated by oxygen anions. The shaded oxygen atom is shown in two 
subcells; it links A and B sites. 
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It is observed that the moment of Fe304 is approximately 4pB per formula 
unit. Exactly how the three moments interact to give this may not be immediately 
clear, but one might explain it by assuming the two trivalent moments cancel each 
other out as in antiferromagnetic Fe20, and the net moment is then that of the 
divalent iron in FeO, namely, 4pB. This turns out to be correct; let us see why. 

Exchange Interactions Recall that the magnetic exchange interactions 
between 3d cations in ionic solids are antiferromagnetic superexchange coup- 
lings. The exchange is mediated by an intervening anion p orbital and is 
therefore strongest in structures for which the three ions are collinear. In the 
spinel structure, the A-0-B bond angle is 125" (Fig. 4.6), the B-0-B angle 
is 90" and there are no A-0-A bonds. Hence, the strongest superexchange 
interaction is the 125" antiferromagnetic A-B coupling. B sites exhibit a weak 
90" antiferromagnetic coupling among themselves. These interactions are most 
economically accommodated if all A moments are parallel to each other and 
antiparallel to all B moments. It so happens that in Fe30, the divalent iron 
occupies one of the B sites with a trivalent Fe and that the other trivalent iron 
occupies an A site (see Table 4.2). Thus the trivalent moments are on different 
sublattices and cancel each other out, leaving the divalent Fe moment, 4 ~ 1 ,  per 
formula unit. 

The preference of the Fe3+ ion rather than Fez for the smaller A site seems 
natural based on the smaller size of the Fe3 + ion. However, site preference was 
first thought to be determined purely by valence: T2+  on a fourfold coor- 
dinated site (A) and T3+ on a sixfold coordinated site (B). Hence Fe304 was 
called an "inverse" ferrite, because the divalent ion was not where it was 
considered "normal" to be, namely, on a sixfold coordinated site. 

4.3.4 Ferrite Moments 

Let us consider the magnetic moment variation in a series of ferrites based on 
magnetite, Fe30,, which have the spinel structure. 

When transition metal species T are substituted for iron in the spinel ferrite, 
magnetite, technologically useful magnetic ferrites result, such as Ni ferrite and 

TABLE 4.2 Possible Distributions of Two Fe3+ Pons and One Fez' Ion in Fe,O, 
among the One A Site and Two B Sites that Can Be Occupied in the Spinel Structure 

"Inverse" "Normal" 

A B A B 
(tetrahedral) (octahedral) (tetrahedral) (octahedral) 

"The observed magnetic moment of 4p,/FU suggests the "inverse" occupation applies 
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M n  ferrite. The valence off T = Go, Ni, Cs, Mn substitasents for Fe in Fe,O, 
is generally found to be close to %+. The moment on Ni2+ ( 3 8 )  is 2p ,  and on 
Man2+ (3d5),  5p,, and so on. With three different moment-bearing magnetic 
ions in Ni ferrites or Mn ferrites, the variation of magnetization with compo- 
sition should provide an interesting test of an atomic model of ferrite moments. 
It turns out that for full T substitution for Fe2+, TO .Fe20,, the net moment 
per formula unit is approximately 1.3, 2.2, 3.3, 4.2, and 5 . 0 ~ ~  for T - Cu, Ni, 
Co, Fe, and Mn, respectively. So in all of these compounds, the moments of 
the two remaining Fe3+ ions still appear to be canceling each other out. The 
net moment increases roughly as the moment of the divalent T metal (Fig. 4.7 
ordinate). It would be of interest if there were a way to unlock some of the 
potential ten Bohr magnetons of the two antiferromagnetically coupled Fe3+ 
ions. 

Attention is now given to the thought-provoking ferrite magnetic moment 
data first published in 1951 by Guillaud, and added to by Gorter in 1954, in 
which Zn2+ is substituted for T2+  (Figure 4.7). The moments of the 
TO. Fe20, compounds just discussed are shown on the ordinate. 

Note that all the Zn-substituted ferrites show an initial increase in magnetic 
moment as the magnetic T species is replaced by zinc (Zn2+ has no magnetic 
moment, Zn3+ has one Bohr magneton)! How can this apparent creation of 
magnetism by zinc substitution be understood? 

Before these questions can be answered, a better understanding is needed of 
the site preferences of transition metal ions of different valences. 

Figure 4.9 Magnetic moments in transition metal-zinc ferrites as T = Cu, Ni, Co, and 
so on are substituted for divalent iron (Guillaud 1951, Gorter, 1954). 
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4.3.5 Site Preference 

The original expectation of "normal" and "inverse" site selection based on ionic 
valence is outlined in Table 4.2. It is now realized that other factors such as 
cation size, crystal field (see Chapter 6), and valence play a role in site selection. 
Figure 4.8 summarizes the calculated and observed site preference energies for 
various cations in spinel ferrite. The sequence of cations on the abscissa is 
chosen simply in terms of increasing observed or calculated octahedral site 
preference. Consider magnetite which has two Fe3+ ions and one Fez+ ion. 
From Figure 4.8, it can be seen that the Fe3+ ion has a much stronger 
tetrahedral (inverse) site preference than Fez+. One of the Fe3+ ions occupies 
the A site and relegates to the other two ions (Fe3+ and Fez+) to the two B 
sites per formula unit. Hence magnetite has the "inverse" site occupations 
shown in Table 4.2. 

It is important to notice that Zn2+ has by far the strongest preference for 
A site occupation of any of the ions studied. The data in Figure 4.8 can be used 
to determine the distribution of a given set of transition metal ions among the 
A site (one ion) and the two B sites (two ions). 

Site 
Octahedral 
Preference 

E n e r g y  
( k c a l )  

0 Kleppa Empirical -*' - 0 Solid Solubility v - 
v McClure (CEF) v A 

-20 - a Dunitz (CEF) 

- 1  5 -  

-I  0 - 

-5 - 

Tetrahedral 
- Preference 

( norrna I )  
10 l I I I I l l I i * I  

z n 2 +  Fe3+ co2+ Fe2+ A I ~ +  M n3' 

~ n ~ +  ~ d ~ +  M ~ ~ +  cu2+ ~ i ~ +  cr3+ 

Figure 4.8 Cation site preference energy for various transition metal ions in A or B 
sites. CEF stands for crystalline electric field (Navrotsky and Kleppa 1968). 
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Consider divalent transition metal sabstitutions for iron: 

Figure 4.8 indicates that only Mn2+ and Zn2+ prefer the A site more than 
Fe3+ does. This explains the site occupations for TO-Fe20,, MnO-Fe203, 
and ZnO-Fe203, shown in Table 4.3. 

Considering that the A and B sublattices are antiferromagnetically coupled, 
the site occupations shown in Table 4.3 explain the simple transition metal 
ferrite moments shown along the ordinate in Figure 4.7. The Fe3+ moments 
cancel for the compounds shown in the first line leaving only the T2+  
moments. Hn the case of Mn ferrite, the iron moments produce a B sublattice 
moment of 10p,/FkT but the Mn2+ moment of 5p,/FU on the oppositely 
magnetized A sublattice reduces the net moment to 5p,/FU. This is also 
consistent with Figure 4.7. 

Note the initial increase in moment observed with zinc substitution in 
T0 .Fe203 ,  specifically, (T2+),-x(Zn2+)x(Fe3+)20, (Fig. 4.7). Zn2+ ions 
show a stronger normal tendency than any of the ions shown, particularly 
stronger than Fe3 +. Thus although Zn2 + substitutes for T2+,  it preferentially 
occupies A sites, driving the A site Fe3 + ions to B sites (see Table 4.4). 

Note that the total Fe3+ content remains as two ions per F U  but the iron 
ions are forced to the B sites as x increases. Taking the sign of the B site 
moments to be positive, the net moment per FU becomes 

where pT is the moment of the divalent transition metal ion for which zinc is 
substituted. At x = 0 Eq. (4.26) describes the moment of the divalent transition 
metal species as observed in Figure 4.7. With increasing x, the net moment is 
predicted to increase linearly toward 10 p,/FU. These lines describe the data 
fairly well until x = 0.3-0.4. At that point most of the magnetism is OD the B 

TABLE 4.3 Site Distribution in T2+Zn2+2Fe3+0, 
Based ow Data in Figure 4.8 

A Site B Sitea 

"T = Cr, Fe, Co, Ni, Cu 
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TABLE 4.4 Site Distribution o f  Ions and Consequent 
Moment Distribution inn Zinc-Substituted Transition Metal 
Ferrites 

A Site B Site 

Ion (Zn2f)x(Fe3+),-, (T2+)1-,(Fe3+)~+, 
Moment 5(1 - x) pT(l - x) + 5(1 + x) 

sites and relatively few A sites have magnetic moments. At large Zn concentra- 
tions the antiferromagnetic B-B interactions start flipping those B site Fe3' 
moments that are farthest from an A moment. The net moment starts to 
decrease. It is also a factor in the data that the A-B exchange interaction is 
weakened as Zn content increases. 

To summarize, it has been shown that for oxides or ionic solids, the valence 
electronic configuration is a good measure of the magnetic moment localized 
on a particular species. These local moments can be added vectorially to get 
the net magnetic moment per FU provided something is known about site 
preference and about the exchange interactions between different sites. The 
temperature dependence of magnetization in such a two-sublattice ferrimag- 
netic material is now considered. 

4.4 TEMPERATURE DEPENDENCE OF MAGNETlZATlON IN 
FERRlMAGNETS 

If one measures the temperature dependence of magnetization in a ferrimag- 
netic material, the behavior is seldom like that of a Brillouin function that 
describes M,(T)  quite well in many ferromagnetic systems. The behavior 
shown in Figure 4.9 for ferrimagnetic nickel-iron vanadates shows compensa- 
tion temperatures where the net magnetization vanishes at a temperature 
below the NCel temperature where the individual sublattice magnetizations 
vanish. This suggests that perhaps the two spin sublattices in a ferrimagnetic 
lose their magnetism at different rates as temperature increases, thus complicat- 
ing the net M ( T )  behavior. A simple adaptation of the mean field theory 
outlined in Sections 3.8 and 4.2 can be used to describe and predict the 
temperature dependence in magnetic systems comprised of two interacting 
magnetic sublattices. 

NCel(1948) assumed that the molecular field [Eq. (3.44)] acting on the spins 
in one sublattice, A or B, could be written as the sum of magnetic interactions 
with other spins on the same sublattice plus that with the spins on the other 
sublattice: 
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Figure 4.9 Temperature dependence of the magnetization in NiFe,-,V,O,. [After  
Blasse and Gorter (196211. 

These definitions can be made to reflect a particular crystal structure (Smart 
19661, but here, they are kept structure neutral. Each of the three molecular 
field coefficients could be related by Eq. (4.20) to exchange interactions within 
each sublattice, J,, and J,,, and between the two sublattices, JAB = J,,. 

The field-dependent and temperature-dependent magnetization in each 
sublattice is then described by a Brillouin function with an argument appro- 
priate to each sublattice: 
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These two equations are solved simultaneously for the temperature dependence 
of the magnetizations of the two sublattices given (or assuming) values for the 
three exchange interactions. The temperature dependence of the net magnetiz- 
ation, M A  + MB, then takes on characteristic forms depending on the values of 
the exchange constants, J,, and J,,. 

The paramagnetic case is illustrated first. The results are more clearly 
expressed in terms of Curie constants for the two sublattices 

where N: are the volume densities of the number of spins on the ith sublattice 
and pL = gi,u,&( j + 1) is the magnetic moment per transition metal in the ith 
sublattice. 

Instead of the one-sublattice, ferromagnetic form of the Curie-Weiss law, 
x = C/(T- Q), the ferrimagnetic result is 

where 

and 

Equation (4.29) describes Curie-Weiss-like behavior with a temperature inter- 
cept that is shifted by the new factor @, which can be positive or negative 
depending on the signs and magnitudes of A,, and ,IBB. This result is shown 
in Figure 4.10. Unlike the ferromagnetic case, where 1/x is linear in ?: for the 
ferrimagnet 1/x is not linear. 

The Ntel temperature is defined from the positive root of the inverse 
susceptibility in Eq. (4.28) as 

A 
T', = 2 AB (CA/ZAA + CB/ZBB + [(CA/ZAA - CB/ZBB)2 - 4 C A C B ] 1 i 2 )  (4.30) 
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Figure 4.10 Graph of Eq. (4.29) showing the curvature in the inverse susceptibility and 
the Nee1 temperature as well as the other temperatures defined for the ferrimagnetic 
susceptibility. 

Figure 4.1 1 shows the various regions in the space of the two intrasublattice 
molecular field coefficients in which the paramagnetic, ferrimagnetic, and 
ferromagnetic solutions are found. 

In the strongly magnetic regime, the net magnetization can show the 
unusual shapes depicted in Figure 4.11 for different combinations of the 

M A  
Unsaturated 

Paramagnetic \ I 'A.( ' A A + '  ) 
= C B ( X B B c l )  

M Unsaturated 

Figure 4.11 Diagram in A,,-A,, space where different forms of net magnetization 
temperature dependence are observed in ferrimagnets. 
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exchange parameters A,, and A,,. A particular value of A,, and 
M: > IM:~ > 0 have been assumed in Figure 4.10. Clearly when IA,, I > I/Z,,I, 
the Brillouin function for M A  is more square than that for M ,  and vice versa 
for lAAA1 < lABBl. Consequently, if IAAAl > lABBl the net magnetization, 
MA -k MB, can increase with increasing temperature before vanishing at T, or 
if IA,,I < lABB1, it can show compensation points at which the net magnetiz- 
ation vanishes below T, even though each sublattice remains magnetically 
ordered. Beyond the dashed lines at A,, < - 2 or A,, < - 1, noncollinear 
moment arrangements are possible (Yafet and Kittel 1952, Lyons et. al. 
1961). 

4.5 SUMMARY 

In this chapter, the quantum mechanical origin of magnetism in insulator and 
ionic solids has been discussed. It began with a description of the factors 
affecting the energies, wavefunctions, and spin configuration in a two-electron 
system, namely, electron-electron interactions and the Pauli exclusion prin- 
ciple. The latter was seen to impose a spin structure on the states of two 
indistinguishable particles, that is, ferromagnetic (symmetric in spin) for 
antisymmetric spatial wavefunctions and antiferromagnetic (spin antisymmet- 
ric) for symmetric spatial wavefunctions. These principles were illustrated for 
the hydrogen molecule ion, H:. 

The Heisenberg Hamiltonian was defined and expressed as a mean-field 
exchange interaction to give substance to the concept of the Weiss molecular 
field. 

The chapter ended with a treatment of magnetism in insulators, explaining 
superexchange, site selection, and moment variations with composition and 
temperature in spinel ferrites. 

APPENDIX: BRIEF REVIEW OF QUANTUM MECWANlCS AND 
SGHRODINGER'S EQUATION 

4A.1 Eigenvalue Equations 

In Newtonian mechanics, algebraic or differential equations can be solved for 
the position or momentum of a body subjected to known forces. With enough 
information, a definite answer can be obtained. Witness the accuracy with 
which a satellite can be put in orbit or a Voyager spacecraft can be sent to a 
pinpoint rendezvous with a planet millions of miles away. 

Schrodinger's equation is not a simple algebraic equation but a differential 
equation of a particular kind. It is an eigenvalue equation, that is, one in which 
an operation on a function, +(x), returns that function times a simple 
numerical factor: 
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The number n is the eigenvalue, or quantum number, eoi~respowdirreg to the 
operator N. If the operator is the energy operator, the eigenvalue is the energy 
of the allowed state. If the operator is the momentum operator, the eigenvalue 
is the momentum of the state described by the eigenfunction, 4(x). For 
example, the momentum operator, px = -ih(d/dx), applied to a free electron 
wavefunction, 4 = A exp[ik ox]9 gives the eigenvalue for momentum of a plane 
wave: 

In other words, the value of the momentum for a plane wave is p, = hk, = h/A. 
This may be recognized as the de Brog'iie relation, which expresses the 
wave-particle duality of nature and whose effects are observed on the quantum 
level (waves have momentum and particles are characterized by a wave- 
length). Most eigenvalues in quantum mechanics contain Planck's constant, 
the quantum of action (energy times time), h = 6.6 x 10-34J/s or 
h = 1.06 x J/s. This indicates that measurable quantities may take on 
discrete values, albeit values that on human scales are so close together that 
they appear continuous. 

An operator equation can be considered as a statement of the results of a 
particular quantum mechanical measurement. Xt+b = E$ says that if you 
measure the energy of a system characterized by 51/ ,  you get the result, E. (X  
stands for the Hamiltonian operator, which is the operator for the total energy: 
kinetic energy, Tplus potential energy V).  

In quantum mechanics, it is not possible to speak with certainty about the 
result of a measurement; only the probability of a given result can be given. 
The probabilistic weighting of various outcomes of a measurement is called 
the expectation value. The expected value of a given measurement or variable 
is obtained by operating with the appropriate operator on a suitable 
wavefunction for the system [e.g., Eq. (4A.2)J. The wavefunction is then 
removed from the expectation value by making use of its normalization 
condition. For the plane wave considered above, the expectation value of the 
momentum <p) is 

The operator in the integral operates to the right, on 4; if 6 is an eigenfunction 
of the operator, this process gives the number h/;l times 4. Because h/;l 
is a number, it can be removed from the integral which is then evaluated. The 
integral J 4*+dx is the probability density of finding the particle in the region 
over which the integral was done. If 4 has been normalized, the integral is 
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unity, that is, there is unit probability of finding the particle somewhere. (The 
probability of finding the plane wave particle in a small volume of space is 
small because the particle is uniformly spread over all space.) More compact 
ways of writing Eq. (4A.3) include (p) = (I$*, p, 4)  = (I$*IpII$) = h/A. The 
brackets around the momentum operator symbolize both the average value in 
the conventional sense but, more importantly, imply the integration in Eq. 
(4A.3). 

Much of the toil of a quantum mechanism may be outlined as follows: (1) 
find the appropriate operator, the Hamiltonian, for the system of interest; then 
(2), pick a complete, orthogonal set of trial wavefunctions (the basis set) that 
is expected to represent the solution, and use only a few of them. The operator 
equation is then solved, preferably by reducing it to a matrix equation. 
Solution of the matrix equation consists of diagonalizing the matrix (which is 
easier for sparse matrices). The solution may be improved by including more 
wavefunctions. The method is anything but mechanical; more art and intuition 
is involved than might be expected. It is important to understand some 
frequently encountered results. 

4A.2 Uncertainty and Wavepackets 

It is often sufficient to begin solving a problem by considering plane wave 
solutions (which have equal probability everywhere). This method is used 
occasionally in the present text. At other times it is more important to consider 
a wavepacket that might describe an electron confined to a specific volume. By 
confining the electron to a region of, say, Ax = a, it is not possible to specify 
its position any better than Ax. The possible values of its wavelength are 
limited to 2a and smaller: /Z < 2a. This limits its possible values of k = 2x12, to 
k > nla. This linear dependence of Ax on a and the inverse depedence of Ak 
on a, requires that their product satisfy AxAp, hAxAk, = h/2. Heisenberg 
recognized the implications of this relation and formulated the uncertainty 
principle that bears his name. In its more exact form, it states that the product 
of the uncertainty of two conjugate variables (x  and p are conjugates and E 
and t also are) must be greater than or equal to h/2: 

h 
AxAp, B - (or AxAk 2 n) 

2 

AEAt 3 h (or AvAt B 1) (4A.4) 

These relations are often useful in placing bounds on the values of the 
conjugate variables of a particle. For example, if you can do a measurement 
that tells you the position of a particle with an uncertainty Ax = a, then you 
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cannot know the momentum oh that particle with an uncertainty less than 
Ap = h/2a. 

4A.3 SchrBdlnger Equation 

One way to confine a wave to a location of width Ax is to force the 
wavefunction to have zero amplitude at x = + a .  Combination of two waves 
having values of A differing by 2Ax produces beats in the total wave with nodes 
separated by Ax. In one dimension, such a wave may be written as a sum of 
two plane waves: 

4 ,  = A exp{i[(k + Ak)x - cot]) and 4 ,  = A exp{i[(k - Ak)x - cot]) 

+,,, = A exp{i(kx - cot)}{exp[liAkx] + exp[- iAkxl) 

= A exp{i(kx - wt))2 cos(Akx) (4A.5) 

This is a traveling wave with nodes at Akx = nx/2 (n = + 8 ,  + 3, .  . .). 
Unfortunately this expression does not confine our electron to one region, but 
rather to many. A continuous distribution of wavelengths in the range 
A, - Ax < A < A, + Ax results in cancellation of all beats except the one 
centered at x, . 

The total energy, E = T + V (kinetic plus potential energies) of a quantum 
mechanical system can be determined from application of the Hamiltonian 
operator: 

(Note that the kinetic energy of our plane wave is 

as it should be.) 
Schrijdinger's equation is a statement that the total energy operator applied 

to a wavefunction returns the total energy eigenvalue(s) for the system times 
the wavefunction: 

The Hamiltonian operator for the hydrogen atom is 
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with the del operator expressed in spherical coordinates. Equations (4A.8) and 
(4A.9) give 

With V(r) = - e2/(4-n&,r), this becomes the equation for the electronic states in 
a hydrogen atom, the only atom whose electronic structure can be solved 
exactly. In spherical symmetry, the full Schrodinger equation depends on all 
three spherical variables r, 8, and $: 

where the radial r and the angular coordinates 8 and $ are independent 
variables; writing the solution as a product $ = R(r)Y y(8, 4) = R(r)O(O )a($) 
allows us to solve Eq. (4A.11) by separation of variables. First, isolate the $ 
dependence: 

1 a2a 
- sin 0 a ( sin$-- . z) sin2 8 a ( r , - i3R) -- 2m 

a do2 o ae R ar ti2 
r2 sin2 8(E - V) 

= f (r, 8) = constant (4A. 12) 

The constant is conveniently chosen to be -m;, so that the $-dependent factor 
in the solution is: 

The solution works only for certain values of m,, called eigenvalues. Equation 
4A. 1 1 then becomes 

m? I a (sin 8 g) = (r2 $1 + $ r2(E - V(r)) 
sin2 8 O sin 8 a8 

= g(r) = constant (4A. 14) 

Here it is convenient to choose the constant to be 1(Z + I), giving for the 
8-dependent solution 

63 (0) = sinlmll (0) ~ 1 " ' ~  (cos 0). (4A. 1 5 )  

Again, this solution is acceptable only for certain eigenvalues of I. The right- 
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Only certain values of 1 and m, allow solutions of Eq. (4A.18); they are the 
quantized values of the magnitude and the z component of the angular 
momentum in units of h. Thus the magnitude of the total angular momentum 
has the values (L) = 1 = h[l(l + and its z component ( L , )  = 1, = hm,. 
These results are of fundamental importance to modern magnetism. 

From the form of the momentum operator in Eq. (4A.2), the Cartesian 
components of angular momentum can be written 

L,  = yp, - zp = - ih y-  - z -  ( :z :y) 

which become, in spherical coordinates 

From these, Eqs. (4A.19) follow. 

PROBLEMS 

4.1 Magnetic moments in ferrites. 
(a) Give the outer electron configurations and magnetic moments for the 

following ions: Fez+, Fe3+, Mn2 +, and Zn2+. 
(b) Using the site selection from Figure 4.8, determine the preferred site 

occupations in MnFe20, (assume MnZi) and give its magnetic mo- 
ment per formula unit. 

(c) Describe what happens to the site occupation and net moment as Zn2+ 
is first substituted for MnZi. 

4 2  Explain what happens as Zn substitutes for Ni in nickel ferrite, NiFezO,. 
Again, describe the valence electronic structure of the ions and magnetic 
moment variation per formula unit. Be quantitative where possible. 
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4-3 Use the data for paramagnetic Ni in Figure 3.5 60 calculate &he molecular 
field coefficient IE in Meff = IEM in the following two ways: 
(a) Calculate the Cure constant from Eq. (4.2%) using a lattice constant of 

3.6W for FCC Ni. 
(b) Determine the Curie constant then ;l from two data points on x(T) in 

Figure 4.8. 
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CHAPTER 5 

QUANTUM MECHANICS, MAGNETISM, 
AND BONDING IN METALS 

The last chapter considered magnetism in atoms as well as in oxides and other 
materials for which the electrons remain fairly well localized on the atomic or 
ionic sites; that is, there is little hopping or itinerant character in the valence 
electrons. There, two mechanisms were considered, superexchange and Heisen- 
berg exchange, to account for the nearly ubiquitous antiferromagnetism in such 
systems. Both of these exchange mechanisms are consequences of the Pauli 
exclusion principle, specifically, of the antisymmetric nature of the electronic 
wavefunction. The electron-electron interaction between different sites, al- 
though present in oxides, is generally weak. 

A foundation is now laid for understanding magnetism in metals; systems 
are considered in which electrons from two or more sites occupy a common 
bond, covalent or metallic. The difficulty in treatiny t rans i t ionaa ls  in term-s 
of their electronic structure stems from the fact that d electrons in metalkare 
neither free electrons nor ass tlhtlatsmjc-like.-Instead, they have attributes 
that --__ in some _ - cases are more- free-electron-like and in some-cases, more 
at~mic-like. While the Heisenberg exchange interaction is defined for localized 
electrons that interact only weakly, it is often used formally to describe 
ferromagnetisrn (J,, < 0) or antiferromagnetism (J,, > 0) in metals. In reality, 
exchange in metals is much more complex than this. A number of examples are 
given to show the magnetic consequences of electron-electron interactions in 
simple systems. Exchange in metals is usually introduced into band structure 
calculations by means of an exchange/correlation factor. While the aspects of 
band calculations of importance to theorists are not covered, some important 
results for BCC iron and FCC nickel are described. Further, the effects of 
various impurities on magnetic moments are covered. Also discussed in this 
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chapter is an indirect exchange interaction in which the condn~cti~n ~ ~ c I H o ~ ~ s  
couple spins that are localized on separate atoms. 

As usual, this chapter begins with an experimental observation that epitom- 
izes the subject of the chapter and demands an explanation. It is the Slater- 
Pauling curve showing the variation of saturation magnetic moment with 
composition in many magnetic alloys. 

5.1 SLATER-PAULING CURVE 

The magnetic moment variations in oxides were treated for the simple but 
instructive case of spinel ferrites in Chapter 4. For_oxides-the electronic states 
cd3ebm_anre_atanaidke_an$ .MLundls rules p ~ a ~ i d e  a-goa-d-s-tarting point for 
determining ionic moments. The magnetic moments of oxide compounds can 
then be determined from a knowledge of ionic valence, site selection, and 
simple addition of ionic moments. The concepts needed to understand moment 
formation in magnetic metals, while more complex, still build on the material 
covered in Chapter 4. It is important to know the relation between the 
electronic structure of a metal such as Fe or Ni and its magnetic properties. 
This will form a basis for understanding the consequences for magnetism of 
alloying Fe, Co, and Ni with each other as well as other species with these 
metals. 

One of the most evocative sets of data for physicists of the 1930s was the 
quite regular variation of magnetic moment with composition in 3d metals and 
alloys (Fig. 5.8). This is called the Slater-Pauling curve because of the 
contributions of these two scientists, John SBater and kinus Pauling, to its 
interpretation. Note first that the average moment p, per transition (T) metal 
atom, expressed in Bohr magnetons, n, = p,/pB, is 2.2pB, 1.7pe, and 8 . 6 ~ ~  for 
Fe, Co, and Ni, respectively. Further, n, for Fe,,Wi,, is very close to that for 
Co, and both have the same average atomic number, Z = 27 or average 
number of valence electrons, n, z 9. Looking at lower electron concentrations 
from copper (Z  = 29), it can be seen that n, increases nearly linearly from zero 
at 60% Cu in Ni: an,/aZ z - 1 for the data to the right of the maximum. This 
is also true for FeNi, FeCo, and CoWi alloys over most of the FCC and HCP 
range (n, > 8.6). The magneton number n, reaches a maximum value of about 
2 . 5 , ~ ~  near the average electron concentration Z = 26.5 electrons/atorn for BCC 
metals and alloys (n, = 7.5 assuming one 4s electron per atom). A simple 
explanation of this three-fourths filling of the d states and the uniform slope to 
the right of the peak are possible in terms of the rigid-band model of transition 
metal magnetism. 

The magnetic moments of the elements and alloys displayed in Figure 5.1 
can be determined accurately from band structure calculations (Dederichs et 
al. 1991). (The electronic structure of iron and nickel are reviewed in Section 
5.4). What is physically occurring with the electronic states to produce such 
regular behavior can be appreciated by considering simpler band models that 
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Electrons / Atom 

Figure 5.1 The Slater-Pauling curve showing moment per atom (in Bohr magnetons) 
for metallic alloys as a function of valence electron concentration or alloy composition. 
[After Dederichs et al. (1991).] 

represent the density of valence electron states. In order to gain insight into the 
physics behind the Slater-Pauling curve, three concepts are needed: 

1. Figure 5 . 2 ~  illustrates the familiar broadening of atomic levels (in this 
case focusing on the 4s and 3d states) into bands when atorns are brought 
together to form solids. Note that the 1 = 0 (4s) atomic states that get closer 

I I 1 Interatomic I 
distance Z(E) z + ~ E ,  

(a) (b) 

Figure 5.2 (a)  Evolution of atomic 4s and %d states at large interatomic spacing to 
bands at smaller spacing ( r ,  occurs when the net repulsive force -aE/ar  from 4s 
electrons exactly balances the net attractive force from 3d electrons); (b)  density of states 
of 4s and 3d states split to reflect exchange preference for spins of one direction. 
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to the nucleus, have Bower energy than I f O 6%) states. But the ! = 0 states 
also stray much farther from the nucleus than the l # 0 states, so they also 
interact (bond) more with neighboring atoms as interatomic distance decreases. 
For this reason the Pow lying 4s levels begin broadening into bands at larger 
interatomic distances than do the 3d levels. The states in the lower half of a 
given band are pg_exgninantly bondihg. gates whose wavefuncb:ion_s havelarge 
amplitude between atomic sites. Those in the upper half of a band are 
predominan&ghb~ljng &c_haracte_r with a ng~e__b_.ety-e_e_p-the at-omit sites; 
thus the wavefunctions are pushed back onto the atomic sites a n d ~ r e  more 
localized. The density of states Z(E)  [states/(eV)(atom)] can be represented at 
the equilibrium spacing as in Figure 5.2b. ad 
free-electron-like s band (Z goes as Eli2)  and a narrow> higher=dens_ity-of-states 
d band. The areas under these curves, f Z ( E ) d E  (with units states/atom), must 
be in the ratio of 2 to 10. As E ,  assumes different positions in such a diagram 
(perhaps simulating a change in d electron concentration with alloying), there 
is a much larger change in the number of d electrons than s electrons. This has 
important consequences for magnetism because of the central role played by 
the d states in magnetism. 

2. Next, recall that Weiss postulated a strong internal, effective field 
HE = AM to account for ferromagnetism. Quantum mechanics tells us that this 
is really a Coulomb interaction that occurs in systems whose wavefunctions 
obey the Pauli exclusion principle. [It is not the Coulomb integral C,, but the 
exchange integral J,, of Eq. (4.38j.1 This interatomic exchange interaction 
requires a shift in the spinup and spindown parts of the d band relative to each 
other as in Figure 5.2b. B e c a u s . ~ ~ ~ c o n d ~ ~ c t i o _ n  eBg~cJrons-_a4-q-es_s_entiallJ! free, 
t h e r e % i x e ~ ~ ~ e e s p 1 i 6 p  apulation of _the--spinup and 
spindown conduction bands is n e a r l ~ ~ q u a l .  One of the simplest ways to begin 
to understand interatomic magnetic exchange in metals is to consider it as a 
vestige of Wund's first rule in atoms: electrons fill otherwise degenerate states 
with parallel spins first. This minimizes their Coulomb repulsion because they 
then occupy different orbital states that have minimal spatial overlap. B u t n  a 
band the different states are clear1ynot degenerate; there is a significant energy 
cost to gut tin^ all electron_~_i_n~t_he~spin_up-ba.nd-~o~~satisfy Hun&s_.r-~le. Tbat 
energy cost is Preater if the states in the band are spread over a broader energy 
range, that is, if Z(.E)&smAl. This competition between exchange energy 
savings, J (shifting the spin subbands relative to each other thus favoring 
parallel spins) and kinetic energy cost proportional to 1 / Z ( E )  (favoring paired 
spins) is expressed quantitatively as the Stoner criterion for the occurrence of 
magnetism in systems where a band picture is appropriate: 

Ferromagnetism is favored in systems with strong exchange integrals and large 
state densities at E,. 
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3. Finally, this picture must reflect the fact (from Chapter 4) that bonding 
states between two atoms_fa__vo_r p-ajred,an_tiparallel spins (presumably one from 
each atom) and antibonding-states favor-parallel-spins. It is now possible to 
appreiate one of-the reasons why antiferromagnetism is observed in the first 
half of_th_e"2d-_s_eriesTV, Cr, Mn (E, lies in the bonding part of the d band) - 
and why ferrom%-nntism occujsln the-second half of the 3d series-Fe, Co, 
Ni-(E, lies in the antibonding part of the d band). Narrow d b n d s  [large 
Z(E,), more atomic-like states] favcg m-agnetism; bonding weakens magnetism; 
ferromagnetism is unlikely, although not impossible, in a truly free-electron- 
like [low-Z(E,, s-band] metal. (A homogeneous electron gas does show a 
tendency toward ferromagnetism at low density. The reason for this is that the 
kinetic energy decreases more rapidly with decreasing density than does the 
exchange interaction. This sort of ferromagnetism is not seen in metals because 
their electron densities are too large.) 

In alloys containing transition metal species, the covalent bonds formed 
between partially occupied valence orbitals (i.e., near E,) often involve mag- 
netic states. If 3d states are involved, they become more delocalized as a result 
of covalent bonding. This delocalization results in a loss of d character and 
hence weaker intraatomic exchange I(E,), and in a suppression of D(E,); both 
of these effects weaken magnetic moment formation [Eq. (5.1)]. If a polar bond 
is formed in a metal (and it may form between d orbitals), the conduction 
electrons (s) will redistribute themselves to screen the bond charge transfer and 
maintain some degree of local charge neutrality. The screened polar bond still 
contributes to the chemical stability of the alloy. However, it will affect 
magnetic properties only if one of the orbitals involved contributes to the 
magnetism, such as a 3d orbital. 

Example 5.2 A quantitative example is given to illustrate the consequences of 
antisymmetrized wave functions on magnetic exchange in order to illustrate for 
interacting electrons the effects described in paragraphs 2 and 3 above. The 
average value (expectation value) must be evaluated for the square of the 
distance between two particles ( ( r ,  - r,)'), which reflects the repulsive force 
between two electrons. The spatial wavefunction for the electron pair is given 
by 

The + and - apply for symmetric and antisymmetric spatial states, respec- 
tively. The orthogonality of the single particle wavefunctions, !4,$, dv = 0, 
implies 



where 
I= 

The first three terms on the RHS of Eq. (5.3) are CouPomb integrals [Eq. 
(4.4)]. The fourth tern involves the hopping or exchange integral between 
states a and b [Eq. (5.4c), cf. Eq. 4.111 and it changes sign depending on 
whether the wavefunction is symmetric [giving smaller < ( r ,  - r,))', i.e., the 
two particles attract each other] or antisymmetric [giving larger < ( T ,  - r,)'), 
a repulsion for glr, particles]. In other words, on average the two electrons in a 
spatially symmetric orbital $, are closer to each other (and have an antisym- 
metric spin function) than are those in an antisymmetric orbital glr, (which will 
have a symmetric spin function). These attractive and repulsive exchange forces 
are real and add to the classical repulsion between like charged particles. They 
come from Pauli's exclusion principle and Fermi-Dirac statistics and are 
therefore unique to quantum mechanics. 

The implications of this example for metallic magnetism are that an 
exchange interaction exists for interacting electrons (paragraph 2, p. 146) and 
that antibonding states are more conducive to moment formation (paragraph 
3, p. 147). For spatially symmetric, bonding wavefunctions, Eq. (5.3) shows that 
the electrons are more likely to be found near each other, so the Pauli exclusion 
principle forces them into opposite spin states. For spatially antisymmetric 
wavefunctions the electrons are, on average, farther apart and parallel spins are 
less costly in energy. These concepts provide a good foundation on which to 
build an understanding of magnetism in metals and covalent solids. 

Figure 5.3 schematically summarizes the dependence of the exchange 
interaction on interatomic distance for interacting electrons. It is often called 
a Bethe-Slater curve. Pauli's exc1usion principle demands that electrons that 
get too close to each other -- - (same --. - - - spatial - - coordinates) -. . - - - - have -- - -  oppgsite spin 
(antiferromagnetism),Barallel - - .- --- - spin is favored in materials when electrons share 
the same waveft~nction but are confined to separate regipps-oEspace; that is, 
the wavefunction has a node between the respective electron positions. This 
describes an antibonding wavefunction in a solid. In fact, ferromagnetism is 
generally observed in >$-filled band-es)-assopposed to 
nearly-empty bands even - -- though . -- Hund's rules favor parallel spins within a s m s  
equally iq-tkg two cases. Finally, at large separatjons, eleceostatic interactions 
become-negligible and the difference in energy between parallel and antiparallel 
spin arrangements vanishes, so there is no exchange i n t e r a a n .  
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Figure 5.3 Above, dependence of energy for spatially symmetric and antisymmetric 
wavefunctions versus atomic separation ri j .  Below, energy difference versus ri j  nor- 
malized to d-electron radius showing regions favoring ferromagnetic and antiferromag- 
netic magnetic coupling. 

Thus, a simple band model, with exchange splitting and recognition of the 
tendency toward ferromagnetism in antibonding states, affords a simple basis 
for the ferromagnetism of Fe, Co, and Ni. This picture is now extended to 
magnetic alloys. 

The simple band model shown in Figure 5.4 illustrates some of the 
important differences between the magnetism of metallic Fe and that of 
metallic Ni. Fe has 8 valence electrons to spread over the 3d and 4s states; Ni 
has 10. Transport and other measurements indicate that Fe has slightly less 
than one electron that can legitimately be called free or itinerant  SO.'^); the 
remaining 7.05 electrons occupy the more localized 3d band. The number of d 
electrons per atom in each spin subband is therefore 

The observed magnetic moment 2.2pB/Fe tells us that 
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Figure 5.4 Density of states compared for Fe and Ni. The Ni d band is narrower in 
energy and the Fermi level is closer to the top of the Ni d band. 

Solving for ~ , f  and N y  indicates that 4.62 of these 7.05 3d electrons are in 3d 
up and 2.42 in 3d down. That is, both 3d subbands are partially occupied 
(Fig. 5.4~). 

Ni on the other hand, has 0.6 free electrons (4s09 and 3d9.4. Its magnetic 
moment of 0.6,uB/atom tells us that 3d up is full and 3d down has 4.4 electrons 
or 0.6 hole to account for the net spin imbalance (Fig. 5.4b). 

Metals - - that, like iron, exhibit an exchange splitting that is less than the 
energy difference between E and t h h e t o t , o f - U a k  
ferromagnets. They have, by definiti~n~holes in both the minority and majority 
spin bands. They are found to the left of the ~pakhtkSla te r -Paul ing  curve. 
Metals that, like nickel. have an exchange splitti~re_atcf:-than Ed - E, are 
cgdhed strong ferromagnets By definition they have -- - holes . in only the minority, 
3d band. They are found to the right of the peak of the Slater-Pauling curve. 

5.2 RIGID-BAND MODEL 

The earliest attempt to explain the curious behavior of the Slater-Pauling 
curve, and indeed many other physical properties of alloys, was the rigid-band 
model. It assumes that the s and d bands are rigid in shape as atomic number 
changes. This simplifies modeling the behavior of different alloys by simply 
moving E,  up or down through the bands in Figure 5.4 according to the 
number of electrons present. This premise of the rjgidicb_a_nr.-model is not 
correct. Nevertheless, this model can account for some trends in physical 
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properties observed on alloying and thus serves as a suitable starting point for 
qualitative discussion of alloying effects. 

The rigid-band model makes several simplifying assumptions about the 
electronic structure of alloys. The ripid-band assump_tion r_efereryd above_ has 
m g y  corollaries. It implies t.hat the s p i e s  ipvolyed in alloyifig (e.g., A and B) 
are sufficiently-imi1-ar-that the periodic potential of metal-A or B is only weakly 
perturbed by the presence of-& other zpecies. Furthel, all valence electron 
states,regardless of their orbital angular momentum, are assumed to keep the 
same energy-rela_tis to each other as alloy composition varies. The only effect 
then of the different number of electrons of A and B would be to shift the Fermi 
level relative to the rigid-band density of states. It will be seen later that the 
shape of the state densities for BCC Fe and FCC Ni are quite different from 
each other and are often characterized as illustrated in Figure 5.5. Hence, it 
may seem surprising that any observations can be accounted for by a model 
that assumes that a variety of transition metals and alloys can be represented 
by a common, simple density of states as depicted at the right in Figure 5 . 5 . g  
fact, - magnetic mom~-_v_a~i_t ions depend ~nly-~o-n the number of occupied-or 
unoccupied states - in the twospin d bands, not on the shape of Z(E)  or on the 
state - - density at E,. other metallic properties such as susceptibili_ty,_sg_exfic 
hzL-gnz-phenomena arising from spin-orbit interactions (proportional to L, 
at E,) are sensitive tp the shape of the state dens j tysve .  

As an example of the extension of the rigid-band model to alloys, consider 
Ni substituted in Fe: Fe, -,Nix (ignore for now the fact that the former is FCC 
and the latter, BCC in the pure metallic state). The valence electron charge 
density of the alloy is n, = 8(1 - x )  + l o x ,  so as Ni content increases, the 
Fermi level is assumed to move up through the rigid, unshifted band structure 
as shown in Figure 5.6. 

The magnetic moment p, per atom of an alloy is given by the spin 
imbalance, p, = (nT - nl)p,, where nT and n1 are the spinup and spindown 

Density of States 

bcc f c c  Simple Model . 

Figure 5.5 Representation of spin-resolved state densities in FCC and BCC metals 
with Fermi levels located at energies appropriate for Fe and Ni, respectively, and right, 
a simplified transition metal density of states model. 
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Figure 5.6 Simple valence band pictures appropriate to iron (left), nickel (right), and 
iron-nickel (center) alloys. See text for shortcomings of such a model. 

band populations. In transition metal alloys, the net spin imbalance is due 
mostly to the d electrons (core electrons and s electrons are not as strongly 
polarized as the d electrons). Thus 

where the nil are the d subband populations. Generally, both ni and nf, can 
vary on alloying. However, when the Fermi energy lies above the top of the 
spinup band (such alloys are called strong ferromagnets; Fig. 5.6, right), the 
magnetic moment per atom may be simply calculated. For such strong 
ferromagnets, ni = 5, so from Eq. (5.7), ,urn = (5 - nf,)pB. Because nf, = n, - 5, 
where n, = nl + ni,  it follows that 

Clm = (10 - n d ) ~ ~  (5.8) 

For strong ferromagnets, this equation is a straight line with slope -1, 
adequately describing the data on the RHS of the Slater-Pauling curve. (Ithas 
b ~ a s s u m e d o ~ a ~ ~ e & c ~ o ~ s ~ c _ c c _ c u ~ ~ n g ~ ? ? _ e e n n o n m a g n e  tic 
4s states remains constanLwith com~osition.) Equation (5.8) explains why the 
average moment of cobalt should be so close t ~ i , T J h ~ ~ ~ f ~ . e ; I l a v e  the 
same valence electron --- concentration --- ---. and thus about the same value of n,. 
Further, this model explains the observation of nonintegral average magnetic __-- - ------ 
moments-in 3d alloys.~Also, it could be argued that the Slater-Pauling curve 
peaks at 2 s f i i r  BCC alloys because the F e m i  lev_el-isstable when it 
coincides with the density of states minimum near thecenter_ of the BCC -- - - - - -- -- - - - - - - -- - - - 
minority spin band (Fig. 5.5) and the majority 37 band is full (n, = 7.5). For 
lower d electron concentration than 7.5, majority as well as minority states are 
empty and pm decreases with decreasing n,. When both spin subbands have 
empty states, the alloy is referred to as a weak ferromagnet. 

An alternate form of Eq. (5.8) often found in the literature can be simply 
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derived. The number of d electrons in the alloy A,-,Ex is given by 

A B n:l'oY = (1 - x)n, + xn, 

If the atomic number of species B differs from that of A by AZ, then 
nf = nf + AZ. Thus 

n;"OY = (1 - x)nf + x(nf + AZ) = nf + x AZ 

When this result is used in place of n, in Eq. (5.8), the alloy moment is given by 

alloy - 
,urn - (10 - nf  - xAZ),uB 

or, noting that 110 - nfi= ,uhOst 
p 

alloy - 
m - Phost - x A Z  PB 

This equation says that the magnetic moment per average atom in a strong 
ferromagnetic alloy, A,-,B,, differs from that of the host by an amount 
proportional to the atomic number difference of B relative to A. The rigid-band 
model does not apply _t-o _weak ferromagnetic alloys because then it i s  not 
simple to determine into which band the imp-urity electrons go. 

The rigid-band approximation should obtain for only small concentrations 
(c << 1) of impurities that weakly perturb the periodic potential of the matrix 
(IAZI = 1). Nevertheless, this model affords a simple explanation for the 
compositional dependence of pm in strong ferromagnetic alloys over broad 
concentration ranges. For example, in Ni, dilute Fe, or Co additions, A Z  = - 2 
and - 1, respectively, increase the magnetic moment (Fig. 5.1). The rigid-band 
approximation should fail for IAZI 3 2 as is the case for Mn, Cr, V, and in Co 
or in Ni. Figure 5.1 shows that many of these substitutions decrease the 
average moment even though AZ < 0. 

The rigid-band model is naive because the band structure and the shape of 
the state density curve of most alloys does change with alloy composition as 
suggested in Figure 5.5. Another problem with the rigid-band model is that the 
atomic magnetic moments are known from neutron scattering data to be 
different on different species in a given alloy, and to be independent of 
composition over fairly wide composition ranges in some cases. Figure 5.7 is a 
collection of site-resolved moments in 3d alloys collected from various sources. 
Note that upon alloying Co in BCC Fe, the Fe moment increases sharply while 
the Co moment remains constant at about 1 . 7 ~ ~ ~ .  The average moments of 
these alloys, measured, for example, by magnetometry, are simply linear 
combinations of the distinct elemental moments. 

Another shortcoming of the rigid-band model is the fact that the number of 
conduction electrons per atom is experimentally observed to vary across the 
Slater-Pauling curve. For example, the number of 4s electrons is about 0.6 for 
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Figure 5.7 Local moments on Fe, Co, and Ni sites for FeNi, FeCo, and CoNi alloys 
as determined by neutron scattering measurements compiled from Collins and Wheeler 
(1963) and Collins and Forsyth (1963). 

Ni, about 0.95 for iron, and about 1.0 for elements to the left of Fe in the 3d 
period. Thus. the 3d states must be more stable (lower energy) relative to the 
4s conduction states toward the right of the transition series. (The Ni core 
potential is stronger than that of Fe). The resulting stabilization of the 3d band 
of late T species makes them more atomic-like and more localized, and hence 
they exhibit a higher density of states compared to early T species. This relative 
shift of different features in the band structure is not explained by the 
rigid-band model; if it were accounted for, it should lead to a better model. 
Band shifting-ects should be most significant when the atomic number of the 
s~c i_es  jnvolved differ-sig~ificanjy~ th++J-i?,-when IAZl > 2. The relative energy 
of ---- band features -- associated with -- - - - different --- species - -  in -- an alloy is descriGd in the 
dilute - --- alloy limit .---- by the-virtual bound-state model and in the concentrated 
alloy limit by the split-band model. T now discussed. 

5.3 VIRTUAL BOUND STATES AND THE SPLIT-BAND MODEL 

It may be asked why the 3d states are found at higher energies than the bottom 
of the 4s conduction band when the 3d wavefunctions are more localized, more 
atomic-like than the 4s states? The answer lies in the form of the potential in 
the radial part of Schrodinger's equation [Eq. (4A.16)]. The orbital contribu- 
tion, +h21(l + 1)/2mr2, to the atomic potential energy, -Ze/(4ne0r), is a 
rotational kinetic energy (associated with a centrifugal force) that may raise the 
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energy of an otherwise bound state above the muffin tin potential of the solid. 
When this happens, the state is called a virtual bound state (VBS). A 3d state 
in a pure transition metal is virtually bound in the sense that it lies above the 
muffin tin zero, in the continuum of conduction electron states, but its 
amplitude is enhanced over the atomic sites; it may be thought of as localized 
periodically, although, strictly speaking, it is a scattering resonance. It would 
be a bound state were it to have <L2) = 0. This effect can be rationalized also 
in terms of the form of the 3d and 4s wavefunctions. The former are 
concentrated radially in a relatively narrow shell about the nucleus and have, 
therefore, a fairly well defined range of energies over which they can be found; 
the latter can be found over a greater range of r values, causing them to have 
energies that range from below the 3d energy to above it. 

A VBS in the impurity sense is similar to a 3d state but has peak amplitude 
only at the impurity site; that is, it breaks the periodicity of the host potential. 
Figure 5.8a shows the potential and schematic VBS, and Figure 5.8b depicts 
the density of states for a true bound impurity state and a VBS (the VBS may 
lie above or below E,). Friedel (1958) developed these concepts to explain 
many of the physical properties of magnetic alloys containing dilute magnetic 
species. 

Friedel's VBS model is useful in accounting for the sharply decreasing 
moments of Co- or Ni-base alloys containing light ( A 2  < -2) transition metal 
solutes. According to this model, a fivefold-degenerate 3d virtual bound state 
located near the impurity is lifted out of the 3d band because of its repulsive 
potential. This VBS is exchange split to spinup and spindown states. If the 
majority-spin VBS remains below the Fermi level, then the magnetic solute 
affects the electronic properties only because of the difference of its 3d4 
population relative to that of the host [as expressed in Eqs. (5.7) and (5.9)]; as 
long as nf, decreases as a result of the impurity, the moment increases. If the 
impurity potential is sufficiently repulsive to move also the majority-spin VBS 
above the Fermi level, then Eq. (5.9) must be modified. Five 3d electrons per 
impurity atom will be transferred from the 3 4  (moment reduced by 5xpB) to 

Figure 5.8 (a)  Schematic representation of a state above the "muffin tin" potential that 
is virtually bound by its angular momentum; (b) the effects of a VBS on an otherwise 
free electron DOS. 
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the host 3HL states Qm-aaorne~at reduced by another Sxge,): the allay magnetic 
moment is reduced by lop, in addition to the change due to the vajence 
electron difference [-AZ in Eq. (5.91. Thus, for suficiently Pight magnetic 
metal solutes, in the VBS approximation, Eq. (5.9) becomes 

This equation suggests that the lighter the transition metal substituent (more 
negative AZ) in a strong ferromagnetic host, the less should be the moment 
suppression. This behavior is followed more for Ni-base alloys than for 
Co-base alloys (Fig. 5.1). 

The potential that gives rise to the virtual bound state is clearly localized at 
the impurity atom. The wavefunctions of the electrons associated with the VBS 
extend into the matrix with a range that decreases with increasing density of 
states at E,. Holes in the virtual bound state, therefore, give rise to a magnetic 
moment identified with the impurity site, but not necessarily localized there to 
the same extent that the host moment is localized. Charge displaced from the 
VBS may enhance the impurity moment at the expense of the moments in the 
surrounding matrix. 

As an illustration of virtual bound states, Figure 5.9 depicts that part of the 
electronic state density that is localized near the impurity for (a)  V impurities 
in Ni, (b) Fe impurities in Ni, and (c)  Ni impurities in Fe (Dederichs et al. 
8991). In the first case most of the density of both spinup and spindown states 
of the V impurity lie above the Fermi level while some amplitude (resonance 
with the lower lying Ni states) occurs below E,. For dilute Fe in Wi, mostly 
the minority-spin states of Fe appear above E, while the majority-spin states 
appear below E,. For Ni impurities in Fe, most of the Ni states Pie below E, 
while there is a small resonance of the Ni sgindown states with the Fe 
spindown states above E,. 

The impurity atomic number and the energy of the impurity states relative 
to those of the host determine the impurity moment and how it affects that of 
the host. For example, k: Z = 23 (approximately 3d44s1) gives most of its 5 
valence electrons to the lower-lying host d states in its vicinity. From Figure 
5 . 9 ~  it is clear that at the V site, there are more minority-spin states below E,  
than there are majority-spin states. This is because the vanadium VBSs are 
closer in energy to the Ni 3dJ states and hence show more of a resonance with 
them. Thus, at the V site, there exists a negative magnetic moment. Typically, 
early transition metal impurities exhibit a moment that is opposite to that of 
an iron or nickel host; the converse applies for a late transition impurities. 
Figure 5.10, from Dederichs et al. (1991), shows calculated and measured 
impurity moments for dilute 3d elements in iron. Further, the charge displaced 
from the impurity d states also perturbs the host moments in the vicinity of the 
impurity. The net change in iron magnetic moment per impurity atom is shown 
in Figure 5.11 (Dederichs el al. 1991). The stronger suppression of the iron 
moment (Fe is a weak ferromagnet) by earlier 3d impurities, is opposite the 
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Figure 5.9 Spin-resolved, calculated state densities for (a) vanadium impurities in Ni, (b) Fe in Ni, and ( c )  Ni 
in Fe (Dederichs et al. 1991). 
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Figure 5.10 Calculated local moments for 3d and 4d impurities in Fe [full circles, 
Dederichs et al. (1991)l and experimental values [open triangles, Dritter et al. (1989)l. 

3 t n n * V . . # 8 -  

Figure 5.11 Change of magnetization A M  per dilute 3d impurity atom in Fe (De- 
derichs et al. 1991). The triangles are experimental values from Dritter et al. (1989). 
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effect described for strong ferromagnets in Eq. (5.10). It will be seen in Chapter 
15, on transport properties, that these magnetic impurity states also have an 
effect on electrical resistivity that reflects the energy of the VBS relative to E,. 

Some of the concepts of the VBS model are now extended to more 
concentrated alloys, A, _,B, (Z, > 2,). If the energy difference between the 
two sets of states is greater than their average bandwidth [i.e., E, - E, > 
(w, + w,)/2], then the states associated with the A and B sublattices will 
remain distinct in energy (Fig. 5.12). This condition is generally met when the 
atomic numbers of the two species differ by at least 2: IAZI > 2. 

The significance of this band splitting can be seen if by returning to the 
Fe-Ni example used earlier. Figure 5.13 depicts the densities of states for Fe 
(left), Ni (right) and a concentrated Fe-Ni alloy (center). On increasing Ni 
content, the Fermi energy moves down through the upper split band and into 
the band of Ni origin. This is exactly the opposite of what was illustrated in 
the rigid-band model for this system (Fig. 5.6). Because the magnetic moment 
depends on the number of electrons or holes in each band, the consequences 
of the split-band model for the net moment are the same as those for the 
rigid-band model because the number of electrons is the same in either case. 
However, the split-band model provides a qualitative rationale for the different 
moments on each species as observed in Figure 5.7. The lower-lying d states in 
the center panel of Figure 5.13 have lower energy because they tend to be more 
localized at the Ni sites and conversely the higher-energy subband represents 
states more strongly localized at the iron sites. Clearly, then, the split-band 
model for Fe-Ni suggests a much smaller moment at the Ni sites and a larger 
one on at the Fe sites. 

Further, the split-band model contains information about angular momen- 
tum that is missing from the rigid-band model. It is of interest to know alloy 
compositions for which certain properties that depend on spin-orbit interac- 

Figure 5.112 Split-band model for alloy A,_,B, ,  where 2, > 2,. The components of 
the composite 140s can be resolved if AZ > 2. 



Figure 5.13 Left and right panels show schematics of the band structure of Fe and Wi, 
respectively. Center, split-band model for FeNi alloys (cf. Fig. 5.8). 

tion vanish while a material retains a magnetic moment. (The trivial case is 
that (L , )  = 0 when the Ferrni level is outside the d band, but then there is no 
magnetic moment.) Does (k,) ever vanish when a material retains a magnetic 
moment? Ht is known from quantum mechanics of atomic spectra that when 
the degeneracy of a set of levels is lifted, the new manifolds take on new 
quantum numbers and (L,) = 0 for a filled manifold (e.g., the fivefold 
degenerate d levels split into e, and t,, levels in octahedral symmetry; the t,, 
levels are characterized by rn, = 0, +I ,  so when this triplet is fully occupied, 
{E,) = 0). The split-band model shows us just where to find (L,) = O in a d 
band even though there may be some empty d states. 

It is possible to calculate the compositions for which the Fermi level 
coincides with the gap or minimum density of states between two split bands 
for strong ferromagnets (majority bands full). For A, -,Bx and Z,  > Z,, the 
number of d states in the higher-energy minority band is 5(1 - x) and in the 

- lower-energy minority band, 5x. The Fermi level will lie between the two 
minority split bands when the number of holes in the alloy (I - x)h, + xh, is 
equal to the number of states in the higher-energy split band 5(1 - x). The 
number of holes for Ni, Co, and Fe is roughly 0.6, 1.6, and 2.6, so the condition 
for (E , )  = 0 in Fe, -,Nix is 

or x = 0.8. This is the approximate Ni concentration for the famous zero- 
magnetostriction permalloys, which will be covered in Chapter 10. (A more 
accurate counting of s and d electrons shows that n, = 2.8 for Fe, which gives 
x = 0.786, much closer to the zero magnetostriction composition in permalloy.) 

The first direct evidence for split bands came from photoemission data on 
a series of NiCn alloys (Seib and Spicer, 1968). An even sharper resolution of 
split band features is seen in amorphous PdZr and CuZr earlyflate transition 
metal (TE-TL) alloys studied by Ciintherodt's group in Basel using ultraviolet 
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Figure 5.14 Above, density of occupied states in amorphous PdZr determined by 
ultraviolet photoelectron spectroscopy (UPS). [From Moruzzi et al. (1983)l; below, 
calculated state densities for PdZr, (Cu,Au structure) and partial state densities for Pd 
and Zr from this calculation. [From Oelhafen et al. (1979).] 

photoelectron spectroscopy (UPS) (Oelhafen et al. 1979). Figure 5.14 (top 
panel) shows the experimental data for amorphous PdZr (Moruzzi et al. 1983). 
The lower-energy (greater binding energy) feature reflects the chemical stabil- 
ization due to the more attractive core potential at the Pd site compared with 
that at the Zr site. 

This approach forms a conceptual bridge from the virtual bound states of 
transition metal impurities in metallic hosts to a concentrated alloy version of 
this model called the split-band model. Many shortcomings of the rigid-band 
model are remedied by the split-band model which is an extension to 
concentrated alloys of the concepts of virtual bound states used to explain 
many features of dilute alloys. 

5.4 ELECTRONIC STRUCTURE OF TRANSITION METALS 

While it is not necessary here to go into the details of band structure 
calculations for magnetic materials, it is useful to show some representative 
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Figure 5.15 Left, calculated, spin-resolved band structure for BCC Fe (Moruzzi et al. (1979); 
solid lines are spinup bands, dotted lines, spindown. Right, spin-resolved density of states for 
a-Fe: solid line from Moruzzi et al. (1978) dashed line from cluster calculations by Yang et al. 
(1981). 
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results and place them in a materials and property context. It should be 
mentioned that present density functional methods of calculating electronic 
structure are vastly superior to the older linear combination of atomic orbitals 
(LCAO) and tight binding methods in terms of accuracy. Nevertheless, 
considerable physical insight can still be gleaned from the simpler methods. 

Iron and nickel represent two different types of magnetic material in as 
much as the Fermi level cuts across both spin bands in Fe (Fig. 5.15) but lies 
exclusively in the minority-spin band in Ni (Fig. 5.16). Thus while alloying 
additions in Ni typically cause moment changes proportional to concentration 
(simple changes in the number of 3dJ holes), the situation in Fe is more 
complicated. Because the exchange splitting in Fe-like materials is less than the 
energy difference between the top of the d band and E,, they are referred to as 
weak ferromagnets. Conversely in Ni-like materials, E,, > E,,,,, - E, and they 
are referred to as strong ferrimagnets. 

Figure 5.15 shows the band structure of a-Fe calculated by Moruzzi et al. 
(1978). They used a nonrelativistic, density functional within the local-density 
approximation to account for electronic exchange and correlation and a 
muffin-tin approximation for the form of the potential (electronic density is 
spherically symmetric inside the muffin tin radius and constant between these 
spherical regions). The relatively flat (dispersionless) states near E,(E > 
-6eV) are the d states. Note the difference in energy of the spinup and 
spindown d states but the nearly similar energy of the spinup and spindown 
free-electron-like states (E cc k2). 

The density of states (DOS) is represented next to the band structure for the 
two spin states. This shows the nature of the band structure in terms that can 
be compared with the simple band models described earlier in the chapter. The 
Fermi level lies near the top of the 3df band and near the center of the 3dJ 
band. The dashed line in the background shows the DOS determined from self- 
consistent-field (SCF) calculations of molecular orbitals (MOs) on small 
BCC-like Fe clusters (Yang et al. 1981). The sharp energy states calculated for 
clusters have been broadened to reflect what would happen in an extended 
solid. The agreement between these two very different methods of calculating 
electronic structure in metals is reasonable and instructive; the MO calcula- 
tions allow identification of various features in the d-band. 

Figure 5.16 shows the band structure and state densities for FCC Ni. Note 
the difference in shape between the Ni 3d state density and that of Fe which 
shows a clearer separation between the lower energy d states (related to t,, 
MOs) and the higher-energy d states (related to e, MOs). 

Figure 5.17 shows the variation of the valence band parameters across much 
of the 3d series measured relative to the top of the muffin-tin potential. E, is 
the bottom of the conduction band, Ed, and Ed, are the low and high-energy 
limits of the 3d band, and E, is the Fermi energy. Both the 4s and 3d bands 
become more stable, the d band shows significant narrowing and the Fermi 
level generally appears at lower energy, with increasing atomic number. The d 
band splits into spin subbands (dashed lines) for Fe, Co, and Ni. Note the 
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Figure 5.16 Calculated, spin-resolved band structure for FCC Ni. Solid lines are spinup 
bands; dotted lines, spindown (Moruzzi et al., 1978). 
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Figure 5.17 Variation o f  valence band structure across the 3d series f rom vanadium t o  
copper. Energies are measured from the t op  o f  the muff in tin potential. Shown are the 
bot tom o f  the 4s conduction band, the bot tom and top  o f  the 3d band, and the Fermi 
level. T h e  band limits show an  exchange splitting for Fe, Co,  and Ni. [Data adopted 
from calculations b y  Moruzzi et al. (1979) and MacAlister et al. (1975).] 

crossover from weak magnetism (E, <E:, < E:,) to strong magnetism 
(E:, < E, < E:,) between Fe and Co. 

It has long been appreciated that magnetism-especially in 3d alloys-is 
predominantly a local phenomenon determined by the immediate environment 
about potentially magnetic atoms. Hence the importance and success of local 
environment models as reviewed by Kouvel (1969) and used by Niculescu et 
al. (1976) and by Stearns (1981). Although many properties of ferromagnets 
(saturation moment, magnetic anisotropy) can be calculated in the context of 
band theory, it is the dependence of the electronic energy levels on local 
structure, rather than the Bloch nature of the wavefunctions, that is critical. 

Four aspects of short-range order can be identified as important to 
magnetism: the number, type, distance, and symmetry of the nearest neighbors 
about a given site. The dependence of magnetism on these measures of 
short-range order is illustrated in simple terms by the Stoner criterion for the 
existence of a local moment [Eq. (5.1)] or by the molecular field expression for 
the Curie temperature [Eq. 4.21)]: T, = 2J(r)Z .S(S + 1)/3k,. Here J(r) is the 
distance-dependent interatomic exchange integral, 2, is the coordination 
number (presumably by strongly magnetic species) about the transition metal 
T site, S is the atomic spin quantum number, Z(E,) is the Stoner integral 
evaluated at E, reflecting what remains in the solid of intraatomic (Hund's 
rule) exchange, and D(E,) is the electronic density of states at the Fermi 
energy. The number, type, and distance of nearest neighbors enter Eqs. (5.1) and 
(4.21) explicitly through 2, and J(r) and implicitly through D(E,) and Z(E,). 
The symmetry of the nearest-neighbor arrangement affects D(E,) and I@,) by 
changing the degeneracy and hence the distribution of the electronic states. 
Thus local magnetic moment formation is determined by the extent to which 
intraatomic exchange is free to operate. A full moment equal to half the 
population of an orbital can be achieved in some isolated atoms or ions (e.g., 
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pFe3+ = 5pB per FeS+). However, when the energy levels are broadened by 
bond formation to the extent that they overlap, the local magnetic moment is 
reduced (e.g., p,, = 2 . 2 ~ ~  in BCC Fe). The Curie temperature reflects more 
cooperative, interatomic effects [through J(r)Z .I, as well as depending on the 
magnitude of the local moment. 

5.5 MAGNETIC PRESSURE 

This section introduces a concept that illustrates powerfully the implications of 
band filling for physical properties, particularly magnetic moment formation. 

Consider first the p series of diatomic molecules B,, C,, N, O,, and F, 
shown in Figure 5.18. Their molecular orbital ladder of allowed states is shown 
with the n or o symmetry of the orbitals indicated. B, is paramagnetic; the two 
electrons in its 2p-7c bonding orbital have parallel spins. Does that not violate 
what was just proved? No! It was proved that two electrons in a common 
bonding orbital have antiparallel spins. But the 2p-n  bond is doubly degener- 
ate; it arose from p, and p, orbitals and has a capacity of 4, not 2, electrons. 
So the two electrons in the n bond of B, are not forced into the same region 
of space and the Pauli exclusion principle does not come into play. They can 
have parallel spins, and they do. 

The C, molecule completes the filling of the TC bonding state so its net spin 
is zero. W, has a filled 30' molecular orbital, so it also is not magnetic. 
However, 0, has a half-filled, doubly degenerate n* orbital (2 electrons in 4 
states) so the two spins are parallel as for B,. Next is IF, with 4 electrons in a 
degenerate n* orbital. Clearly, F, should not have a paramagnetic moment. 
Finally, Ne completes the series. It is not stabilized by forming a diatomic 
moleule because just as many antibonding (higher-energy) states as bonding 
(lower-energy) states are occupied. That is, it is an inert gas and does not form 
stable molecules, even with itself. 

Diatomic 
Molecule HOMO 

Figure 5.18 Molecular orbital structure (left) for homonuclear 2 p  diatomic molecules; 
right, symmetry of highest occupied molecular orbital (HOMO) in each molecule. 
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The implications of the electronic structure of this series of molecules for 
physical properties (Fig. 5.19) is now considered. Note that as the six hybrid 
orbitals fill, the molecules first become more stable (valence electrons are 
occupying states of energy lower than the average for the manifold) then less 
stable (higher-energy states are now occupied). This is reflected in the bond 
length and in the stiffness of these molecules. 

To understand these trends, one must consider the energies of the states 
occupied by the electrons in the molecules relative to their energies in the 
noninteracting atoms (Fig. 5.18). For early members of this p series, bonding 
states near the bottom of the MO manifold fill first; this constitutes a decrease 
in energy for these electrons relative to their energies in the free atoms. This 
accounts for the dramatic decrease in interatomic volume and a concomitant 
increase in stability and stiffness in the first half of the series. The occupation 
of antibonding states in the second half of the series cancels the energy 
stabilization gained in the first half, and the trends reverse. 

A similar but much more impressive trend occurs in filling the d bands in 
the metallic 3d,  4d ,  and 5d transition series as shown in Figure 5.20. The 4d 
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Figure 5.19 Trends in properties of 2 p  diatomic molecules with atomic number of 
bond occupation. Note that stronger bonds are shorter and stiffer (llOkcal/mole = 

4.34eV, 10 mdnes/A = lo3 N/m). [After Pemental and Sprotley (1969).] 
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Figure 5.20 Variation of atomic volume (a )  bulk modulus (b) with atomic number 
across 3d, 4d and 5d series. Stiffest and shortest bonds (strongest bonding) are observed 
near half-filled bands. Two valence given for tin are for the gray and white forms 
(Gschneider 1964). See Janak and Williams (1976) for an explanation of the anomaly 
in moment-bearing 3d metals. 

and 5d series show a nearly perfect parabolic trend as expected for filling a 
band (see Problem 5.5). This trend can be understood from the state densities 
inserted on Figure 5 .20~ and arguments similar to those used to describe the 
results of Figure 5.19. A more quantitative explanation of the parabolic trends 
in Figure 5.20 comes from calculations of the bonding in bulk transition metals 
[Fig. 5.21, after Gelatt et al. (1977)], which show that the variation of 3d 
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Figure 5.20 (Continued) 

electron energy with interatomic distance is such that d electrons provide an 
attractive interatomic force F = - dE/ar. The strongly attractive bonding of 
3d, 4d, and 5d electrons is nowhere more evident than in the data of Figure 
5.20. The conduction electrons, on the other hand, are under compression and 
provide a repulsive interatomic force; this is evident from their potential 
gradient at the equilibrium interatomic spacing in Figure 5.21. These two 
factors balance each other at the equilibrium bulk atomic spacing so that the 
total energy is a minimum at r,. 

There is another important feature of Figure 5.20 that bears directly on 
magnetic moment formation. Anomalies are observed in both interatomic 
distance and elastic stiffness near the middle 01 the 3d series for the moment- 
bearing elements: Cr, Mn, Fe, Co, and Ni. These anomalies give an important 
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Figure 5.21 Variation with interatomic spacing (Weigner-Seitz radius, R,,) of the 
energy s and d electrons and of total, cohesive energy for Cu and Ti. The open circles 
are the calculated energy minima and the crosses mark the experimental values. 
[Adapted from Gelatt et al. (1977).] 

insight into the kinetic-energy cost of forming a magnetic moment in a solid. 
Magnetic moments are known to form on atoms in the 3d series metals Cr, 
Mn, Fe, Co, and Ni. [In the first two, these moments order antiferromagneti- 
cally and in the latter three species, the moments order ferromagnetically.] The 
average kinetic energy of the d electrons is given by 
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where f (E) is the Fermi-Dirac distribution function and Z(E) is the density of 
states. The value of <E,) increases when there is a spin imbalance (to partially 
satisfy Hund's rule) because more electrons now find themselves in states 
farther from the bottom of the spinup band. Just as increased kinetic energy in 
a gas causes expansion, so, too, in metals, the kinetic-energy increase due to 
moment formation causes an increase in atomic volume. In terms of the results 
in Figure 5.21, the increased kinetic energy of the d electrons when they are 
exchange split, raises the d-electron energy curve near r,. This increase in E(r,) 
decreases its slope, which is responsible for the attractive part of the potential. 
As a result, the material expands. The forces accompanying magnetic moment 
formation are tremendous as might be expected for Coulomb interactions. 
Moment formation leads to a giant internal pressure equivalent to several 
megabars! Note the concomitant softening of the interatomic pair potential 
(bulk modulus Fig. 5.20b) as atomic volume increases for these metals relative 
to the parabolic trend of the 4d and 5d series where magnetic moments do not 
form. From Figure 5.20, it can be seen that Mn shows an anomalous magnetic 
expansion of order lo%! The need to accommodate such an expansion drives 
magnetic iron from what would ordinarily be its stable low-temperature phase, 
FCC, to the BCC structure that it is observed to assume below 912°C. Above 
this temperature iron reverts to its nonmagnetic, stable low-temperature phase, 
FCC. (In most materials, the open BCC structure normally appears only at 
elevated temperatures where entropy demands the excess volume the BCC 
structure provides. In fact, iron naturally reverts to the BCC structure above 
its FCC temperature range.) 

It is important to ask whether these volume and stiffness anomalies vanish at 
the Curie temperature where long-range magnetic order vanishes. Or you might 
ask why Fe assumes the BCC structure up to 1600°C (presumably stabilized by 
its magnetic moment) when its Curie temperature is 770°C. It is known that 
thermal expansion and elastic constants show anomalies at T, (see Chapter 7); 
are these Curie temperatures anomalies related to the magnetic expansion in 
Figure 5.20? Thermal expansion anomalies at T, amount to strain changes of 
about lop4. This is much smaller than the expansions of several percent 
observed in Figure 5.20 for the magnetic transition metals at zero Kelvin. 
Thermal expansion anomalies near T, erase only a small fraction of the excess 
volume that is a consequence of moment formation. This suggests that while 
long-range order vanishes at T,, a local moment may still persist to tempera- 
tures well above Tc. There is, in fact, direct evidence (from neutron scattering 
and from photoemission) that local magnetic moments persist above T,. 

Photoemission data indicate that the exchange splitting between spinup and 
spindown bands in a magnetic metal does not go to zero at T,. T, is the 
temperature above which long-range order vanishes; local magnetic moments 
still exist above T,. Electronic band structure reflects relatively local structural 
aspects of a metal, particularly for d states. (Because of the short screening 
lengths in metals, a given atom is little affected by what goes on more than a 
few lattice constants away.) The existence of local moments above T, is also 
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demonstrated directly by neutron scattering studies. The persistence off 8 local 
moment above 'g, implies a digerent energy for the spinup and spindown states 
there. Thus, intraatomic exchange persists above temperatures for which 
interatomic exchange is weakening. It is this intraatomic exchange energy 
above the Curie temperature that is responsible for the local moment on the a 
phase of Fe, the phase with more volume per Fe atom. This is the energy that 
stabilizes BCC Fe relative to FCC iron. 

5.6 lNDURECT EXCHANGE 

In rare-earth metals and alloys, the magnetic moments are determined by the 
partial filling of the highly localized 4 f  transition states. The valence states are 
5d16s2. Many rare-earth metals and alloys order magnetically (ferromagnetism, 
antiferromagnetism, and/or helimagnetism) up to temperatures of several 
hundred degrees Kelvin. How is the magnetic moment on one rare-earth metal 
site coupled to that on another site? Even though Meisenberg exchange is 
defined for localized wavefunctions, it requires some electron hopping, or 
exchange from site to site. The probability for an electron to hop from a 4 f  
state at one site to that at another site is too small for Heisenberg exchange to 
operate here. (The radius of the 4f wavefunction is only about 10% of an 
interatomic spacing.) 

It t~arns out that the conduction electrons mediate the exchange interaction. 
The 4 f n  moment at one site polarizes the conduction electrons there (6s 
wavefunctions have appreciable amplitude at small r). These weakly polarized 
conduction electrons then communicate the spin information to other sites 
because their wavefunctions are extended. This form of indirect exchange is 
usually described by a model developed independently by Wuderman and 
Kittel and b y  Masuya and Yosida (Kittel, 1963, 1948) to describe the coupling 
of nuclear spins to s-election spins by a contact interaction. This model is 
therefore often referred to as the RKKY model. 

When an impurity is placed in an electron gas, the background charge is 
redistributed to neutralize the impurity charge. The electron gas effectively 
forms a Fourier series of charge oscillations that sum to cancel the impurity 
charge. However, the electron gas has a Fermi energy, h2k:/2rn, which places 
a lower limit on the wavelength of the oscillations that can be called on to 
cancel the impurity charge. Thus, the Fourier series is truncated and the 
electron gas is left with oscillations characterized by k 3 k, that are uncom- 
pensated. These are called Friedel oscillations. Similarly, oscillations in the spin 
density remain near a magnetic impurity if k$ # kb for the electron gas. 

It will be clear after studying the electronic charge distribution about an 
impurity in a metal (Friedel oscillations; Kittel, 1963) that the spin density 
about an impurity can be expressed as 
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where 

and ni is the concentration of electrons of one spin. This equation describes a 
spin density that shows damped oscillations with distance from its source. The 
period of the oscillations lengthens for smaller conduction electron density 
because k, oc ( ~ T c ~ N / V ) ~ / ~ .  The spin polarization pf - pJ is proportional to 
F(x), and at large x it may be expressed as 

The impurity potential that gives rise to this oscillating spin polarization is a 
localized moment si whose spin-dependent exchange interaction with the 
conduction electrons J affects spinup and spindown electrons differently. 
Because these oscillations (Fig. 5.22) carry spin information away from the 
local moment, they allow it to interact with other moments beyond the range 
of direct exchange interactions. The exchange Hamiltonian for coupling of this 
spin polarization with a second spin S j  is 

This model describes conduction-electron-mediated, indirect exchange interac- 
tions. (It was originally formulated to describe the nuclear hyperfine interac- 

Figure 5.22 Variation of the RKKY oscillatory function F(x) showing how the sign of 
the indirect exchange interaction can change for atoms at different distances from a 
given site in a material. 



tion between an s electron and a nuclear spin). It is very well suited to 
describing the magnetic properties of rare-earth metals and alloys; the highly 
localized nature of the 4f orbitals precludes an explanation. of their Curie 
temperatures on the basis of direct exchange. Rare-earth metals have higher 
Curie temperatures than do rare-earth oxides. Because of the oscillations in 
spin density with distance from a local moment, the RKKY interaction can 
give rise to ferromagnetic, antiferrornagnetic, or helimagnetic spin orderings. 
The conduction electrons are spin-polarized with an amplitude that oscillates 
with different periods in different crystallographic directions. Neighbors at 
different distances may experience different signs of exchange coupling. This 
coupling is weaker than the interatomic exchange coupling in 3d metals and 
weaker than the superexchange, in 3d magnetic oxides. 

Exchange Mechanisms in iron Heisenberg-like exchange, -2J(Si. Sj), is 
not responsible for interatomic coupling of magnetic moments in iron. The 3d 
electrons have a small spatial extension (about half of the interatomic distance). 
The free electron specific heat shows only a small magnetic anomaly. Neutron 
scattering shows the iron moment to be highly localized and to persist above 
T,. Despite this, the 3d electrons do hybridize partially with the conduction 
bands. The question is then open as to the mechanism of interatomic exchange 
coupling in 3d metals. 

Stearns (1974) noticed that the magnetic moment on iron was unperturbed 
by silicon additions up to 6 wt%. The observed alloy moment decrease was due 
to simple dilution alone. If the silicon atoms were randomly distributed over 
the sites in the BCC iron lattice, there would be a known probability of any 
given iron atom having a silicon neighbor in its first, second, third, and so on 
coordination shells (having 6, 8, 12, 24,. . . sites per shell). Some of the silicon 
valence electrons would be expected to enter the conduction (4s) band where 
they would dilute the s-electron spin polarization (coming from iron s elec- 
trons). Basically a silicon atom behaves like a hole in the iron lattice, 
specifically, a deficit in the s-electron spon polarization. A sensitive measure of 
the s-electron polarization is the hyperfine field at the nucleus which can be 
measured by 57Fe Mossbauer effect spectroscopy. 

Stearns chose a series of disordered Fe,-,Six alloys for investigation. 
The six peaks of the Mossbauer absorption spectra showed shifts to weaker 
Hhf  with increasing silicon content. Analysis of the lineshapes of the outer- 
most absorption peaks allowed an assignment of a hyperfine field contribu- 
tion to each coordination shell. The strongest contribution to conduction 
electron polarization at a Fe site was found to arise from the first two 
coordination shells (14 sites), and it is negative. Thus the conduction elec- 
trons are spin-polarized opposite to the spin of a central atom out to just 
beyond the second neighbors. They cannot account for the ferromagnet- 
ism of iron. This negative conduction electron spin polarization can be 
understood to be a consequence of s-d scattering. Conduction electrons may 
be scattered into vacant 3d states of the same spin and energy. There are 
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more 3d spindown holes so conduction electrons tend to have negative 
polarization. 

Stearns (1976) proposed an explanation for the strong exchange coupling in 
terms of indirect coupling mediated by the small fraction of the d electrons that 
are itinerant (due to their mixing with the s band). Such electrons would be 
more polarizable and, as they are fewer in number, give rise to longer range 
oscillations than for conduction electrons. This might leave the nearest neigh- 
bors inside the first crossover in the RKKY function. Stearns used this 
argument and the calculated band structure of iron to argue that 5-8% of the 
seven d electrons in metallic iron (i.e., half a 3d electron per atom) are 
sufficiently itinerant to mediate the interatomic exchange by an RKKY-like 
mechanism. This model, although controversial, remains a viable candidate for 
explaining the mystery of long-range magnetic ordering in iron. 

5.7 SUMMARY 

The magnetic moment variation with valence electron concentration in transi- 
tion metal alloys shows a striking regularity. Early explanations based on the 
rigid-band model are deceptive in their simplicity. This model overlooks changes 
in electronic structure with composition and even crystal structure and is unable 
to account for the difference in local moment at different sites in an alloy. 

A partial improvement to the rigid-band model begins with a treatment of 
dilute impurities in a transition metal matrix, the VBS model. Extension of the 
dilute alloy concepts to more concentrated alloys leads to the split-band model. 
This model accounts for moment differences from site in alloys and for the 
anomalous branches on the Slater-Pauling curve. Some representative band 
structures of magnetic materials were interpreted. 

The concepts of the band theory of magnetism afford an understanding of 
elegant sets of data showing variations in modulus and atomic volume in each 
of the d-transition series. The anomalous compliance and increased atomic 
volume of the species which bear a local magnetic moment was explained as a 
consequence of a giant internal pressure of the d-electron gas. This pressure is 
due to the promotion of minority spin electrons to higher-kinetic energy, 
spinup states. 

The mechanism of conduction-electron-mediated exchange was described in 
terms of the RKKY model of spin oscillations about a perturbation. 

PROBLEMS 

5.1 Calculate the electron density needed to produce the first crossover in 
Figure 5.21. What would the charge density have to be for the first 
crossover to occur between the second and third nearest neighbors of 
iron (a,, = 2.86 
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Describe and contrast the valence electronic structure and magnetic 
characteristics of (a) free iron atoms, (b) atoms in metallic iron, and (el 
iron ions in magnetic Fe,O,. 

Explain what happens as copper is alloyed with nickel, Nil-,Cu,. 
Describe the valence electronic structure and the magnetic moment in 
terms of a simple band model. Be quantitative where possible. 

Calculate the effect on the total energy of an alloy as states in a flat d 
band are filled. 

Verify Eqs. (5.4) and (5.9). 

(a) Explain why ferromagnetism is observed in nickel (4s 3d)1° but not 
in titanium (4s 3 ~ i ) ~ .  

(b) Explain why ferromagnetism is observed in the metals of the 3d 
transition series and not in the metals of the 3 p  series (e.g., Al). 

You are running a specialty steel operation. You want to improve the 
corrosion resistance of a magnetic iron alloy but do not want the 
saturation magnetization to decrease too much. While talking in your 
office to an old classmate, you receive a phone call that you can buy 
several tons of either Mg or Ti at a bargain price. All you know is that 
Mg has a positive heat of formation with iron (+ 20 kJ/mol) and Ti has 
a negative heat of formation ( - 26 kJ/mol). 
(a) If both are equally effective in improving corrosion resistance, which 

would you buy? 
(b) Justify your choice. 

(a) Use your understanding of the electronic structure of metals to 
explain the general parabolic trend and the magnetic exceptions to 
that trend shown in Figures. 5.20a,b. While answering this question, 
be sure to sketch representative electronic state densities, explain the 
relation between atomic volume and bulk modulus, and discuss the 
relation between electronic energy and atomic volume, 

(b) Estimate the fractional volume change in Fe due to its magnetic 
moment and give a numerical value for the pressure needed to cause 
such a volume change. Discuss the possible relation of this effect to 
the structure Fe assumes at room temperature. 

(a) Calculate the dipole energy of a spin $ particle in the field of another 
spin $ particle 2 A  away. Assuming they are free to rotate, what 
relative alignment will they assume? 

(b) Calculate the Coulomb energy of two electrons 2 f$ apart. 
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(c) Estimate the Coulomb integral 

and the exchange integral 

5.10 Ferromagnetic metals: 
(a) Explain why ferromagnetism is observed in nickel and not in 

aluminum. 

(b) Explain why ferromagnetism is observed in the second half of the 3d 
transition series and not in the first half. 
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CHAPTER 6 

MAGNETIC ANISOTROPY 

When a physical property of a material is a function of direction, that property 
is said to exhibit anisotropy. The preference for the magnetization to lie in a 
particular direction in a sample is called magnetic anisotropy. A parameter that 
describes the magnetization process could be the permeability or the suscepti- 
bility. Thus, in general, these parameters are functions of the direction in which 
the field is applied to the material: p = p(4,d) or x = ~ ( 0 , + ) .  Magnetic aniso- 
tropy can have its origin in sample shape, crystal symmetry, stress, or directed 
atomic pair ordering. Shape anisotropy was covered in Chapter 2. Attention is 
focused here on magnetocrystalline anisotropy. The conventional observations 
that define magnetocrystalline anisotropy in Fe, Co, and Ni are first described. 
The theoretical treatment of magnetic anisotropy is then described in three 
stages, moving from a purely phenomenological, macroscopic picture, to 
microscopic phenomenology, and finally, to a discussion of the physical origin 
of magnetocrystalline anisotropy. Throughout, experimental results are in- 
cluded to illustrate the phenomena. We conclude the chapter with a survey of 
experimental techniques for measuring anisotropy. An appendix is included to 
outline a simple implementation of group theory in this context. 

(Other properties of magnetic materials can also show anisotropy. These 
include the electrical resistivity (Chapter 16), elastic properties (Chapter 7) and, 
in certain thin films, the magnetic ordering temperature). 

6.1 OBSERVATIONS 

Figure 6.1 shows the most obvious experimental manifestations of magnetic 
anisotropy in single crystals of Fe, Ni, and Co. In BCC Fe, the magnetization 
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H (Oe) H (Oe) H( kOe) 
(a (b) (c )  

Figure 6.1 Crystal structure showing easy and hard magnetization directions for Fe(a), 
Ni(b), and Co(c), above. Respective magnetization curves, below. 

process is said to be easy in the <loo) directions and hard in the < I l l )  
directions; that is, the field needed to magnetize iron to saturation is smaller 
in the <loo) directions than in any others. In FCC Ni, the case is just the 
opposite: < I l l )  directions are easy, (100) hard, and the fields required for 
saturation in the hard directions are smaller for Ni than for Fe. Cobalt is 
hexagonal, and its easy direction of magnetization is the c axis; saturating the 
sample in the basal plane is very difficult, more than an order of magnitude 
harder than in the < I l l )  directions in Fe. Note the different scale for the cobalt 
field axis. 

After saturation, reduction of the field to zero leaves more of the magnetiz- 
ation remaining in the direction in which the field had been applied if it is an 
easy as opposed to a hard direction. In the absence of an external field, the 
magnetization prefers to lie along the easy directions. Also note that the 
magnetization remaining at H = 0, called the remanence, is nonzero for Fe and 
Ni magnetized in hard directions whereas it is zero for Co magnetized in a hard 
direction. 

A quantitative measure of the strength of the magnetocrystalline (or any 
other) anisotropy is the field, Ha, needed to saturate the magnetization in the 
hard direction. This field is called the anisotropy field. (It will be seen in 
Chapter 9 that Ha is also the parameter that governs small rotations of the 
magnetization from a uniaxial easy direction.) The energy per unit volume 
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needed to saturate a material in a particular direction is given by a generaliz- 
ation of Eq. (2.33): 

1st order 2 

The first-order expressions above apply to magnetization curves linear in the 
field. The sloped portions of the magnetization curves in Figure 6.1 suggest a 
process of rotating the magnetization from an easier direction into a harder 
direction with increasing field in the hard direction. Magnetic anisotropy 
energy density is the area between the magnetization curves in different 
crystallographic directions. 

The simplest case to consider is that of uniaxial anisotropy, as, for example, 
in cobalt (Fig. 6.1~). The uniaxial anisotropy energy density is the energy 
needed to saturate the magnetization in the basal plane minus that needed to 
saturate along the c axis (which is essentially zero, by comparison). From 
Figure 6.lc, K ,  is about 1400 x 700012 Oe.emu/cm3 = 4.9 x lo6 erg/cm3 (or 
4.9 x lo5 J/m3), using an average straight line through the curved magnetiz- 
ation-field behavior. This energy density is 20% greater than the measured 
value of K ,  = 4.1 x SO5 J/m3. (It should be clear eventually that this 20% 
difference is not an error.) To calculate the anisotropy in SI units from the data 
in Figure 6.1, the magnetization must be converted to flux density in tesla 
(poM = 47cM x SO-4) and the field axis converted to A/m (H = Oe x 80). 
Thus, K, = 1.76 x 5.6 x 105/2 = 4.8 x lo5 J/m3. When the strength of the 
applied field is decreased, the magnetic moment reverts to c-axis orientation 
and its component in the hard direction is zero. 

For the anisotropy energy of iron and nickel, more care must be taken in 
identifying two directions between which the anisotropy energy is defined. If a 
(110) disk-shaped sample were cut from a cubic material as shown in Figure 
6.2, all three principal cubic directions would be found in one plane. 

bcc I R O N  

Figme 6.2 A (110) sample cut from a cubic crystal contains all three major symmetry 
directions: {100), {110), and (1 11). 



By measuring the magwetiaation in the plane of such a (110) iron disk as a 
functisaa of angle at constant field, data similar to those depicted in Figure 6.3 
would be collected. It clearly shows that the magnetization below saturation is 
anisotropic. This curve is really a representation of the negative of the magnetic 
potential energy of the system U/V= - M - B .  Multiplication of the M(H)  
values by - B  would give absolute minima at 6' = 0" and 180" (<BOO) 
directions) and local minima at 90" and 270" (<I 18) directions). These energy 
minima are easy directions of magnetization. 

Consider the three following consequences of magnetic anisotropy. 

1. Square or rectangular samples of iron cut to explore (001) faces have 
domain patterns (when demagnetized) as shown in Figure 6.4. The net 
magnetization is zero but within each domain M points along a crystallo- 
graphic easy direction. 

2. Consider a spherical sample of Ni saturated along a hard [BOO] direction. 
As the field decreases below H ,  sz 230 Oe (Fig. &I), some of the magnetization 
rotates away from the [BOO] direction. It is not immediately clear whether it 
goes toward the four adjacent (110) directions or the four nearest <Ill) 
directions. (See Problem 6.3.) As H decreases below about 15OOe, the 
magnetization rotates toward the four easy < 1 b  I) directions that have positive 
components along [I1001 because that orientation maximizes MI,, and thus 
minimizes the energy. When H = 0, all the moments lie in (111) directions and 
the remenance is reduced to about 1 / 4 3  = 0.573 of M s .  Contrast this with the 
behavior of cobalt where the hard axis remanence is zero. 

3. Finally, a polycrystalline sample of iron may show an M-H curve like 
that depicted in Figure 6.5 for the field applied in any direction (shape effects 

0 ( degrees f rom 6 1001 ) 

Figure 6.3 Schematic of magnetization for iron measured in a field of about 80 Oe 
as a function of angle from the [OOl] direction of a sample such as that shown in 
Figure 6.2. 
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Figure 6.4 Schematic of domain magnetization directions for iron crystals cut along 
the (100) directions. The picture frame geometry shown at right was used for early 
studies of 180" domain wall motion. 

Internal Field (Oe) Internal Field. (Oe) 
(a) (b) 

Figure 6.5 Magnetization versus internal field (shape effects removed) for polycrystal- 
line iron: (a) in moderate fields; (b) in low fields. 

removed). Even though the magnetization process is isotropic in the material, 
saturation is not achieved easily. Note that the low-field loop .(right) appears 
to approach a "technical saturation" well below the true value of about 
1740 emu/cm3. In polycrystalline materials the ease or difficulty in saturating 
the magnetization in any direction is an average of the single crystal anisot- 
ropies as described later in this chapter and in Chapter 9. The area between 
the M-H curve and the H = 0 and M = M ,  axes gives ( K )  = j wiKidSZ with 
the crystal anisotropies weighted by the number and orientation of the 
symmetry axes of the crystallites. 

6.2 PHENOMENOLOGY OF ANlSOTROPY 

6.2.1 Uniaxial Anisotropy 

Measurements such as those shown in Figure 6.3 on suitably cut crystals of 
cobalt show that there is negligible anisotropy in the basal plane. So, on the 
basis of these data and those in Figure 6.lc, cobalt is described as uniaxial with 
a preference for magnetization along the c axis. Thus, without any consider- 



ation of microscopic mechanisms, it is clear that the free energy of a uniaxial 
magnetic material must depend on the orientation of the magnetization vector 
in a way that minimizes the energy when M lies along the easy axis (absent an 
external field). This contribution to the Gee energy can be visualized as a 
three-dimensional energy surface for the orientation of the magnetization 
vector. The distance from the origin a point on to the surface gives the 
anisotropy energy for magnetization in that direction in the crystal. Hn the case 
of cobalt or other uniaxial crystals (e.g., hexagonal rare earths, barium ferrite, 
or Fe,,Nd,B,), the energy surface has a minimum in the c direction (Fig. 6 . 6 ~ )  
or in the plane normal to the c axis. Figures 6.6a and 6.6b show cubic magnetic 
anisotropy energy surfaces that will be discussed later. For now, attention will 
be focused on uniaxial materials. 

A magnetic material has an energy function that describes exactly what the 
equilibrium orientation of magnetization should be under various conditions 
of field, stress, temperature, and other parameters. There are many different 
ways of approximating this energy function or surface; most of them involve 
series expansions in an appropriately chosen set of basis functions. The uniaxial 
crystal anisotropy energy density is often expressed as a power series of the 
form 

Careful analysis of the magnetization-orientation curves indicates that for 
most purposes it is sufficient to keep only the first three terms: 

u, = K,, + M u ,  sin2% + K,, sin4% + -.. (6.3) 

where Ku0 has no meaning for anisotropic properties because it is independent 
of the orientation of M. In the convention of Eq. (6.31, K, ,  > 0 implies an easy 
axis. 

For cobalt at room temperature, experiments indicate 

K,,  = 4.8 x 105J/m3 and K,, = 1.5 x 105J/m3 cobalt 

The shape of the energy surface for the first two terms in Eq. (6.2), when 
K,, > 0, is an oblate spheroid as shown in Figure 6 . 6 ~ .  When there is no field 
applied, the magnetization seeks the lowest energy orientation on this surface, 
namely, along the + z  axis. The energy surface for a uniaxial material with 
K,, < 0 is a prolate spheroid extended along the z axis and having minimum 
energy in the x-y plane. In zero field, magnetization along any direction in the 
x-y plane is preferred to any magnetization orientation having a component 
out of this plane. 

As suggested above, the simple expansion in Eq. (6.3) is not unique, 
although it is used widely for uniaxial materials. It was pointed out by Callen 



Figure 6.6 First-order anisotropy energy surfaces for iron (a), nickel (b), and cobalt (c) .  Insert shows 
the coordinate system. The length of the radius vector to any point on the surface defines the 
anisotropy energy density in that direction, (0,4). 



and Callen (8960) that errpanding the magnetic anisstropy energy in 
orthogonal, normalized functions, based ow Legendre polynomials, is most 
appropriate: 

where 

The argument a represents the direction cosines of the magnetization. The 
coefficients AT of the spherical harmonics, Y;" are defined so that the poly- 
nomials g,(a) belong to the fully-symmetric representation of the crystal point 
group. The anisotropy coefficients k,  are found more often in the literature on 
rare-earth materials. When these orthonormal polynomials are used it should 
be noted that the anisotropy coefficients take on different values: 

8 k 2 =  -K, , -7K, ,  and k,=K,, 

so while Mu, > 0 implies an easy axis, k2 > 0 implies an easy plane. We can 
now look at the anisotropy of some rare-earth metals. 

For the second half of the rare-earth series where data are available, the 
strength of the anisotropy increases from a very small value at Gd and peaks 
for Tb and Dy (Fig. 6.7). Mo and Er are both hexagonal and show uniaxial 
anisotropy of opposite sign: k2 = + 2.0 x lo7 (easy plane) and -1.2 x lo7 
J/m3 (easy axis) at 4.2K, respectively. Alloys of these two metals show 

Figure 6.7 First anisotropy constant, k ,  across the second half of the rare-earth series 
of metals, k ,  > 0 implies an easy plane. [Values after Rhyne (1972).] 
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intermediate anisotropy with k ,  z 0 for Ho,Erl -, with x = 0.4. At this 
composition the energy surface is nearly spherical. 

In order to describe quantitatively the hard-axis magnetization process in 
uniaxial materials, the Zeeman energy, - po Ms - H = - po M, H sin 8 (8 defined 
as in Figure 6.6), is added to the second-order, uniaxial anisotropy energy of 
Eq. (6.3). The zero-torque condition, -au/a8 = 0, gives 

2KU1 sin 8 cos 8 + 4K,, sin38 cos 8 = M,H cos 8 

Below saturation (cos 8 > 0) both sides may be divided by cos 8 because it is 
not zero. The result, using m = M/M, = sin 8 for the component of magnetiz- 
ation in the field direction, is 

HM, = 2K,, m + 4KU2m3 (6.5) 

This equation describes a magnetization process that includes a higher-order 
term; when K", 0, M(H) saturates, m = 1, at a field Ha = 2Ku1/Ms. This 
equation can be solved analytically (Standard Mathematical Tables, 12th ed., 
CRC Press, Cleveland, OH, 1959) or it is easily graphed on a computer as 
HM, = f (m, m3); see Figure 6.8. The result shows the effect of the K,, term on 
the magnetization process. The linear anisotropy energy density, K,,, is seen 
to be the area inside the triangle; K,, is the added area defined by the curved 
part of the M-H curve (Fig. 6.8). This can be verified quantitatively by 
integrating Eq. (6.5) as shown in Eq. (6.1) to get the total anisotropy energy, 
JH(M)dM = ua = K,, + K,,. 

Figure 6.8 Shaded areas indicate K,, and K,, values. The fine line represents the 
linear magnetization process and the bold line is the result of Eq. (6.5) to second order 
with K,, = 1 and K,, = 0.38 (approximate ratio for Co). 



Earlier in this chapter, the anisotropy energy of cobalt was estimated horn 
Figure 6.1. The result included the effects of M ( H )  curvatme and so was closer 
to K,, + K,, than to K,,. If the area had been taken for the triangle 
extrapolated from the initial linear portion of the M-H curve, a value of K,, 
very close to 4.1 x 10' 9/m3 would have been determined. The remaining area 
enclosed by the M4N) curve is due to K,,.. What describes the energy needed 
to saturate cobalt, K,, or K,, plus K,,? 

6.2.2 Cubic Anisstropy 

The energy surfaces for cubic crystals are not as easy to imagine or construct 
as uniaxial ones. One could conceive an energy surface for Fe with <100) easy 
axes, similar to that shown in Figure 6.6a and try to write a trigonometric 
function for it. Fortunately, there are more rigorous and elegant ways to get 
the correct result. An instructive way is to expand the free energy in powers of 
the direction cosines, a,, a,, and a,, of the magnetization along the three 
coordinate axes and apply symmetry operations to reduce the number of 
independent terms. (Note that ai = mi = Mi/M,.) Of all the possible terms in 
the expansion, only those that leave the energy invariant under the symmetry 
operations of the crystal can be kept. Details can be found in the end Appendix 
or in the references by Nye (1957) or Juretschke (1974) listed at the end of this 
chapter. 

The anisotropy of a cubic system may then be written as 

Using the trigonometric functions of spherical coordinates (8, +), the coeffi- 
cient of K ,  in Eq. (6.6) reduces to 

Examination of this function in the x-y  plane (8 = 90") shows that it does, 
indeed, resemble the appropriate cut through the cubic energy surface in Figure 
6.6a. The second-order term improves the quality of the fit between the model 
and reality. 

The correct cubic expansion in the orthonormal polynomials of Eq. (6.4) is 

u : ~ ~ ~ ~  = k ,  + k,(alai + cycl. - i) 
2 2 2  1 2 2  1 1  + k,[a,a,a, - =(a1a2 + cycl. - 3)-m + ... (6.7) 

For most purposes, it is not necessary to distinguish the cubic constants k,  
and K ,  
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k4 = K, + K, and 12, = K, 

whereas it is always necessary to distinguish k,,  k4 from K,, K ,  in uniaxial 
materials. 

The experimental anisotropy constants for iron are 

K ,  = 4.8 x lo4 and K, = - 1.0 x 104J/m3 iron 

and for nickel 

K ,  = -4.5 x lo3 and K, = -2.3 x 103J/m3 nickel 

at room temperature. 
Figure 6.9 shows the composition dependence of the first cubic anisotropy 

constant for FCC FeNi alloys (a)  and for BCC FeCo alloys (b). The change in 
sign of K ,  signals a change in the first-order energy surface from one like panel 
(a )  to panel (b) in Figure 6.6. Thus, the easy axes change from <loo) to < I l l )  
for more than about 75% Ni in Fe or more than about 45 at% Co. Clearly at 
the point where K ,  changes sign, the energy surface is close to spherical and 
the anisotropy vanishes to first order. At these compositions, it is very easy to 
change the direction of magnetization with an applied field, Ha = 2K,/M, E 0. 
Both of these near-zero anisotropy compositions are technologically impor- 
tant. Iron-nickel alloys, known generically as permalloys, show exceptionally 
soft magnetic properties near the K ,  = 0 composition. Equiatomic FeCo 
alloys, known as permenduvs, show large saturation magnetization and rela- 
tively easy magnetization. See Chapter 13. 

Note that near the Ni3Fe composition the anisotropy depends strongly on 
chemical ordering of the species on the FCC lattice (see Chapter 14). The 
order-disorder transformation at Ni3Fe is from the FCC structure, Fm3m, 
above, to the Cu3Au, Pm-3m, structure below 517°C. In the ordered state (Ni 
atoms on the face-centered positions, Fe on cube corners; simple cubic 
structure), the first cubic anisotropy constant is more negative than it is in the 
disordered state (where every site in the FCC lattice has a 75% chance of being 
occupied by a Ni atom and 25% by Fe). Thus, chemical ordering in this system 
favors (111) magnetization. FeCo also shows an order-disorder transform- 
ation with the BCC structure, B1 (4m3m), stable above, and B2 (Im-3m) stable 
below 730°C. In the FeCo case, ordering favors (100) magnetization. 

Figures 6.10n and 6.10h show the phase diagrams for the FeNi and FeCo 
systems, respectively. In the FeNi system, besides the stable ordered region, 
Ni3Fe, there is a two-phase region below 347°C in which a-Fe can coexist with 
Ni3Fe. Note also the Curie temperatures above this two-phase region. T, for 
the a-Fe and Ni3Fe components are constant over this range but the volume 
fractions of the two phases change across this field. For FeCo, the a' field 
defines the temperature-composition range over which the ordered phase is 
thermodynamically stable. The cobalt-rich stable phase is HCP up to 410°C 
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Figure 6.9 First-order anisotropy constant for (a) FCC NiFe alloys 
and (b)  BCC FeCo alloys (Hall 1959) at room temperature. 

(Bozorth 1993) 
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Figure 6.10 Phase diagrams for FeNi (a) and FeCo (b). (ASM Handbook 1994). 

and FCC above that. Order-disorder transformations also effect magnetostric- 
tion (Chapter 7) and field-induced anisotropy (Chapter 14) in these alloys. 

Table 6.1 lists the anisotropy constants for a variety of magnetic materials. 
Note the sign change in K ,  for Ni from low temperature to room temperature. 
When reading or quoting anisotropy constants, the form of the free energy 
should always be clearly understood. For uniaxial materials, K ,  < 0 (k, > 0) 
implies an easy plane rather than an easy axis. Easy plane uniaxial magnetic 
materials do not make good permanent magnets, easy axis materials may, 
provided K ,  is very large (see Chapter 13). The hexagonal compound SmCo, 
is the basis of many permanent magnets. It shows preferred c-axis magnetiz- 
ation and a very linear hard-axis M-H loop that saturates at room tempera- 
ture at H ,  w 30 kOe. 



3d Metals 

Fe 5.2 x lo5 - 1.8 x 105 4.8 x 105 - 1.0 x lo5 
Co" 7.0 x lo6  1.8 x 106 4.1 x lo6 1.5 x 106 
Ni -12 lo5 3.0 x lo5 -4.5 x lo4 -2 .3  x l o4  
Ni,oFe,, - - - 3  l o 3  - 

Fe50c050 -1.5 x 

4f Metals 

Cd" - 1.2 x 106 +8.0 x lo5 + 1.3 x lo5 - 
Tb" -5.65 x 10' -4.6 x lo7 - - 
DY" -5.5 x los - 5.4 x 107 - 

Er" +1.2 x 10s -3.9 x lo7 - - 

Spinel Fevrites 

Garnets 

Nard Magnets 

"Uniaxial materials are designated with a superscript u and their values K,, and K,,  are listed 
under K ,  and K ,  respectively. The sign convention for the uniaxial materials is based on the sin20 
notation of Eq. (6.2): K ,  > 0 implies an easy axis. Units are erg/cm3; divide these values by 10 to 
get J/m3. 
bDisordered; K ,  = 0 for ordered phase. 
"Net moment canted about 30" from [OOl] toward [110]. 



PHENOMENOLOGY OF ANISOTROPY 193 

Figure 6.11 Magnetization curves observed and calculated at 4K and 290K for 
Nd,Fe,,B. [Adapted from Yamada et al. (1988).] 
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Tetragonal Fel,Nd2B also is an important phase for permanent magnets. It 
shows easy axis anisotropy at room temperature (M along c axis), but below 
135 K a spin reorientation transition leaves the moments of the various sites 
canted about 30" toward the [110] direction. Figure 6.11 shows easy- and 
hard-axis magnetization curves at 4.2 K and at room temperature (Yamada et 
al. 1988). The behavior at room temperature is what would be expected for a 
[OOl] easy-axis magnet: for field applied along [lOO] or [110], a linear 
approach to saturation, p,M, = 1.6T (47-cMS = 16kG), is observed with 
Ha x 90 kOe indicating K ,  = -($)k2 = 4.8 x lo7 erg/cm3. The hard-axis mag- 
netization behavior at 4.2K is different. The discontinuity in the [loo] 
magnetization curve suggests a first-order magnetization reorientation transi- 
tion from the canted orientation to the [loo] direction. This is a field-induced 
manifestation of the transformations observed in zero field at 135 K. Note that 
the magnetization process along [OOl] causes a gradual rotation of the net 
moment toward the c axis while the high value of remanence in this direction 
indicates that the canting leaves the zero-field, net magnetization closer to 
[OOl] than to [loo]. Application of a field along [ l l O ]  gives a gradual (second 
order) magnetization process. These processes can be used to determine the 
shape of the zero-field energy surface. 

Li 
\ 0 I I I 

m 
=L - 

The use of mathematical analysis software affords an instructive view of these 
anisotropy surfaces. The MathematicaB programs used to generate the surfaces in 
Figure 6.6 are listed below. This program uses a, b, and c for the direction cosines 
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and t = 8, f = 4 in the coordinate system of Figure 6.6. The first-order awiso- 
tropy energy surface for iron (or any cubic material with K, > 0) can be 
generated in Mathematics by the following statements: 

a = Sinit] Cos[f]; b = Sin[t] Sinif]; c = Cos[t] 
r = k0 + k l  (aA2 b A 2  + b A 2  c A 2  + c A 2  aA2) 
k l  = 0.7; k0 = 0.3 
ParametricPlot3D[r a,r b,r c), {t, 0, Pi), 

{P, 0, 2 Pi)] 

For nickel, (or any cubic material with K ,  < 0) substitute the following step for 
the third one above: 
k l  = -0.6; k0 = 1.0 

For cobalt (or any uniaxial material with K ,  > 0) substitute these two steps for 
the middle two above: 
r = k0 + k l  c A 2  
k l  = 0.7; kO = 0.3 

The nonzero values used for I<, are arbitrarily chosen to make the shape of the 
energy surface easier to follow. As an exercise, the student might generate the 
energy surface for a uniaxial material with K ,  < 0, look at the shape of K,(O, 4) 
for the cubic case, or add a K ,  term to the first-order cubic energy surface 
generated above. Ht is possible to create a uniaxial energy surface that leads to 
the low temperature, [I001 magnetization curve of Fe,,Nd,B in Figure 6.11. 

The phenomenologica8 approach of the preceding section told us nothing 
about the causes of magnetic anisotropy. Macroscopic shape anisotropy has 
its origins in dipole interactions arising from free poles at surfaces. (As shown 
earlier, it can be represented in terms of the fields created external to the 
sample.) There is no mystery to understanding its origin, and only careful effort 
is required to quantify its effects (Chapter 2). Magnetocrystalline anisotropy on 
the other hand is a little more subtle in its microscopic origin. 

6.3.1 Crystal Fieid Symmetry and Spin-Orbit Interaction 

Magnetocrystalline anisotropy is not due simply to the anisotropy of the dipole 
interaction, although in some materials dipolar interactions are important. 
Note that for spins constrained to be ferromagnetically aligned by a strong 
exchange interaction, dipole interactions lower the energy for collinear spins 
and raise the energy for side-by-side spins. Thus a simple dipole mechanism 
would fail to explain the preference for FCC Ni to be magnetized perpendicular 
to its densest atomic planes, (111). In addition, any interaction of dipolar 
symmetry vanishes when summed over atoms on a cubic lattice. 

How, then, does the local magnetic moment distinguish between different 
crystallographic directions? In other words, how is p, coupled to the lattice? 
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The answer lies in the coupling of the spin part of the magnetic moment to the 
electronic orbital shape and orientation (spin-orbit coupling) as well as in the 
chemical bonding of the orbitals on a given atom with their local environment 
(crystalline electric field). If the local crystal field seen by an atom is of low 
symmetry and if the bonding electrons of that atom have an asymmetric charge 
distribution (L, # 0), then the atomic orbitals interact anisotropically with the 
crystal field. In other words, certain orientations for the molecular orbitals or 
bonding electron charge distributions are energetically preferred. It is import- 
ant for magnetocrystalline anisotropy that there be a significant directional 
character to the bonding. 

The roles of crystal field anisotropy and orbital anisotropy are simply 
illustrated by the analogy shown in Figure 6.12. The three shapes at the top of 
the figure represent in two dimensions the symmetry of atomic or ionic wave- 
functions; the three holes in the soft structure at the bottom represent in two 
dimensions the symmetry of the crystalline electric field. If the atomic orbital 
has zero angular moment (spherical charge distribution), it does not matter 
what the symmetry of the crystal field is; the orbital can take on any 
orientation with respect to the crystal. Further, since there is no coupling 
between the direction of spin and orbital angular momentum on the atom in 
question (i.e., if SL S = O),  the spin magnetic moment is free to assume any 
direction in space dictated by other factors such as applied field. 

Figure 6.12 Simple representation of the role of orbital angular momentum <L,) and 
crystalline electric field (CEF) in determining the strength of magnetic anisotropy. Both 
must have less than spherical symmetry for the orbitals to prefer a particular orienta- 
tion. Further, if L - S  is appreciable, the spin also will prefer particular crystallographic 
directions. Solid lines show combinations favorable to strong anisotropy; dashed lines, 
weak. 



If the orbitals have nonzero (L,), they may assume any orientation in a 
spherically symmetric crystal field, but only certain orientations will be 
preferred in crystal fields of lower symmetry. Further, if 5L.S is not zero, the 
spin will prefer a specific orientation relative to L. 

When there is magnetic anisotropy, application of a field will cause a torque 
on p,, but S may be coupled to L. Two limiting responses can be distinguished 
depending on which is stronger: (1) the crystal field energy 6) (coupling L to 
the lattice) or (2) the spin-orbit interaction (coupling L to S). In case 1, 
D > <k.S (as is generally the case in 3d transition metals and alloys) ps will 
show a weakly anisotropic response to He,, while pL is mostly quenched, that 
is, locked to a fixed direction by the crystal field energy D. In case 2, <% . % > D 
(as is typically the case in rare-earth systems) p, = pL + p, will respond to H,,,, 
but the pull of the crystal field in certain directions may be strong if it is of low 
symmetry. In the latter case, very large magnetocrystalline anisotropy results 
and, as the moment is rotated relative to the crystal (necessarily by large fields), 
the rotation of the anisotropic orbital charge distribution causes large aniso- 
tropic strains (magnetostriction). Note from Table 6.1 that the adjacent rare- 
earth elements (4f) Gd and Tb both have uniaxial structures (hence low- 
symmetry crystal fields) but their first anisotropy constants differ by more than 
two orders of magnitude. The reason for this difference is that the magnetic 
state of Gd, 4f 7, is (L,) = Q while that of Tb is 4f (L,) = 3. Thus the 
spin-orbit interaction essentially vanishes in Gd but is strong in Tb. 

6.8.2 Pair interaction Model 

When the spin is coupled to the orientation of the orbitals, the material shows 
a magnetic anisotropy that has the symmetry of the crystal field, specifically, 
of the local atomic environment. Thus? the anisotropic energy of interaction 
between two atoms can be expressed as an expansion in Legendre polynomials 
in the angle $ between the magnetization and the vector to a particular 
neighbor: 

Note that the energy dependence on $ is separated from that on the distance 
between the pair of atoms r (see Fig. 6.13). The form of the angular terms in 
the microscopic energy, Eq. (6.81, is the same as those in the orthonormal, 
macroscopic uniaxial energy expansion, Eq. (6.4). The first term, which is 
independent of $, formally includes spatially isotropic effects such as the 
exchange interaction, - J i j S i . S j .  It does not contribute to magnetic aniso- 
tropy. The second, dipolar term describes anisotropies of uniaxial symmetry. 
The third, quadrupolar term becomes important in cubic symmetry. The 
coefficients, g(r), l(r), and q(r), of the first three Legendre polynomials describe 
how the strength of each component varies with the distance between two 
atoms. The magnetic anisotropy energy of a crystal can be calculated by 
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Figure 6.13 Definitions of (a)  the angle t,b between M, and the bond axis u and (b) 0 
and 4, the angles used to specify the direction of a vector (e.g., M,) with respect to the 
coordinate axes. 

summing this atomic interaction energy w(r, $) over all pairs of atoms. When 
this energy is summed over the nearest neighbors in various cubic structures, 
the results at T = 0 K are 

BCC 

FCC 

Note that the dipole terms vanish when summed over a cubic lattice. Compari- 
son with Eqs. (6.6) and (6.7) gives values for a microscopic parameter, the 
quadrupole interaction energy, if the macroscopic cubic anisotropy is mea- 
sured. 

BCC 

FCC 

Thus for iron, q = 2.6 x 104J/m3 and for nickel q = - 4.5 x 103 J/m3. These 
interaction energies should be regarded with cautious interest. The pair inter- 
action model assumes localized spins and this is not completely accurate for 
transition metals. Nevertheless, it should be noted that the anisotropy cal- 
culated using the pair interaction model on Co-Pd multilayers agrees well 



with both electronic structures caBcn1atisns and experirneaat (Victoria and 
MacLaren 1993). 

The pair interaction model thus adds a microscopic dimension to the 
macroscopic phenomenology developed from group theory. 

6.3.3 Crystal Field Splitting 

The strength of the anisotropy of the crystalline electric field determines the 
strength of the magnetic anisotropy that an ion in that field can exhibit. The 
term "single-ion anisotropy9' is given to this type of interaction because a single 
magnetic species can exhibit anisotropy in a nonmagnetic environment. (This 
is to be distinguished from anisotropic exchange between two magnetic ions 
which will be described below.) The single-ion anisotropy coefficient, D is not 
easily determined for 3d metals because their extended wavefunctions give rise 
to a band of energies rather than a few discrete levels. In insulators and 4j' 
metals, where the electronic states important for magnetism are well defined 
functions with good quantum numbers, it is easier to relate D to fundamental 
quantities. It has been shown that what is needed for the existence of magnetic 
anisotropy is (1) an asymmetric crystal field, (2) a nonzero orbital angular 
momentum for the highest occupied electronic state so that the orbital senses 
the crystal field symmetry, and (3) a nonzero spin-orbit interaction for the spin 
to couple to the crystal field. 

For transition metal ions, magnetic anisotropy is usually treated by examin- 
ing the crystal field splitting of the valence states of the magnetic ion of interest 
and adding spin-orbit coupling as a perturbation. 

The 3d electronic wavefunctions tk,, can be written in spherical coordinates 
as 

$, K 3(c0s28 - 4) 

The commonPy used linear combinations of these functions are as follows 
[see also Goodenough (1963, pp. 51, 101: 

Notation 

Orbital Bethe Mullilken 
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These functions are sketched in Figure 6.14. The solid lines depict contours 
of constant positive wavefunction amplitude and the dotted lines, negative 
amplitude. For a free atom, the five d orbitals of a given spin are all of the same 
energy; that is, they are degenerate. The exchange splitting between spinup and 
spindown states is generally greater than the crystal field splitting for 3d ions. 
Thus, majority spin states of both t,, and e, symmetry are generally occupied 
first, then minority spin states are occupied. In a cubic crystal field of octa- 
hedral symmetry (Fig. 6.14), the dZ and dX2-y2  orbitals, whose electronic 
wavefunctions point toward the six neighboring sites, take on a different energy 
relative to the three d,,, d,,, d,, orbitals, which are directed between neighbor- 
ing sites. This energy shift is due to the Coulomb interaction between the 
electronic charge distributions on the various orbitals and that on the neigh- 
boring ions, which are generally considered to be point charges. As a result, 
the 3d levels at octahedral or tetrahedral sites split into a triply degenerate 
manifold and a doubly degenerate manifold of states. If the d states are singly 
occupied, 3d1 or 3d6 (i.e., interatomic orbital interactions are bonding in 
nature), then e, levels are lower in energy than t,, in octahedral symmetry. If 

Spher ica l  Octahedral  Spher i ca l  Tet rahedra l  

Figure 6.14 Topologies of the five d-orbital wavefunctions are illustrated at top. 
Center, we show the symmetry of octahedral and tetrahedral sites. Below we show the 
crystal field splitting for 3d4 or 3d9 levels in octahedral and tetrahedral site symmetry. 
The spinup and spindown manifolds are assumed to be separated by energy greater 
than 10D. 



the 3d states are characterized by a single hole, 3d4 or 3d9 (interatolmic 
interaction is arntibonding, which is more often the case in magnetic materialls), 
then t,, levels are stabilized relative to e, in octahedral symmetry. The 
antibonding case is illustrated in Figure 6.84. 

This crystal field splitting renders invalid the original orbital quantum 
numbers (k, = 0, f 1, f 2  defined for a symmetric central field); each manifold 
now takes on new orbital quantum numbers that sum to zero over the 
manifold, such as E, = 0, + P for the triply degenerate manifold. Further, the 
energetic center of gravity is conserved so that the crystal field energy shifts are 
in the ratio BE(e,)/AE(t,,) = $. Thus AEQe,) = + 6 0  and AE(t2,) = -40 for 
a total splitting of A E  = POD. 

Table 6.2 lists some parameters related to divalent transition metal ions in 
octahedral and tetrahedral sites. 

Magnetic anisotropy is expected to vanish when a manifold is completely 
filled (i.e., for a singlet state, (L,) = 0); the existence of anisotropy should, 
therefore, be associated with a manifold that is partially filled. Inspection of the 
anisotropy of the spinel ferrites in Table 6.1 reveals cobalt (in the octahedral 
site) to have the potential for creating strong anisotropy. Small concentrations 
of Co2+ in magnetic cause the easy axis of Fe,O, to change from ( l l 1 )  to 
(100). From Figure 4.8 it is known that Co2+ occupies the octahedral site in 
the spinel structure (Table 4.4). This leads to a triply degenerate ground state 
with nonzero orbital angular momentum. This case will be examined in more 
detail. Whatever a degenerate manifold is partially filled, the system can lower 
its energy by a further distortion that breaks the symmetry responsible for the 
degeneracy. This is a statement of the Sahn-Teller theorem [see, e.g., Aschroft 

TABLE 6.2 Level Fillings and Degeneracies for Selected Trandtion Metal Ionsa 

Octahedral Tetrahedral 

Electron Orbital Orbital 
Config- Config- Degen- Config- Degen- 

Ion uration uration <L,) eracy uration <L,> eracy 

- 

"After the second entry, MnZ+(Fe3+), the completed majority spin filling (t,,)3(e,)z is not listed 
explicitly, only the partial minority-spin state filling is given. 



PHYSICAL ORfGlN OF ANISOTROPY 201 

and Mermin (1976)l. Such a distortion could explain the exchange-striction or 
magnetostriction observed for certain cation configurations. But how can the 
degeneracy be linked to magnetic anisotropy? 

To understand magnetic anisotropy in these systems, it is necessary to look 
beyond the first neighbor environment. Figure 6.15 shows the environment 
about the octahedral site in the spinel structure. The six anion (oxygen) 
neighbors account for the octahedral symmetry; this cubic symmetry alone 
would not allow for the strong anisotropy exhibited by cobalt ferrites. The next 
nearest neighbors, six cations, have a trigonal arrangement about the (111) 
axis. These second neighbors lower the crystal field symmetry enough to break 
the degeneracy of the t,, triplet state. 

The three &,-like states recombine to form three new orbitals compatible 
with trigonal symmetry (much like the 3 p  states and s states combine in 
tetrahedral environments to form sp3 hybrid orbitals). The result is a singlet 
state with charge distribution concentrated along the trigonal axis and a 
doublet with charge distribution in the plane perpendicular to the trigonal axis. 
Again, depending on the nature of the cation-cation interactions, bonding or 
antibonding, the singlet or doublet will be stabilized. Bonding second neighbor, 
cation-cation interactions prevail along the trigonal axis in cobalt ferrite and 
the singlet state is stabilized (Fig. 6.16). For Fe2+ in a trigonal environment as 
shown in Figure 6.15, the ground state is nondegenerate and {L,) = 0. Thus, 
for Fe2+ there is no significant spin-orbit coupling to link the spin direction to 
a particular crystallographic direction. For cobalt, the highest occupied mol- 
ecular orbital is the doubly degenerate state for which {L,) # 0. In fact {L,) 
is quantized along the trigonal axis for Co2+. Thus spin-orbit coupling can 
link the spin to the orbital angular momentum that is quantized along {I l l ) .  

This model, developed in detail by Slonczewski (1963) explains the stronger 
anisotropy of Co2+ ions relative to the Fe2+ ions in spinel ferrites. Further, it 

Figure 6.19 Cation in spinel structure is octahedrally coordinated by nearest-neighbor 
anions and trigonally coordinated by next-nearest-neighbor cations. 



Spherical TrigonaP Spherical Trigonal 

Figure 6.16 Crystal field splitting of antibonding 3d levels in trigonal site symmetry. 
At left the filling of the minority spin states is shown for Fez+ and at right, for Go2+. 

accounts for the temperature dependence of the anisotropy and explains the 
mechanism for magnetic annealing in the technologically important ferrites. 

For rare-earth (R) metals and R-intermetallic compounds, the crystal field 
splittings are weak compared to the spin-orbit energy because the 4 f  states are 
screened from the crystal field by the 5d and 6s electrons. Crystal field effects 
are therefore calculated as perturbations on the atomic energies and thus 
involve the matrix elements of the crystal field energy evaluated between the 
4f  states that are characterized by their total angular momentum, J :  

The a, terms, called Stevens factors (Stevens 6952), are the lth moments of the 
4 f  wavefunctions: a, > 0 indicates prolate orbitals, a, < 0, oblate orbitals. The 
operators 8, are related to the Legendre polynomials which describe the 
symmetry of the crystal field (Elliott 1972). 

It is known that the shape of the 4f orbitals is spherical at the beginning, 
middle, and end d each half-period. Thus, for rare-earth ions, the Stevens 
factor and the crystal field anisotropy are expected to change sign between 4 f  
and 4f  4, at 4 f  7 ,  and between 4f  and 4f  ll. That is indeed the case as shown 
in Figure 6.17 for the calculated (solid line) and observed (open data points) 
crystal field splitting for rare-earth impurities in Gd. The Stevens factors are 
shown by the square data points. Compare the variation of these parameters 
with the metallic anisotropies in Figure 6.7. 

6.4 TEMPERATURE DEPENDENCE 

Figure 6.18 shows the temperature dependences of the principle anisotropy 
constants for Fe (Gengnagel and Hofmann, P968), Ni (Franse 1971) and Co 
(Pauthenet et al. 1962). For iron and nickel the figures show that IK,I > IK,I 
over the entire temperature range, so their easy axes, <100) and (111) 
respectively, are the same at all temperatures. In cobalt, on the other hand, the 
easy direction of magnetization is the c axis for K ,  > 0 and K ,  > 0 (T < about 
500K) while the c plane is easy for K, < 0 and K, + 2K, < 0 ( T >  about 
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Figure 6.17 Crystal field strength D for rare-earth impurities in Gd: calculated (solid 
line) and measured (round data points) (Chikazumi et al. 1971). Stevens factors are. 
given by square data points. 

Figure 6.18 Temperature dependence of the principal anisotropy constants of (a) Fe 
(Gengnagel and Hofmann 1968), (b) Ni (Franse 1971), and (c)  Co (Pauthenet et al. 
1962). 
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600K). In between these limits, Figure 6 .18~  shows K ,  < 0  and K ,  + 2 K ,  > 0,  
and the magnetization lies on a cone of angle 19, = ( - K 1 / 2  K2)lI2. Figure 6.19 
shows - K l ( T )  in YIG (Rodrigue et al. 1960). The reader is referred to the 
article by Callen and Callen (1966) for details. Figures 6.20a and 6.20b show 
K ( T )  for Tb and for Co,Sm and Co,Nd, respectively; the behavior of K , ( T )  
for Co,Sm, increasing in magnitude with increasing temperature, is anomalous. 

Naturally, the magnetocrystalline anisotropy vanishes above the Curie 
temperature as does the long-range magnetic order. However, it is clear from 
a cursory comparison of these data with the Brillouin function or the M ( T )  
data in Figures 4.8, that the anisotropy generally decreases much more sharply 
with increasing temperature than does the magnetization. This is of fundamen- 
tal importance. 

The strong temperature dependence of anisotropy energy may be under- 
stood from the phenomenology developed earlier in this chapter without yet 
knowing its physical origin. Consider a cubic energy surface cut as shown in 
Figure 6 .21~ .  The temperature-dependent anisotropy can be defined from the 
energy surface and Eq. (6.6) as the difference between the hard-axis and 
easy-axis free energies: 

Temperature (OK ) 

Figure 6.19 Temperature dependence of the anisotropy of yttrium iron garnet (YIG). 
(After Rodrigue et al. 1960.) 
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Temperature ( K )  
I 

Temperature (OK) 

Figure 6.20 (a) First two anisotropy constants for terbium after Rhyne (1972)-open 
circles, K,, closed circles, K, (f,,,,,, is the modified Bessel function of order I). (b) 
anisotropy constants for SmCo, and NdCo, (Tatsumoto et al. 1971). 

The temperature dependence of the physical mechanisms responsible for 
anisotropy should be reflected as a temperature dependence of the energy 
surface. In 1936, Akulov turned the problem around to give a classical 
explanation of K,(T).  

At elevated temperatures, thermal energy causes the magnetization to 
"sample" the energy surface over a small angular range about the minimum 
energy orientation (Fig. 6.21b). Akulov therefore asumed that Eq. (6.12), where 



I 

Energy 
4 

* Y  Y 

(a 1 T= 0 

Figure 6.211 A cut through the cubic energy surface [Eq. (6.51, 4 = 01 showing that 
anisotropy energy can be calculated from the difference of the energy between easy and 
hard directions. When the temperature dependence is treated as a dispersed sampling 
of this surface, the anisotropy energy decreases more sharply with increasing tempera- 
ture the sharper the curvature of the energy surface. 

K ,  = K , ( T )  and the direction of magnetization is independent of temperature, 
can be approximated by putting the temperature dependence into the orienta- 
tion of M. The energy surface is now assumed to be independent of tempera- 
ture, and the direction cosines of M become functions of temperature to 
describe the assumption that the magnetization is thermally distributed over a 
small angular range about some direction on the energy surface (Fig. 6.2bb). It 
can be shown by expanding the direction cosines about the [I003 and [BlO] 
directions that 

and 

where 60 << 1 is measured from the ClOO] or the [I103 direction for the two 
cases, respectively. The anisotropy energy difference between these two direc- 
tions can then be expressed 

where K,((P) has been written to emphasize that the shape of the energy surface 
is now independent of temperature. We can relate 60 to the temperature 
dependence of reduced magnetization at low temperatures: 
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Thus in terms of the magnetization, Eq. (6.13) becomes 

and, using Eq. (6.12), cubic anisotropy may be written 

What this says is that the magnetic anisotropy of a cubic system drops off 
much faster with increasing temperature than does the magnetization itself. 

If the same arguments are applied to uniaxial systems one obtains the 
following at low temperatures: 

These steep power dependences turn out to be very important in understanding 
magnetic anisotropy. The sharper the curvature in the energy surface, the more 
sharply does the anisotropy drop with increasing temperature. 

It can be shown quite generally that if the anisotropy coefficients are 
regrouped and expressed as coefficients of orthonormal harmonics [Eq. (6.4)], 
then at low temperature 

Here 1 is the order of the spherical harmonics describing the angular depen- 
dence of the local anisotropy (I = 2, for uniaxial, 1 = 4 for cubic, and so on). 
This was derived classically in 1954 by Zener and from quantum mechanics by 
Callen and Callen. For a review, see, Callen and Callen (1966). Essentially, the 
magnetization power law for the temperature dependence of the anisotropy is 
related to the symmetry of the anisotropy energy surface; the sharper the 
curvature of u, with 8, the steeper is the temperature dependence of k,(T) .  This 
appears to be a unique case in which the temperature dependence of an effect 
is determined by symmetry alone. The data in Figures 6.18-6.20 are fit with 
the general form of the result in Eq. (6.16). The theory is quite successful in 
accounting for the temperature dependence of anisotropy especially in oxide 
and rare-earth magnetic materials because in these cases the magnetic moment 
is well localized. The theory meets with partial success in transition metals 
where the 3d electrons and the magnetic moments are less well localized (Figs. 
6.18~-6.18~). Some anomalies in the temperature dependence of anisotropy 
constants still occur (e.g., K ,  for nickel changes sign). These appear to be 



related to contributions hon-n o ~ ~ u p a t i o n  s f  excited states of different anaiso- 
tropy which play an increasingly important role as temperature increases. 

Callen and Callen (1966) put the theory of magnetic anisotropy (and 
magnetostriction, as we will see in the next chapter) on solid quantum 
mechanical footing. A general magnetic Hamiltonian with exchange and crystal 
field terms can be formulated as outlined below. 

Exchange Crystal field 

S i . J i j . S j  + S i - D - S i  

Note that the exchange terms describe an interaction between spins at two sites 
while the crystal field term involves the spin at only one site. Figure 6.22 
schematically represents these two interactions. The parameter J i j  and the 
third-rank tensor D describe the strength of the two-ion exchange and single-ion 
spin-spin interaction, respectively. The diadic terms can be separated into 
isotropic and anisotropic components: 

S i J i j S j  + SiDSi  isotropic 

Sf JijSj" + kb(Sf)' anisotropic 

Of the two exchange terms, the first is of the form of the usual isotropic 
Heisenberg exchange interaction. The second expresses an anisotropic exchange 
interaction: one that couples spins more strongly when they are aligned along 
certain directions rather than others. Hn the case of the crystal field terms, the 
first term expresses the magnetic energy due to the isotropic parts of the crystal 
field energy; it contributes to the Madelung energy and has no consequences 

Two-ion rnognetic exchange i-j Single-ion in coulomb field 
Exchange energy = 0.1 eV CouDomb energy = I - 10 eV 

Figure 6.2% Schematic representation of two-ion (a)  and single-ion (b) interactions. 
The two-ion interaction is magnetic in the sense that it directly couples two spins to 
different extents depending on the magnitude of their z components. The single-ion 
interaction does not require spins on the neighboring ions. The site-to-site crystal field 
interaction is purely Coulombic; the spin enters only through the spin-orbit interaction 
at one site. 
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for magnetic anisotropy. The second crystal field term describes the aniso- 
tropic parts of the magnetic energy due to the nonspherical part of the crystal 
field. This single-ion, crystal field term is the one that has been focused on here 
until now. 

The exchange interactions are called two-ion, or two-spin, interactions, while 
the crystal field terms are called single-ion terms because they do not represent 
a magnetic interaction between two different spins, but rather describe the 
effect of the Coulomb interaction with the crystal field on the orientation of a 
moment at a given site. Thus the concept of single-ion, crystal field anisotropy 
must be added to the anisotropic part of the exchange interaction between two 
spins. 

The anisotropy energy is given by the expectation value of the Hamiltonian 
E = (H) which contains expectation values of spin operators, called spin 
covrelation functions, such as (Si - Sj), (S;S;), and <(S:)'). These correlation 
functions play a central role in understanding the temperature dependence of 
the anisotropy. Essentially, if the spins at two sites are not well correlated 
spatially or temporally as T increases, the correlation function falls off more 
quickly. Recalling Akulov's macroscopic picture, in low crystal field symmetry, 
site-to-site correlation is not sharply reduced as the magnetic rnoment samples 
different directions with increasing temperature. In high crystal field symmetry, 
spin correlation drops sharply with increasing temperature because the aniso- 
tropy energy changes over smaller angular intervals. The coefficients of these 
correlation functions, Ji, and D, contain the physics (exchange interactions, 
spin-orbit interactions) and determine the strength of the effect. This formal- 
ism extends also to magnetoelastic effects (Chapter 7). 

The symmetry and insights afforded by Callen and Callen's results can be 
summarized as follows: 

[IP,(T)l2 cc (S, - Sj) is the local moment magnitude two-site correlation; it 
shows very weak temperature dependence. 

~ 2 2  cc ((Sf)') is the single-site local magnetization; it shows weak tempera- 
ture dependence. 

m: cc (SfST) is the two-site magnetization longer-range order; it shows 
stronger temperature dependence than the other correlation functions. 

For the reduced, single-ion anisotropy, the theory gives 

where I (X)  is a Bessel function and T(x) is a reduced, modified Bessel 
function. The argument X is defined by the temperature dependence of the 
reduced magnetization m(T) = 13,JX) SO that X can be formally written as 
X = ~,i;(rn). The temperature dependence of the magnetization is given by the 
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expression 

With these definitions the first uniaxial and cubic anisotropies vary with 
temperature as 

It is common to plot K(T) data as a function of the parameter rn which ranges 
from unity at T = 0 to zero at T = Tc. The form of these reduced, Bessel 
functions is shown in Figures 6.19 and 6 . 2 0 ~ ~ .  The first anisotropy constant of 
Y%G (Fig. 6.69) is well described over the entire temperature range by 151,(X). 
While the first anisotropy constant of Tb is not well described by I,,,(X), the 
second constant agrees well with d,12(X) right up to T, (Fig. 6.20). 

Approximate temperature dependences of the modified Bessel functions 
have been calculated by Callen and Callen; they take on different forms above 
and below approximately 0.6Tc. Table 6.3 shows the low-T and high-T 
approximations for single-ion anisotropy for 1 = 2,4. 

Anisotropy originating from shape has a temperature dependence progor- 
tional to [m(T)]' so, except for 1 = 2 above 0.6 Tc, it can be distinguished 
readily from crystal field anisotropy by its temperature dependence. 

6.5 MEASUREMENT OF ANBSBTWOPY 

Figures 6.3, 6.5, and 6.8 illustrate simple ways of determining magnetic 
anisotropy using a conventional magnetometer. Essentially, the anisotropy 
energy is the energy needed to magnetize a sample to saturation in a specific 
direction. 

More accurate anisotropy measurements are often made using a torque 
magnetometer. A torque magnetometer works on the principle of balancing a 
known mechanical torque from a suspension wire against an unknown torque 

TABLE 6.3 Approximate Single-Ion Magaaetizlation Power 
Law Dependences for Uniaxial (P = 2) and Cubic ( E  = 4) 
Systems at Low Temperature and High Temperature 

Approximations to I , +  ,12(X) 1 = 2  1 = 4  

Low T - mz(l+ 1112 rn3 rnLO 

High T - m1 m2 rn4 
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associated with the magnetization being rotated away from its easy axis. In this 
instrument (Fig. 6.23a), a sample, such as that shown in Figure 6.2, is 
suspended on a wire (beryllium copper or platinum are good choices) in a 
magnetic field. The wire is fixed above to a dial that rotates on a fixed, 
angle-calibrated scale (two protractors will do). Below the sample holder, a 
rigid rod hangs suspended through a frictionless bearing in an angle-calibrated 
scale. Affixed to the rod is an adjustable dial. The sample holder and rod 
provide sufficient mass to keep uniform tension in the suspension wire. 

In zero field, the sample assembly rotates freely to establish zero torque from 
the suspension wire. The sample orientation can be chosen by setting the 
orientation of the upper dial; the lower dial can be set to read the same angle, 
indicating no torque from the suspension. In B = 0 the magnetization of the 
sample will lie along one of the easy directions in the sample where it 
experiences no anisotropy torque of the form au,/d8. This easy direction may 
have an arbitrary orientation 8, relative to the direction of a future applied 
field (Figs. 6.23b, and 6.23~ above). 

In a nonzero field whose direction defines 6 = 0 (Fig. 6.23c, lower), the 
sample is in equilibrium and the magnetization vector is in equilibrium. For the 

Figure 6.23 Schematic of torque magnetometer, showing (a)  suspension wire W, guide 
rod G, sample holder S, calibrated circles C,  and magnet pole pieces, M; (b) the sample 
viewed from above (the angles are positive when increasing counterclockwise from the 
field direction) for B = 0 and for B > 0; and (c)  energy diagrams, E(6) for B = 0, above 
and B > 0 below. For B = 0, M coincides with the EA at 6,. For B > 0, the EA is 
rotated by A6 and M is rotated by A6 + 6, so that it experiences a counterclockwise 
torque from the crystal anisotropy energy, which balances the clockwise torque it 
experiences from the field. Below the B > 0 energy surface we schematically show the 
torque balance conditions on the magnetization vector M and on the crystal (xtl). 
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magnetization vector, the field torque ow M9 - M B ,  sin $,, is balanced b y  the 
crystal anisotropy torque on M: -du,/dO],,. For the sample, the suspension 
torque -CAB (countercBockwise in Figure 6 . 2 3 ~ ~  below) is balanced by the 
reaction of the crystal to the torque it exerts on M at OM, namely, au,/d61e,. 
The angles 8, and AB are the measured quantities from the top circle and 
top-to-bottom circle difference, respectively. The values of C, M ,  and B are 
known. From the crystal equilibrium equations depicted in Figure 6.23 we get 
G A8 = - du,/d6. When A8 = 0, it is required that 8, = 0 and du,/dB],, = 0. 
As lABl increases, - C A 8  changes from zero. Thus, the measured torque, 
-GAB, is numerically equal to du,/d$],,. At saturation, 8, is given by 
8, - A@, which is measured. 

Measurements of torque versus 8, for an iron sample like that shown in 
Figure 6.2, would give a torque curve related to Figure 6.3 by T = - du,/d8. 
Conversely, integration of a torque curve 

T(0 )  dB = - u, + constant 
0 

gives the shape of the anisotropy energy surface U(0) (see Fig. 6.24). Torque 
magnetometers are useful for studying single-crystal anisotropy and thin-film 
magnetization and anisotropy. 

Magnetic anisotropy can also be determined by ferromagnetic resonance 
and qualitatively by Miissbauer spectroscopy. These methods are not covered 
here. 

6.6 SUMMARY 

Several examples of magnetocrystalline anisotropy have been given to define 
the problem. A phenomenological model, independent of microscopic mechan- 
isms, is able to describe the form of uniaxial, cubic and other anisotropy energy 
functions (surfaces) by various expansions. These functions, combined with a 
Zeeman energy, allow calculation of simple magnetization curves. A hard-axis 
M-H loop in a uniaxial material was calculated to second order in the 
anisotropy expansion and found to approach saturation more slowly than for 
the linear (first-order) solution. 

The physical origin of anisotropy is based on two necessary effects, a low- 
symmetry crystal field and a nonzero spin-orbit interaction. A microscopic 
model of anisotropy was described in which the crystal field symmetry came 
from summing a magnetic pair interaction over the nearest neighbors in a 
given lattice. The results were consistent with the macroscopic phenomenology, 
and comparison of the results of the two methods provides a means of 
calculating the anisotropy constants Ki or measuring the dipole or quadrupole 
interactions, l(r) or q(r), respectively. A consideration of crystal field effects in 
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Figure 6.24 Torque curve for iron single crystal (solid line) and orientation depend- 
ence of energy (dashed line) from Figure 6.3. 

3d oxides and rare-earth metals revealed the role of orbital topology in 
magnetic anisotropy, in particular explaining the strong anisotropy of spinel 
cobalt ferrites relative to that of magnetite, Fe30,. 

The strong temperature dependence of magnetic anisotropy constants was 
shown to be intimately related to the symmetry of the anisotropy energy 
function. Uniaxial (1 = 2) and cubic (1 = 4) anisotropies drop with increasing 
temperature as powers of the reduced magnetization, m'('+1)/2 = m3 and mlO, 
respectively. Agreement with this theory is particularly good for local moment 
materials, namely, oxides and rare earths. 

The measurement of magnetic anisotropy by torque magnetometry was 
described. 

APPENDIX: SYMMETRY 

It is of interest to express the angular dependence of the free energy for a crystal 
of a given symmetry. First, the free energy is expanded in spherical harmonics 
or in powers of the direction cosines a,, a,, and a, of the magnetization along 
the three coordinate axes. The latter is more common in the magnetics 
literature. Symmetry operations are then applied to reduce the number of 
independent terms in the expansion. [See Nye (1957), or Juretschke (1974), for 
details.] Of all the possible terms in the expansion, only those are kept that leave 
the energy invariant under the symmetry operations of the crystal. This can be 
achieved by changing the indices on the direction cosines in the energy terms 
according to rules defined by various matrices which belong to the symmetry 
group of the crystal. If the form of the term changes, it is not an allowed 
combination for the symmetry group of the system. For example, the oper- 
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atisws giving cyclic permutation, mirror reflection, and rotation about x by 90" 
may be represented by the following matrices: 

We represent the indices on the direction cosines as a column vector (1,2,3) 
or ( x ,  y,z) and operate on them with the appropriate matrices. The matrix 
defines the transformation of indices and these transformation rules are applied 
to the energy expression. Under the operation R, 

a term such as a,a$a3 becomes a,ai(-a,), which fails the invariance test, so 
this form is not allowed. Clearly, a term such as a:a:ai would be invariant 
under R,. 

In magnetism, one other symmetry operation-time reversal invariance- 
must be considered. Time-reversal changes the direction of electron spin and 
orbital rotation and hence changes the direction of M. Time reversal is 
equivalent to the inversion operation 

If the energy is to be invariant under reversal of M [i.e., u(M)  = u(-M)] ,  then 
each term in an anisotropy energy expression must have only even powers of 
any direction cosine. Care must be taken with energy terms describing 
application of a magnetic field; both H and A 4  are inverted on time reversal, 
so the direction cosines of either N or M can appear in odd powers as long as 
they are multiplied by odd powers of the direction cosines of the other. The 
direction cosines of H seldom appear explicitly; its direction is usually chosen 
as the z axis and M is referred to this system. 

Some examples are given for concreteness. An expression such as K,a,a2 
survives unchanged on inversion but not cyclic permutation, mirror reflection, 
or rotation operations. ~ , a : a ; a i  survives all four operations. Show that 
Kl(ala2 + a2a3 + a,a,) fails to satisfy all of the cubic symmetry operations. 
This process leads us to what is called the irreducible representation for the 
symmetry at hand. The equivalence of x,  y, and z directions in a cubic system 
demands that a:, a$, and a; must appear in the anisotropy energy density in 
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such a form that ua(ai, aj, a,) = ua(ai, a,, aj) = ua(a,, a,, aj) and so on. Thus 
the lowest order term should be a: + a: + a:, which is equal to 1. Next we 
consider the cubic terms a:az + a&: + a:,: and a: + a; + a:. But 

and these forms are equivalent within a constant. 
So the anisotropy of a cubic system may be written as 

This is Eq. (6.6) in the text. 
A similar process can be used to generate uniaxial, tetragonal, and other 

energy functions. 

PROBLEMS 

6.1 Show in Cartesian coordinates that (a) a: + a; + a: = 1 and (b) the 
coefficient of K ,  in Eq. (6.6) is given by (6.7). 

6.2 Estimate the hard-axis anisotropy energies of Fe and Ni from Eq. (6.1) 
and Figure 6.1. Compare your results with those in the text. 

6.3 A Ni sphere is saturated in the [loo] direction. As the field is decreased 
the magnetization starts to rotate away from [loo] below an internal field 
of about 230 Oe. Determine from Eqs. (6.6) and the data in Table 6.1 
whether it rotates first toward the four nearest <110> directions or the 
four nearest < I l l )  directions. 

6.4 Work out the energy difference in Eq. (6.12). [See J. Phys. Chem. Sol. 27, 
1271 (1966)l on the two-dimensional cubic energy surface at 4 = 0. 

6.5 The uniaxial energy surface in Figure 6 . 6 ~  can be represented by Eq. (6.4). 

(a) Write the appropriate expression for the case where the z axis is along 
a hard direction. 

(b) Following Akulov's method described in Section 6.4, evaluate Ugrd - U ~ y  for small angles to show that for a uniaxial magnet 
K,(T)/K,(O) = [m(T)I3 at low temperature. 

6.6 Write the first- and second-order anisotropy expressions for tetragonal 
symmetry analogous to Eq. (6.6) (cubic symmetry). Give the expressio~~s 



in terms of the direction ~osines, and also express them in terms of the 
spherical angles B and 4 in order to combine similar terms. 

6.4 Give a quantitative explanation of why the lremanence after magnetiz- 
ation in the hard direction is nonzero for Fe and Ni crystals but is zero 
for CO (see Fig. 6.1). 

6.8 Solve for and plot the field dependence of magnetization in a cubic 
system, K ,  > 0, K ,  = 0, for a field applied along C l l O ]  and along [ I l l ] .  

6-9 What are the conditions on the magnitude of Ms and out-of-plane crystal 
anisotropy for a thin film to have no in-plane magnetization? 
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MAGNETOELASTIC EFFECTS 

The various contributions to the thermal expansion of a magnetic material are 
depicted in Figure 7.10. The dot/dashed line (marlted "no local moment") 
indicates normal linear thermal expansion for a solid (Griineisen behavior). 
The dashed line labeled ""local moment" is displaced from the first to indicate 
the volume expansion that accompanies the formation of a local magnetic 
moment. Because the local magnetic moment does not vanish immediately 
above T, but merely Poses its long-range ordering, the internal pressure 
associated with it does not vanish completely above T, (Fig. 7.la, solid line). 
The solid lines show the form of the thermal expansion for a ferromagnet above 
and below T,. Below T,, additional magnetovolume effects due to long-range 
magnetic ordering are turned on; they may add to, or subtract from the volume 
expansion due to the presence of a local moment. The slope of these solid lines 
(the thermal expansion coefficient a) can be of either sign just below the Curie 
temperature. All of these effects are isotropic, involving the bulk modulus. 
Figure 7.1b shows the volume expansion, o = AV/y and the linear coefficient 
of thermal expansion, a = Al/M7; measured for Ni by Kollie (1977). The 
volume expansion is referenced to the paramagnetic state so o < 0. Note that 
for Ni, o follows the type of behavior indicated by the lower solid curve in 
Figure 7.1~~. The fractional volume deficit in Ni at 4.2 K is of order AV/V z 
-0.12% relative to the extrapolated high-temperature (T  >> T,) volume. (This 
is a small effect compared to the 4% local-moment expansion in Ni indicated 
in Fig. 5.20). In some alloys where T, is just above room temperature and the 
magnetovolume effects associated with long-range order turn on a positive 
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Figure 7.1 (a) Schematic of the thermal expansion of a magnetic material as a function 
of temperature illustrating the increased volume due the presence of a local magnetic 
moment and the onset of magnetic anomalies below the Curie temperature; (b) volume 
expansion and thermal expansion coefficient of Ni (Kollie 1977). A small anisotropic 
strain, depending on the direction of magnetization (circled inset, left), is also observed 
below T,. The latter is usually referred to as anisotropic magnetostriction. 
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strain below T,, the thermal expansion can be very close to zero over several 
tens of degrees. These alloys are called invar alloys because their dimensions 
are invariant with temperature. The classic example is Fe,,Ni,,. 

These isotropic effects are called volume magnetostriction or, when the 
magnetic ordering is produced by an applied field, they are called forced 
magnetostriction. Such isotropic strains are not the main focus of this chapter. 

On a smaller scale, the volume expansion can show an anisotropy for 
T < T,, that is, the linear strain is different in different directions relative to the 
direction of magnetization (Fig. 7.1~' circled inset). Thus, the magnetization 
vector M has associated with it a stress which causes a mechanical deformation 
of the material. This anisotropic strain is the main subject of the present 
chapter. 

The field dependence of this anisotropic strain is shown schematically in 
Figure 7.2 for an isotropic material (ell for strain measured parallel to the field 
and e, for strain measured perpendicular to the field). This anisotropic strain 
associated with the direction of magnetization was first observed in iron in 
1842 by Joule. These strains, Al/l = A, called Joule or anisotropic magnetostric- 
tion, can range from zero ( A  < to nearly + in 3d metals and alloys 
and to over + in some 4f metals, intermetallic compounds, and alloys. 
The magnetic stress tensor, called the magnetoelastic coupling coefficient, with 
components Bij, can be related to its magnetostrictive strains by a analogy with 
Hook's law: Bij cc -cijk,Lk,. For Ni, B, = 6.2 MPa and, given its Young's 

Figure 7.2 When a demagnetized sample has its magnetization aligned by an external 
field, the sample strains anisotropically. The direction in which the strain is measured 
in the samples above is indicated by the three parallel lines. The strain in the direction 
of magnetization will be opposite in sign to the strain perpendicular to the direction of 
magnetization. Notice that ell and e ,  need not be related by Poisson's ratio because of 
;the arbitrariness of the zero-field magnetization configuration, which defines the 
zero-field strain. The strains depicted above are those for a material with a positive 
magnetostriction constant: (Al/l)II > 0. 
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modulus, E = 200GPa, the observe magnetostrictive strains are of order 
30 x lop6. In describing anisotropic magnetostriction in a material one can 
refer to its magnetostrictive constants, A,, the strains produced at magnetic 
saturation, or to its magnetoelastic coupling coefficients, Bij, the magnetic 
stresses causing A,. 

The inverse effect is also important. Stressing or straining a magnetic 
material can produce a change in its preferred magnetization direction, which 
is manifested in its magnetization curve (Fig. 7.3). These phenomena are called 
inverse Joule effects, Villari effects, piezomagnetism, or, most often, stress- 
induced anisotropy. If A, is positive, it is easier to magnetize the material in the 
tensile stress (o > 0) direction. It is harder to magnetize a material in a 
direction for which A, < 0 and o > 0 or for which A, > 0 and o < 0. 

Torsional effects can also result from magnetostriction, but they are asso- 
ciated with specific magnetization distributions in a material. A current passing 
through a magnetic material in the direction of magnetization causes a twisting 
of the magnetization around the current axis, and, if A, # 0, a torsional motion 
of the sample occurs. This is the Wiedemann effect. In the inverse Wiedemann 
effect, named after Matteucci, a mechanical twisting of the sample causes a 
voltage to appear along the sample length, consistent with Faraday's law and 
the strain-induced magnetization change. 

The existence of anisotropic magnetoelastic (ME) effects implies the exist- 
ence of a coupling between the magnetization direction and mechanical strains. 
Thus, the magnetic anisotropy energy must contain ME terms that depend on 
both strain and the magnetization direction. The anisotropic strain effects 
arising from ME terms in the free energy are the focus of this chapter. 

Figure 7.3 Imposing a strain on a magnetic material by a mechanical stress alters the 
preferred direction of magnetization (magnetic anisotropy) and thus changes the shape 
of the M-B, curve below saturation. The cases above illustrate the changes observed 
for an isotropic material. When the product 1,o is positive, the magnetization is favored 
along that stress axis (shaded arrows). 



Field Dependence sf Joule Magn~~ostricti~m The anisotropic magnets- 
strictive strain relative to the direction OF magnetization may be described for 
an isotropic material by the relation 

Here e = Al/k is the strain measured at an angle 8 relative to the saturation 
magnetization direction and A,, the saturation magnetostriction coefficient, is 
a measure of the magnitude of the strain on changing the direction of 
magnetization in the material. The strain e is sometimes called the magneto- 
striction A. From Eq. (7.1), e is a function of the direction of M or of the applied 
field, so it should not be confused with the parameter A, which is a material 
constant. Figure 7.2 shows the variation of strain along a fixed direction in a 
material as an external field is increased either parallel or perpendicular to the 
strain measuring direction. 

Consider the hard-axis magnetization process in a first-order uniaxial 
material, which from Eq. (6.5) is linear in the field: M = M , H / M ,  or m = h. 
From Figure 7.4, left, and rn = cos 8, Eq. (7.1) may be written as 

In other words, the magnetostsictive strain in a hard uniaxial direction is 
quadratic in m = h, so e is proportional to H 2  (Fig. 7.4, right). 

Above saturation, the two strain curves in Figure 7.2 are parallel to each 
other (if high field susceptibility and forced magnetostriction are neglected) and 
their difference is proportional to A,. To see this, Eq. (7.1) gives 

Field Taansverse to EA 

Figure 7.4 Application of a magnetic field perpendicular to the easy axis (EA) of a 
material causes a rotation of the magnetization direction and results in a linear M-El 
characteristic and a quadratic dependence of strain on field. 



OBSERVATIONS 223 

so for isotropic materials 

3 2 ell - e, = ?As or A, = 3(ell - e,) (7.3) 

The saturation magnetostriction A, can be measured in the direction of the 
applied field, starting with a sample in the randomly magnetized state 
(<cos28) = 4). However, because a completely demagnetized state is not easily 
achieved with certainty, measurement of both el, and e, in Eq. (7.3) is 
recommended to determine A, in isotropic materials. Measurement of strain in 
more than two directions is required to fully specific Aij for lower-symmetry 
materials. 

The magnetostrictive strain is the same in each of two domains separated 
by a 180" domain wall (see Chapter 9) because cos2B is the same in each 
domain. This is due to time-reversal invariance; the system is the same whether 
the microscopic currents rotate to give M in one direction or they reverse to 
give M in the opposite direction. Figure 7.5 shows two limiting initial domain 
states that differ in the orientation of their easy-axis directions relative to the 
strain sensing direction. The sample at left is in an initial state of contraction 
while that at the right is in extension, when measured as indicated. Application 
of a field either parallel or perpendicular to the strain sensing direction has 
different results in the two cases as indicated below the idealized domain 
structures. There is no magnetostrictive shape change associated with a 
magnetization process involving only 180" domain walls (e, at left or ell at 
right). (The motion of any other kind of domain wall will result in a net shape 
change provided the magnetostriction constant is not zero.) Conversely, a 

Figore 7.5 Above, schematic illustration of two demagnetized states that have different 
orientations relative to the strain sensing direction (indicated by e); below, field 
dependence of strain for each case in the presence of fields applied either parallel (ell) 
or perpendicular (e,) to the strain-sensing direction. 
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strain of $A, is measured in magnetizing a sample with initially transverse 
magnetization (ell at left or e ,  at right). This illustrates the importance of the 
initial state when strain is being measured 01- used in a device. 

Some Data So far, magnetostriction has been described for isotropic ma- 
terials. For materials that are not isotropic, the magnetostriction constant can 
be different in different directions. For example, for iron 

A,,, = 20.5 x and A,,, = -21 .5  x 10P6 iron 

and for nickel 

A,,, = -46 x l oP6  and A,,, = - 2 5  x nickel 

Thus, magnetizing an iron crystal in its (BOO) direction causes an elongation 
along (100) but magnetizing it in the (111) direction causes a contraction 
along the (11 1)  direction. Nickel contracts in the direction of magnetization 
for any crystal orientation. Recall that the <100) directions are easy for BCC 
Fe and the < 11 1)  directions are easy for FCC Ni. It is left as an exercise for 
the reader to show that the signs of these magnetostrictions cannot be 
explained by considering dipole field interactions between magnets (Problem 
7.1). 

In addition, distortions of higher order than the dipolar strain in Eq. (7.1) 
may also be important in anisotropic materials. For example, magnetizing a 
uniaxial material perpendicular to its symmetry axis can result in a rnagneto- 
strictive strain along the c axis that is different from that perpendicular to both 
c and M. 

Values of magnetostriction for selected materials having various symmetries 
are listed in Table 7.1. The experimental notation (A,,,, A,,,) is used because 
of its prevalence in the literature. A more universal definition of A[Ay,' z 3 A I o 0 /  
2 and zz 3 , I l 1 , / 2 ;  Lacheisserie (6994)], will be introduced later. Where the 
literature indicates or was measured, those values are listed in 
parentheses in the table. 

We now consider the compositional variation of magnetostriction in some 
technically important series of 3 d  alloys. Figure 7.6 shows the compositional 
variation of A,,, and A,,, for FCC NiFe alloys. (For alloys of less then 30% 
Ni, the structure is BCC. At the FCC-BCC transformation near 30% Ni, Tc 
drops to zero and the room temperature magnetostriction coefficients vanish.) 
Both magnetostriction coefficients are positive for the FCC FeNi alloys up to 
about 80% Ni, where they change sign as they approach the negative values 
of pure Ni. K ,  also changes sign in this composition range (Fig. 6.9). The 
simultaneous vanishing or minimization of magnetocrystalline anisotropy and 
magnetostriction leads to very easy magnetization and therefore high permea- 
bility. Actually, K ,  is negative where A,,, and A,,, vanish. Because the < I l l )  
directions are the easy magnetization axes for K ,  < 0, it is more important for 
soft magnetic properties that A,,, vanishes than it is that A,,, vanishes. The 
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TABLE 7.1 Magnetostriction Constants h,,, and A,,, ( x 106) at 4.2 K and 
Room Temperature for Several Materialsa 

T = 4.2 K Room Temperature 

l ~ o o ( a ~ ' ~ )  1 I 1 )  J100(J.Y~2) J I  1(lE.2) Polycrystal 1, 

YIG 

3d Metals 

26 - 30 2 1 
(- 150) (45) (- 140) 
- 60 - 35 - 46 
- - 140 

48 (isotropic) - - 

+ 20 - - 

-4 - - 

Spinel Fevrites 

0 50 - 15 
- - ( - 54) 
- - - 670 

Garnets 

Hard Magnets 

"Some polycrystalline room-temperature values are also listed. The prefix a- designates an 
amorphous material. For uniaxial materials (superscript u) where ,IY.' or At,' was reported, their 
values are given in parentheses in the A,,, and A,,, columns, respectively 

soft Ni-rich alloys near these A, and K ,  zeros are called permalloys, a generic 
use of the trade name originally registered in 1935 by Western Electric. More 
will be said about these alloys in Chapter 10. 

Unlike the anisotropy constants of NiFe (Fig. 6.9), the magnetostriction 
coefficients show a relatively weak dependence on chemical ordering near the 
FeNi, composition, and here, only A,,, is significantly affected. 

Figure 7.7 shows the variation of the polycrystalline magnetostriction 
coefficient of NiFe alloys over the full composition range. Data for amor- 
phous (FeNi)B,, alloys are also shown. While the magnetostriction coeffi- 
cient of the crystalline alloys vanishes near 80% Ni, a similar effect cannot 
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- Quenched 

30 40 5 0  60 70 80 90 100 
Nickel, Wt.% 

Figure 7.6 Room temperature magnetostriction constants for FCC FeNi alloys 
(Bozorth 1962; Hall 1960). Crossover behavior of anisotropy constant K, for slow- 
cooled (SC) and quenched (Qu) FeNi alloys are also shown for reference. 
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Figure 7.7 Composition dependence of magnetostriction in polycrystalline FeNi alloys 
(dotted line, after Bozorth 1993) and in amorphous Fe-Nibase alloys (after O'Handley 
1978). The dip in 1 for the polycrystalline alloys near 25% Ni is due to the BCC-FCC 
transformation, which results in invar alloys. 
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be confirmed in the amorphous alloys based on boron because the magnetiz- 
ation goes toward zero and the alloys are unstable as iron content is reduced 
below 20 at%. (Chapters 10 and 11 contain more information on amorphous 
magnetic alloys). 

Figure 7.8 shows the composition dependence of the magnetostriction 
coefficients in polycrystalline FeCo and amorphous (FeCo),,B,, alloys. Note 
that for the crystalline alloys, magnetostriction is negative near a-Fe and in the 
HCP E-Co-rich phase whereas positive magnetostriction is observed over the 
FCC range and most of the BCC range. Recall that the anisotropy of BCC 
FeCo alloys goes from positive to negative as Co content increases beyond 
about 50% (Fig. 6.9b). While the amorphous FeCo-based alloys show a 
zero-magnetostriction composition near the cobalt end of the series, the 
magnetostriction at the iron end remains strong and positive, unlike that of 
a-Fe. The magnetostriction value shown in Figure 6.7 for cobalt is considerably 
smaller than that shown in Table 7.1. The reason for the smaller value in the 
figure is that the field applied in that case was probably not sufficient to 
saturate the polycrystalline sample, given the very large magnetocrystalline 
anisotropy of cobalt. 

Note that in either alloy series (Fig. 7.7 or 7.8) the magnetostriction 
constants vanish in the dilute-iron compositions at nearly the same transition 
metal ratio for the amorphous alloys as for the polycrystalline alloys: 
Fe : Ni z 4 : 1 (in Fig. 7.7) and Fe : Co z 9 : 1 (in Fig. 7.8). Comparison of these 

Figure 7.8 Composition dependence of magnetostriction in polycrystalline FeCo 
alloys (after Bozorth 1993 and Hall 1960) and in FeCo-base amorphous alloys (after 
O'Handley 1978). 
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6giare-s helps to distinguish features that may be associated with Bong-range 
order (and hence diEerent in amorphous and crystalline alloys) from those 
associated with short-range order (and hence possibly similar in amorphous 
and crystalline alloys). 

Figure 7.9 gives a summary perspective of magnetostriction data in the form 
of a ternary diagram showing the composition dependence of A, = 0 lines in 
crystalline FeNiX alloys (X = Co, Cr, Mo,. . .). The BCC-FCC and FCC- 
HCP phase boundaries are indicated by the dashed lines for reference. There 
are several noteworthy features of this diagram. Starting at the NiFe side of 
the diagram, A, = 8 lines extend from the Ni,,Fe,, permalloy composition 
with different slopes depending on the valence electronic structure of the third 
element, X, and on the method of preparation: the solid lines correspond to 
bulk materials, the dotted line to thin films. Ni-rich FeNiCo &in films show a 
larger field of negative magnetostriction than do bulk crystalline materials. 
Alloying FeNi with earlier transition elements such as Cr or Mo (dot/dashed 
line) constricts the negative field even more. From the Co-rich corner of the 
diagram, there is a significant difference between the A, = 8 lines for bulk and 
thin films: thin films show a pocket of negative magnetostriction about the Co 
corner; bulk, FCC phases (Miyazaki et al. 1994) show a swath of negative 

Figure 7.9 Bold lines are experimentally observed lines of zero magnetostriction for 
bulk crystalline alloys [Miyazaki et al. (1994)l. Dot/dashed line is an extension of the 
zero-magnetostriction line identified by Sirota et al. (1969, 1972). The sign of 1, in the 
different fields is indicated by the plus and minus signs. Fine, solid line shows the 
observed line for A, = 0 for polycrystalline thin films deposited at 100°C. [Tolman 
(1967) and Lampert et al. (1968)l. If the substrates are held at a higher temperature, 
the curve moves toward the bulk line, almost reaching it for T,,, = 300°C (dotted line). 
The dashed line is a prediction of zero magnetostriction from split-band model for 
FeNi(Mo or Cr) alloys. 
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magnetostriction compositions between the BCC-FCC boundary and the 
solid line to its right. This latter 2, = 0 line is not closed; the positive 
magnetostriction indicated in Figure 7.8 for bulk FCC FeCo alloys demands 
that it loop around and intersect the FeCo side of the diagram near 80% Co. 
Indeed, earlier, little-known data from Sirota et al. (1969, 1972) indicate that 
the 2, < 0 field is closed in this manner. Their measurements show the field of 
negative magnetostriction extending farther along the phase boundary toward 
the FeNi side than the more recent data shown here. 

The rare-earth metals and many rare-earth intermetallic compounds are 
characterized by strong magnetic anisotropy, which makes it difficult to get an 
accurate measurement of saturation magnetostriction values. Some data are 
given in Table 7.1, and temperature dependence of magnetostriction in Tb and 
Gd will be displayed below. Further data on these systems can be found in the 
reviews by Clark (1980), Morin and Schmitt (1990), and Cullen et al. (1995). 
The treatment of magnetostriction in amorphous rare-earth intermetallics 
involves an understanding of the concept of random anisotropy (Chapter 11) 
as reviewed by del Moral (1993). 

Surface Magnetostriction It has recently been reported that the magneto- 
striction or magnetoelastic coupling coefficient of a thin film can depart sharply 
from the value observed in thicker films and in bulk. These effects, which 
may have a fundamental origin associated with reduced symmetry or be 
due to microstructural or strain changes with film thickness will be treated in 
Chapter 16. 

7.2 PHENOMENOLOGY 

What these data indicate collectively is that there is a coupling between the 
magnetization direction and mechanical deformations in a material, and this 
effect depends on the direction of magnetization relative to the crystal axes. 
Therefore the magnetic free energy must contain terms that couple the 
direction of magnetization, specified by the direction cosines a,, to the 
components of the strain tensor, e i j .  The magnetic energy, u(a, e), is expanded 
in a Maclaurin series as follows: 

+ .. .  + B..e..a.a. + ..- + D.. e . . e  a.a.a a + ... 
1 l V I I  r j k l  LJ kl r  J  k I (7.4) 

In this formal expression, the two lowest-order terms of three types have been 
included. The first-type terms, independent of strain, depend only on the 
direction of magnetization and thus describe the magnetocrystalline anisotropy 
discussed in the Chapter 6. The second-type terms, quadratic and cubic in the 
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strain components and independent s f  the a terms, describe the pure elastic 
energy (with the elastic stiffness constants as coeficients) and the strain 
dependence of the c terms, respectively (see Appendix 7A for a quick refresher). 
The third-type terms, linear and quadratic in the strain components and 
dependent on the direction cosines of the magnetization, describe the first-order 
and second-order magnetoelastic (ME) energy density. The B values are ME 
coefficients that express the coupling between the strains eij and the direction 
of magnetization given by 0 or a,. Later these coefficients will be related to the 
magnetostriction constants, A,,, and A,, , . Essentially, the B values are the 
stresses of magnetic origin that cause the rnagnetostrictive strains eij with 
elastic moduli as constants of proportionality. The exact form of the terms in 
Eq. (7.4) depends on symmetry as described in Chapter 6 and its Appendix and 
as expanded on in Section 7.4, below. 

For a cubic material, the surviving first-order terms are 

&To u = u, + u,, + u,, = - + ~ , ( a ; a i  + a;a: + aza:) + iY2a:a;az ... 
K 

+ B,(a:e,, + a k y y  + a%,,) + B2(a,a2exY + a2a3ey, + a3a,e,,) 
2 

+ ($ICII(~,, + e;, + e:,) + c12(e,,eyy + eyye,, + e,,e,,) 
2 2 + ($)~~~(e:,  + e,, + e,,) + const x eij (7.5) 

The reason for the last term, independent of direction cosines, will become clear 
below. 

It is of interest to know the relative importance of the terms in Eq. (7.5). 
Table 7.2 gives the values of some relevant parameters for Fe, Co, and Ni. In 
order to compare the magnitude of the energies contributing to Eq. (7.5), the 
B values must be multiplied by a strain. Clearly, magnetoelastic contributions 
to the free energy are relatively more important in Ni than in Fe. In fact, while 
an imposed strain of order 2% would be required for the ME contribution to 
be comparable to K, in Fe, a strain of less than 0.1% results in an ME 
anisotropy comparable to K ,  in Ni. Strains exceeding about 0.1% are greater 
than the elastic limit of most metals; they can exist in thin films. 

TABLE 4.2 Bulk Magnetic Properties o f  Fe, 670, and Ni at Room TemperatureQ 

BCC Fe FCC Co HCP Co FCC NI 

"Units are J/m3 for the first three rows and N/mZ for thc B rows 
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The microscopic origin of these ME phenomena may be understood better 
by following NCel's treatment (1954) of the effects of strain on the anisotropic 
magnetic interaction between atoms on a lattice. The interaction energy 
between two atoms in a solid can be expanded in Legendre polynomials [as 
done in Chapter 6, Eq. (6.7)] where + is the angle between the bond direction 
v and the direction of magnetization. 

In Eq. (6.8), g(r) describes isotropic (possibly exchange) interactions because 
there is no reference to a crystallographic direction for the magnetization. On 
the other hand, the dipolar and quadrupolar terms, proportional to l(r) and 
q(r), respectively, are functions of the angle between M and the bond directions. 
The dipole coefficient may, in the simplest case, be given by p , p ~ / r ~ ,  a true 
dipole-dipole, mngnetostatic interaction; it is rarely important in magnetostric- 
tion. However, l(r) may also contain any other interactions of dipole symmetry, 
pseudo-dipole interactions, which couple M to the crystal structure. Dipole 
interactions become important when stronger effects vanish, as, for example, in 
s-state ions (L = 0) such as Gd3+. 

If the direction cosines of the magnetization A4 within a domain are taken 
to be a,, a,, and a, and those of the bond directions to be PI, P,, and P,, 

= Ms(a1, a,, a31 = M,(mx, my, m,) 

v = r(P 1, P2, 8319 

then cos + = M.v/lMllrl = alp, + a2P, + a3P3. Thus, the first terms in Eq. 
(6.7) may be written 

If a crystal is strained, for example, with a bond in the x direction taking on 
the new length r,(l + eij),  then it is possible that the free energy will have its 
minima shifted to define new preferred directions of magnetization. Conversely, 
if the direction of magnetization is changed by application of a field, the crystal 
may be able to lower its energy by changing its equilibrium bond lengths. The 
mathematics of this coupling between magnetic and elastic effects must be 
determined. For simplicity, consider the energy due to bonds in the x direction: 
r, = rx and fl = (1, 0, 0). Under a uniaxial strain, r, = r,(l + ex,) and, to first 
order in the engineering strain, P = (1, exy/2, e,,/2). Expanding l(r), Eq. (7.6) 
becomes 

Subtracting Eq. (7.6) from (7.7) gives the change in magnetic energy due to 
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strain, which is, by definition, the magnetoelastic energy density: 

~ ~ ( 7 ,  $) = ~ ~ ( 7 ,  $b - U , ( Y ~ . ,  $0) - u,, - - ($1, ex. + (:)_ex. (4  - k 
Similar expressions result for the bonds in y and z directions. These pair 
interactions are summed over the nearest neighbors in various cubic lattices to 
give 

where the Bi values for different cubic lattices take on the values 

The ratio N/V is the number of atoms per unit volume, rendering the results 
of this atomic model in units of energy per unit volume. The term --&3,ei, in 
the ME free energy is not simply a constant with no physical consequences 
other than expressing the energy as an expansion in orthonormal polynomials 
[as is the term -+k, in the anisotropy, Eq. (6.4)]. Here it contains a variable, 
e,,, so it cannot be neglected without serious consequences. It will be seen later 
that this term is important in defining the reference state from which the strain 
is measured. So Eq. (7.8) is the correct form for the ME energy density in a 
cubic crystal; the form in Eq. (7.5) had not defined the terms - e i i / 3 .  

The free energy can be minimized with respect to various strain components, 
aulae,, = 0, to get the equilibrium Joule strain ez = e(M) or e(H) as in Figure 
7.2. Alternatively, the free energy could be minimized with respect to the 
orientation of M, auld0 = 0 to get the equilibrium orientation of magnetization 
%(e, K), which gives M(e) as in Figure 7.3 (inverse Joule eEect). 

The cubic magnetostrictive strains are now derived by minimization of Eq. 
(7.8). The equilibrium strain configuration is obtained by setting i3u/deij = 0: 
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The solutions to these six equations give the components of the magneto- 
strictive strain tensor: 

Note that the diagonal strains are proportional to the ME stress B, and are 
inversely proportional to c,,-c12, which is the stiffness resisting uniaxial 
distortions of the cube. The off-diagonal strains are proportional to the ME 
shear stress B2 and inversely proportional to c4,, the elastic shear modulus G. 
Thus, what was asserted earlier has been demonstrated, namely that the ME 
stresses and strains are related by a magnetic analog of Hook's law, 
Bij = -cij,,A,, The minus sign reflects the convention that a positive magnetic 
stress (compressive) results in a negative strain. 

The strain in any direction is specified by projecting eij on the vector (PI, 
a,, p3), defining the strain-measuring direction (see Appendix 7B): 

Substituting in this expression the values of eii and eij given in Eq. (7.10), gives 
the strain in direction p for magnetization in direction a:  

This equation shows how the deformation of a magnetic sample known as 
Joule or anisotropic magnetostriction depends on the direction of magnetiz- 
ation through the a terms and on the strain-measuring direction through the 
p terms. Equation (7.12) also reflects the fact that a demagnetized crystal with 
a random distribution of domain magnetizations is taken, by convention, to 
have dl11 = 0. In this state the magnetization direction in each grain is along 
one of the easy axes so an average over all possible strain directions gives zero 



284 MAGNETOEMSmC EFFECTS 

strain. Thus the term --$B,eij in the ME energy sets the proper; strain reference 
state to that s f  the unstrained cubic crystal. 

For a sample magnetized in the [I001 direction, a = (I, 0, 0), the strain 
measured in the same direction, B = (1, 0, 01, is defined as A,,,. In that case 
Eq. (7.12) gives 

For A,,,, ai = p i  = (11 J3> and the result is 

Similarly for A,,,, a, = cr, = P,  = P, = (11 J2), a, = P, = 0, giving 

In a cubic material such as iron, where A,,, > 0 and A,,  , < 0, the dependence 
of strain on applied field can be more complicated than shown in Figure 7.2. 
The reason is that for certain orientations of the applied field, the magneti- 
zation is rotated through directions for which the strain has different signs. A 
demagnetized sample (M equally distributed among (100)), in a [I 1101- 
directed field initially expands in the field direction as the magnetization in the 
+ [OOI] directions rotates to [lOO] or [OPO]. (There is no elongation for the 
change in magnetization from - [I001 to ClOO] and - [010] to [OIO].) 
Increasing the field further causes the magnetization along [OlO] and [100] to 
rotate to [110j. This process causes a contraction because A,,, < 0 [see Eq. 
(7.15)J. 

For an isotropic material, it is expected that A,,, = A,,, = A,. Then Eq. 
(7.12) reduces to Eq. (7.1), which was presented without justification. All 
reference to crystallographic direction is gone (see Problem 7.4). For a 
completely random polycrystalline material, in a state of zero net stress, Callen 
and Goldberg (1965) obtained 

Another form for the magnetostriction of a polycrystalline sample is also given 
by Callen and Goldberg for situations of zero net strain. Eacheisserie (1994) 
shows that most data fall between these two limits. The values usually assigned 
to A, for polycrystalline nickel and iron are -34 >< and -7 x 
respectively. Use of Eq. (7.16) is justified only for an untextured polycrystal and 
for amorphous alloys. 
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Inspection of Eq. (7.8) shows that for a given strain, the magnetoelastic energy 
resembles a magnetic anisotropy energy inasmuch as it is a function of the 
magnetization orientation. However, the first two cubic ME terms are of lower 
order in direction cosines, that is, of lower symmetry, than K, and K 2  terms. 
Thus, an imposed strain may change a cubic material, having fourfold easy 
axes, to a uniaxial system. 

Inverse magnetoelastic effects need to be considered in two situations: (1) an 
imposed mechanical strain alters the energy surface and hence changes the 
magnetization process below saturation and (2) a magnetostrictive strain 
(resulting from a change in magnetization direction) alters the energy surface 
and hence changes the approach to saturation. This is a second-order effect. 

Each of these magnetoelastic effects on magnetic anisotropy is considered, 
the first-order effect, then the second-order effect. 

First-Order Anisotropy Due to an External Strain In Chapter 6 the effects 
of magnetic anisotropy on the preferred direction of magnetization were 
illustrated through the use of energy surfaces. The energy surface is also used 
here to illustrate the effects of strain on the free energy function. 

If the cubic magnetic anisotropy and magnetoelastic energy expressions in 
Eq. (7.5) are considered, it is clear that imposition of an external strain e; alters 
the anisotropy energy density. For example, a tensile stress that produces an 
elongation in the x direction, ey,, will also cause lateral contractions given by 
0 0 e2, = e,, = --ue:,,where u is Poisson's ratio (which has a value close to 113 

for many metals). Hence, the anisotropy energy in this case is written: 

Figure 7.10 shows the cubic energy surface cross section (K, > 0) in the xy 

Figure 7.10 Cross section of cubic anisotropy energy surface for zero strain (solid line) 
and for B,ell > 0 showing stabilization of magnetization in directions transverse to the 
strain axis. 
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0 plane for ey, = O (solid) and fog. ~~e~~ >. 0 (/ZPooeln < 0) (dashed). Magnetiza- 
tion in the y direction is stabilized relative to the x direction as a result of the 
strain. 

To accommodate this strain in a cubic material in three dimensions, the y-z 
plane becomes a more favored plane of magnetization relative to the x axis. 
For ~ , e : ,  < 0, the y-z plane becomes less stable and the x axis, more stable. 

What is important for the impact of ME effects on the magnetization 
process is the ratio of lBeOl to the other energies influencing the direction of 
magnetization. Table 7.3 shows the critical strain values above which mag- 
netoelastic energy lBeOl exceeds magnetocrystalline anisotropy 

or above which it exceeds the magnetostatic energy 

for iron and nickel. It is assumed that equilibrium values of K,, Ad,, and B,  
apply in a high strain situation (and they are not expected always to apply). 
Nickel is especially sensitive to strain-induced changes in its magnetic response 
because of its strong magnetoelastic coupling, its relatively weak crystalline 
anisotropy, and its small magnetization. A strain of only 0.1% in nickel gives 
rise to an ME anisotropy comparable to K,. For iron, a much larger strain 
(1.7%) is required to give an ME anisotropy comparable to the crystal 
anisotropy but would not change magnetization distributions governed by 
magnetostatic effects. 

It is worth noting that through the ME interaction, a small lattice strain, e, 
can produce a much larger strain in the anisotropic energy surface. The 

TABLE 7.3 Assuming Bulk Values for &, B,, and Ms 
in Fe and Ni, the Critical Strains e: and e p  Indicate the 
Strain above which Magnetoelastic Anisotropy Strength 
Exceeds Crystal Anisotropy or Magnetostatic Energy, 
Respec~vely 
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ME-induced strain in the energy surface is given by B,e/K. The ratio of this 
strain to the lattice strain is simply B,/K. From Table 7.3, this quantity is equal 
to (ef)-l. Thus the energy surfaces of iron and nickel strain 60 times and 100 
times the amount by which their lattices are strained, respectively. Small 
changes in sample shape can cause much larger changes in the magnetization 
process defined by the energy surface. 

Example 7.1: Effects of Imposed Strain Consider a magnetic thin film with a 
uniaxial anisotropy K, cos28 in the plane of the film. (Magnetostatic energy is 
assumed to be great enough to keep M in plane.) A tensile stress and an 
external magnetic field are applied along the hard axis as shown in Figure 7.11. 

It is important to identify clearly the effect of the stress on the M-H curve. 
For e = 0, the magnetization ideally follows M = MsH/H,. The problem is 
solved for nonzero stress assuming no out-of-plane magnetization (a, = 0). A 
magnetoelastic term [Eq. (7.8)] 

is, therefore, added to the Zeeman and anisotropy energy densities. (The -4 
terms have been dropped because an imposed strain is assumed; these terms 
must be retained when calculating magnetostrictive strains.) From elasticity 
theory, ex, = o/E,  eyy = - ue,,, and eij = 0, and the ME energy density can 
then be written 

Note that for B,e,, > 0 this term lowers the energy density near 0 = n/2 and 
raises the energy for 8 near zero or z. When the torque from Eq. (7.17) is 
combined with the earlier torque expressions for the zero-strain, uniaxial 
problem, the magnetization response becomes (see Problem 7.9) 

M 
- = m = Ms H -- - 
Ms 

Ms H 
2[K, + B1eXx(l + u)] 2 ~ : ~ ~  

Figure 7.11 (a)  A schematic representation of a sample subjected to collinear tensile 
stress and external field at right angles to the easy axis; (b) the appropriate coordinate 
system for the problem. 
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For Bbexx > 0 (Alooe,, < 01, K:" is in~seased b y  the magnetoelastic anisotropy 
and the elope dM,/dB decreases (saturation is harder to achieve as in Fig. 7.12) 
for the applied field H less than saturation. Equation (7.68) can also be written 
as 

H 
m, = - eff p(ZFf I + U  where Ha = 2- = Ha + I3 e - 

H : ~  1 xx (7.19) 
Ms Ms 

For Blexx < O (Alooe,, > O), Keff is decreased by the magnetoelastic contribu- 
tion (Fig. 7.12). The magnetization still reverts to zero when H = 0, regardless 
of the stress as long as IB,exx(l + u)l < K,, that is, 4(Ef f  > 0, because rn is linear 
in 61. However, if the ME energy is so negative that iYZff < 0, mx may be finite 
at H = 0 because the x axis becomes the easy axis. 

Equations (7.18) and (7.19) are often written in terms of the magnetostric- 
tion constant for an isotropic material. In those cases, BleXx(l + u) is replaced 
by - (3/2)A,o where o is the external stress imposing the strain: 

eff 3 1 , ~  Keff = K,  - ('1 lSo or Ha = Ha - - (7.20) 
Ms 

Essentially, tension in a positive magnetostriction material (BleXx < 0) 
facilitates the magnetization process in the tensile direction. Contrast this 
behavior as summarized in Figure 7.62 with that of a cubic film ( K ,  > 0, is., 
(100) easy axes) magnetized and stressed along [PPO] in Problem 9.4. 

Figure 7.82 Solution to the problem represented in Figure 7.11. The solid line 
represents zero stress and is the same solution as in Figure 7.4. The dashed lines show 
how the magnetization is affected by stress for different values of the product of strain 
and magnetoelastic coupling coefficient B,.  
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There are circumstances for which an externally imposed strain is so large 
that second-order effects, Dijkleije,,aiajakcc, [Eq. (7.4)], must be considered. In 
such cases, these effects show up as apparent changes in the first-order ME 
coefficients: 

u,, = B..e..a.cc [ J  11 1 J + ... + Dijkleijek,aiajaka, + ... 
= Beffe.  .a.a. 

IJ J 

where 

An example of second-order ME effects will be seen in epitaxial thin films 
(Chapter 16) where a lattice mismatch of a few percent can cause an apparent 
change in the ME coupling coefficient. Attention is now turned to the effect of 
a magnetostrictive strain (not an externally imposed strain) on the magnetic 
anisotropy. 

Second-Order Anisotropy Due to Magnetostriction To consider the 
change in anisotropy that results from spontaneous magnetostriction during 
the magnetization process in an unconstrained sample, the strain in Eq. (7.8) 
must be expressed as a function of magnetization. By replacing the strains in 
Eq. (7.8) with the results in Eq. (7.10), the magnetostrictive contribution to 
crystal anisotropy A K ,  in a cubic system is identified. The result is 

u = ( K ,  + ~ K ) ( a ? a ;  + a:a: + aza;) (7.21) 

with 

or using Eqs. (7.13) and (7.14): 

Note first that this second-order spontaneous magnetostrictive contribution to 
magnetic anisotropy does not lower the symmetry of the energy function as 
does an imposed strain. Further, AK,  is independent of the signs of A,,, and 
A,,, and depends essentially on the difference in their magnitudes. For that 
reason AK is very small in iron where IA,,,I m =:IA,,,I; AK contributes a tenth 
of a percent to K.  For Ni, AKIK % 1%; AKIK is also large in rare-earth alloys 
where lA l l l l  >> IA,,,I. For TbFe,, AKIK m 20% (Clark 1980). 



240 MAGNEqrOELASTIC EFFECTS 

9.4 AE EFFE6$ AND THERhMODWNAWililGS OF 
MAGNETOMECHANIGAk COUPLING 

It has just been seen that the Joule magnetostriction induced during the 
magnetization process has a second-order effect making magnetization easier 
or harder depending on the relative magnitudes of (c,, - c,,)A~,, and 
2c4,A:, ,. The magnetostrictive strain has another second-order effect; it makes 
a material appear mechanically softer in the small strain regime. This is 
illustrated in Figure 7.13. Application of a stress to a magnetostrictive material 
induces a strain which tends to rotate the magnetization (M moves toward a 
tensile stress direction for A > 0, B < 0). The stress-induced rotation of A4 
brings with it the magnetorestrictive strain in addition to the mechanically 
induced strain. Thus, the material appears more compliant by the ratio of the 
magnetostrictive strain to the purely mechanical strain. The reader should 
demonstrate that the material appears mechanically softer regardless of the 
sign of the magnetostriction. 

The added magnetic strain, e,  z A, is generally insignificant compared to 
the elastic strain for large stresses. Thus, this AE effect, as it is called, is more 
important for acoustic weaves, vibrations, and damping, than it is for mechan- 
ical strength. 

The total strain e,,, that the ferromagnetic sample experiences under stress 
a can be expressed as 

5 3 
e,,, = -- + - A, 

E M  2 

Figure 7.13 Strain versus stress in a magnetic material in the elastic regime. When the 
magnetization is fixed, the small strain behavior is purely linear. When the magnetiz- 
ation is free to respond to the applied stress, the material appears softer because of the 
additional magnetostrictive strain e,. [Adapted from Lacheisserie (199411. 
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Here EM is the Young's modulus for fixed magnetization (no magnetostrictive 
contribution) that controls the purely elastic strain [first term in Eq. (7.23)]. 
The magnetostrictive contribution to total strain [second term in Eq. (7.23)] 
is taken from Eq. (7.1), where 0 is the angle between the magnetization and the 
strain measuring direction. Because cos 8 = m = H/H;,~ for a hard-axis mag- 
netization process, Eq. (7.19) can be substituted for cos0. The apparent 
modulus in the face of this magnetostrictive strain is obtained from Eq. (7.23) 

Using Eq. (7.20) for the strain dependence of Hzff gives 

This formula applies when the magnetization is initially orthogonal to the 
stress direction. Starting with M parallel to the stress would produce a 
magnetostrictive strain as M rotates away from the stress axis. But in this case 
the magnetic strain is only 412. 

The AE effect is used in many magnetoacoustic devices where the resonance 
frequency or the sound velocity, both proportional to E;'~, can be modulated 
by an applied field. 

Thermodynamics of Magmetomechanical Coupling It is important in 
many cases to consider the change in internal energy, dU [Eq. (2.39)], of a 
magnetic material as it strains in response to being magnetized, dl11 = A, where 
A is the magnetostriction coefficient. In Chapter 2, the convention for the 
magnetoelastic contribution to the internal energy of a sample as it strains on 
being magnetized is given as - Vo,A. This term is analogous to the elastic 
energy -pdV (a product of an intensive force variable and the change in an 
extensive measure of sample size). Thus the change in internal energy on 
magnetizing a magnetostrictive material is written as an extension of Eq. (2.39): 

dU = TdS - pdV+ (poHdM - oMA)V (7.25) 

The two most common thermodynamic functions, the Helmholtz free energy 
F = U - TS and the Gibbs free energy G = U + ( p  + oe)V- (TS + po4-IM)I/; 
have the differentials 

dF = - S dT - p dV + (pOH dM - aMde)V (independent variables: ?; V, M, e) 

dG = - S dT  + Vdp - (pOM dH - edoM)V (independent variables: T p, H ,  o) 

(7.26) 
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The function dF is appropriate in eliasticaly Ree situations (e.g., magnetizing a 
sample that is free to strain). The function dG is useful in cYamped situations 
(e.g., magnetizing a magnetostrictive film on a rigid substrate). Important 
relations folPow from the partial derivatives of the free energies. For example 

(The ,uo is omitted in cgs units.) Making use of the fact that dG is a perfect 
differential gives, among other things, the following useful relations: 

a2G av 
- - a s  

Volume thermal expansion = - - - - - - - = a  
a m p  aa a p  

and 

The second relation in Eq. (7.28) defines the magnetostrictivity d, the strain 
produced per unit field or the change in magnetization per unit stress. These 
definitions form the basis of various methods of measuring the magnetostric- 
tive strain or the magnetoelastic coupling coefficient (see Section 7.7). Hf the 
isotropic strain expression, Eq. (7.1), is used in Eq. (7.28), along with 
rn = cos 9 = HIH, for hard-axis magnetization, the following expression results 
for the magnetostrictivity: 

This equation applies up to saturation and d = 0 for N > Ha (Livingston 
1982). Integrating this form of dl as suggested by the last equality in Eq. (7.28) 
yields 

where e ( N )  is the field-dependent magnetostrictive strain at H ;  that is, the 
magnetostriction is quadratic in the hard-axis field below saturation as noted 
at the beginning of this chapter (Fig. 7.14~). Figure 7.14b shows the variation 
of d(N) for a material with transverse anisotropy. Note that d(W) is the field 
derivative of A(N) from Eq. (7.2). 
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Figure 7.14 (a )  Strain versus applied field transverse to easy axis; (b) magnetostrictiv- 
ity for the same conditions. 

The magnetostrictivity is important for transducer applications because it 
describes the stress sensitivity of magnetization (i.e., it describes a magneto- 
acoustic microphone) or the field sensitivity of strain (magnetoelastic speaker 
or sonar projector) [Eq. (7.28)]. What is needed for these applications is a 
material with a large value of 2, and, more importantly, a small value of Ha so 
that saturation is achieved in a relatively weak field. Hence a useful figure of 
merit for transducer materials is the ratio /Z,/H? as suggested by Eq. (7.29). 
Terfenol-D, (Tbo,,,Dyo,,,)Fe2, is an example of a material developed to 
optimize this figure of merit. Keeping in mind that the area under d(H) (Fig. 
7.14b) is fixed by 2, [Eq. (7.29)], by decreasing the anisotropy field, the peak 
value of d(H) is increased. 

The magnetic and elastic response of a system, M = xH, and e = sHo, are 
modified for a coupled magnetoelastic system by the addition of new terms 
from the integrals of Eq. (7.28): 

sa 1 
M = xaH - - ddo = xaH - - da 

Po 0 Po 

Here, xu is the magnetic susceptibility at constant stress and SH = l / E H  is the 
elastic compliance at constant field. With Eq. (7.30), the magnetic and elastic 
contributions to the Gibbs free energy density [Eq. (7.26)] are 

Note how Eqs. (7.30) follow from dG by taking the derivatives described in 
Eq. (7.27). The form of the Gibbs free energy in Eq. (7.31) expresses the 
partition of energy between pure elastic modes, isHo2, pure magnetic modes 
iX"fI2, and coupled magnetoelastic modes, dHo. The coupling strength of a 
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magnetoelastic device k is defined as the ratio of the energy in coupled 
magnetoelastic modes to the geometric mean of that in pure magnetic and 
elastic modes. Thus, from Eq. (7.31) 

The magnetomechanical coupling factor k can take on values between zero and 
unity; the latter is the condition of complete coupling. In a crystal, k is a tensor 
with k,, pertaining to longitudinal mode coupling. Similar expressions apply 
for shear-mode coupling constants. 

In terms of the AE effect, it can be shown, using Eqs. (7.24), (7.29), and 
(7.32), that 

Thus k approaches unity as EN approaches zero. 
Figure 7.15 shows the variation of the AE affect in amorphous FePC 

ribbons as a function of annealing condition: Z is zero-field-annealed; L and T 
are field-annealed, longitudinal, and transverse to the ribbon direction. The 
measurements were done by measuring vibration frequency of the ribbon near 
400 Hz (Berry and Pritchet 1975). Annealing in the transverse direction gives 
an initial magnetization state that produces the most magnetostrictive strain 
under longitudinal flexure. At these low strain levels the modulus of the 
amorphous ribbon is reduced by 80% in a field of about 6 Oe. From Eqs. (7.32) 
and (7.33), the AE effect is maximum when 68' is maximum; d reaches a peak 
at the anisotropy field N,, which for this sample is about 6 Oe. 

So far, the forms for the ME effects have been considered only in isotropic and 
in cubic samples. It is of interest to know the form the magnetostriction must 
take in hexagonal and in other low-symmetry magnetic structures. Materials 
with hexagonal structures include cobalt and many cobalt-rich alloys, rare- 
earth metals, and some rare-earth intermetallics, as well as barium hexaferrite. 
A general formalism for magnetic anisotropy and magnetostriction introduced 
by Callen and Callen and reviewed by Lacheisserie (1994) is now described. In 
this formalism, the free energy functions for all crystal symmetries are ex- 
panded in a set of orthogonal harmonic functions, introduced in Chapter 6, 
Eq. (6.3). There, the expansion coefficients are chosen so that the anisotropy 
energy is invariant under all point operations of the crystal symmetry. In this 
formalism, one set of magnetostriction coefficients is defined and they apply 
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Applied Field (Oe) 

Figure 7.15 The AE effect measured by the vibrating reed technique on an amorphous 
FePC ribbon in three annealing conditions: Z, no field, L, longitudinal field; T, tranverse 
field (Berry and Prichett 1975). 

across all symmetry classes. The correct method of forming the free energy 
expression is to write separately the strains and direction cosines that are the 
basis functions of the fully symmetric representation of the point group of 
interest. 

Figure 7.16 illustrates the irreducible representations of the direction cosines 
and strains in the cubic point group. The former are illustrated with familiar 
atomic wavefunctions defined by the respective combinations of ai values. The 
strains are isomorphous with (they show the same form as) the wavefunctions, 
namely, positive strain where the wavefunction has positive amplitude and vice 
versa. Once the correct symmetry-invariant expressions for the ais and the eij 
values are formed, their direct products are taken, ensuring that the energy is 
invariant under all symmetry operations of the ai and the eij values. 

For brevity, the form of the magnetoelastic energy and the formula for the 
magnetostriction are expressed in cubic and hexagonal symmetry to lowest 
order in the direction cosines in each case. Higher-order terms and forms for 
other symmetries can be found in the thorough exposition by Callen and 
Callen (1963, 1965) and by Lacheisserie (1994). 
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Figure 7.86 The first line shows the form of the isotopic s wave function and the 
isotropic, volume magnetostriction symmetry. In the next three rows, the symmetry and 
amplitude (solid line, IC/, > 0 dotted lines, IC/, < 0) of the five atomic d-functions are seen 
to be isomorphic with the form of the five cubic Joule magnetostriction strains [Eq. 
(7.33)l. This is because both are examples of irreducible representations of the cubic 
group. 

For cubic symmetry the M E  free energy is 

cubic - E x x  + ' y y  + E ~ z  %a + Eyy  
f m e  - 3 

+ ' i ! ~ , ~ a , a , { b " ~  + -..) + cycl. (7.34) 

The b terms are the new, symmetry-invariant ME coupling coefficient replacing 
the old B,  and B,. It is helpful to note that the lowest-order cubic ME energy 
expression is a sum of products of strain components and direction cosines, 
both of which have the same form, namely, that of the five irreducible 
representations of the cubic point group. 

For cubic symmetry, the magnetostriction to fourth order in ai is 



The superscript a on a magnetostriction coefficient denotes a strain that 
preserves crystal symmetry; the y terms describe volume-conserving uniaxial 
(tetragonal) strains; &-labeled terms distort the symmetry in the (100) planes 
(see Fig. 7.16). The index after the Greek superscript indicates the order in 
direction cosines. 

For hexagonal symmetry, the free energy is 

uniaxial - ba.0 E X X  + 'yy + ' z z  f me 
- 

1 3 
+by-- EZZ - 

2 

For the hexagonal magnetostriction (H, Laue group), the result is 

The a- and &-labeled magnetostrictions describe the same distortions in a 
hexagonal system as they do in cubic symmetry. Note that even a change in 
c/a ratio (A",' term) preserves hexagonal crystal symmetry even though the 
strain is not isotropic. In hexagonal symmetry [-terms which shear over the c 
axis are also found. 

The symmetry-based cubic magnetostriction coefficients can be expressed in 
terms of the older coefficients using the same method of assigning appropriate 
values to the a and p values as was done before Eq. (7.13): 



248 MAGNETOELASTIC EFFECTS 

7.6 TEMPERATURE DEPENDENCE 

The description of the symmetry-invariant notation in Section 7.5 was neces- 
sary before coming to the last major topic of this chapter, namely, the temper- 
ature dependence of magnetostriction. This necessity comes for two reasons 
(Clark et al. 1965, del Moral and Brooks 1974): (1) much of the modern data, 
especially that for rare-earth metals and alloys, is presented in the literature in 
terms of A",' rather than A,,, and A,,,; and (2) the theoretical explanation of 
the temperature dependence must be done in symmetry-invariant formalism. 

The temperature dependence of magnetostriction in a number of magnetic 
materials is described to motivate the exposition of the theory of the tempera- 
ture dependence of these symmetry-based strains. After outlining the theory, 
the data are interpreted. 

Figure 7.17 shows the temperature dependence of the two principal mag- 
netostriction constants in Ni. The shaded area shows the trend and scatter in 
data from numerous sources. The solid lines are based on calculations by 
Lacheisserie (1972) that will be described later. Note the sharp decrease in the 
magnitude of these coefficients, especially A",2, with increasing temperature. 

Figures 7.18 and 7.19 show Aw(T) data for Tb and Gd, respectively. Note for 
Tb the steeper decrease with increasing temperature for A* compared to AC and 
for Gd the sharp temperature dependence including a change in sign for l y y 2  

below Tc = 290 K. 
Figure 7.20 shows the temperature dependence of magnetostriction in the oxide, 

yttrium iron garnet (YIG). Here, the form of h,(T) is reminiscent of the 
magnetization curve of NiFe, -,V,O, (x = 0.86) in Figure 4.9. The nonmonotonic 
behavior of h, with temperature is well described by the Callen-Callen model. 

The temperature dependence of the isotropic magnetostriction coefficients 
in a number of amorphous magnetic alloys is illustrated in Figure 7.21 
(07Handley 1978). 

Figure 7.17 Shaded areas show range of experimental magnetostriction of Ni single 
crystals (Franse 1970, Bower 1971, Lee 1971), and solid lines show calculated tempera- 
ture dependence (Lacheisserie 1972). 



TEMPERATUREDEPENDENCE 249 

4.0 

3.2 0 b-axis data 

2.4 

1.6 

0 .8  

0.0 
0 40 8 0  120 160 2 0 0  2 4 0  2 8 0  320  

Temperature ( K )  

Figure 7.18 Temperature dependence of 14 and IC = LE32/2 for Tb. (Rhyne and 
Legvold 1965). 
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Figure 7.19 Temperature dependence of Iy for Gd. Experimental data of Coleman 
(1964) fit by Callen and Callen (1965) to their theory. 
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Temperature (M 1 

Figure 7.20 Temperature dependence of magnetostriction coefficients of yttrium iron 
garnet (YHG). [After Callen et al. (19631.1 

In all of these examples, just as for magnetocrystalline anisotropy, L(T) 
drops much more sharply with increasing temperature than does M ( T ) .  It will 
be shown that the theory developed by Zener (1954) and standardized in its 
modern form by Callen and Callen (1963, 1965) for the temperature depend- 
ence of magnetic anisotropy also applies to these strain-dependent components 
of magnetic anisotropy, namely, the magnetostriction. 

To describe the strain dependence of the anisotropy energy, the anisotropic 
MarniPtonian containing two-ion and single-ion terms (see Chapter 6), 

can be expanded in powers of strain to first order, much as was done in the 
NCel model in Section 7.2: 

aJ . .  a~ 
ff = e S. .  --I.!.Sj + e $.----Si + ... P 

me and H ,,,,, , = - c e2 (7.40) ae, eL a," 2 " "  

The energy is the expectation value of this strain-dependent Hamiltonian, 
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Figure 7.21 Temperature dependence of magnetostriction in three amorphous alloys 
after O'Handley (1978). 

E = <H>, and the equilibrium strain is obtained by solving 

for the strain components, e,. The results of this minimization. are expressed 
below as sums over nearest-neighbor spins i, j .  

Isotropic Anisotropic 

1 a J . .  1 a J . .  
e ,  = - - x A (Si .Sj) - - x A (STS;) (exchange) 

C p  i,j a', C p  i,j aep (7.41) 

1 a D  1 a D  
-- x - (s;) - - x - <(Sf)2) (crystal field) 

c ,  i aep C p  i,j aep 

The isotropic terms here contribute to the volume magnetostriction via the 
two-ion exchange interaction and the Madelung part of the single-ion, crystal 
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field term. The contributions to the Jade magnetostriction involve (1) the 
anisotropic exchange couplings between the z components of spins at two 
different sites and (2) crystal field anisotropy seen by the spin at each site. 

The expectation values of the spin operators are called spin correlation 
functions. The important spin correlation functions are the same as those 
involved in single-ion and two-ion anisotropy which were described in Chapter 
6. Suffice it to say that the exact results of the quantum statistical mechanical 
model of temperature dependence of single-ion ME effects can be summarized 
as follows: 

The Bessel function, modified Bessel function, and their argument, X, were 
identified in Chapter 6. Everything that was said there about K,(T) applies here 
to A,(T). 

Lacheisserie (1972) has shown that the nickel data available in 1971 can be 
fit up to 300 K with a combination of single-ion and two-ion terms (solid lines, 
Fig. 7.17): 

Thus, the magnetostriction of Ni contains, in addition to a single-ion term, a 
significant two-ion anisotropic contribution that varies as m2. The latter plays 
a larger role as T/K approaches unity because the single-ion terms are so small 
there. The two-ion term causes the sharper decrease in /IG2 and more gradual 
decrease in A y s 2  below Tc. It is interesting that even a 3d metal can be described 
with some success by this model, which is based on localized magnetic 
moments. The reason for any success at all with a local moment model in a 
metallic ferromagnet may be due to the fact that while the 3d wavefunctions 
are periodic and spatially extended over the lattice, the charge and magnetic 
moment densities are fairly well concentrated at each site. The nickel magneto- 
striction values at room temperature and 4.2K agree with the values in 
Table 7.1 using the relations in Eqs. (7.38) and (7.39). The temperature 
dependence of magnetostriction in iron is more complex than that of Ni 
(Eacheisserie and Mendia Monterosso 1983). A model taking into account the 
nonlocalized 3d character of iron has recently been applied with success to 
explain the nonmonotonic temperature dependence of magnetostriction in the 
intermetallic compounds Y2Fe,, and Y,Fel,B, (Kulakowski and del Moral, 
1994). 

The temperature dependence of ;lA and ilc in Tb (Fig. 7.18) follow the forms 
appropriate for cubic (1 = 4) and uniaxial (I = 2) symmetry, respectively. The 
temperature dependence of ;ly,2 in Gd follows that of a sum of a uniaxial, 
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single-ion and two-ion terms (Callen and Callen 1965) as indicated in the 
figure. Here the negative two-ion term is strong enough to account for the 
change in sign of ;l above 220K. 

The magnetostrictions of many metallic glasses appear to follow the theory 
for uniaxial, single-ion anisotropy. The magnetostriction of some cobalt-rich 
amorphous alloys shows a sign change that can be accounted for by a sum of 
uniaxial, single-ion, and two-ion terms that combine in ratios that are con- 
sistent over several compositions (O'Handley 1978). It is possible to integrate 
itinerant character into these local-moment models by inclusion of electron 
hopping, and thereby explain magnetostriction in metallic systems (Kulakow- 
ski and del Moral 1994, 1995). 

7.7 MEASUREMENT TECHNIQUES 

Strain Gauges Metal foil strain gauges are often used to measure magneto- 
striction in bulk samples (see Fig. 7.22). When applied to a sample using a 
suitable high-temperature cement (e.g. polyimide adhesive, PLD 700, BLH 
Electronics), the gauges can be used over a temperature range from liquid 
helium temperature to 670 K. 

The metal foil forms a serpentine pattern with elongated legs in the direction 
in which strain is to be measured. A metal with a temperature-insensitive 

Figure 7.22 Metal foil strain gauge of the type often used in strain measurements. The 
gauge sketched here is patterned after type FSM-23-35-S6 (BEH Electronics). A 
serpentine pattern of NiCr alloy is supported by a polyimide backing. This gauge has 
a resistivity of 350Q and a useful temperature range of 0-670K. 
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coefficient of resistance, 3 Bn R/dT such as certain NiCr alloys, is often used as 
the strain-sensing element. The measure of the gauge efficiency, the gauge 
factor 6, is the ratio of the fractional resistance change to the fractional length 
change: AR/R = GE. Metal foil strain gauges typically have G z 2.0. The strain 
causes an elongation Al/l = E of the resistance foil and a (1-2 ue) decrease in 
its cross-sectional area. These dimensional changes account for most of the 
resistance change in a metal foil gauge: R = pl/A = plo(l + &)/A0(1 - 2 UE) 
z RO[l + ~ ( 1  + 2u)l. Semiconductor strain gauges can have gauge factors of 
a few hundred, but their performance is strongly dependent on temperature. 
The cross-sectional dimensions of the gauge foil are greater to reduce their 
resistance. 

The guage is cemented to the specimen of interest. The specimen must be 
thick enough that the presence of the gauge does not inhibit its tendency to 
strain. The resistance change of the gauge is measured with a sensitive bridge 
circuit. The voltage change across the bridge is related to the strain and gauge 
factor by E = 4AV/(GVo/,), where Vo is the voltage applied to the bridge. When 
an AC voltage is applied, the change in voltage can be read with a lock-in 
amplifier. Often a dummy gauge in one leg of the bridge adjacent to the active 
gauge, can be placed near the sample (not bonded to it) to compensate for 
temperature variations and magnetoresistance (which increases as H z ;  see 
Chapter 15). In most cases the largest source of error is in the bonding between 
the gauge and the sample. 

Capacitance bridges (in which the straining material displaces a capacitor 
plate) are also used to measure A. The capacitor forms part of a high-Q 
resonant circuit. The resonance frequency o = (LC)-'/' is a sensitive measure 
of the capacitance C which gives the plate spacing d = EAIC, where A is the 
plate area. The relative change in resonant frequency thus gives the strain, 
E = 2Aa/a0. The magnetostriction may be measured at any frequency well 
below the capacitor resonance. 

SrnaBB-Bande Magnetizati~n Rotation The small-angle magnetization rota- 
tion method (Narita et al. 1980) has prdven to be very sensitive when applied 
to ribbon-shaped samples such as metallic glass strips (Yamasaki et al. 1990). 

The sample is magnetized along its length with a near-saturating field. A 
small transverse AC magnetic field causes the magnetization to oscillate 
through an angle + 6, about the ribbon axis (Fig. 7.23). 

This oscillation can sometimes be accomplished by passing a current 
through the ribbon; the surface magnetization is canted by the transverse H 
field of the current (Mernando et al. 1983). A pickup coil of N turns and 
cross-sectional area A can be arranged to allow measurement of the change in 
M,cosOo, the magnetization component parallel to the ribbon axis, V,, = 

1O8NA4nMS sin 0, dO/dt (cgs units). A tensile stress applied to the ribbon either 
increases or decreases 0, depending on the sign of the magnetostriction 
coefficient. The effect of stress can be expressed by solving the zero-torque 
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Stress 

Figure 7.23 Schematic of small-angle magnetization rotation experiment showing 
longitudinal field H,, transverse AC field, h,, pickup coil for measuring the small 
change in longitudinal magnetization and applied stress direction. 

condition on the energy: 

f = - MsHo cos 8 - Mshac sin 8 + 22,o sinz 8 + 2 n ~ : ( ~ ,  sin2 8 - N , ,  cos2 8) 

For small 0 the voltage is 

V,, = 2nMsNA sin28,,, sin 2 0 t  

with 

sin Om,, = ha, 
HO + M A N ,  - N i l )  + 32,olMs 

The strength of the second harmonic signal in the pickup coil depends on the 
stress applied to the sample and on the magnetostriction coefficient as 
expressed in Eq. (7.43). Analysis to extract As is simplified if the effects of an 
applied stress are balanced exactly by a change in the strength of the 
longitudinal field, H,, so that Kc(o = 0) is identical to V,,(o f 0). In that case 

32,o 
AH, =- Ms AH, and As = ----- 

Ms 3a  

where AHo is the change in H ,  needed to restore V,, to its zero-stress value. 
Measurements of magnetostriction in amorphous ribbons and wires by 

small angle magnetization are found in Yamasaki et al. (1990) and Hernando 
et al. (1983). 
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S t  F I R  Ferromagnetic resonance (FMR, Chapter 9) occurs 
at a microwave frequency that depends on the magnitude of the saturation 
magnetization and the strength s f  the internal field seen by the magnetization. 
If the magnetization is measured independently, the resonance position is then 
a function only of the effective internal field, Neff = H,,,,,. + Ha + M,,, where, 
from Eq. (7.19), 

By mod~alating the state of strain or stress of the sample, certain magnetoelastic 
coupling coefficients can be determined (Zuberek et al. 1988). Care must be 
exercised in determining whether the sample is clamped (N,, K 2,o) or free 
( H m ,  cc Be). 

Thin-Film Techniques The magnetoelastsic coupling coefficients of thin 
films can be determined by varying the direction of a field to induce a 
magnetoelastic stress causing the substrate to bend (Klockholm 1996). The 
substrate deflection can be detected using either capacitance (Ciria et al. 6995) 
or optical techniques (Tam and Schroeder 1989, Koch et al. 1996, Weber et al. 
1994, Bellesis et al. 1993). It must be recognized that a magnetic film is 
generally constrained by the substrates so it cannot strain freely to its 
saturation magnetostriction value. The magnetoelastic stress, B,, or bp.' exerts 
a bending moment on the film-substrate sandwich to induce the bending. The 
displacement, iY; of the end of a film of length 2L, fixed at its center (Appendix 
16A), depends on the net in-plane stress of exerted by the film as described by 
$toney's equation 

where ti and Ei are the thickness and modulus of the film, i = S, and substrate, 
i = s, respectively. Klockholm et al. (1976) have made extensive use of this 
method, which is described in more detail by Tam and Schroeder (1989). 

Magnetoelastic coefficients can also be determined by the inverse method in 
which an imposed strain changes the magnetic anisotropy (Sun and O'Handley 
1991; 09Handley et al. 1993). Strain-modulated FMR has been used by 
Zuberek et al. (1988) to measure the magnetostriction constants of a series of 
[Ni/Ag] multilayers as a function of Ni thickness. The strain was applied to 
the film by a transducer. Their results suggest a surface contribution to the 
magnetostriction, Aeff = ;Ibulk + p/tNi.  Here AbUlk and 2" are the bulk and 
surface contributions to the effective magnetostriction and tNi is the thickness 
of the magnetic layer, in this case Ni (see Chapter 16). 

The inverse method of determining magnetoelastic coupling has been used 
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to identify the thickness dependence of the magnetoelastic coupling coefficients 
in Ni and permalloy films (Song et al. 1994). These results indicated not only 
an inverse thickness dependent contribution, but also the effect of a mag- 
netoelastic dead layer (see Fig. 16.18): 

It is important to recognize that the inverse methods give the magnetoelastic 
coupling coefficient unless the elastic constant of the film is also known. The 
magnitude of the strain in a film of thickness tf on a substrate of length 2L and 
thickness t, > tf can be related to the vertical displacement, y, in a four-point 
bending geometry. In a four-point fixture the bending is circular inside the 
inner two pressure points (see Fig. 7.24). It can be shown that in the limit of 
circular curvature of radius R, e = tJ(2R). Using cos 0 = RIA = R/(R - y) 
and 0 = LIR, R and 0 can be eliminated to give 

Thus, knowing the vertical displacement at a given distance from the center of 
a film on a substrate gives the strain in the film. 

In such a bending geometry the film is essentially constrained (by the 
substrate) across its width, e,, = 0, and is free to strain normal to its surface, 
e,, # 0. Using the method outlined in Appendix 7B, it can be shown that 
ezz = -ue,,/(l - u) = ex,/2. Thus the magnetoelastic energy of the film 
strained by ex, is, from Eq. (7.8): 

Figure 7.24 Geometry for determining strain in a thin film on a substrate subjected to 
a circular bend. 
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A measure-ment of M-H characteristics in d&erent states of strain generally 
reveals the strain-dependent part of the anisotropy provided B,e is a measur- 
able fraction of K (see Fig. 9.12). Details for various geometries are given in 
O'Handley et al. (1993). 

All the above methods can be used to determine specific magnetostriction 
coefficients or ME coupling coefficients if three conditions are met: (1) the 
crystallographic orientation of the sample is known, (2) the strain geometry is 
properly analyzed, and (3) the direction of magnetization is known throughout 
the experiment. Otherwise an average over some combination of ME coeffi- 
cients is measured. The indirect methods in which a strain is imposed by 
bending the substrate are only useful if B,e is a significant fraction of K. The 
direct methods in which the substrate deflection is measured as M is rotated 
typically require a cantilever displacement stability and sensitivity of order 
1-10 nm. 

7.8 SUMMARY 

Magnetoelastic effects can be described by a number of different parameters: 
the magnetoelastic coupling coefficients Bij (stresses of magnetic origin), the 
rnagnetostriction constants ,Ii (strains of magnetic origin), the magnetostrictiv- 
ity, d (the change in magnetization per unit stress or the change in strain per 
unit field), or the (dimensionless) magnetomechanical coupling factor k (effi- 
ciency of energy coupling from magnetic or elastic to coupled ME modes). The 
Joule magnetostriction 2, is the anisotropic strain in a material associated with 
the direction of magnetization. In an unconstrained sample, A is proportional 
to a component of the magnetic stress Bi divided by the appropriate stiffness 
modulus. The inverse Joule effect brings about a change in the magnetization 
process or in M : ~ ~ ,  on straining a sample. 

Under small stresses a nonsaturated magnetostrictive material can appear 
softer than it is in its saturated, constant M, state. This is the AE effect which 
is useful in many magnetoacoustic resonator devices. 

Rare-earth metals, intermetallic compounds, and alloys with L, # 0 can 
show much larger magnetoelastic effects than do most 3d transition metals and 
their alloys, but it is difficult to measure their saturation values when the 
anisotropy is also large. 

Magnetoelastic energy has its origin in the same crystal field/spin-orbit 
interactions, and anisotropic exchange interactions that cause magnetocrystal- 
line anisotropy; the ME energy is the strain-dependent part of the anisotropy. 
As such, the temperature dependence of ME coefficients in local moment 
systems can be described by the same symmetry-based model that describes the 
strain-independent anisotropy, k,(T). 

In this and the preceding chapters, several fundamental energies that make 
magnetic materials different from nonmagnetic materials have been described: 
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* Magnetostatic 
Exchange 

* Magnetocrystalline and field-induced anisotropy 
* Magnetoelastic anisotropy 
* Zeeman energy. 

In the next chapter, these energies are combined to understand the formation 
of magnetic domain walls and domains, and the interaction between domain 
walls and defects. These effects form a bridge from the fundamental energies of 
magnetism to the rich variety of magnetic materials, soft and hard, that make 
possible numerous applications that are at the core of many sectors of our 
economy including energy, transportation, information technology, and com- 
munications. 

APPENDIX 7A FIELD-INDUCED STRAIN IN FERROMAGNETIC 
SHAPE MEMORY ALLOYS 

A new form of magnetic-field-induced strain has been observed in certain alloys 
that exhibit a martensitic transformation within the ferromagnetic phase. The 
field-induced strain appears to arise from a mechanism different from that 
responsible for magnetostriction (the rotation of the magnetization direction in 
a material having appreciable spin-orbit coupling). This new effect is asso- 
ciated with the motion of twin boundaries between regions in which the 
magnetization direction differs and is constrained by a large magnetocrystalline 
anisotropy. Because these same alloys exhibit what is called the thermoelastic 
shape memory effect, those exhibiting field-induced strain are often called 
ferromagnetic shape memory alloys (FSMAs). The shape-memory effect will be 
briefly described as an introduction to the magnetic-shape-memory effect. 

Many materials exhibit a large crystallographic distortion upon first-order 
transformation from a high-symmetry, high-temperature phase (austenite) to a 
lower symmetry, low-temperature phase (martensite). When this distortion is 
diffusionless and involves an atomic shear displacement, it is referred to as a 
martensitic transformation. Examples of materials that exhibit martensitic 
transformations include FeC and NiTi. On cooling such a material below the 
martensitic transformation temperature, regions of martensite nucleate and 
grow in the austenitic matrix. The strain associated with the transformation 
causes a large elastic energy at the martensite-austenite phase boundaries. 
When the transformation strain is accommodated by twinning, as opposed to 
slip, the low-temperature phase consists of an assembly of twin variants that 
are arranged so as to minimize the interfacial elastic energy (Fig. 7A.1). 

Gross plastic deformation (including macroscopic bending or twisting) of a 
mostly martensitic, twinned sample can then be accommodated by twin- 
boundary motion in the martensite (Fig. 7 A . 2 ~ ) .  On heating such a deformed 
sample back to the high-temperature phase, the twin variants revert to the 
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Figure 7Al Schematic representation of an austenitic material (a)  On cooling to 
T < T',,,, the transformation strain associated with the appearance of the low-tempera- 
ture phase can be accommodated by either slip (b) or twinning (c). 

higher-symmetry phase and the deformation is erased (Wayman 1992). This is 
called the therrnoelastic shape memory efect. Strains in excess of 10% and 
stresses measuring tens of GPa can be realized in some shape memory 
materials. The activation of this effect, however, is slow and inefficient because 
it depends on heating of the sample. In some material systems, the shape 
memory effect is reversible. 

It is possible, in principle, to bring about this phase change by application 
of a magnetic field. However, the strength of the field required is prohibitively 
large for practical applications; the sample would have to be held within about 
a degree of the transformation temperature for a field of order 1 T to effect the 
transformation. 

Twin Boundas 
Mechanical Shear 

Y 

.y Motion 

H > O  

Figure 4A.2 A twinned, martensitic material can respond to a shear stress by twin 
boundary motion, leading to what appear to be large plastic deformations (a). If the 
martensitic phase is magnetic with a strong magnetocrystalline anisotropy that changes 
direction across the twin boundary, application of a magnetic field generates a Zeeman 
pressure on the twin boundary (b). This pressure tends to grow variant 1 at the expense 
of variant 2. 



APPENDIX 7A: FIELD-INDUCED STRAIN IN FERROMAGNETIC SHAPE MEMORY ALLOYS 266 

On the other hand, a magnetic field can be very effective in changing the 
twin structure, and hence the sample shape, if the uniaxial easy direction of 
magnetization changes across the twin boundary and the anisotropy energy is 
large. 

Application of a magnetic field in a certain direction with respect to a 
martensitic twin boundary can create a Zeeman pressure of order 2M,H on the 
twin boundary. If the magnetocrystalline anisotropy is sufficiently strong that 
the moments in unfavorably oriented twin variants cannot rotate into the field 
direction, the Zeeman energy may be reduced by twin boundary motion (Fig. 
7A.2b). Unlike the thermoelastic shape memory effect, this magnetic shape 
memory effect occurs fully within the low-temperature (martensitic) phase. 
Thus it has the potential to be faster and more efficient than thermoelastic 
shape memory. 

Large, reversible, magnetic-field-induced strains of order 0.2% were first 
reported in single crystals of Ni,MnGa by Ullakko et al. (1996) (Fig. 7A.3). 
The measurements were done at -8OC (15OC below the martensitic trans- 
formation temperature). They also indicated that application of a field of 
10 kOe caused at most a one or two degree shift in the transformation 
temperature. Thus, the field-induced strains do not arise from a shift in the 

Magnetic Field ( kOe) 

Figure 7A.3 Strain measured along [OOl] in a single crystal of Ni,MnGa in fields 
directed parallel and perpendicular to the strain gauge. T = -8°C. Note that the 
sample contracts in a field parallel to the gauge. The same experiment done above the 
transformation temperature produced strains with similar field dependence but one- 
tenth the magnitude. [After Ullakko et al. (1996)l. 



martensitic transformation temperature, but occur fully within the mar8ensiti.c 
phase. More recently, James and Wuttig (1998) have reported reversible 
field-induced strains of 0.5% in single crystals of Fe,,Pd,, at - 17'C. Further, 
their simultaneous observation of the twined microstructure showed the 
growth of one variant at the expense of another during field-induced deforma- 
tion. It is thus concluded that twin-boundary motion is the main source of 
these very large, field-induced strains. More recently, a 5% shear strain was 
reported at room temperature in a field of 4 kOe in a NiMnGa crystal (Murray 
et al. 1999). 

The magnetic actuation of twin boundary motion can be understood in 
simple terms by considering a single twin variant model as depicted in Figure 
7A.2b. We define f, and f, = 1 -fl as the volume fractions of the two twin 
variants (assume that initially f, = f, = +I. The Zeeman energy density of the 
two twin variants is given by --MsN[ f, cos I9 + f, C O S ( ~  + +)I. The motion of 
the twin boundary in an applied field comes at a cost in elastic energy stored 
in the unresponsive part of the material. The magnetoelastic free energy density 
after partial twin boundary motion may be written as (O'Handley 1998): 

Here the strain components have been expressed in terms of the volume 
frictions: 

e, = f2eo sin q and e, = e,( f, + f2 cos 40) (78.2) 

where e ,  is the strain associated with the transformation; e, would be captured 
by an applied field if complete twin boundary motion (f, = 1, f2 = 0) were 
achieved. The elastic stiffness constant C is an efective stiffness against which 
the twin boundary motion is occurring. It includes the resistance to twin 
motion from defects, work against retained austenite, and work against any 
external forces on the material (UPlakko et al., 1997). Equation (7A.2) can be 
minimized to determine the equilibrium fractional twin boundary displace- 
ment, 6f = f, - +, as a function of the field: 

where p .  = cos I9 + cos(6 + 4) and q. = 1 + cos 4 describe the twin geometry 
and field orientation in Figure 78.2. The reduced field, he = H/He, where 
He = c~;/M,, scales the response of the system by analogy with magnetization 
against a uniaxial anisotropy. The projection of the magnetization along the 
applied field direction and the diagonal components of the strain tensor can 
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be shown to have the following form: 

M 2 m = - = k [ p  + + - h e ,  ] E x = - = -  ex sin 40 
Ms 

Cq- - P -  he ] ,  
eo 2q- 

These equations show that there can be a remanent magnetization, M,p+ 12, 
or a remanent strain in the direction of a prior field depending on twin 
geometry. Application of a field (in this strong anisotropy regime) causes the 
net magnetization to increase linearly in the ratio of the magnetic pressure on 
the twin boundary to the elastic energy associated with complete twin 
boundary motion. The model has been extended to the intermediate anisotropy 
case in which some magnetization rotation may occur with the twin boundary 
motion. This leads to nonlinearities in the m-h and e-h solutions. The 
nonlinear equations provide a good fit to the data of Figure 7A.3. Further, the 
model indicates that the most efficient direction in which to apply the field is 
parallel to the twin boundary. 

Figure 7A.4 shows that the predicted field-induced strain e, [from Eq.  (7A.4) 
and he = M ,  H / C ~ ; ]  varies inversely with the transformation strain eo. This 
can be understood from the fact that the Zeeman energy is working against an 
effective elastic energy during field-induced twin boundary motion. Thus, there 
can be greater fractional twin boundary motion when the transformation strain 
is smaller. 

Figure 7A.4 Variation of the strain measured in the y direction as a function of the 
transformation strain for various values of Zeeman energy assuming C = 1010d/cm2. 
The line extending from the origin indicates e = e,. 
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This new class of magnetostmclive materians may become important as 
understanding of the phenomenon advances and improved material formula- 
tions are developed. 

APPENDBX 7s REVIEW OF ELASTiGiPY 

The elastic problem in 
to  Solid State Physics 
energy density may be 

a cubic crystal is briefly reviewed [Kittel's dnt~oduction 
(1976, Chapter 4)  is a good introduction]. The elastic 
written as 

where the summations each go over the six indices 1 = xx, 2 = yy, 3 = zz,  
4 = yz, 5 = zx, 6 = xy. For cubic symmetry this reduces to 

where the strains ei j  are related to the x, y, and z displacements ui by 

The factor of 4 appears only in engineering texts. The c i j  terms are elastic 
stiffness constants (with units W/m2). The inverse problem involves the corn- 
ponents of the inverse of c, namely, s i j ,  the elastic compliance tensor. The term 
c, ,  is the stiffness resisting a strain in one direction by a stress in the same 
direction; c , ,  is the stiffness resisting a strain in the direction that is orthogonal 
to the stress direction; c,, is the shear stiffness resisting, for example, an 
x-directed strain which varies in the z direction, due to an x-directed stress 
couple (Fig. 7B.1). 

The bulk modulus B, Young's modulus E, shear modulus G, and Poisson's 
ratio u, are related to the ci j  terms by 

Eu 
and E = 

( ~ 1 1  - c12)(c11 + 2 ~ 1 2 )  
c12 = (1 + u)(l  - 2u) ( ~ 1 1  + ~ 1 2 )  
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Figure 7B.1 Definition of stiffness constants in a cubic system: c,, resists strain in the 
same direction as the stress, c,, resists strain orthogonal to the stress, and c4, is a pure 
shear stiffness resisting strain in responses to noncollinear opposing stresses. 

The compressibility is k = 1/B. In isotropic materials, there are only two 
independent elastic constants because el l  = c,, + 2c,, giving, among other 
simplifications, 

The elastic constants of iron and nickel are given in Table 7B.1. 
It is useful to express the stress strain equations in cubic symmetry and for 

an elastically isotropic solid. The three coupled stress-strain equations in each 
case are 

Cubic Isotropic 

(7B.2) 
ai = clleii + cl,(ejj + e,,) oi = Ee,, + u(aj + G,) 

In a given situation, values for imposed stresses or strains are given and the 
Eqs. (7B.2) are solved for the remaining variables. For example, in the case of 

TABLE 7B.1 Elastic Constants at Room Temperature 
for Fe and Ni in Units of 10" Nlm2 

Elastic Constant Fe Ni 
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Cubic Isotropic 

Figure 7B.2 Depiction of biaxial strain with elastically free boundary conditions in the 
third direction (a, = 0) and appropriate tensors in elastically cubic and isotropic 
materials. 

a film subjected to a biaxial misfit strain of q = e,, the strain and stress 
components are ex, = e?, = e,, e,, # 0, ox = a,, and o, = 0. Solving the three 
equations gives the strain tensor shown in Figure 7B.2. 

Given the value of v w 0.3 for many materials, the approximation 2v/ 
(1 - v) z 1 can sometimes be used. Similarly, for an imposed uniaxial strain, 
exx = e,, eyy = e,,, ox # 0, oy = o, = 0, the strain tensor is as depicted in 
Figure 7B.3 

Note that here the lateral boundary conditions have been assumed to be free 
of stress so the material experiences a lateral Poisson contraction. When 
straining a thin film on a substrate, for example, by four-point bending of the 
substrate, the lateral in-plane strain is essentially zero. In this case, ox # 0, 
exx = e,, eyy = 0, e,, # 0, oy # 0, cz = 0. The result is ex, = (1 - v2)oX/E, and 
e,, = v(l + v)ox/E, as shown in Figure 7B.4. 

Finally, the implications of Eqs. (7.10) and (7.11) are illustrated. For an 
arbitrary magnetization direction, the strain in the x direction is not given by 
ex, alone just as the strain in a solid such as represented in Figure 7B.1 is not 

Cubic Isotropic 

Figure 7B.3 Depiction of uniaxial strain with unconstrained orthogonal directions 
(ay = a, = 0) and appropriate strain tensors. 
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Cubic Isotropic 

Figure 7B.4 Depiction of uniaxial strain with one constrained orthogonal direction 
and appropriate tensors. This case applies to the strain in a film on a substrate bent 
around one axis (the y axis, here). 

given by ex, alone. It also depends on ex, and ex,. Mathematically this is 
expressed as the vector relation 

x = x, + ex, = (1 + e)x, 

where 1 is the unit matrix and e is the deformation tensor [Eq. (7.10)]. 
Thus 

Thus the new x position is x = (1  + el,)xo + el,yo + eI3z,. The strain in an 
arbitrary direction from the origin to point P is illustrated in Figure 7B.5. We 
introduce the direction cosines of the point P by the relations pl = x,/r,, 
P z  = yo/ro, P3 = zo/ro. It can be determined that after a strain eij the x 
component of P' along OP is x = x ,  + ex ,  = ro(B, + e l j P j )  with similar 
expressions for y and z. Hence r2 = r: (1  + 2eijPiPj) neglecting products 
of the eij .  

Thus, for small strain, r - r, = roeijPiPj so that the strain in any direction 
specified by ( P I ,  P,, P3) is related to the components of the principal strain 
tensor by the expression 
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Figure 7B.5 Coordinate system for transforming strain components in principal 
coordinates to an arbitrary direction OP. 

PROBLEMS 

7.11 Show that the magnetostriction constants of Fe and Ni are not 
of the sign you would expect for dipole forces between atomic dipole 
magnets. 

Consider a bar of iron with [ l l O ]  along its length and the top surface is 
(001). It is under tensile stress along its length: A,,, = 20.5 x 10- 6, A,,, = 

-21.5 x 1 w 6 ,  c,, =2.4 x lo1,, c,,= 1.4 x ~ Q ~ ~ C , , = I . ~  x a0".?/m3. 

(a) Write the strain tensor in the bar coordinates and in the crystallo- 
graphic coordinates. 

(b) Which terms in Eq. (7.5) are relevant to the effects of stress on the 
orientation of M? 

(69) If the stress is such as to produce a strain e of 0.1%, compare the 
magnitude of the magnetoelastic and magnetocrystalline aniso- 
tropy. 

(d) Evaluate the appropriate energy terms to determine the direction of 
M a t  e = 0.01. 

(e)  Derive the equation of motion of the magnetization as a function of 
field and strain. 

Plot m-H for e = 0 and e = 1%. Describe your results qualitatively. 

7.3 Derive Eqs. (4.10), the equilibrium strains, from Eqs. (7.9). 



PROBLEMS 269 

7.4 Show that setting / 2 , , ,  = A,, ,  = As in Eq. (7.12) gives Eq. (7.1). 

7.5 Consider a thin epitaxial Ni film on Cu(100) (aNi = 3.524A, a,, = 
3.615A). Assume for Ni /2,,, = -46 x e l l  = 2.5 x lo1',  c , ,  = 
1.6 x lo1' ,  and c,, = 1.18 x 10'' J/m3. 
(a)  Compare the relative strength of crystal anisotropy and magneto- 

elastic anisotropy as far as determining the direction of M. 
(b) Assume e l ,  = 0, and find the direction of M. 
(c) As the film grows, describe what happens to eij(i # j). 
(d) Given e l ,  = 2e,, ,  find direction of M. 
(e) Discuss. 

7.6 Show that the two alternate ways of defining the magnetoelastic coeffi- 
cients are equivalent. How are the B and b terms related? 

7.7 Critique the following statement by considering the energy densities in 
each case. "Typically, magnetic transition metals produce magnetostric- 
tive strains e [at saturation] of order to l o - ,  which vary about 
the direction of magnetization roughly as e = 2/2,(cos28 - $) where As is 
the saturation magnetostriction constant. Conversely, stresses o imposed 
on the material that result in strains of order to (i.e., e = 1,) 
contribute significantly to the total magnetic anisotropy: the uniaxial 
stress-induced anisotropy energy density is $&o." 

7.8 Use Eq. (7.10) to describe the field and strain directions you would use 
to measure the two magnetostriction constants A,, ,  and A l l ,  on a Ni 
sample cut as shown in Figure 6.3. Do not assume that the sample has 
randomly distributed magnetization directions in zero field. 

7.9 Assume a multidomain polycrystalline sample with the domain magnet- 
izations randomly oriented as represented in the following diagrams. 

Describe how you would expect the magnetization distribution to 
change if the sample has positive magnetostriction As and a tensile stress 
ox,  is applied for H = 0 .  Contrast this with the change caused by 
application of H = (H,, 0, 0 )  for oij  = 0.  Plot M ,  against H, for ox, = 0 
and ox, # 0 .  Plot M ,  against ox,  for applied fields in the range H, d H K .  
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7,BO Consider the anisotropy constants K, and the polycsystaBBine magneto- 
striction constants a, shown in the diagram below for FCC NBFe alloys. 
This problem concerns the behavior of alloys having compositions A, B, 
and C. 

(a) Sketch and label the lowest-order crystal anisotropy surfaces in the 
x-y plane for thin films of compositions A and &1 (i.e., assume 
a, = 0). 

(b) For unstrained bulk samples of compositions A, B, and C, in which 
crystallographic directions are the samples easily magnetized? 

Qc) For unstrained single-crystal samples A, B, and C, a field is applied 
in the [I001 direction. Sketch the shape of the M-H curve in each 
case assuming zero coercivity. Use approximately the same field 
scale in each case so that the M-H curves can be compared. Assume 
zero coercivity. 

Qd) If the samples are subject to strains, which composition, A, B, or C, 
would make the best soft magnetic material? Why? 

(e) For single-crystal samples A, B, and C apply a field in the [POO] 
direction as in part c above but now also put the sample under 
tensile stress parallel to the field direction. Sketch with a dashed line 
over your result in c, the shape of the strained M-H curve in each 
case assuming zero coercivity. 

(f) What is the approximate value of the magnetoelastic coupling 
coefficient B,  for sample B? If a strain is applied along [I001 to 
cancel the crystal anisotropy in this sample and have the magnetiz- 
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MAGNETIC DOMAIN WALLS 
AND DOMAINS 

It is a common experience that pieces of ferromagnetic material do not always 
exhibit a north pole and a south pole. They often appear to be demagnetized 
or even nonmagnetic in the presence of another soft magnetic body. Only when 
placed in an external field or near a permanent magnet do soft magnetic 
materials begin to respond and reveal their magnetism. The demagnetization 
of soft magnetic materials was attributed by Weiss to the formation of 
magnetic domains that are regions inside the material that are magnetized in 
different directions so that the net magnetization is nearly zero (see Fig. 1.13). 
Before questions about the arrangement and size s f  magnetic domains can be 
addressed, it is important to understand the spin structure and energy density 
of the surfaces, called domain walls, that separate one domain from another. 
Then, the energy of different domain wall arrangements in a material will be 
balanced against the magnetostatic energy cost of having a single domain (no 
walls). In Chapter 9, the motion of domain walls will be considered. 

8.1 .I Relevant Energy Densities 

The previous chapters have described five types of magnetic energy density. 
Each of these is summarized here with succinct mathematical expressions. 

Exchange energy tends to keep adjacent magnetic moments parallel to each 
other. Here, it is expressed in a discrete, microscopic form as well as in a 
continuous, macroscopic form: 
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2JS2  VMi 
f =--  
ex a 

cos 8, = A (gr a A zz (%) 
Exchange energy expresses the energy cost of a change in the direction of 
magnetization. 

Magnetostatic energy arises mainly from having a discontinuity in the 
normal component of magnetization across an interface. It is a form of 
anisotropy due to sample shape and is often uniaxial in symmetry: 

Magnetocrystalline anisotropy describes the preference for the magnetization 
to be oriented along certain crystallographic directions. The forms for uniaxial 
and cubic materials are 

f ,  = K2 sin28 + K4 sin4@ + - - . (uniaxial) 

2 2 2 f ,  = ~ ~ ( a ; a :  + a;a$ + aza:) + K2a1a2a3 + . . . (cubic) 

Magnetoelastic energy is that part of the magnetocrystalline anisotropy that 
is proportional to strain: 

for a cubic material. For an isotropic material, this reduces to 

Finally, the Zeeman energy, F = -pm.B, is the potential energy of a 
magnetic moment in a field or, for a large number of moments, the potential 
energy per unit volume is: 

Until now, when magnetization behavior has been modeled in this text, the 
fact that M-H loops generally exhibit coercivity has been ignored. Also, energy 
minimization has been used to derive simple expressions for M ( H )  assuming 
that the magnetization is unform throughout the material, specifically 
M = M(8,$). In order to describe the phenomena of coercivity and irreversi- 
bility, it is necessary to consider the presence of domain walls or allow for 



spatial variation of magnetization, namely, = lW[B(z), +Qz)]. SO the energy 
densities described above and, in particular fe,(6(z)), are now used to under- 
stand magnetic domain walls and their motion. (Domain walls have their own 
energy density, which also must be considered.) 

It is important to know how the magnetization direction varies with 
position from one magnetic domain to another. The answer to this question is 
beautifully shown in Figure 8.1 (Oepen and Kirschner 1989). 

Panel (a) in Figure 8.1 is a domain image from the (100) surface of an iron 
crystal near the intersection of several domains. Outlined in white is a region 
along which the vertical and horizontal components of magnetization were 
measured as a function of position from upper left to lower right using a 
technique called scanning electron microscopy with spin polarization analysis 
(SEMPA). (In SEMPA the secondary electrons collected from the small area 
on the surface of a sample illuminated by a fine, high-intensity scanning 
electron beam are analyzed to determine the direction of magnetization at the 
surface from which they were emitted, Chapter 16.) Panel (b) shows the results 
of the spin polarization scan. The polarization in the y direction makes a 
transition from a negative value to a positive one on crossing the domain wall; 
the x polarization has a measurable value only near the center of the transition. 
The transition region from one domain to the next spans a range of order 
100nm. Let us look at this transition, or domain wall, in more detail. 

8.1 -2 180" Domain Wall: Simple Model 

Magnetic domains form and domain walls are created in order to reduce the 
magnetostatic energy of a finite, uniformly magnetized sample. For the case of 
uniaxial anisotropy, K ,  sin28(z), the magnetization vectors in adjacent domains 
are antiparallel to each other, that is, a 180" domain wall exists (see Fig. 8.2). 
Note that here, the plane of the wall has been chosen to be parallel to the easy 
axis. This choice satisfies the boundary condition (Chapter 2) requiring 
continuity of the normal component of M across the surface if there are to be 
no H fields (see Section 8.4). The choice of having the wall plane stretch 
between the two parallel sample surfaces that are closest to each other 
minimizes its area and hence its surface energy. Such a domain wall is called a 
Bloch wall in recognition of the seminal work of Felix Bloch in describing its 
structure. 

If the magnetization orientation were to change abruptly from 0" at the last 
atomic site in one domain, to n at the first atomic site in the adjacent domain 
(Fig. 8.2, left), there is no cost in anisotropy energy by the creation of the 
domain wall. However, there is a significant cost in exchange energy from site 
i to site j across the domain wall. For one pair of spins straddling the wall, the 
exchange energy is 
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(b) Displacement (microns) 
Figure 8.1 (a) Magnetic surface domain structure on Fe(100). The field of view is 
3.5 x 3.5 pm. The arrows indicate the measured polarization orientation in the domains. 
The frame shows the area over which the polarization distribution of (b) is averaged. 
(b) Polarization distributions across a 180" domain wall, taken from (a). The vertical 
polarization component is indicated by the crosses. The circles show the horizontal 
polarization distribution. [After Oepen and Kirschner (1989).] 

From the chapter on exchange interactions, the value of the exchange integral 
may be approximated as J x 0.3k,Tc x 4 x J for a Curie temperature of 
1000K. Thus F i j  x J and the hypothetical domain wall in a cubic 
material with lattice constant a has a surface energy density o,, of approxi- 
mately Fij/a2 FZ 0.25 J/m2. This surface energy is about three orders of magni- 
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/ Domain W a l l  \ / 

Figore $2 Schematic of ferromagnetic material containing a 180" domain wall 
(center). Left, hypothetical wall structure if spins reverse direction over one atomic 
distance. Right, wall structure if spins reverse direction over N atomic distances, a. In 
real materials, N is found to range from about 40 to nearly lo4. 

tude greater than chemical surface energies. It is also much larger than the 
anisotropy energy cost of having some of the spins inside the wall point in a 
hard direction. Thus, the material will find another, less costly way to make 
the transition in magnetization from one domain to another. 

Clearly the exchange energy could be reduced by distributing the 180" 
rotation over several lattice spacings (Fig. 8.2, right). If the domain wall 
thickness were to span N interatomic spacings, then adjacent spins would differ 
by an angle approximately Oij sz n/N.  Pf N is sufficiently large, cos(Oij) in Eq. 
(8.1) can be expanded. The lowest-order result is 

to within an additive constant. From Eq. (&.2), the exchange contribution to 
the domain wall energy density, o (surface energy density), can be approxi- 
mated by assuming that there are N spin pairs (each with the same relative 
angular deviation) through the wall thickness and each line of spins occupies 
an area a2 on the wall surface: 

As N increases, more spins are oriented in directions of higher anisotropy 
energy. The anisotropy energy per unit area o, increases with N approximately 
as 
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The equilibrium wall thickness will be that which minimizes the sum 

with respect to N. Figure 8.3 shows the dependence on N of the form of energy 
in Eq. (8.5), b/N + cN. When an energy expression has this form, it is 
minimized for No = (b/c)lI2 = (JS2n2/Kua3)112. Thus the wall thickness is of 
order Noa z n(A/Ku)112, where A is the exchange stiffness constant described 
earlier, A = JSZ/a z 10-l1 J/m ( lop6  erg/cm). Thus, the wall thickness will be 
of order 0.2pm in systems with small anisotropy such as many soft magnetic 
materials; it may be as small as 10 nm in high-anisotropy systems such as 
permanent magnets. The wall energy density o,, is obtained by substituting 
N,a = TC(A/K,)~I~ in Eq. (8.5) to give G,, z ~ ~ C ( A K , ) ~ ' ~ .  Typical values for the 
domain wall energy density are of order 0.1 mJ/m2 (0.1 erg/cm2). 

Thus, in most cases a 180" domain wall will have an internal structure 
resembling that shown in Figure 8.2, right panel. The atomic magnetic moments 
will make a gradual transition in orientation from one domain to the next. 
Figure 8 . 4 ~  shows an expanded version of this wall. At negative infinity O(z) 
approaches O", at the origin (center of the wall) O(z) = n/2, and at positive 
infinity O(z) approaches n. Figure 8.4b represents a possible form for the spin 
orientation O(z) versus position z through the wall for the 180" wall represented 
in Figure 8 .4~ .  The exact functional form of O(z) must be derived for arbitrary 
exchange stiffness and magnetic anisotropy, and more exact expressions must 
be sought for the domain wall thickness and energy density. The continuum or 
macroscopic form of exchange energy density derived earlier, A(de /d~)~ ,  will be 
used rather than the microscopic one used in Eqs. (8.2) and (8.3). The treatment 
given below is a modified version of the variational method first applied to the 
domain wall problem by Bloch in 1932 and by Landau and Lifshitz in 1935. 

Figure 8.3 Minimization of the sum of exchange b/N and anisotropy cN energy 
densities occurs for b/N = cN,  N = J(b/c). 
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Figure 8.4 (a)  Magnified sketch of the spin orientations within a 180" Bloch wall in a 
uniaxial material; Qb) an approximation of the variation of 0 with distance z through 
the wall. 

8.2 MICROMAGNETICS OF DOMAIN WALLS 

When energy minimization was used in earlier chapters to calculate M-H 
curves, the magnetization was assumed to be uniform throughout the sample. 
In order to determine the domain wall parameters d,, and o,,, 0 must be 
allowed to be a function of position. This requires that the energy be minimized 
on a local or microscopic scale. This is an example of calculations of the 
micromagnetic type, a method first used by Landau and later generalized by 
W. F. Brown. 

The anisotropy energy density, S,($), may include magnetostatic and mag- 
netoelastic contributions. In a one-dimensional approach to the problem the 
local volume energy density at any position z along the normal to the Bloch 
wall is given by a sum of anisotropy and exchange terms: 

This volume energy density must be integrated over the thickness of the 
transition region from one domain to the other to represent the total surface 
energy density of the domain wall: 

In order to calculate the stable wall profile function O(z), o is minimized 
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with respect to variations of the wall profile 60(z) using 6f = (af/d6)66 and 
s(ae/az) = aqse/az): 

Integrating the second term by parts gives 

The last term is zero because a0/dz vanishes far from the wall where the 
magnetic moments are fixed in orientation by the anisotropy easy axis inside 
the domains. As for the remaining integral, because 60(z) is an arbitrary 
function of z, the integral vanishes only if its argument vanishes at every point 
z along the wall: 

This is the Euler equation for a domain wall. The first term is the local torque 
on a spin due to the gradient in anisotropy at each point. The second term is 
the local torque on a spin due to the gradient in exchange energy at the spin 
in question. Equation (8.9) says that the net torque is zero at any point along 
the wall. Note that for the simple wall profile in Figure 8.4, where the torque, 
fd(6), is given by K, sin(26), there is no torque from the anisotropy at the center 
of the wall (0 = 7~12). Equation (8.9) then indicates that 6" vanishes there so 0' 
is constant. It should be clear that the condition of constant 0' in the 
neighborhood of a spin results in no net exchange torque on that spin. To the 
left (right) of the center of the wall (0 < 0 < 7~12) both f,' and 6" are positive 
(negative), so Eq. (8.9) can be satisfied for a particular curvature 6" (exchange 
torque) that exactly balances the torque due to the anisotropy. 

For a uniaxial material, Eq. (8.9a) becomes 

which transforms to the pendulum equation for 26 = 4 and mg = K , / A :  

Equation (8.9) can be integrated to solve the wall profile problem by 
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multiplying both sides by dldldz: 

Hence 

The integration constant, C is allowed to be zero by noticing that Eq. (8.10) is 
an energy density expression and a constant energy density cannot exert a 
torque on the magnetization. More rigorously, far from the wall, 8' = d0/  
az = 0 and an arbitrary constant can be added to the anisotropy energy 
function such that fa(@ = - ao) = 0, hence C = 0 (see Problem 8.5). The first 
integral of Eq. (8.9) is then 

which can be integrated to give 

For the uniaxial case, S, = K ,  sin2%, the integral in Eq. (8.12) has the exact 
solution 

This equation, which relates the position in a domain wall to the orienta- 
tion of the magnetization at that point, can be inverted to give %(z) = 

2 arctan[exp(~cz/d)], where 6 = ~ ( A / K , ) ~ ' ~ .  It is left as an exercise to show that 
this is equivalent to 

%(z) = -arc cot sinh - [ .  (3 
This is an analytic form for the profile of a 180" domain wall sketched in Figure 
8.4b. It is useful to plot it exactly, based on the forms in Eqs. (8.13) or (8.14). 
The solution for the uniaxial 180" domain wall is shown in Figure 8.5 for the 
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Figure 8.5 Graph of Eq. (8.14) showing 0 versus z in nanometers generated using 
Mathematica software for a uniaxial material with A = 1 x J/nm and K ,  = 5 x 

J/nm3. The domain wall thickness, a,,, is defined on the graph. 

following values for K and A (rounded values close to those of a-Fe): 

MKS: K = 5 x lo3 J/m3 = 5 x J/nm3 

A = 1 x 10-'I J/m = 1 x J/nm 

cgs: K = 5 x lo4 erg/cm3 = 5 x 10- l7  erg/nm3 

A = 1 x 1OP6erg/cm = 1 x 10-13erg/nm 

It is useful to define the wall thickness in terms of the slope at its center. 
From Eq. (8.11) and for the uniaxial case [d~/d6],~, = (A/K,)1/2. This gives 
dz = T C ( A / K , ) ~ ~ ~  for d6 = 7c (see dashed line, Figure 8.4~).  Hence the 180" wall 
thickness is given by 

where SdW is the thickness over which the spins rotate to within about 27" of 
the domain magnetization direction. 

It is useful to express the wall energy density [Eq. (8.6)] solely in terms of 
f,(6) and A. This can be done by using Eq. (8.11) to replace ( aO/a~)~  and to 
change the variable of integration in Eq. (8.6), giving 

For the simple uniaxial case, L(6) = K, sin2(6), the result is 
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-44.7214 Log[Cos[t/2]] + 44.7214 Log[Sin[t/2]] 
In: = 
Solve[y = = d Log[Tan[t/2]], t] 
Out: = 
Solve::fun: 

0.0223607 y 
{{t-+2. ArcTan[l . E 
In: = 

1 1 1  

Plot[2 ArcTan[E ̂ (y/d)], {y, -5  d, 5 d), 
AxesLabel-.{"z(nm)", "theta"), 

PlotLabel+"Bloch Wall"] 

For all three programs the output is the same: 

Out: = 

-Graphics- (Fig. 8.5 above.) 

In addition it is interesting to plot: 

In: = 
ParametricPlot3D[{y, -(u Cos[2 ArcTan[E ̂ (yld)]]), 

u Sin[2 ArcTan[E "(yld)]]), 
{Y, -2007 2001, {u, 0, 100 }I 

8.3 MAGNETOSTATIC EFFECTS ON DOMAIN WALLS 

So far, exchange and anisotropy energies have been balanced to get a model 
of the 180" domain wall. Magnetostatic energy densities must be considered if 
one is interested in the wall structure near a surface or if the wall is not a 180" 
wall. 

In Chapter 2, it was seen that Maxwell's equations demand that the 
perpendicular component of B be continuous across an interface [Eq. (2.3)], 
and in the present case across a domain wall. If no external field is applied (as 
for domains in the demagnetized or remanent states) and if the magnetization 
is uniform within the domains, then the only M fields present are those 
originating at surfaces containing a net magnetic pole density: "charged" 
surfaces. The magnetostatic fields from charged surfaces always increase the 
energy of the system because the field has an appreciable component opposite 
to the magnetization that sets up the surface pole density. Hence, charged walls 
occur only if some overriding energy demands them. In the absence of external 
fields and magnetostatic fields from surface poles, the boundary condition in 
Eq. (2.3) is equivalent to continuity of the normal component of magnetization 
across the interface: (MI - M,) .it = 0. Continuity of the normal component 
of magnetization across a domain wall demands that the wall bisects the two 
directions of magnetization in the adjacent domains. When the normal com- 
ponents of M do not match across a domain wall, a net pole density exists on 
the wall and an associated magnetostatic field results. 

Four situations are considered where magnetostatic fields can change the 
simple domain wall structure already calculated for uniaxial materials. 
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In materials of cubic anisotropy, when the <100) directions are the easy axes 
(i.e., K ,  > 0), 98" walls are possible. They can be observed on (100) faces of Fe 
crystals that are thin in the [lOO] direction (Fig. %la, upper right). When the 
<Id I )  directions are the easy magnetization axes as is the case in Ni, then 680°, 
109", and 71" walls are possible; the walls in the latter two cases appear to be 
similar to 90" walls. 

There are two issues to be considered in defining the 90" domain wall. First, 
such a wall should have an orientation that maintains continuity of the normal 
component of magnetization across the wall. Second, the magnetization shou'ld 
rotate within the wall in such a way as to minimize the exchange and 
anisotropy energies. Continuity of the normal component of magnetization 
across the wall demands that the domain wall bisect the directions of 
magnetization in the two adjacent domains. This prevents the wall from being 
magnetically charged and hence, generating a magnetostatic field. A 90" 
domain wall in an arbitrary plane satisfying this pole-free criterion is shown in 
Figure 8.6a. Its normal n, must be in the x-z plane and it makes an angle $ 
with z, the normal to the plane containing the two domain magnetization. The 
relevant vectors may be represented in the Cartesian coordinates of Figure 8.6 
as follows: 

It is clear that (MI - M2) -n, = 0 for any +, so it is possible to form a family 
of uncharged 90" domain walls. The domain wall will choose a $ that 
minimizes the wall area, that is, the 90" wall will be perpendicuPar to the sample 
faces having the largest area. The next issue involves the orientation of M 
within the domain wall so as to minimize the domain wall energy. In order to 
minimize the sum of the exchange and anisotropy energies, it is enough to 
examine the cubic energy surface for K ,  > 0 (Fig. 6.6~). The path of the 
minimum energy for the magnetization orientation to change from one face to 
another (between adjacent (100) directions) is clearly rotation in the plane 
containing MI and M2. This path is along the dashed line on the energy surface 
depicted in Figure 8.6b. 

The cubic form of anisotropy, Eq. (6.61, can be substituted into the integral 
solution of the domain wall given in Eq. (8.12). For magnetization rotation 
in the (001) plane (8 = 7c/29, this energy function reduces to fa($) = 

K ,  sin2($)cos2(4). Here $ is the angle through which the magnetization 
rotates in the plane normal to z (Fig. 8.6). Equation (8.12) then gives 
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Figure 8.6 (a) The plane normal to z contains the domain magnetization vectors that 
are orthogonal to each other in cubic anisotropy [panel (b)]. The domain wall must lie 
in a plane that bisects the two directions of M. A general plane satisfying this condition 
is shown shaded in (a); its normal direction, n,, must be chosen to minimize the wall 
energy. Panel (b) shows the cubic origin of the magnetization directions and the dotted 
line on the energy surface shows the minimal energy path between the two orientations. 

which is equivalent to Eq. (8.13) for the uniaxial case. Thus, Figure 8.4 would 
describe 6(z) for a 90" wall if the vertical axis were to have the range 0 to n/2 
instead of 0 to n. From Eq. (8.5), modified for such a 90" wall, the wall 
thickness becomes 6,, = 6,,/2 and the energy density becomes o,, = 0,,/2. 

But 180" walls also occur in cubic materials (i.e., 4) may rotate from 0 to 7c 
radians. As the magnetization rotates past the easy direction at n/2, the 
anisotropy energy decreases to what it was at 0" so 6(z) could flatten out here. 
How does a 180" wall differ from a sequence of two 90" walls? Figure 8.7 shows 
what would be expected on the basis of considerations so far. 

If magnetostatic energy is included, the energies of the various domain walls 
are altered. The two domains separated by the 180" wall are equivalently 
strained in the magnetization direction by Al/l = 2,. There is no long-range 
strain incompatibility between the two domains. It is clear that two domains 
magnetized at 90" to each other have incompatible magnetostrictive strains. 
Thus, there is a strain energy associated with any region between two 90" walls. 



Easy Axes 

Figure 8.7 A (100) cut Fe single crystal has the possible domain pattern shown at left. 
The 90" walls are described in the text. The 180" wall may be thought of as a sequence 
of two 90" walls as shown at right. However, the inclusion of magnetoelastic energy 
stabilizes a 180" wall relative to the two 90" walls. 

This mismatch adds a magnetoelastic anisotropy that eliminates the lingering 
of the magnetization near the easy direction at 90". When magnetostriction is 
large, 90" domain walls are short and/or few in number; when magnetostriction 
is small, 90" domain walls can be longer and/or more numerous because they 
introduce less strain energy. However, there is an important class of materials 
that contain copious domain walls across which the spins rotate almost 90" 
even though the strain in the adjacent domains can be of the order of a few 
percent. In fact, 8 z 2 arctan(1 + 3/2/21 in these materials. These materials are 
the magnetic shape memory materials mentioned in Chapter 7. Their domain 
walls coincide with crystallographic twin boundaries that allow the lattice to 
accommodate the large strain energy associated with the giant crystallographic 
strain. 

8.3.2 N6eQ Walls 

A second example of the effects of magnetostatic energy on domain walls is 
taken from thin films. It should be clear from Figure 8.2 that as sample 
thickness decreases, the magnetostatic energy of the wall that extends through 
the thickness of the sample increases as a result of the free poles at the top and 
bottom of the wall (Fig. 8.8, left). To reduce this magnetostatic energy, the 
spins inside the wall may execute their 180" rotation in such a way as to 
minimize their magnetostatic energy. If the spins were to rotate in the plane of 
the surface, a smaller magnetostatic energy at the internal face of the wall is 
accepted as the price for removing the larger magnetostatic energy at the top 
surface (Fig. 8.8, right). Such a wall is called a Ndel wall. Note that on moving 
across a N6el wall from one domain to another, the magnetization rotates by 
180" but stays in the surface plane. 

Several authors after Ntel [TLaBonte (1969), Hubert (1969, 1970) and, more 
recently, Scheinfein et al. (1989, 1991)l have included magnetostatic energy 
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Bloch ~ k e l  

Figure 8.8 Comparison of Bloch wall, left, with charged surfaces on the external 
surfaces of the sample and Neel wall, right, with charged surfaces internal to the sample. 

terms in modeling Bloch walls in thin films (of thickness t FZ a,,). Figure 8 . 9 ~  
shows the calculated film thickness dependence of the wall energy density for 
Bloch and NCel walls. The Bloch wall energy density increases with decreasing 
film thickness because of the increased magnetostatic energy due to the 
appearance of charged surfaces above and below the wall. The Nkel wall energy 
decreases with decreasing film thickness because it is proportional to the area 

~ k e l  Wall - 

Bloch Wall 
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Figure 8.9 Energy per unit area (a) and thickness (b) of a Bloch wall and a Neel wall 
as functions of the film thickness. Parameters used are A = lo-" J/m, B, = 1 T, and 
K = 100 J/m3 [McGuire (unpublished)]. 
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of the charged surfaces inside the filmBa. Wkel walls are observed to be stable in 
many types of magnetic films for thicknesses up to 50 or 60 nm. Figure 8.9b 
shows the calculated dependence of Bloch and NCeB wall widths on film 
thickness. The BBoch wall thickness decreases with decreasing thickness be- 
cause that reduces the magnetostatic energy associated with the charged caps 
of the wall. The NCel wall thickness increases with decreasing film thickness in 
order to minimize the magnetostatic energy associated with the charged faces 
of the wall. At sufficiently small film thickness, the magnetostatic energy is no 
longer significant and the Ntel wall thickness no longer increases. 

Without going into the micromagnetic calculations, it is still possible to 
arrive at reasonable forms for the film thickness dependence of the Ntel wall 
thickness. The free energy density can be approximated as 

using the expression for the demagnetizing field in Eq. (2.2). Minimization of 
this energy density with respect to 6, gives 

2,u,M2 t6, 
a r t  ] - -- - An2 (8.14) 

1 + (t/aN)' 

For t/6, << I, the limiting forms of the energy density o, and wall thickness 6, 
follow from Eq. (8.17): 

112 
o, = n t ~ :  and 6, = n (y) ( t  << 6,) (8.18) 

where the subscript N indicates parameters (energy density and thickness) for 
a NCel wall. These expressions should be compared with the large-filrn- 
thickness forms for Bloch walls, Eqs. (8.15) and (8.16). While the energy of a 
Bloch wall is determined by the product of the anisotropy and exchange 
stiffness, that of a Ntel wall at t << 6, is determined by magnetostatic energy 
and film thickness. Note that although it is magnetostatic energy that has 
forced the formation of the Ntel wall, magnetostatic energy does not show 
up in the expression for the thin-film limit of N6el wall thickness (see 
Problem 8.5). 

Recent experimental measurements and micromagnetic calculations of the 
surface magnetization distribution in materials with thicknesses greater than 
the Ntel limit reveal that a Bloch wall can transform into a NCel wall near a 
surface. Figure 8.10 shows the calculated magnetization distribution near the 
surface of a material much thicker than one that would support a pure Ntel 
wall (Scheinfein et al. 1989). The spins near the surface depart from their Bloch 
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Figure 8.10 Calculated spin distribution in a thin sample containing a 180" domain 
wall. Note that the wall is a Bloch wall in the interior; specifically, M rotates 180" in 
the plane of the wall, but it is a Nkel wall near the surface (to minimize magnetostatic 
energy), M rotates 180" passing through the wall normal (Scheinfein et al. 1989). 

formation by gradually folding over to lie in the plane of the surface to reduce 
the magnetostatic energy. As a result, the thickness of the Ntel cap where a 
Bloch wall intersects the surface is greater than that of a pure Bloch wall. The 
domain wall depicted in Figure 8.1 is also of this Ntel-cap type because of the 
measured horizontal component of magnetization at the wall center. 

Figure 8.1 1 shows the measured and calculated surface wall magnetization 
distributions for two relatively soft magnetic materials: an iron whisker and a 
permalloy film. (An iron whisker is a small elongated single crystal of iron, 
typically grown by a hydrothermal process.) The measurements were made 
with a SEMPA microscope similar to that used to generate Figures 1.13a, left 
and 8.1. The results of Scheinfein et al. (1991), and of Oepen and Kirschner 
(1989) (Fig. 8.1), show that the spin rotation near the surface is not symmetric 
about the center of the surface wall and is accarately described by model 
calculations. Apparently, even in the center of a thick iron film, the domain 
wall departs from the simple structure of a 180" Bloch wall in an infinite 
medium (Aharoni and Jakubovics 1991). 

In Chapter 16, other interesting modes of magnetization in the vicinity of a 
surface or interface will be explored. 

8.3.3 Cross-Tie Walls 

Cross-tie walls provide a third example of how magnetostatic energy can 
influence the nature of a domain wall. 
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Figore 8.11 Measured (using SEMPA) and calculated surface wall profiles in a 20-pm- 
thick Fe whisker (top, 6 ,  = 0.2pm) and a 0.24-pm-thick permalloy film (bottom, 
6 ,  = 0.3 pm) (Scheinfein et al., 1991). 

Generally 180" Bloch walls lie parallel to the easy axes along which the 
domain magnetization lies in order to prevent wall "charging" (Fig. 8.12, left). 
NCel walls have an inherent charge because of their spin structure (Fig. 8.12, 
right). The large magnetostatic energy associated with this magnetic charge can 
be reduced if the sense of polarization of the wall alternates. When this 
situation occurs, the wall is called a cross-tie wall. The detailed structure of the 
cross-tie wall, studied extensively by Craik and Trebble (P965), is an elegant 
example of how magnetic materials contrive to minimize their magnetostatic 
energy by forming domains. 

Figure 8.13 shows an image of cross ties along a wall in a WiFe film taken 
by scanning electron microscopy with spin polarization analysis (SEMPA) (see 
Chapter 16). This technique reveals contrast as a result of selected components 
of magnetization; thus, the cross-ties may show up as curving across the wall 
they decorate. 

Because of their magnetic charge, Ntel walls can interact with each other; 
adjacent wall segments will attxact or repel each other depending on the sense 
of their charge. As film thickness decreases even below the limit at which NCel 
walls form, the magnetostatic fields of the Ntel wall decrease. In ultrathin films 
(t  % 1-10 monolayers, which is much less than 6,) magnetostatic consider- 
ations cease to be a factor. In such films, the wall profile function, B(z), has 
been observed by Oepen to have a much slower approach to its asymptotic 
value than is calculated for bulk domain walls. 
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Bloch Walls 

Cross- t ie  Wall 

Figure 8.12 Left, Bloch wall showing how walls that do not follow the adjacent 
domain magnetization acquire a magnetic "charge"; Right, the charge on a N6el wall 
can destabilize it and cause it to degenerate into a more complex cross-tie wall. 

8.3.4 Domain Walls in Ultrathin Films 

As a final example of magnetostatic effects on domain walls, we consider films 
that are so thin that the magnetostatic energy favoring in-plane magnetization 
is smaller than those energies that might favor out-of-plane magnetization, 
such as magnetoelastic energy (Chapter 7) or surface anisotropy (see Chapter 
16). In these cases, the magnetization in the domains is perpendicular to the 

Figure 8.13 Scanning electron microscopy with spin polarization analysis (SEMPA) 
images of NiFe film. Panel (a) shows horizontal polarization contrast (white is 
magnetization to the right, dark to the left, and gray vertical). Panel (b) shows vertical 
polarization contrast near a triple-wall junction revealing cross ties on the domain 
walls. [Courtesy of Celotta et al. (1991).] 
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film plane and that inside the 180" domain walls separating the domains lies 
in the film plane. Figure 8.14 shows the domain pattern in a 2-nm-thick film 
of nickel grown epitaxially om Cu(OO1) (Bochi et al. 1995) taken by magnetic 
force microscopy (see Chapter 15). The in-plane magnetization in the Bloch 
walls does not follow the <1 10) directions, which are the easy in-plane axes in 
Ni. If it did, the domain walls would appear as nearly straight line segments 
lying at +45" to the borders of Figure 8.14. It happens that in Ni, the 
magnetocrystalline anisotropy is smaller than the energy of the walls them- 
selves. Thus, the domain walls tend to follow curved paths so as to minimize 
the wall energy at the expense of magnetocrystalline anisotropy energy. 

A complete understanding of the factors governing domain formation and 
domain wall structure in ultrathin films is not yet available. 

8.4 DOMAIN WALLS NEAR !NTERFACES: THE EXCHANGE LENGTH 

It is appropriate here to examine the magnetization orientation transition, or 
pinned domain wall, that exists near an interface at which the magnetization 
is pinned in a direction different from the easy axis in the interior of the 
material (Fig. 8.15). The thickness of this transition, called the exchange length 

Figure 8.14 Magnetic force microscopy image (see Chapter 16) of the domains in a 
20-A-thick epitaxial Ni film in which the magnetization is perpendicular to the film 
plane. Field of view is 12.5 pm2. [After Bochi et al. (1995).] 
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l,,, is governed by the square root of the ratio of the exchange stiffness A to 
the energy cost of having spins near the interface oriented at a nonzero angle 
to the interior easy axis. The first case to be considered is that for which no 
perpendicular magnetization component exists near the interface. On moving 
away from the interface, M(x) rotates under the influence of the interior 
anisotropy energy. In this case, the mathematical form of the exchange length 
is given simply by 

112 
d d w  M parallel to interface: 1 = ( )  = - n 

This parallel case (Fig. 8.15, left) is most frequently encountered. A strong 
interior anisotropy energy shortens the length of the transition. 

When the spin orientation at the interface has a perpendicular component 
(Fig. 8.15, right), the interior anisotropy energy is augmented by the magneto- 
static energy associated with the charged interface; the magnetization in the 
interior of the material is driven toward the easy axis by K,  + 271~;: 

M perpendicular to interface: 

This last equation is derived in Chapter 16 for a surface where a perpendicular 
magnetization component exists, and the interior anisotropy is weak. Note that 
when the perpendicular situation is dominated by the magnetostatic energy, 

to interface 

Figure 8.15 Illustration of the two cases important for determining the range of the 
twist in magnetization on moving from an interface at which the spins are pinned in a 
direction different from the interior of a ferromagnetic material. At left, the surface 
pinning holds the magnetization in the plane of the interface so magnetostatic energy 
is not an issue. At right, the surface spin pinning is such that a perpendicular component 
of magnetization exists near the interface. The magnetic charge at the interface gives risc 
to a local magnetostatic field that tends to shorten the exchange length. 



TABLE 8-1 IMagnetostatic amd Anisotropy Emergy Deansities for E'e, Co, amd N1 and 
IExshamge Lengths Calculated therefrom [Eqs. (8.19a), (8.19b) ( A  = JIm Hs Used 
i m  A18 Gases) 

~ 0 ~ , 2 / 2  K ,  lk? (nm) brim> 
(10' J/m3) (lo3 J/m3) Parallel Perpendicular 

Fe 19 48 14 2.3 
co 12 410 5 2.9 
Ni 1.5 4.5 47 8.2 

Eq. (8.69b) is essentially lix FS ( A / ~ T C A M ; ) ~ / ~ .  Table 8.8 lists the magnitude of 
the magnetostatic energy, anisotropy energy, and the calculated exchange 
lengths for parallel and perpendicular ( K ,  = 0) interfaces for Fe, Co, and Wi. 
One important consequence s f  these results is that the exchange interaction, 
through the parameter I,,, has the effect of communicating the magnetization 
direction in one region over distances of several nanometers to another region. 
This exchange coupling can effectively change the magnetic size or range of 
influence of certain defects. 

These results will be used in Chapter 13, where ferromagnetic-antiferromag- 
netic and ferromagnetic-ferromagnetic interfacial exchange will be considered. 

One of the first questions asked by many students of magnetism (including 
Felix Bloch in 6932) is "How big are magnetic domains?' Landau and Lifshiitz 
pointed out in 1935 that if it were not for the dipole fields set up at the surfaces 
of a ferromagnetic material, there would be no domains. Domains form solely 
to minimize the magnetostatic energy that results when M . n  # 0 at an 
interface. An unbounded ferromagnet would be magnetized uniformly to 
saturation. So Bioch's question then becomes "What does the domain structure 
look like in a sample of a given shape and size, and how does it vary from the 
interior to the surface (where the dipole fields are strongest)?'Landau and 
Lifshitz solved many aspects of this problem, including the size and shape of 
closure domains near a surface. Kittel expanded on many of their results in his 
reviews of magnetic domains (1949, 1956). 

Magnetic domains are regions in a ferromagnetic material within which the 
direction of magnetization is largely uniform. Once domains form, the orienta- 
tion of M in each domain and the domain size are determined by magneto- 
static, crystal anisotropy, magnetoelastic, and domain wall energy. All domain 
structure calculations involve minimization of the appropriately selected ener- 
gies. Figure 8.16 shows the progressive subdivision of a saturated sample (a) ,  
with its high magnetostatic energy, into one composed of increasingly more 
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Figure 8.16 Domain formation in a saturated magnetic material is driven by the 
magnetostatic (MS) energy of the single domain state (left). Introduction of 180" 
domain walls reduces the MS energy but raises the wall energy; 90" closure domains 
eliminate MS energy but increase anisotropy energy in uniaxial materials and cause 
elastic energy due to the strain incompatibility of the adjacent 90" domains (right). 

domains. The energy changes in each case are noted in the figure. First, the 
large magnetostatic energy due to the end poles in the case at left is reduced 
by allowing the formation of two domains of opposite magnetization. The 
integral of HZ outside the sample decreases in the second panel because the 
field lines now close at the ends of the adjacent domains; the flux lines follow 
a path of low reluctance R, and hence low energy +2R,, where d, is the 
magnetic flux (analogous to low i2R). This process continues from panel (b) to 
panel (c) with the multiplication of domains proceeding until the energy cost 
of adding another 180" wall is greater than the magnetostatic energy saved. 
There is always some magnetostatic energy cost for 180" wall formation in such 
a finite sample. If the material has cubic anisotropy, or if the uniaxial 
anisotropy is not too strong, the sample may form closure domains at its end 
surfaces. These closure domains allow the flux to be fully contained within the 
sample, thus completely eliminating the magnetostatic energy contribution. 
However, there is a cost to formation of these closure domains in terms of 
magnetic anisotropy energy (for a uniaxial material) and in terms of elastic 
energy if the magnetostriction is not zero. In this chapter, analytic estimates of 
these energies will be sought for samples of various geometries. Bear in mind 
that the demagnetizing field will be approximated in many cases, so the 
estimates of the energies are useful only to the extent that the sample geometry 
meets the assumptions of the approximate demagnetizing factors. In nonellip- 
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soidal samples the demagnetizing field approximations fail near charged 
surfaces. 

Several magnetic domain images have already appeared in this text (Figs. 
1.13, 8 . 1 ~ ~ ~  8.13, 8.14). Most of the images shown here were made by magneto- 
optic Kerr effect microscopy, scanning electron microscopy with spin polariz- 
ation analysis (SEMPA), or magnetic force microscopy (MFM). MFM and 
SEMPA are discussed in Chapter 16 where more domain images on thin films 
(Figs. 16.22, 16.23, 16.30) are presented. Historically, most magnetic domain 
images were generated using the Bitter solution technique (Bitter 1932). 
Transmission electron microscopy in the Lorentz mode (Chapman 1984, 
Jakubovics 1997) as well as scanning electron microscopy (Newbury el al. 
1986) are also widely used in electron-transparent and opaque samples, 
respectively. More recently, electron holography has proven useful in many 
situations where the field outside as well as inside the sample are of interest 
(Tonomura 1991). A modern review of various method of imaging magnetic 
domains is given in Hubert and Schafer (8998). 

8.5."11niaxial Wall Spacing 

It is possible to get an estimate of the equilibrium wall spacing (domain size 
d )  in a uniaxial sheet of magnetic material. Assume a sample of thickness t, 
length k (parallel to K,), thickness W and wall spacing d, as in Figure 8.17. 

The number of domains is W/d and the number of walls is (Wid) - 3 1 .  The 
area of a single wall is tL. The total wall energy is the wall energy density 
multiplied by the area of a single wall, multiplied by the number of walls: 

The wall energy per unit volume is therefore 

Fw - - Odw 
fdw = &j = Wd -2- 

Figure 8.17 Geometry for estimation of equilibrium domain size in a thin slab of 
ferromagnetic material. 
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The demagnetization factor of each domain is not calculated as if each were 
isolated; their mutual magnetostatic interactions reduce the energy relative to 
that of independent domains. Kittel (1949) calculated the demagnetization 
factor for this periodic array of domains for large t to be 1.7dlL. For small 
sample thickness t, Kittel's result would be reduced by a factor t/L, giving an 
expression for the magnetostatic energy density: 

(L". ) 2 
f m s  = 1.7 - P O M ~  

It is important to retain the thickness dependence in the magnetostatic energy 
expressions. The two energies of importance, the wall energy and the mag- 
netostatic energy, f,,,, + f,, = odw/d + 1 . 7 ( t d / ~ ~ ) ~ , ~ :  are sketched as func- 
tion of domain wall spacing in Figure 8.18. 

The energy is minimized when af/ad = 0. For cases where there are two 
terms in the free energy f that vary as d and d-l, respectively, the energy 
minimum occurs where the two energies are equal as was seen in the derivation 
of domain wall energies. The equilibrium wall spacing may then be written 

For a macroscopic magnetic ribbon described by L = 0.01 m, o,, = 1 mJ/m2, 
p0M, = 1 T, i n d  t = 10,um, the wall spacing is a little over 0.1 mm. With Eq. 
(8.22), the total energy density reduces to 

2 2 112 
ftotal = f d w  + f m s  = - (1.70dwtP~ IMs ) L 

(8.23) 

According to Eq. (8.22), for thinner samples, the equilibrium wall spacing do 

Figure 8.18 Variation of MS energy density and domain wall energy density with wall 
spacing d. 
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increases and there are fewer domains. The physical reason for this effect is that 
the magnetostatic energy driving domain formation has been reduced in the 
thin sample. Below some critical thickness, the total energy of the demagnet- 
ized state (walls present) given by Eq. (8.23) may exceed the magnetostatic 
energy of the single domain state [Eq. (2.22)]: 

The forms of these two energy densities, Eqs. (8.23) and (8.24), are plotted in 
Figure 8.19~. The crossover of the two energy densities implies that there exists 
a critical film thickness below which the single-domain state is more stable 
than the multidomain state: 

Figure 8.19b shows the variation of this critical thickness with the length-to- 
width ratio of the sample for a wall energy density of 0.1 mJ/m2 and two values 
of the magnetization. The singularity near L/W = 0.68 is an artifact of the 
logarithmic function that appears in the approximate demagnetizing factor. 

For a film characterized by the parameters L/W = 5, o,, = 0.1 mJ/m2, 
p,M, = 0.625 T, typical of thin-film magnetoresistive (MR) read heads (see 
Chapters 15 and 17), the result is t, = 13.7 nm. Thus, domain walls would not 

Figure 8.19 (a) Comparison of the thickness dependence of the free energy density for 
the demagnetized state A,, [Eq. (8.23)] with the free energy density for the single domain 
state, f:: [Eq. (8.24)]. Note the crossover below which the energy is lower for the 
single-domain state. (b) Variation of the criticdal thickness with the ratio L/W for two 
different values of magnetization and a,, = 0.1 mJ/m2. 
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be expected in such a film if it were less than about 12 nm thick. As the film 
gets shorter in the direction of magnetization, the multidomain state is stable 
to smaller thicknesses. Decreasing M,, increasing the L/W ratio, and /or 
increasing wall energy density (higher K) would raise t,. 

It must be borne in mind that this model is based on the assumption that 
the demagnetizing field in the sample is uniform. In fact, the demagnetizing 
field is a function of position inside the sample and therefore domains are likely 
to form near charged surfaces even for film thicknesses below the t, calculated 
here. 

8.5.2 Closure Domains 

The formation of closure domains at the ends of structures like that depicted 
in Figure 8.17 is now considered. Uniaxial and cubic anisotropy cases are 
considered separately (Kittel 1949). 

The 180" domain wall energy per unit volume is, from Eq. (8.20), f,, sz o,,/d. 
The formation of the closure domains (Fig. 8.20) reduces the 180" wall length 
by a fraction d/L and replaces that length by a 90" wall of length, 2 J 2 d / ~ .  
Considering G,, = 0,,/2, the wall energy f,, therefore increases by the factor 
(1 + 0.41dlL): Af,, = 0.41od,/L The magnetostatic energy essentially reduces 
to zero, so from Eq. (8.21) Afm, PS - 1 . 7 ( t d / ~ ~ ) ~ ~ ~ : .  A contribution to the 
anisotropy energy in a uniaxial material results from formation of the 2W/d 
closure domains, each of volume d2t/2: Af, c K,d/L. Hence the energy change 
that determines whether the closure domains will form is 

If this energy change is negative, the formation of closure domains is possible 
(see Fig. 8.21). 

Figure $20 Geometry for estimation of equilibrium closure domain size in a thin slab 
of ferromagnetic material (cf. Fig. 8.18). 
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Figure 8.21 Energy density of Eq. (8.26) versus sample length L for p,M = 0.625 T, 
a = 0.1 mJ/m2, K,d = 1 mJ/m2, and td = 10-14m2. 

For the same parameters as used in Figure 8.21 except with the product td 
increased by four orders of magnitude, closure domains are stable below about 
4 mm. Closure domain formation is favored by large magnetization, large 
sample thickness, small anisotropy, and small wall energy. In particular, their 
stability depends strongly on the ratio of td/L2. 

For L/d or L/t >> 1, the spacing of the closure domains is dictated by the 
spacing of the larger domains. For smaller aspect ratios the energy of the 
closure domains becomes comparable to that of the interior domain structure 
and the two must be considered together in estimating the equilibrium domain 
spacing. If the energy balance favors closure domain formation, then the 
magnetostatic energy vanishes and the remaining energy terms are 

When it is energetically favorable for closure domains to form, energy mini- 
mization gives for the equilibrium wall spacing: 

Closure domains form when the anisotropy energy is small relative to the 
magnetostatic energy [cf. Eq. (8.26)]. Comparison of Eq. (8.28) with Eq. (8.22) 
shows that when closure domains form, the equilibrium wall spacing is allowed 
to be larger than it would be without closure domains: d p / d o  = ( p o ~ z t /  
LKa)'IZ. 

For cubic crystal anisotropy, the formation of closure domains does not cost 
anisotropy energy, but it may still cost additional magnetostatic energy as it 
does in the uniaxial case. The closure domains strain along an axis orthogonal 
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to the strain in the major stripe domains so there is a buildup of elastic energy, 
;cllefl = ~cI1 ; l~ , ,  at the 90" domain wall (see Chapter 7). Thus, the term 
( d / ~ ) ~ c ~ , ; l ~ , ,  replaces K,d/L in the cubic case (or adds to it in the uniaxial 
case) in Eqs. (8.26) and (8.27). This magnetostatic term is of order 10' (d/L) J/ 
m3 for iron and 5 times larger for Ni; the magnetostatic term is of order lo3 
(d/L) J/m3. This energy is very small on the scale of Figure 8.21. Hence, closure 
domain formation is still favored because of the dominance of the magneto- 
static energy. Figure 1.13 is a good illustration of closure domains inside an Fe 
single crystal (Celotta et al., 1991). 

8.6 DOMAINS IN FlNE PARTICLES 

Having calculated the critical thickness for single domain films [Eq. (8.25)], we 
are now interested in performing a similar calculation for a spherical particle. 
Fine particles are used in magnetic bearings, permanent magnets, flexible 
magnetic shields, and in magnetic recording media. In applications for which 
high permeability is desired, such as a flexible magnetic shield, it could be 
argued that domain walls should be present in the magnetic particles. On the 
other hand, it will be seen that particles used in permanent magnets should not 
have domain walls that can allow them to be easily demagnetized. Also, the 
presence of domain walls in particulate recording media lowers the coercivity 
and is a source of noise. Thus, it is important to know the size below which a 
particle is comprised of a single domain. 

To a first approximation, it might be assumed that the critical particle 
diameter would be comparable to the domain wall width; that is, in a particle 
of diameter d < a,, = ~C(A/K)"~ there can be no domain wall present. But 
such an approach does not take account of the magnetostatic energy that 
drives domain formation. Taking a more analytic approach for small particles, 
an energy balance is considered. For the single domain state to be stable, 
the energy needed to create a domain wall spanning a spherical particle of 
radius r, namely, odWnr2 = 4nr2(AK)lI2, must exceed the magnetostatic energy 
saved by reducing the single domain state to a multidomain state, AEMs z 
1 2 4 2 spoM, V =3poM,nr3. (Here it has been assumed that the magnetostatic energy 
of the spherical particle composed of two equal domains is negligible relative 
to that of the single-domain state.) The critical radius of the sphere would be 
that which makes these two energies equal: 

For iron, this method gives r, z 3 nm; for y-Fe203, r,  z 30 nm. These values 
are considerably smaller than the respective domain wall widths. This model 
assumes that the domain wall in a particle has the same structure as that in an 
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infinite material (Fig. 8.22, left). This is an acceptable approximation if the 
anisotropy is strong enough to maintain the orientation of MS along the easy 
axis despite surface poles, namely, K ,  2 ,uC1,A4,2/6. If> on the other hand, the 
anisotropy is not that strong, the magnetization orientation will tend to follow 
the particle surface (Fig. 8.22, right). Equation (8.29) ignores the significant cost 
in exchange energy needed to confine the domain wall in this way, that is, in 
three dimensions rather than one. The three-dimensional confinement of the 
magnetization twist increases the exchange energy contribution considerably 
and Eq. (8.29) is not applicable. 

The exchange energy cost should be compared with the magnetostatic 
energy that is saved by domain wall formation. The exchange energy density 
at the radius r in such a particle can be written by noting that the spins rotate 
by 2n radians over that radius: 

The exchange energy density can be determined over the volume of a sphere 
by breaking the sphere into cylinders of radius r, each of which has spins with 
the same projection on the axis of symmetry (Fig. 8.23). 

Integrating the exchange energy density over the spherical volume in 
cylindrical coordinates gives 

Here, h = 2(R2 - rZ)112 has been used. Carrying out the integral with the 
exclusion of the singularity of radius a at the axis of symmetry, gives 

Figure 8-22 Left, model of a small ferromagnetic particle in which a domain wall 
similar to that in bulk material intersects the middle of the particle. Right, additional 
exchange energy is involved if the magnetization conforms to the surface of the particle. 
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Figure 8.23 Construction for calculating the exchange energy of a particle demagnet- 
ized by curling as in Figure 8.22, right. 

(This form of solution may be familiar as the continuum solution for the energy 
of an edge dislocation where the core singularity has been removed.) The 
radius of the core singularity is chosen to be the lattice constant a. The 
magnetostatic energy of the core magnetized along the +z direction is 
negligible. 

If this exchange energy density cost is equated to the magnetostatic energy 
density for a uniformly magnetized sphere, &u0M~ (which is assumed to be 
saved by allowing the magnetization to curl, remaining parallel to the surface, 
as in Figure 8.22, right), the critical radius for single-domain spherical particles 
results: 

r, = Jm PO M~ 
(small K 3  

Equation (8.32) has the form of an exchange length but with an additional 
cylindrical factor that is present because of the singularity along the axis. 
Because Eq. (8.32) contains the critical radius on both sides of the equation, it 
can be graphed by solving for L L o ~ :  and plotting poMs as a function of r,. 
Figure 8.24 shows the values of r, for various values of saturation magnetiz- 
ation according to the strong anisotropy case, Eq. (8.29) (assuming K ,  = 

lo6 J/m3), and the weak anisotropy case, Eq. (8.32). The critical radius for 
single-domain Fe particles (small anisotropy) is found to be much larger than 
that based on Eq. (8.29) (25 nm instead of 3 nm). 

For an acicular iron particle of the same volume as a critical sphere, there is 
less energy to be gained by introducing a domain wall because a larger aspect 
ratio reduces the magnetostatic energy. Thus the critical volume for acicular 
particles is greater than that for a spherical particle of the same volume and 
material. For platelike particles with in-plane anisotropy (e.g., grains in a thin 
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Figure 8.24 Critical radius for single-domain behavior versus saturation magnetiz- 
ation for spherical particles based on Eqs. (8.29) (large K,, lo6 J/m3) and 8.31 (small 
K,). Values of r, for saturation magnetization greater than 0.5 Tesla are also shown 
magnified by a factor of 4 (right scale). 

film) the critical grain diameter is also larger than that for a sphere of the same 
volume. However, for a platelike particle with perpendicular anisotropy, the 
magnetostatic energy is quite large and walls form more easily. 

For more realistic calculations of single-domain particle radii, micromag- 
netics must be employed. The formulas shown here reveal the important factors 
governing this behavior and provide reasonable estimates of thq magnitude of 
the critical radii. 

In Chapter 9, the magnetization reversal process will be considered in a 
number of magnetic cases including these single domain particles. 

Superparamagnetism One cannot reduce the size of magnetic particles 
indefinitely and still retain useful magnetic properties. Below a certain size, the 
remanent magnetization is no longer fixed in the direction dictated by particle 
shape or crystal anisotropy; ambient thermal energy may be large enough to 
cause the moment to jump between two different stable orientations of 
magnetization. This is a magnetic analog of Brownian motion; thermal 
molecular motions are random and cancel in a large system or for one particle 
over time: velocity <v),  ,, , = 0 and magnetization <1M), ,, , = 0. However, 
on a local scale and for a short observation time, it is possible to see the 
effects of molecular motion, v # 0, and on the scale of a few magnetic 
particles in short times, M # 0. Typically, magnetic particles become super- 
paramagnetic below a radius of order 20nm. The interesting range of 
particle sizes for magnetic properties is above the superparamagnetic limit and 
below the single-domain critical radius. Let us analyze the behavior of such 
particles. 

When a system is in metastable equilibrium, such as a magnetic system at 
remanence, the probability P per unit time that it will switch out of the 
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metastable state and into the more stable demagnetized state, is given by 

where v, is an attempt frequency factor equal to approximately lo9 s-l, V is 
the sample volume, and Af V is the free energy barrier that the particle moment 
must surmount to leave the metastable state. In a particle with strong shape 
or crystalline anisotropy, Af is equal to AN,U,M; or K,, respectively. For 
sufficiently small volume particles, the magnetization may leave its metastable 
remanent state in laboratory timescales; the remanence can be observed to 
decrease measurably. For still smaller particles, demagnetization occurs as 
quickly as the field is turned off. These particles are ferromagnetic below their 
Curie temperature in the sense that they have a spontaneous magnetization 
(given by Nfp,/I.: where N' is the number of magnetic atoms in the particle). 
The magnetization is essentially uniform over the particle volume at any 
instant. However, the time-averaged magnetization appears to be zero. Appli- 
cation of an external magnetic field to an ensemble of such thermally demag- 
netized particles results in a much larger magnetic response than would be the 
case for a paramagnet [Eq. (3.37)] because now each local moment has 
magnitude N'p, instead of p,. Thus the susceptibility of a superparamagnet is 
increased (N')2-fold. The M-H curves of superparamagnets can resemble those 
of ferromagnets but with two distinguishing features: (1) the approach to 
saturation follows a Langevin behavior and (2) there is no coercivity. Super- 
paramagnetic demagnetization occurs without coercivity because it is not the 
result of the action of an applied field but rather of thermal energy. 

It is important to know the minimum particle or gain size, which is 
magnetically stable against ambient thermal demagnetization. From the in- 
verse of Eq. (8.33), and for a spherical particle with K ,  = lo5 J/m3, the super- 
paramagnetic radii for stability over 1 year and 1 second, respectively, are 

10k, T ' I 3  6k,T ' I 3  = 7.3 nm, = E 6  nm (8.34) 

Stability has been defined as a flipping probability P of less than 10% over the 
time interval specified. Note that these values are smaller than the critical 
radius for single-domain behavior for spherical particles of magnetization less 
than 2.5 T (Fig. 8.24). The superparamagnetic radius is decreased in particles 
with stronger anisotropy. It is also important to know for a given particle size 
what anisotropy is required for less than 10% of the particles to switch in a 
given time. For one year and one second stability, a particle or radius 10 nm 
needs an anisotropy of 4 x lo4 or 2.3 x lo4 J/m2, respectively. Below the 
superparamagnetic limit a particle has no memory of its remanent state after 
the time specified and no coercivity. 



Everything stated in Sections 8.4 and 8.5 applies to single crystals and 
single-crystal particles. The only interfaces present are the sample boundaries. 
In polycrystalline materials, internal surfaces (grain boundaries) exist and 
different grains can have easy axes with different orientations. 

The factors affecting the magnetization distribution and domain structure 
include 

I. Magnetostatics-the system avoids charged surfaces and maintains 
(Bi - Bo) .n = 0. 

2. The magnetization A4 should therefore follow the crystal and shape 
anisotropy easy axes subject to internal fields due to charged surfaces. 

3. Exchange coupling will tend to maintain the direction of M across 
narrow, clean grain boundaries but not across wide, contaminated grain 
boundaries. 

Figure 8.25a (Shilling and Houze 1974) shows the domain structure near a 
grain boundary that arcs from lower left toward upper right of the figure. The 
magnetization in each domain is parallel to the long domain boundaries. 
Maxwell's equations lead to boundary conditions [Eq. (2.613 that demand the 
normal component of B = p,(M + m~ast be continuous across the grain 
boundary. Where the normal component of M is not continuous across the 
grain boundary, the boundary condition demands there be a field, H, to 
maintain B.n continuous. This M field causes formation of spike domains, 
reducing the magnetostatic energy near the grain boundary. The effect is most 
pronounced in the domain whose magnetization axis has the greatest compo- 
nent along the field of the charged wall. 

8.8 SUMMARY 

At least two energies, exchange and anisotropy, are involved in determining the 
domain wall thickness and the domain wall energy density. The widths of 180" 
Bloch walls range from about 1 pm in low-anisotropy materials to under 40 nm 
in high-anisotropy materials. Where a domain wall approaches a surface, 
magnetostatic energy must be considered. Magnetostatic energy is responsible 
for formation of NCel and cross-tie walls. 

In cubic materials where 90" walls are possible, magnetoelastic energy 
stabilizes 180" walls relative to 90" walls. Also, magnetostatic energy destabil- 
izes 90" closure domains. 

A variety of length and energy scales related to domain walls and domains 
have been discussed. Some of them are summarized here. Such equations are 
not to be memorized. Their forms, and the patterns among them, should be 
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Groin 
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Figure 8.25 (a) Domains near a grain boundary in polycrystalline Fe-3%Si [after 
Shilling and Houze (1974)l; (b) process by which an imbalance in the normal 
component of magnetization across a boundary generates an internal field, which, in 
turn, favors the formation of reversal domains at the boundary. 

understood. For example, note that the length scales always vary as an inverse 
power of either the magnetostatic or magnetic anisotropy energy density. These 
two energies are responsible for the magnetization departing from a state of 
uniform orientation throughout the sample. 

For a much more extensive examination of the rich variety of domain 
structures found in magnetic materials, the reader is referred to the recent 
monograph by Hubert and Schafer (1998). 

Length Scale Energy Density 

112 
180' Bloch wall 6,, = n ($) 
Nkel wall 

Uniaxial domain do E L ( "dw, )'I2 
wall spacing PO M:t 
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Length Scale Energy Density 

Critical single-domain t ,  z 4 
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Closure domain 
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for sphere 
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PROBLEMS 

8.1 The figures below depict two orientations of domain walls in a uniaxial 
material. Explain why each is unlikely. 

Figure 8.11B 

83 Calculate the domain wall thickness and energy density for Co, Nd,Fe,,B 
and Ni,,Fe,, from data in Chapter 6 assuming in each case A = 2 x 
1 0 - I '  J/m. 

8.3 Solve the uniaxial domain wall problem with magnetoelastic energy 
included. Work out the solution for three cases: (a) uniaxial strain along 
the easy axis, (b) perpendicular to the EA and parallel to the magnetiz- 
ation at the center of the wall, and (c) perpendicular to the EA and to the 
magnetization at the center of the wall. 

8.4 Evaluate the constant in Eq. (8.10) for uniaxial anisotropy for the two 
wall profiles: B(-  oo) = 0 and - 7c/2 (in both cases 0' = 0). Can you find 
a solution to the integral equation for the second set of boundary 
conditions? 
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8.5 Write the exchange, anisotropy, and magnetostatic energy expressions for 
a Nbel wall in a film of thickness t. Compare the relative magnitude of 
these terms. Why does the magnetostatic energy not appear in the 
minimization of the wall energy per unit area to determine the wall width? 

8.6 Relate the energy of the flux distribution about a sample in a state of 
remanent magnetization (H,,, = 0) to that of the configuration of least 
magnetostatic energy inside the sample. Use the i2R power density 
analogy. How is this energy minimized? 

8.7 (a) Calculate the radius r, of a sphere for which the magnetostatic energy 
is exactly equal to the energy needed to create a 180" domain wall 
through the middle of the sphere. 

(b) Calculate this radius for iron. 

(c)  Compare this radius with the domain wall thickness ddw for iron. 
(d) Express r, and dd, in terms of the domain wall energy density odw and 

discuss the difference between these two expressions. 

8.8 Calculate the superparamagnetic dimensions for an acicular iron particle 
with a 10: 1 aspect ratio and anisotropy due only to its shape. 
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CHAPTER 9 

MAGNETIZATION PROCESS 

This chapter discusses the response of materials to applied fields, namely, the 
magnetization process. What does an M-H curve look like, and why? What 
does an M-H loop tell us about a material? The energies outlined in Chapters 
2,6,7, and 8 are used to model and understand the process by which a material 
is magnetized. The simplest model-uniform magnetization rotation in a 
uniaxial material-serves as a starting point. This provides a clear picture of 
the difference between M-H curves for magnetization rotation and those for 
domain wall motion. More complicated examples of the magnetization process 
and two mechanisms of coercivity are then considered. Finally, AC processes 
are analyzed in order to get an appreciation of eddy current losses. 

9.1 UNlAXlAL MAGNETIZATION 

The M-H curves are reviewed for the canonical case of uniaxial anisotropy 
with field applied along either the hard or easy axis. Two limiting situations 
are considered: (1) single-domain particles (or equivalently, completely pinned 
domain walls) and (2) samples in which domain walls are present and move 
with complete freedom in the weakest field. 

Consider a magnetic material with uniaxial anisotropy of any origin 
(magnetostatic, magnetocrystalline, magnetoelastic, or field-induced). If any 
domain walls are present in the sample, they are assumed to be parallel to the 
easy axis (EA). A field is applied first transverse to the easy direction of 
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a )  Transverse b )  Longitudinal 

Figure 9.1. Schematic representations of a magnetic material having purely uniaxial 
anisotropy in the direction of the easy axis (EA). Dashed lines indicate magnetization 
configurations for H = 0. Application of a field H transverse to the EA results in 
rotation of the domain magnetizations but no wall motion. Application of a field 
parallel to the EA results in wall motion but no rotation of the domain magnetization. 

magnetization (Fig. 9.la), then parallel (Fig. 9.lb) to it. In each case, the M-H 
loops are derived. 

9.1.1 Hard-Axis Magnetization 

The energy density describing the situation for which H is perpendicular to the 
easy axis may be written as 

f = K,  cos28 - M,H cos 8, K,  > 0 (9.1) 

where 8 measures the angle between M and the field in Figure 9. la. Figure 6 . 6 ~  
shows what the anisotropy energy surface looks like with an arbitrary constant 
added: fa has a minimum along an easy axis. (Draw the energy surface for 
K, < 0 to see the easy plane in that case.) 

It is helpful to sketch a cut through the total energy surface (including the 
Zeeman term) before seeking a mathematical solution to a magnetization 
problem. The shape of the energy surface gives a good qualitative picture of 
the solutions and serves as a guide to the appropriate quantitative expressions. 
The magnetization will always point in a direction of minimum energy (at least 
locally). The first angular derivative of the energy is the negative of torque 
- af/aO = T, on M and it is zero at energy maxima and minima. 

In Figure 2.12, the energy density of Eq. (9.1) is sketched for H = 0 and for 
a few values of H > 0. (In that figure, the uniaxial energy was of magnetostatic 
origin. The angular dependence of the uniaxial anisotropy energy density here 
is the same as that of the magnetostatic energy density there.) Note the 
zero-slope points and the stable points. It can be seen from Figure 2.12 that at 
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H = 0 ,  the stable solution is 9 = 7x12. As H increases, this stable point moves 
to smaller 9, indicating that the magnetization vector is aligning with the 
applied field. This result is derived quantitatively. 

The energy density from Eq. (9.1) is minimized with respect to 9 when its 
first derivative vanishes 

and the second derivative is positive: 

- 2K,  cos2% + M s H  cos 9 > 0 (9.3) 

Equation (9.2) is the condition for zero torque on M, and Eq. (9.3) is the 
stability condition. The zero-torque condition has two solutions. One of them 
is given by sin 8 = 0: 

which indicates that the saturated states, M parallel or antiparallel to H, are 
extrema. The stability condition demands that 8 = 0 is stable only for 
H > 2K,/Ms ( K ,  > 0); 8 = TC is stable only for H < -2K,/M, ( K ,  > 0). This 
is most easily seen from Figure 2.12. The other solution to Eq. (9.2a) is given by 

2K,  cos 9 = MsH (9.4) 

This is the equation of motion for the magnetization in fields below saturation 
2K,/Ms < H < 2K,/M,. Note that for H = 0, the solution must be 9 = 7x12. 

The field dependence can be made clearer with a few simple substitutions. 
The magnetization measured in the field direction is M = M s  cos 8. When the 
applied field is great enough to saturate the magnetization, cos 8 = 1, a 
definition of the anisotropy field, Ha = H,,, results: 

Thus, Eq. (9.4) may be written 

Ha M ,  cos 8 = M,H (9.6) 

Using cos 9 = rn = M / M ,  for the component of magnetization in the field 
direction, and defining the reduced field h = H/Ha, Eq. (9.6) gives 

for Ihl < 1. This is the general equation for the magnetization process with the 
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a) Transverse Field b) Longitudinal Field 

Figure 9.2. M-H loops for the two idealized cases shown in Figure 9.1: (a) hard-axis 
and (b) easy-axis magnetization processes. 

field applied in a hard direction for a uniaxial material. The reduced magnet- 
ization m increases linearly with field up to the anisotropy field Ha, at which 
point m = 1, i.e. the material is saturated (Figure 9.2~). 

Even if unpinned domain walls parallel to the EA are present in this 
hard-axis case, they do not move because there is no energy difference across 
the domain wall. 

9.1.2 Easy-Axis Magnetization 

In the uniaxial, parallel-field case (Fig. 9.lb), both domains have their magnet- 
ization along the easy axis so their anisotropy energies are the same. An 
easy-axis field exerts no torque on the domain magnetization in this case. The 
energy density of each domain is due solely to the applied field, MsH and 
- M,H, unless the direction of magnetization changes. For now, the domain 
wall is assumed to be pinned, or a single-domain sample is considered. To 
express the free energy in domain i, its possible angular dependence is included: 

J;- = - MsH cos 8, + K ,  sin28, (9.8) 

This energy density is plotted in Figure 9.3 for various values of the reduced 
field, h = MsH/2K,. The solutions to this problem are clear by examining the 
field dependence of f(8). At zero field, stable solutions exist at both 8 = 0 and 
n; this accounts for the stability of the two types of domain shown in Figure 
9.lb. With increasing field, these two solutions remain locally stable while 8 = 0 
becomes more favored. The angular positions of the energy minima are 
independent of field for h c 1. For h = 1, the local stability of the solution at 
8 = n vanishes and the magnetization in those domains switches abruptly to 
6' = 0. This m-h behavior is sketched in Figure 9.2b. The field at which the m-h 
curve crosses m = 0 here is called the switching Jield. It is due to rotational 
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Figure 9.3. Free energy for the easy-axis magnetization process as a function of angle 
and applied field strength, h = MsH/2K,.  

hysteresis, not domain wall motion hysteresis (the cause of coercivity), which 
will be examined later. 

It is important to see how these solutions follow rigorously from analysis of 
the energy density. The zero-torque and stability conditions for the free energy 
in Eq. (9.8) are given, respectively, by 

sin 8(M, H + K, sin 29) = 0 (9.9) 

MsH cos 9 + 2K, cos29 > 0 (9.10) 

The first factor in Eq. (9.9) indicates that solutions may be found at 8 = 0 and 
n; namely, m = 1 and - 1, respectively. Equation (9.10) indicates that 9 = 0 is 
stable only for H > -2Ku/Ms while 9 = n is stable only for H < 2Ku/Ms. 
From Figure 9.3, these solutions are only locally stable in the field range 
between If: 2K,/Ms. The stable and locally stable solutions are shown in Figure 
9.2b as the solid and dashed lines, respectively. The second factor in Eq. (9.9) 
gives the same information as the first. 

The situation is now considered in which the domain wall in Figure 9.lb 
moves easily. The field exerts no torque on the domain magnetization, but it 
does exert a torque on the spins making up the wall. The spins in the wall may 
rotate to align with H. In macroscopic terms, the difference in Zeeman energy 
of the two domains represents a field-induced potential-energy difference across 
the domain wall of 2MsH. The wall can lower its energy by moving so as to 
reduce the volume of the unfavorably oriented domain. Equivalently, the force 
on the domain wall, given by the potential gradient F = -aU/ax, is such as 
to move the wall down in Figure 9.lb. Assuming for now that wall motion is 
smooth and easy, the loop resembles that shown as the solid line with zero 



coercivity in. Figure 9.2b. The defect processes that can impede wall motion and 
lead to irreversibility in the m-h curve associated with wall motion hysteresis 
(as opposed to the rotational hysteresis; dotted line in Fig. 9.26) will be treated 
later. 

In summary, a purely hard-axis, uniaxial magnetization process involves 
rotation of the domain magnetization into the field direction. This results in a 
linear m-h characteristic. An easy-axis magnetization process results in a 
square m-h loop. It is characterized in the single-domain or pinned wall limit 
by rotational hysteresis, N ,  = 2K,/Ms, or, in the free-domain-wall limit, by 
H, = 0. The wall moves in a direction that grows the favorably oriented 
domain. 

The important features distinguishing the M-H loops in Figure 9.2 are not 
only what happens when the field is increased from zero (saturation is not 
achieved until H = Ha in one case; it is usually much easier in the other), but 
also what happens to A4 as N is decreased from above saturation. In the 
transverse case the system tends to demagnetize itself; anisotrogy, from what- 
ever source, takes over as H approaches zero and rotates M toward the nearest 
easy direction. If the magnetization rotation process is carried out quasistati- 
cally, the magnetization is essentially reversible; that is, the M-N loop in 
Figure 9.20 shows no coercivity. This is not so for the parallel case. If allowance 
had been made for any hysteresis (i.e., viscosity or irreversibility) in the wall 
motion, or if no walls are present, the sample would tend to remain magnetized 
as M changes sign. A square loop with a high remanence generally results from 
application of a field along the easy direction of magnetization; the m-h 
process is one of wall motion. A slanted loop with no coercivity, with zero 
remanence, and with saturation at H = Ha generally results from application 
of a field transverse to an easy axis; the m-h process is due to magnetization 
rotation. 

It is instructive to consider the permeability for a purely rotational magnet- 
ization process. From Eq. (9.41, M = ( M : / ~ K ) H ,  so the rotational permeability 
is 

This describes the contribution to the permeability from domains or grains 
whose easy axes are orthogonal to the field direction. Clearly, if their aniso- 
tropy is comparable to 27cM:, they contribute very little. Conversely, if their 
anisotropy energy density is small, the M-H loop is steep and pro, can be large. 
In the easy-axis magnetization process, the permeability depends on the 
coercivity and hence on domain wall motion (Section 9.6). 



FIELD AT ARBITRARY ORIENTATION TO UNIAXIAL EASY AXIS 319 

9.2 FIELD AT ARBITRARY ORlENBATiON TO UNlAXlAb EASY AXIS 

The magnetization process in a field parallel or perpendicular to the uniaxial 
easy axis has been treated under conditions of pinned domain walls (or no 
walls) and free walls. Domain walls were allowed only when they are parallel 
to the easy axis. 

9.2.1 Stoner-Wohlfarth Problem 

The M-H loops for a field applied at an arbitrary angle 0, with respect to a 
uniaxial EA are now considered (see Fig. 9.4). Only single-domain particles are 
considered (at least at first) because the magnetization in two domains would 
respond differently to the field for 0 < 0, < n/2. Further, it is assumed that the 
particles are ellipsoidal in shape so that the particle magnetization is spatially 
uniform throughout the magnetization process. This is sometimes referred to 
as the Stoner- Wohlfarth (SW) problem because they were the first to report a 
solution (1948). The free energy of the prolate spheroid may be written 

f = - K, cos2(0 - 0,) - HM, cos 0 (9.12) 

The particle anisotropy may include shape: K, = [Ha + (N, - Nl)M,]M,/2, 
where N, and N, are the demagnetization factors parallel and perpendicular 
to the easy axis of the particle. The form of the energy is illustrated schemati- 
cally in Figure 9.4, right. Note that on increasing the strength of a negative 
field from H, to H ,  to Hz, the energy minimum shifts to smaller values of 0 
and a discontinuity in 0 can occur. The energy in Eq. (9.12) is minimized with 
respect to 0 for 

2K, sin(0 - 0,) cos(0 - 0,) i- HM, sin 0 = 0 

Figure 9.4. Left, coordinate system for magnetization reversal process in single-domain 
particle in which the shape and crystallographic easy axes coincide. Application of a 
field at an angle 6, relative to the EA causes a net magnetization to lie at some angle 
19 relative to the field. Right, illustration of approach to a discontinuous magnetization 
change at a negative field of magnitude H,. 

Pin-Wei
Highlight
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or, using K, = H,lW,/2 and h = H/H,: 

sin(2[8 - O,]) + 2h sin 8 = O 

Alternatively, with m = M/MS = cos 8, the solution can be written 

2m(d - m2)'l2 cos 28, + sin 28,(6 - 2m2) f 2h(l - m2)112 = 0 (9.13) 

This equation is readily solved for h as a function of m. The results, shown 
in Figure 9.5, need some explanation. Note that 8, = n/2 leads to Eq. 49.4) with 
the linear M - H  characteristic obtained in Figure 9 . 2 ~ .  As 8,  approaches zero, 
the remanence increases toward m = 1. In the limit 8, = 0, a square rn-h loop 
results as in Figure 9.2b. For intermediate values of O,, it is more difficult to 
fully saturate the magnetization than it is for 8, = 4 2 .  The reason for this is 
that the applied field is working against a torque - af,/a0. This torque vanishes 
as 8 approaches n/2 in the transverse case, but in the oblique case the torque 
does not vanish as M aligns with the field. Recall that the area between m(H) 
and rn = 1 is the energy needed to saturate the material. Does this energy 

Figure 9.5. Stoner-Wohlfarth (SW) solutions: reduced magnetization versus reduced 
field applied at an angle 0, to the easy axis. The linear m-h curve represents 0, = 90°, 
and the other curves of increasing remanence represent 8, = SO0, 60°, and 30". The 
magnetization process is irreversible so m-h continues for h < 0. Possible magnetization 
distributions are shown as inserts for nucleation-inhibited, single-domain particles. 
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diverge for 0 < 8, < 71.12, or does it have a finite value; that is, do the m(H) 
curves for 0 < 8, < 7112 ever reach m = l? Problem 9.2 will provide the answer. 

The single-domain, oblique magnetization process is also interesting in 
negative fields. For a small range of 8, above 0°, the magnetization reversal 
process leaves the magnetization in an unstable orientation. Here, a flux jump 
occurs at a critical field, h, = H,/H,, called the switching jield; h, is defined 
where the m-h curve satisfies ahlam = 0. This is shown in Figure 9.5 for 
0, = 30" near m = 0.4. At that point, the magnetization switches abruptly and 
irreversibly to the third quadrant (along the dotted line). It does not follow the 
solid curve below m z 0.4 which is unstable. The switching field cannot be 
greater than the anisotropy field: H ,  < H a .  The switching occurs at the field for 
which the free energy minimum, dfldd = 0, becomes flat, d2f/d02 = 0 (Figure 
9.4, right): 

The angle 8 can be removed from Eqs. (9.14) and (9.12) most easily by 
eliminating sin 2(0 - 8,) or cos 2(0 - 8,). It is then possible to express sin 28, 
in terms of h,: 

1 312 
sin 28, = (+)[-I 

Solving for the switching field gives 

This result, which is really the upper limit to the switching field, is plotted as 
the solid line in Figure 9.6. For 45" < 0, < 90", the switching field occurs after 
the magnetization has changed sign; in other words, the coercivity is less than 
h,. See Figure 9.5, 8, = 80". The coercivity is defined by Eq. (9.12) or (9.13) at 
m = 0, namely, h, = sin 8, cos 8,, as shown by the dashed line in Figure 9.6. 
The process described by the dotted lines will be described next. 

9.2.2 Magnetization Change by Curling 

But single-domain particles do not always change their magnetization by 
coherent rotation of all moments in unison (Fig. 9 . 7 ~ )  as just described. Other 
modes of reversal are possible, including curling (Fig. 9.7b) and buckling (Fig. 
9.7~). These switching modes for particles that are still too small to contain a 
domain wall, allow for easier magnetization rotation and hence lower switch- 
ing fields than the Stoner-Wohlfarth limit. Of these two nonuniform modes 
(b, c), curling is the more important. Magnetization reversal can also be 
modeled by a chain of spheres interacting by dipole forces as in Figure 9.7d 
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Figure 9.6. Solid line: variation of the switching or coercive field, hi = Hi/HZff, with 
angle between easy axis and applied field. The shapes of the m-h loops at the two 
extreme values of 0,, are shown for reference. The solid line describes the switching field 
for the uniform rotation process (SW). For 0, > 45", the magnetization passes through 
zero (defining h,) for fields less negative than the switching field. Dotted lines indicate 
switching fields for curling, Eq. (9.16), for various values of the reduced minor-axis 
radius, S = bib,. Magnetocrystalline anisotropy is neglected. The particle aspect ratio 
for the curling-mode results is 8. 

~ i g u r e  9.7. Modes of magnetization reversal in acicular fine particles. Left to right: (a) 
coherent rotation; (b)  curling; (c )  buckling; (d) fanning (in chain of spheres); and (e)  
domino effect. The first and third processes occur with the magnetization throughout 
the particle confined to a plane. 
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(Jacobs and Bean 1955). Knowles (1984) has found that for highly acicular 
particles, a likely mode of reversal is a domino-like flipping of the magnetiz- 
ation from one end of the particle to the other, along its long axis (Figure 9.7e). 

In order to describe inhomogeneous switching quantitatively, one must 
make use of micromagnetics, the analysis of magnetization processes on a scale 
small enough that the exchange energy is important, and on a scale large 
enough that a continuum description is still appropriate. (Such techniques were 
used in Section 8.2 to get the Euler-Lagrange integral solution for the 180" 
Bloch wall.) The micromagnetic calculations for single-domain switching will 
not be derived here. Some results from the literature will be described (Frei et 
al. 1957; Aharoni 1966, 1986; Richter 1989). 

Magnetization switching by curling costs exchange energy but saves mag- 
netostatic energy by having fewer spins pointing away from the easy axis at 
any given stage of the reversal process. Thus, the switching field for magnetiz- 
ation curling in an elongated, single-domain particle of semiminor axis b is 
reduced from the uniform rotation value, H,  = (N, - Na)Ms, by replacing the 
hard-axis magnetostatic energy with the curling energy (Brown 1957): 

where b, = r , / ~ ~ / ~ ,  is the single-domain radius [Eq. (8.32)] for an ellipsoid of 
revolution. The coefficient n is a function of the aspect ratio of the particle and 
varies between 1.08 (infinite cylinder) and 1.42 (sphere). The dotted lines in 
Figure 9.6 describe the 8, dependence of the switching field due to curling for 
various values of S = blb, assuming no magnetocrystalline anisotropy. If the 
first term in Eq. (9.16) is too large, the curling-mode switching field may be of 
larger magnitude (more negative) than that for uniform rotation. In this case 
curling will not occur. Increasing the anisotropy of the particles pushes the 
curling-modc switching fields to larger values. 

The mode of magnetization reversal in a particle will always be the lowest 
field process. Figure 9.8 illustrates the onset of curling as a viable mode of 
magnetization reversal in particles having larger reduced minor radii. For 
particle size below the crossover point, uniform rotation is the preferred mode 
of reversal. 

When the particles become small enough for superparamagnetism to sup- 
press their coercivity, Jacobs and Bean (1963) find 

Here the parameters (other than C,  and C,) have the same meaning as in Eq. 
(9.16). Note that as the particle volume decreases in the superparamagnetic 
regime, the coercivity drops with increasing steepness for a given temperature. 
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Figure 9.8. Schematic comparison of the switching fields for curling compared with the 
SW results shown for two angles of the field relative to the particle axis. Dotted lines 
for curling indicate that increased major-axis demagnetizing field N,M, favors curling; 
increased particle anisotropy inhibits curling. 

Equations (9.16) and (9.17) are reflected in the data of Kneller and Luborsky 
(1963) for the coercivities of FeCo particles (Fig. 9.9). However, the dependence 
on particle size in the SD regime varies more like l/r than l/r2. 

It is very difficult to account for magnetostatic interactions between particle. 
White (1985) shows that a simple dipole interaction between particles causes 
the coercivity to increase with increasing packing fraction p counter to what is 

Figure 9.9. Particle-size variation of coercivity in FeCo particles (Kneller and Luborsky 
1963). The solid negative-slope curve l / r 2  follows Eq. (9.16). The solid positive-slope 
curve, starting at d/d, = 1, is calculated from Eq. (9.17). 
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generally observed (Wohlfarth 1959). Nkel (1947) derived the form 
H,(p) = Hc(0)(l  - p), which is often followed experimentally. Apparently, as 
packing fraction increases, exchange coupling between the particles increases 
and domain walls may begin to move from particle to particle. 

9.2.3 Free Domain Walls 

Now let us consider particles large enough, or packed densely enough, such 
that domain walls can be present. Further, assume initially that the walls move 
with complete freedom: H,  = 0. The M-H characteristic displayed for H > O 
is the SW rotation process. On decreasing the field from positive saturation, 
walls are nucleated and move easily once H < 0. Thus, when 0 < 8, < 90°, 
both magnetization rotation and domain wall motion may contribute to the 
M-H process. There is no magnetization reversal by abrupt rotational 
switching because the easy wall motion has shorted out that process. The 
particles show zero coercivity (Fig. 9.10). Note that in the first and third 
quadrants of the m-h loops, however, the shape of the curves is the same as 
that for single-domain particles. 

It is important to note that for a polycrystalline material, there is a 
distribution of easy axis orientations relative to the applied field direction. 
Each grain then responds to the field with the appropriate loop from Figure 

Figure 9.10. Reduced field versus reduced magnetization for a fieid applied at an angle 
0, to the easy axis of particles significantly larger than the single-domain limit. The 
magnetization process is reversible both for magnetizatioil rotation and for wall motion. 
Inserts depict possible magnetization configurations at various stages in the magneti- 
zation process (EA is horizontal in these inserts). 
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9.5 or 9.10 (and a coercivity to be determined later). It is easy to see then how 
a typical polycrystalline M-H loop may assume a somewhat rounded shape 
by summing over a number of grains having diEerent values of 8,. Still more 
important, caution should be exercised when trying to extract anything other 
than average material parameters from the shape of polycrystalline hysteresis 
loops. 

All of these magnetization curves involving domain wall motion may be 
sheared over by magnetostatic effects. Stoner and Wohlfarth (1948) consider 
the case of the oblate spheroids, where magnetostatic energy effectively shears 
the loops of Figure 9.5; for a given B,, the oblate spheroid is slower to 
magnetize. 

It has been seen that coercivity can be quite large in single-domain particles 
and that it decreases as particle size increases enough to allow curling. Above 
the single-domain limit, the magnetization process is determined by domain 
wall motion, which has not yet been covered. Before moving on to the 
mechanisms of domain wall-defect interactions, the reader may want to 
consider one more rotational magnetization process: cubic anisotropy. (See 
Problem 9.3.) 

9.2.4 Approach to Saturation 

The magnetization process is rarely as simple as suggested b y  the idealized 
forms considered here so far (Figs. 9.2, 9.5, and 9.10). In particular, a 
well-defined saturation of M ( H )  is not always evident in experimental data, so 
it is often difficult to determine the value of the saturation magnetization by 
inspection. It is helpful in determining M, to know the mathematical form of 
the approach to saturation. This would make it possible to fit M(H) to a 
function that gives a quantitative indication of 1M,. 

The approach to saturation well below T, can be expressed quite generally 
(Brown 1941) as 

Here x,, is the high-field susceptibility and the term -aM,/N accounts for 
rotation of M away from the applied field as N decreases. The first of the two 
terms on the right-hand-side (RHS) of Eq. (9.18) follow from the Eangevin 
equations, Eqs. (3.11) and (3.121, near saturation, namely, s >, 4. In that case, 
n = k,T/p,p,. Note that in Eq. (9.18), M(H) never reaches a state of zero 
slope; M, is defined as the value of M ( H )  - xhfM at infinite field. But xh, is 
generally not known a priori. However, for small xhf (i.e., at low temperature), 
a plot of M versus H - I  should be linear with a negative slope and an M(H) 
intercept at M s .  See Figure 9.11 for data on Eu,,,,Gd,.,,S (McGuire and 
Flanders 1969). 
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Figure 9.11. Method of determining saturation magnetization: M versus H and versus 
H-'  data for Eu,~99Gd,,,lS at 4.2 K (McGuire and Flanders 1969). 
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For single-domain particles, the Stoner-Wohlfarth model predicts an ap- 
proach to saturation that can be derived from Eq. (9.13) by examining the limit 
h >> 1, m E 1 (or 2m2 - 1 sz 1): 

- - 
I 
0 

200- 
a, - - 
C 

E 
2 I00 
U . - 

$- 2h JG E (2m2 - I) sin 28, 

I I I I 

e Eu0.99Gd0.01 420K - 
- ~ - X S - . - ~ -  

C 

- 

- 

leading to 

6 a, C 0 i 
- 

S 
I I I I 

0 5 10 15 20 25 
Magnetic Field ( k O e )  

and 

Thus, for noninteracting, single-domain particles, a plot of M ( H )  versus H-' 
should be a straight line extrapolating back to M s .  

Kronmiiller (1980) considered the approach to saturation in a ferromagnet 
with isolated defects characterized by weak (magnetoelastic, in his case) 
anisotropy. (This situation is the inverse of the single-domain problem in which 
the medium is nonmagnetic and the magnetic particles are isolated and 
noninteracting.) He finds that here, too, the approach to saturation goes as 
1 - HP2.  Experimental data for an amorphous magnetic alloy at low-field 
(p ,H < 0.03 T) follow Eq. (9.18) (1 - H-l), while at higher fields the approach 
to saturation more closely follows the form of Eq. (9.19) (1 - I T 2 ) .  



In real materials, domain walls do not move reversibly as has been assumed 
until now. Grain boundaries, precipitates, inclusions, surface roughness, and 
other defects can lower the wall energy at a particular position in the material, 
effectively pinning its motion, or they can glace a barrier in front of the wall, 
inhibiting further wall motion through the defect. 

For example, a nonmagnetic inclusion or planar defect coincident with a 
domain wall eliminates the need for a twist in M across the defect. This reduces 
the total wall energy locally by o,, times the common cross-sectional area of 
the defect and wall. Alternatively, a magnetic defect having a strong anisotropy 
(crystalline or magnetoelastic) relative to that of the matrix could effectively 
pose a barrier to a domain wall. In this case the spin is pinned in the direction 
of the local anisotropy, preventing the wall from moving through the defect. 

These two classes of defect are depicted in Figure 9.12. A nonmagnetic 
inclusion, left, reduces the local wall energy while a high-anisotropy defect 
increases the local wall energy. Clearly, a distribution of defects in a material 
leaves the domain wall potential a,,(x) highly irregular with position. As an 
external field is applied, a pressure 2MsH,,, (due to the difference in potential 
across the wall) is exerted on the wall, tending to accelerate it. The presence of 
the pinning defects leads to an irregular domain wall motion consisting of a 
series of Barkhausen jumps as the wall skips from defect to defect. The wall 

Figure 9.12. Upper panel depicts two kinds of defect and their influence on wall motion 
for vertical applied field: nonmagnetic inclusions locally lower the wall energy by 
decreasing its area; particles of different anisotropy or magnetization than the matrix 
present a barrier to wall motion. Below is shown the domain wall energy as a function 
of position in absence of an applied field. 
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achieves an average drift velocity (governed by the strength of the applied field 
as well as the density and nature of the defects) much as do charge carriers in 
a normal metal when an electric field is applied. 

9.3.1 Large "Fuzzy" Defects 

Quantitative models of domain wall motion generally distinguish two regimes of 
behavior based on the ratio of defect size D to wall thickness 6,,= z ( A / K ) ~ ~ ' .  
Several such models exist for domain wall pinning on defects whose dimensions 
exceed that of the domain wall, D >> d,, (Kondorskii 1937; Kersten 1938; 
Dijkstra and Wert 1950). In this large defect limit, two cases must be 
considered. In one case, the material parameters change abruptly at the 
interface between the defect and the matrix. This sharply defined defect case 
will be treated later. In the "fuzzy defect" case considered here, the material 
parameters change slowly over the length scale of the wall. Thus, the domain 
wall can be considered to be moving in an irregular but slowly changing 
potential. The gradient in the wall energy density constitutes a pressure, 
P = --da,,/dx, resisting wall motion. The difference in Zeeman energy 2MsH 
across a 180" wall provides the driving pressure to overcome the gradient in 
wall energy. This problem can be modeled approximately to provide a useft11 
introduction to the more rigorous treatment for abrupt interfaces. 

The energy gradient do,,/dx may be expressed from Eq. (8.17) and the 
anisotropy generalized to include a magnetoelastic contribution K,  = K,,, + 
g ~ , o ,  where o is the stress. Thus 

This says that the forces impeding domain wall motion arise from spatial 
variations in those properties that determine wall energy. But Eq. (8.17) for the 
wall energy density was derived for an infinite medium with no boundaries or 
interfaces. If this equation is to be useful here, it must be assumed that the 
interfaces between the matrix and the defect are very gradual. That assumption 
distinguishes this approximate treatment from the abrupt interface theory of 
coercivity to be discussed below. The steepest gradient in wall energy density 
can be taken to be the magnetic pressure responsible for the coercivity: 

If the range of the variations is assumed to be of order D (see Fig. 9.13 
for this D > d,, limit), and we can approximate the gradient as linear, 
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Figwe 9.13. Domain wall thickness superimposed on a representation of the variation 
in wall energy density across a defect of full width at half maximum, D. 

do,,/dx = Ao,,/D, the coercivity can be expressed 

Thus, the coercivity for D > d,, in the gradual defect interface case goes as 
d,,/D times a sum of fluctuation terms expressing local variations in exchange 
stiffness, crystal anisotropy and magnetoelastic anisotrogy, respectively. The 
anisotropy field, H,  = 2K/Ms, sets an upper limit to the coercivity. 

It is also possible to include in Eq. (9.21) coercive mechanisms arising from 
the magnetostatic energy of defects proportional to AiWlM; for example 

The important ingredients in a defect that make it effective in pinning a 
domain wall are the extent to which its magnetic properties differ from those 
of the matrix, namely the magnitude of 

AK AA - - AM 
K '  A '  

and - 
M 

Also important are the defect dimensions relative to the domain wall thickness 
and the sharpness of its interface with the matrix relative to the wall thickness. 

The relative importance of the three fluctuation terms in Eq. (9.21) can be 
appreciated by noting that while AA/A (or AM/M) and AK/K may vary from 
zero to unity, the magnetoelastic term for a local 1 %  strain may have a 
magnitude of 10 in Ni or 0.7 in Fe. Clearly, the coercivity of nickel is very 
sensitive to strain. 

The preceding limit has focused on the force on domain walls due to gradual 
changes in domain wall energy in the vicinity of large defects. A more rigorous 
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model of coercivity is now treated for defects that may be large or small 
compared to the wall thickness, as long as the defect-matrix interface is sharp. 

9.3.2 Micromagnetic Theory for Well-Defined Defects 

A micromagnetic theory of coercivity based on domain wall pinning by a 
sharply defined planar defect was developed by Friedberg and Paul in 1975 
and extended by Paul in 1982. The model is micromagnetic because it 
considers the boundary conditions on the magnetization at the matrixldefect 
interfaces and takes exchange into account. In this model the defect, of width 
D, can be larger or smaller than the domain wall thickness. Figure 9.14 outlines 
the geometry that distinguishes the anisotropy, exchange, and magnetization 
in the matrix, K,, A,, and MI, from those parameters in the defect, K,, A,, 
and M,. The energy density for the system in this model includes micromag- 
netic contributions from exchange, uniaxial anisotropy, and Zeeman energy 
densities. The angle 0, between the magnetization and the easy y axis, is a 
function of position for each term: 

This energy density is integrated over all space and minimized giving the 
Euler-Lagrange equation for the magnetization in each region (see Chapter 8): 

-2Ai  - + Ki sin28 - MsH cos 6' = CiO (2:Y 
where i = l , 2 , 3  corresponding to the regions in Figure 9.14. The boundary 

D e f e c t  f 

Figure 9.14. Division of a material into three regions: 1, to the left of a planar defect; 
2, inside the planar defect; 3, to the right of the defect. Material properties are the same 
in regions 1 and 3. Defect width is D = x, - x,, and magnetization values at &infinity 
indicate that a domain wall exists somewhere in between. 



conditions are QBldx = 0 at I infinity and 8 = 8 and IT at negative and positive 
infinity, respectively. Therefore C, = - H M ,  and C3 = +HM,.  Continuity of 
8 and exchange torque, AidB/dx, at the interfaces, x, and x,, is used (just as 
the wave amplitude and momentum are continuous in analogous problems in 
optics or quantum mechanics) to determine C ,  and to complete the solution. 

The theory gives the reduced coercive field 

in terms of the following dimensionless parameters: 

F = A2M2/A,Ml defect exchange stiffness/magnetization relative to matrix 

E = A2K2/AlKl normalized defect wall energy squared 

6, = (FI,/K,)~/~ defect wall thickness 

w = D/6, ratio of defect width to wall thickness 

The results of this theory Csee Figs. 9.15 and 9.16 (Paul P982)I are that 

1. The coercivity increases linearly in w for w << 8 ,  varying approximately as 
h, = 0 . 3 8 ~  (1 - E)/E1", for small defect parameter deviations from the 
matrix (i.e., E,  F % 1). 

2. h, saturates for large values of w, 

3. Nonmagnetic defects, F << I, or low-anisotropy defects, E << I, give larger 
asymptotic h, than does F % 1 or E % 1. 

The linear increase in h, with w can be understood in terms of Figure 9.12. As 
the size of the defects increase in the regime w < 1, an average defect fills a larger 
fraction of the wall thickness and is, therefore, a more effective pinning site. 

9.3.3 Examples 

As an example of the utility of the micromagnetic theory, consider Nd,Fe,,B 
for which 4nM = 16 kG, A FZ erg/cm, and K, = 5 x 107 erg/cm3 (see 
Chapter 13). The domain wall thickness in this phase is of order 40 1%. Sintered 
NdFeB magnets show a microstructure of 2-14-1 phases having large grains 
(5-10-pm) separated by a nonmagnetic Nd,.,Fe,B, and Nd-rich phases 
measuring 0.1 to 1 pm across (Sagawa et al. 1987). Hence, W = D/6, > 1 is 
satisfied and E = F = 0; take F = 0.01 giving h, = 1.6 or N, = h,K,/ 
M ,  = 40 kOe. This coercivity exceeds the present record value by about 30%. 
Note that h, is defined with an extra factor of 2 relative to the familiar 
anisotropy expression, N, = 2Kl/M, which represents an upper limit for N,. 

For amorphous alloys the defects again appear to be larger than domain 
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Figure 9.15. Reduced coercivity h, versus normalized defect size w for various values of 
F and for small (above) and large (below) values of the square of the normalized defect 
wall energy density E (Paul 1982). 

wall thickness and largely of magnetoelastic origin (O'Handley 1975, Egami 
1976). Thus, w >> 1, F = 1 and E is large. Figure 9.15 then indicates h, z 0.06. 
Using K ,  z 10.0 erg/cm3 and M, = 1200 emu/cm3, the result is H ,  = 0.006 Oe. 
This value is at the lower limit of the range of coercivities observed for these 
alloys (see Chapter 10). 

For Sm,(Co, Cu, Fe, Zr),, having B, = 1.1 T (11 kc),  H, x 5.6 x lo5 A/m 
(7 kOe), and (BH),,, = 30 MGOe (Ojima et al. 1977; Yonezawa et al. 1979), 
assume A, = 3 x erg/cm and estimate 6, = 2.5 nm. TEM studies (Mishra 
and Thomas 1979) show the important defects to have dimensions of order 
4.0 nm implying W x 1.8. Figure 9.17 indicates for E = 0.9 and F = 0.5 that 
h, % 0.1 and thus H ,  z 50 kOe. The models of coercivity can be summarized 
with Figure 9.17. 

For D/6,, < 1 the coercivity is predicted by both models (fluctuation and 
micromagnetic) to increase linearly with D; the domain wall is more strongly 
pinned the more the defect fills the wall thickness. For large defects, two cases 
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Figure 9.16. Normalized coercive force h, as a function of the defect wall energy 
parameter E for various values of the defect exchange/magnetization stiffness parameter 
F. The normalized defect width is two for this figure. [After Paul (1982).] 

have been described: the fuzzy defect case for which the coercivity decreases 
with increasing defect size and the sharp defect, micromagnetic theory, for 
which H ,  is independent of defect size. Sharp defects are those defined by 
structure, such as grain boundaries, voids, antiphase boundaries, and disloca- 
tions. Fuzzy defects are those more often defined by strain fields or by diffusion 

Normalized Defect Size, w = D/Sd, 

Figure 9.17. Schematic variation of coercivity with normalized defect size spanning two 
regions - small defects and large defects - relative to wall thickness. The predicted 
behavior in each case is shown. 
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(e.g., composition fluctuations due to spinodal decomposition). For the fuzzy 
defect model, the gradient in a critical parameter for wall energy gives rise to 
a force on the wall F ,  = -Ao,,/D related to the slope of odw(x) at the position 
of the wall. Theories of Kersten (1938, 1943) and Globus indicate that H ,  is 
proportional 6,,/D in this range. Clearly, then, H ,  must reach a maximum at 
some intermediate value near 6,,/D w 1 as predicted by Dijkstra and Wert 
(1950). In the micromagnetic model, H, saturates for large defects as observed 
by Hagedorn (1970). 

There are two interesting examples that illustrate this coercivity peak. One 
is for hard magnetic materials (rare-earth transition metal borides) the other 
is for soft magnetic materials (cobalt rich amorphous alloys). 

Figure 9.18 shows the maximum energy product (see Chapter 13) versus 
wheel speed for melt-spun Fe,,Nd,,B,. (Melt spinning is a process of rapid 
solidification in which a jet or a thin sheet of molten metal alloy is quenched 
on the surface of a rapidly rotating drum.) At high wheel speed, the quench 
rate is high and the alloy may solidify in the amorphous state; in this limit 
D/6,, approaches 0. As wheel speed decreases, fine crystallites appear and H ,  
increases until D/6,, w 1. For slow wheel speed, the crystallites are larger and 
Hc again drops. The wheel speed serves as a qualitative measure of inverse 
defect or grain size. 

Figure 9.19 shows the coercivity of amorphous CoNbB in various stages of 
devitrification induced by heating the amorphous alloy for one hour at various 
temperatures. The defect size scale was determined from TEM studies 
(O'Handley et al. 1985). It is difficult to establish the D dependence of H ,  below 
the peak because it rises so sharply. The falloff in Hc above the peak is more 

Figure 9.18. Maximum energy product of melt-spunm NdFeB alloy as a function of 
wheel speed showing a characteristic peak for a microstructure that optimally interferes 
with domain wall motion [after Croat et al. (1984)l. 
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annealed I hour 

D ( microns) 

Figure 9.19. Variation of coercivity in amorphous and crystallized CoNbB as a function 
of mean particle size. Solid line above 10nm goes as 1/D. [After O'Handley et al. 
(1985).] Steep dashed line goes as D6 as predicted by Herzer (1989). 

gradual, consistent with a 1/D behavior predicted by the model for D/6,, > 1. 
The behavior in Figure 9.19 can be clarified by considering the microstruc- 

ture of the alloy as it devitrifies. It evolves from a homogeneous, low- 
anisotropy ferromagnetic material by the precipitation of small single-domain 
particles in an amorphous matrix. The particles are characterized magnetically 
by their size and by their magnetocrystalline anisotropy, which is randomly 
oriented from particle to particle. The behavior of the single-domain particles 
depends also on the properties of the intergranular phase. If the intergranular 
material is nonmagnetic, the behavior is essentially that of isolated, single- 
domain particles, interacting only by their weak magnetic dipole fields. If the 
intergranular phase is magnetic, the behavior can be much more complicated 
(see Chapter 12). Either hard or soft magnetism can result, depending on the 
size and anisotropy of the particles as well as the exchange coupling between 
them. If the exchange coupling between the particles averages out the short- 
range fluctuations in the anisotropy from particle to particle, the direction of 
magnetization can be continuous from grain to grain (Fig. 9.20). In this case 
the behavior will be magnetically soft. 

On the other hand, if the strength of the nanoparticle anisotropy exceeds 
the strength of the exchange coupling between them, hard magnetism can 
result. An example is FeNdB alloys heat-treated to form nanocrystallites of the 
high-anisotropy Fe,,Nd,B phase separated by a nonmagnetic B- and Nd- 
enriched phase. 

The quantitative origin of this strong dependence of coercivity on nanopar- 
ticle size is outlined. More detail is given in Chapter 12 and the literature (Imry 
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Local 
easy axes 

Figure 9.20. Schematic representation of the variation of local anisotropy easy axis with 
position (top row) and the variation of magnetization direction in response to the local 
anisotropy and exchange coupling (lower two rows). M(x) follows closely a strong local 
anisotropy and is a smoother function of x for weak local anisotropy. 

Exchange- 
coupled 

and Ma 1975; Alben et al. 1978; Herzer 1989, 1990, 1993). Consider the case 
for which the length scale of the microstructure D is smaller than the exchange 
length l,,. The local moments experience an effective anisotropy ( K )  reduced 
by averaging the local anisotropy K,,, over several nanocrystalline grains: 

////---$fpf$t '\!!!// Strong 

Herzer (1989, 1993) recognized that for nanoscale inhomogeneity, it is ( K )  and 
not the local anisotropy that should appear in the equation for the exchange 
length, l,, = (A/(K))'12. By eliminating the exchange length between these two 
expressions, he found that the exchange-averaged anisotropy, which controls 
the technical properties, scales as 

( K )  = (5) D6 
The sixth-power dependence predicted here for the anisotropy also applies to 
the coercivity, H,  < 2 ( K ) / M ,  and accounts well for the steep rise in coercivity 
in Figure 9.19 near D = 0.01 pm. The dashed line in Figure 9.19 has a slope 
corresponding to D6. 

9.3.4 Additional Anisstropy 

It was shown in Section 9.3.2 that for large single-domain particles, nonuni- 
form modes of reversal such as curling or buckling become possible. When 
these reversal modes occur, the coercivity is reduced relative to its uniform 
reversal limit, H ,  < 2K,/Ms. Further, the micromagnetic model for well-de- 



fined defects (Section 9.3.2) also sets an upper limit on H ,  of 2K/Ms. However, 
it has been observed that in some large single-domain particle systems (e.g., Fe 
in a SiO, matrix) the coercivity can exceed the single-domain limit (Chien 
1991). This behavior seems to be associated with an additional anisotropy 
induced by the particle interaction with its nonmagnetic matrix. This anisot- 
ropy may be due to stress or interfacial spin pinning. 

This enhanced single-domain particle coercivity has been modeled in one 
dimension by Paul and Creswell(1993, 1995) by assuming a volume anisotropy 
in addition to the shape anisotropy of the particle. The volume anisotropy axis 
is assumed to be at an angle 8, relative to the shape axis ( z )  along which the 
field is applied. The particle size, L, is comparable to an exchange length, l,, 
and the spins assume an orientation $(x) in the y-z plane. The energy density 
functional has the form 

f = 2  + ~ Z N M , ~  sin2$ + K,  sin2($ - 0,) - cos 0 

The 0(x) behavior predicted by the model is a canting of the spins in the 
interior of the particle while the surface spins respond less to the field, as if they 
were pinned. This is unusual because the anisotropy introduced is not localized 
at the surface. The surface spins cant less than do the interior spins because the 
interior spins "feel" the field also through their exchange coupling to neighbors 
on both sides. The surface spins are exchange-coupled on only one side. Hence 
the volume anisotropy is more effective in restraining the surface spins from 
aligning with the field. The extent of the spin canting in the interior of the 
particle is measured by a maximum angle 0, at the center of the particle, 
x = L/2. 8, depends on the particle size, shape, anisotropy, direction, and 
strength, as well as on the strength of the applied field. The model predicts two 
regimes of reversal behavior: an hysteretic, coercive regime and a zero-coerciv- 
ity, switching regime. The former occurs for larger reduced particle size, LIZ,, 
and smaller anisotropy angles, 8,. In this regime, the coercivity increases with 
decreasing particle size and can exceed the single-domain limit for anisotropy 
strength comparable to the magnetostatic energy. 

9.4 AG PROCESSES 

The area inside a B-H loop is exactly the energy per unit volume lost in one 
cycle of the hysteretic process. This can be simply demonstrated by considering 
the energy kV dissipated in a toroidal core over one cycle, which is given by 
the integral of the power loss over a period: 
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Ampkre's law can be used to relate the current to a magnetic field in a solenoid 
and Faraday's law relates V(t) to the time rate of change of flux: 

Thus the energy lost per unit volume 1A of core material is given by the area 
inside the B - H  loop. 

The area inside a quasistatic B-H loop, namely, the DC loss, is referred to 
as the hysteresis loss. If the loop is traced at increasing frequency, it is observed 
that H,  increases and the loop becomes more rounded. The increase in loop 
area is a result of eddy currents induced in the sample by the increasingly rapid 
change in flux density. Faraday's law [Eq. (1.6)] tells us that when the flux 
density changes, a voltage is induced in a circuit about the direction in which 
the flux changes. Further, the induced voltage is such that the resulting current 
opposes the initial flux change (Lenz' law). We will first assume the magneti- 
zation changes uniformly in the cross section of the material (Fig. 9.21). This 
is the "classical" theory of eddy current loss. Later, the loss associated with 
domain wall motion will be considered. In this case the flux change is 
concentrated in the wall and the eddy currents are concentrated more about 
the wall. The power loss is calculated from the Joule heating of the sample, i2R, 
where i is the eddy current induced by the flux change, J = oE cc odB/dt .  

9.4.1 Classical Eddy-Current Loss 

Our treatment for classical eddy current loss is similar to that of Williams, 
Schockley, and Kittel (WSK) (1950). The magnetization in a bar of square 
cross section is initially in the z direction and reverses uniformly under 
application of an external field B, (Fig. 9.21). 

t 
i 

-d -  

Figure 9.21. Cross section of a sheet of magnetic material, showing (left) the initial state 
of magnetization before application of a magnetic field H and (right) the direction of 
change in flux density that induces eddy currents about the flux change. Flux change 
direction is indicated by small arrows inside the sample in direction of applied field. 
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The field is applied at a Bow enough frequency that the classicali skin depth 
is much greater than the smallest sample dimension, 6,, >> a. [The classical skin 
depth, 6,, = (pow)- ' I 2 ,  measures the exponential decay length of an AC electric 
field in a material due to the induced eddy currents: dC, = 36pm for a 
permeability of 108p,, a conductivity of 807 (Qm)-', and a frequency of 
108 kHz. If there are no induced currents, the electric field does not decay as 
it penetrates the material.] By Faraday's law [Eq. (6.6)3, the electric field 
induced around the direction of flux change is given by 

(V x E) ,  = - 

(ignoring the time dependence) and the corresponding current density is 

iwB, 
(V x J ) ,  = --- 

P 

Consideration of the symmetry of the problem (Fig. 9.21) suggests the solutions 

J ,  = Ax, with 

The time-averaged classical power loss per unit volume is given by averaging 
the square of the current density over the cross section: 

Pclass - (x2 - y2)dx d y  
vol d2 

(9.30) 

Pclass - a 2 ~ i d 2  - -  - 
vol 4 8 ~  

This is the power loss per unit volume at low frequency for a uniform 
magnetization process. At high frequency the classical skin depth may decrease 
to the sample dimension and the interior of the sample will not be fully 
magnetized. The increased eddy currents responsible for this steeper drop in 
electric field increase the classical core loss at high frequencies compared to its 
Pow-frequency value, Eq. (9.30). At the same time, without an increase in drive 
field, the sample will no longer be magnetized to the same extent. 

The most important result of these calculations is the strong dependence of 
the loss per unit volume on B,, d, and o. Magnetic losses are often expressed 
per cycle, in which case they have units J/m3 or J/kg so that loss per cycle times 
frequency gives power loss density. The classical loss per cycle [Eq. (9.30) 
divided by frequency] is linear in the frequency (Fig. 9.22) and is added to the 
DC hysteresis loss per cycle given by the area inside the B-H loop over one 
quasistatic cycle. 
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Figure 9.22. Partition of losses in a ferromagnetic metal. To the DC hysteresis loss is 
added the classical eddy-current loss per cycle, for uniform magnetization (Williams, 
Schockley, and Kittel) and an anomalous loss term due to domain walls. A single wall 
(WSK) generates more loss than do an array of domain walls (Pry and Bean 1958). 

The magnitude of the actual measured AC loss is always greater than this 
classical limit. The excess of the measured loss over the classical loss is called 
the anomalous eddy-current loss (Fig. 9.22). The reason for this large loss is that 
the magnetization change generally is not uniform but is concentrated near 
domain walls. Essentially the magnetic response of the material away from the 
domain wall is zero because there p = p,; all the flux change is concentrated in 
the narrow region of inhomogeneous magnetization that defines the wall. 

9.4.2 Eddy-Current Loss about a Single Domain Wall 

A single-domain wall is assumed in a bar of rectangular cross section with the 
magnetization and field directions as indicated in Figure 9.23, left. The field 
drives the wall from left to right; as the wall passes a fixed point, the flux 
density changes at that point by 2B, and is directed into the paper. The 
flux change is zero outside the wall. The voltage induced by dB/dt gives rise to 
a current whose path is related to the choice of dA in Eq. (9.30). Though the 
eddy currents are now induced by a highly localized flux change, they are 
distributed over a region of the sample larger than the domain wall (Fig. 9.23, 
right). 

Following WSK, note that outside the wall the induced electric field must 
satisfy 

VZE=O, V x E = O ,  and V - E = O  (9.3 1) 
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Figure 9.23. Cross section of a strip of magnetic material with one 180" domain wall 
(left) and illustration (right) of flux density change 2B, directed into ribbon along the 
wall that induces eddy currents about the moving wall and about dB/dt .  

as well as giving rise to zero current normal to the surface of the bar: 

i,(+ W y) = 0 and iy (x, + i) = O 

Inside the domain wall 

dB 
V x E = - -  and V x B = p o J  

at (9.33) 

Because the flux change is no longer uniform across the sample, dB/& is better 
expressed in terms of the velocity v, of the domain wall of thickness a,,, 
moving past a point: 

The second relation in Eq. (9.33) indicates J ,  = 0 and po Jy = 2BS/6,,. Hence, 
on either side of the wall, 

Equations (9.3%)-(9.34) are solved with 
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where 

with + for n = 1,5 ,9 . .  . and - for n = 3,7.. . . 
Calculating the time-averaged power loss per unit volume as was done in 

Eq. (9.30), the result is 

P I  -,,,, - 32v2B2d tan(nn W/d) 
-- 

V O ~  X 3 ~ W n - o d d  1 n3 

The summation converges rapidly to 0.97 for d = 2W and can generally be 
approximated as unity. WSK note that if the loss is equated to the rate at 
which power is supplied per unit length of sample, MsHvd, an expression for 
wall velocity results: 

This linear dependence of wall velocity on field is widely observed. The wall 
velocity can be understood in more general terms from an equation of motion 

where m is domain wall mass, a measure of its inertia (because the wall 
responds instantaneously well below the GHz range, it can be ignored), P is a 
viscosity per unit area due to eddy currents, k is a restoring force density due 
to the average of the local inhomogeneities over the area of the wall, and 
2H,,, - M, is the pressure on the wall due to the applied field Hex, .  Experiments 
show that below microwave frequencies, the wall responds instantaneously to 
an applied field with a constant, terminal velocity. Thus, the inertial term can 
be neglected and Eq. (9.39) is solved for the wall velocity 

where kx has been written as -<~cT,,(x)/~~x), the average of the position- 
dependent domain wall energy density gradient. The effective field is given by 
Hex, reduced by the viscosity effects 
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Equation (9.39) says that the wall velocity depends on a balance between the 
applied field and a viscous drag field, H,: 

This linear relation between wall velocity and He,, (Fig. 9.24) has been verified 
in a variety of materials (Sixtus and Tonks 1931, DeBlois 1958, Becker 1963, 
Gyorgy 1963, O'Handley 1975). The viscous drag field H ,  is not the coercive 
field. These measurements are made by determining the wall velocity in a 
constant applied field. Mef' becomes zero when the average gradient in the 
pinning potential exactly balances the effect of the applied field. The slope of 
the velocity-field curve gives the inverse of the viscous damping term, which 
can be related either to do,,(x)/dx at low frequencies, to eddy-current damping 
at moderate frequencies, or to magnetic relaxation at very high frequencies. 

The energy dissipated per unit wall area by the action of this viscous force 
F ,  = - p  v = -27cMs.Heff [Eq. (9.3913 on the wall moving from point A to 
point B is given by the integral of Fv4;,. skx, or 

The power loss per unit volume around a given wall is, therefore 

where W', is the distance a wall travels during a half-cycle; if the material is 
driven to saturation each half-cycle, WA, is the average distance between 
domain walls, W 

Figure 9.24. Variation of domain wall velocity with applied field. W ,  is the threshhold 
field for wall motion and is generally smaller than the coercive field. References in text 
indicate a variety of materials in which such behavior is observed. 
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Figure 9.25. Interior of material showing dimensions and sense of eddy currents ahead 
of the moving domain wall of Figure 9.23. 

It is important to see that the power loss density for wall motion 
goes as the square of the wall velocity while for the uniform magnetization 
process, P u w2 [Eq. (9.30)]. For sinusoidal flux conditions the velocity is dx/ 
dt = (B,/Bs)wWABcos(wt). Using this expression in Eq. (9.42), the power 
loss density is seen to go as P W ~ , ~ ~ B ~ ;  thus, the smaller the wall spacing, 
the lower the loss. An estimate of the integral in Eq. (9.42) can be 
had by assuming the flux change to occur over the wall cross-sectional 
area 6,,d. The time required for the flux at a point to change due 
to the passage of a wall of thickness 6,, and velocity v is At = 6,,/v, 
where v = WABo/n. Thus the induced voltage about the wall, V = AABIAt, 
is given by V = 2BmaWABd/n. The voltage induced about a moving domain 
wall is comparable to that for the classical case, 4BmcoWA,d. Here, sinusoidal 
flux variation has been assumed, which is not always the case. (Sometimes 
the H field is sinusoidal ei"', so B(t) = ,u(H)H contains odd harmonics 
of the drive frequency.) The resistance of the current path, R = pli/Ai,  
is given by R = 2n(p/W), where the path length for the current is li z nd 
and the cross-sectional area through which it flows is A, z Wd/2 (see 
Fig. 9.25). This resistance is very much reduced from the classical value, 
4p/d, where the current path follows the sample cross-sectional perimeter. 

Thus the micro-eddy-current power loss per unit volume for a single domain 
wall, P = V2/Rd WABL, is given by 

The functional dependence is the similar to that of the classical case [Eq. 
(9.30)], but the magnitude here is roughly WAB/2z3d larger than the classical 
result. The difference is the anomalous loss shown in Figure 9.22. 
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9.4.3 Multiple Domain Walls 

Note in Figure 9.26 that the introduction of more walls (1 -, N) decreases the 
wall spacing to W,, = WIN, and hence is expected to lower the single-wall 
loss toward the classical value. 

In Eq. (9.43), W,, can be replaced with WIN to approximate the effects of 
multiple walls. However, it must be remembered that if the sample is not driven 
to saturation, W is less than the domain wall spacing. At large wall spacing 
most of the current flows in a volume considerably smaller than the volume 
between walls. At small WIN the two volumes approach each other. This effect 
tends to make eddy-current loss smaller than estimated at large wall spacing. 
What actually happens as the number of walls increases is that the eddy 
currents from two adjacent walls interfere with each other and reduce the 
micro-eddy-current loss. 

Pry and Bean (PB) (1958) extended the WSK treatment of a single domain 
wall to a sample with several walls present across its width; the equilibrium 
wall spacing was 2W and the sample thickness, d.  

In the limit of many domain walls (i.e., small Wld), the PB loss reduces to 
the uniform case [classical Eq. (9.30)]. In the limit of few domain walls (i.e., 
large Wid), the PB result approaches that for a single domain wall (WSK). 

Pry and Bean solved the same set of equations (9.31)-(9.33), as did WSK, 
but with two added conditions: (1) the normal component of current density 
J ,  is continuous across a wall, and (2) the current adjacent to a given wall is 
determined by contributions from the motion of all walls. The PB result for 
large wall spacing W,, is proportional to the classical loss [Eq. (9.32)]: 

Figure 9.27 summarizes the PB results normalized to the classical (uniform) 
loss case and the single-wall expression of WSK. 

While all of these AC magnetization models predict the loss to vary as 
0 2 ~ i ,  experiments usually show the loss to increase with a smaller power 
dependence of the frequency, often closer to The dependence on maxi- 

Figure 9.26. Similar to Figure 9.23 but now showing interference of eddy currents from 
two nearby walls moving in opposite directions. 
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Figure 9.27. Ratio of loss in the domain wall (PB) model to that in the classical (WSK, 
no walls) model for complete, BJB, = 1, and partial, B,/B, << 1, driving. 
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mum flux density B,, to which the magnetic material is driven during the loss 
measurement, is more variable. The losses will increase rapidly if one attempts 
to drive the sample to saturation because increased drive field at fixed- 
frequency causes the magnetic material to switch during a shorter fraction of 
the cycle, effectively increasing the drive frequency. 

Figure 9.28 compares the 60 Hz losses of three types of high-induction 
magnetic material as a function of B,. Excessive losses generate heat that must 
be dissipated; as temperature increases, the saturation induction of the material 
decreases. Also shown in the figure is the excitation power loss. That refers to 
the i2R losses in the copper windings about the magnetic material. If the 
anisotropy of the material is too large, very large currents will be required to 
drive the magnetic core to the designed flux density. Note the sharper increase 
in excitation loss as saturation is approached. Low-induction uses of magnetic 
materials include chokes, inductors, and signal transformers. High-induction 
applications are in power-line transformers, motors, and generators. 
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9.5 MiCROWAVE MAGNETlZATlON DYNAMlCS AND 
FERROMAGNETIC RESONANCE 
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How does the magnetization of a ferromagnetic material respond when the 
drive-field frequency approaches the natural precession frequency of the 
moment in a magnetic field? In Chapter 3, it was found that the Larmour 
frequency, o, = yB, for an orbital magnetic moment (p, = yL) is of order 
10'' Hz for fields of about 0.2 T. What this means is that a magnetic moment 
wil not be able to follow an AC drive field of frequency greater than the 
resonance frequency of the magnetic moment. 

The torque on an orbital magnetic moment is given by Eq. (3.21, 
T = -,urn x B. But the torque is defined as the time rate of change of the 

0 
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2 WAB /d 
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Figure 9.28. Core loss per unit mass at 60Hz in MIS-grade, nonoriented SiFe, in 
rapidly quenched 6.5% Si-Fe, and in the amorphous alloy, Metglas alloy 2605-S2. 
[After Fish (1990).] 
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angular momentum, T = d L / d t  (angular form of F = dpldt). Thus the time rate 
of change of the angular momentum is given by 
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where Hi is the internal field. For a ferromagnet with M = (N/V)<p,>, we 
obtain 
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(Recall that for an electron, y < 0.) This last equation indicates that the 
magnetization precesses around the field like a top; its potential energy with 
respect to the field does not change. 

Equation (9.44) can be solved by assuming the magnetization and the field 
to be made up of static parts and small time-dependent components: 

H = Hi + heimt and M = M, + mei"' 
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Substitution of these fields into Eq. (9.44) leads, after some manipulation, to 
the solution 

where w ,  = yH,. This solution can be expressed in terms of the tensor 
permeability, B = p H  

where p = 1 + coo,o,/(oo - 0 ' )  and ic = o,w,/(w, - 0 ' )  and o, = 47cyMs. 
The transverse permeability shows a dispersive form in its real component and 
a sharp loss peak in its imaginary component. 

Equation (9.44) does not describe the fact that the moment eventually 
aligns with the field on the timescale of, say, a magnetometer measurement. 
What is missing is a relaxation process that allows the moment to lower its 
energy with respect to the field. If it is assumed that the rate of relaxation is 
proportional to the amount by which the moment is out of equilibrium, 
[I-M. B - ( - MB)] /B  = Ms - M z ,  then a loss term must be added to Eq. 
(9.44): 

The longitudinal relaxation time z, is a measure of the rate at which the 
magnetization aligns with the field. Similarly, the transverse components of the 
magnetization relax toward zero, but with a different relaxation time: 

Assuming that resonance occurs in a field of 0.2T,  z is expected to have a 
magnitude of order (yB)-I 5 x 10-'I s. 

Equations (9.46) and (9.47) are the Bloch-Blombergen forms of the equa- 
tion of motion for the magnetization. Two different relaxatiorz times are needed 
because there are two different ways in which the magnetization may give up 
its original projection on the field. This is summarized in Figure 9.29. 

The RF field creates a uniform precession of the magnetic moments about 
the applied field B. The fact that the transverse components of the magnetiz- 
ation are in phase throughout the material means that this state can be 
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Figure 9.29. Left, illustration of uniform precession of magnetization in presence of 
static field B, and an orthogonal microwave field B,. Right, three modes of decay of 
the uniform precession mode: top, decay of k = 0 mode to k # 0 mode with transverse 
relaxation time 2,; center, reduction in number of k # 0 modes with characteristic 
longitudinal relaxation time z,. This process increases magnetization component along 
the field. When the longitudinal process is faster than the transverse process, the 
Landau-Liftshitz relaxation shown at lower right occurs. 

described microscopically as a k = 0 spin wave superimposed on the z 
component of the magnetization: [A spin wave, or magnon, is a quantized 
excitation of the spin system having a well-defined momentum, Ikl = 27c/A, and 
energy, ho = 4JS(1 - cos ka) where J is the exchange integral, S is the 
magnitude of the local spin, and a is the lattice constant. See Chapter 3, Section 
3.7.1, or Kittel (1986).] 

This uniform precession state can relax by two quite different processes. The 
first process, shown at upper right in Figure 9.29, is the decay of the k = 0 
magnon into a k # 0 magnon. This process increases the entropy of the system 
(and so is more likely at elevated temperatures) without decreasing the 
magnetic potential energy. It is described by the transverse relaxation time 7,. 
There is evidence to suggest that this process occurs at defects where magneto- 
static fields can dephase the k = 0 precession. 

Another relaxation process destroys two k # 0 magnons (created in the 
transverse relaxation process shown in Fig. 9.29) while creating only one new 
magnon and a phonon. This process, described by the longitudinal relaxation 
time z,, represents a transfer of energy from the spin system to the lattice. It 
therefore results in a decrease of the magnetic potential energy; the average 
magnetization aligns with the field. If z, << z,, these two processes occur 
essentially in sequence as illustrated in Figure 9.29, right, middle. If z, < z,, the 
system relaxes with constant IMI along the arclike path illustrated in Figure 
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9.30, right, lower panel. This constant lMl situation is described by the 
Landau-Liftshitz (1935) (see References list in Chapter 8) form of the equation 
of motion: 

Note that here the relaxation always carries the tip of the magnetization vector 
along a path that is perpendicular to its length. As soon as k # 0 magnons are 
created, they combine and transfer energy to the lattice. 

This classical phenomenology of magnetic resonance can be expressed 
quantum mechanically in terms of transitions between two energy levels split 
by the application of a magnetic field (cf. Fig. 3.15). A magnetization with an 
arbitrary orientation will have an energy - M . B  with respect to the applied 
field. It can relax to a lower energy state, defined by the selection rule 
Ant, = + 1, via the processes described above. The microwave field will tend to 
excite the magnetization to higher energy states of precession. Resonance 
occurs when ho = BE. 

A magnetic resonance experiment generally involves sweeping the magnetic 
field while the sample is exposed to a microwave field of fixed frequency. For 

0 1 I I 1 I I I I 
1128.6 1129.0 1129.4 1129.8 

Applied Magnetic Field (Oe) 

Figure 9.30. Ferromagnetic resonance line for a polished UHG sphere at room tempera- 
ture in a microwave field of 3.33 GHz [after EeCraw and Spencer (1962).] 
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weak applied fiend strengtkns, the magnetization as not saturated, 1M < M,, and 
the level splitting is smaller than ha .  In this case, the natural resonance 
frequency of the magnetization is lower than the drive field and there the 
magnetic response is weak and 180" out of phase with the microwave field. In 
a strong DC field that splits the energy Bevels more than ho, the magnetization 
follows the field with a small phase lag. Right at resonance, the magnetization 
lags the microwave field by 90". The half-width of the resonance line at half 
power maximum gives the relaxation time: (Aw),,, = l/z,. 

Because of the large magnetization in a ferromagnet, the resonance condi- 
tion is altered by magnetostatic fields associated with the sample shape. The 
internal field components become BY = Byt - N j M j ,  j = x, y, z. In the limit 
of a weak microwave field, M ,  = M,, the Bloch-Blombergen equations be- 
come 

-- aMs - - ).[My (B ,  - N,Mz) + M, Ny My] = - ).My CB + ( N y  - N,)Msl 
at 

Assuming the transverse magnetization components to vary as ei"', these 
equations are solved for 

Knowing the sample shape, it is possible by a resonance experiment to 
determine a relaxation time from the linewidth and the saturation magnetiz- 
ation or gyromagnetic ratio. If there is appreciable anisotropy, that can be 
determined if M ,  is known (a uniaxial anisotropy behaves like a demagnetizing 
field). 

Figure 9.30 (LeCraw and Spencer 1962) shows the magnetic resonance 
absorption line of a polished yttrium iron garnet (YPG) sphere. Note the very 
narrow linewidth of 0.2 Oe at a resonance field of 1129.2 Oe. This implies a 
very small imaginary component to the transverse, microwave permeability. 

For ferromagnetic metals, while the relaxation mechanisms described by z, 
and z, are still operative, the linewidth is generally dominated by eddy-current 
damping. The largest eddy currents come from the uniform precession. Eddy- 
current heating takes energy from the spin system directly to the lattice. The 
skin depth of the microwave field plays a major role in determining the eddy- 
current loss of ferromagnetic resonance. A resonance line for a metallic Gd film 
is shown in Figure 9.31. 

In metals for which the skin depth is less than the sample dimensions, the 
gradient in the microwave field near the surface generates copious spin waves 
that enhance the damping. 
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- t Polycrystal l ine  
cn - Gd f i lm 

Figure 9.31. Ferromagnetic resonance line for a Gd thin film at room temperature in a 
microwave field of 8.8 GHz [O'Handley and Juretschke (unpublished).] . 

9.6 SUMMARY 

The M-H loop has been shown to be the result of a complex magnetization 
process involving domain wall motion (when the field is parallel to the easy 
axis of a sample or grain) and domain magnetization rotation (when the field 
is perpendicular to the easy axis). For intermediate angles of the field relative 
to the easy axis, the M-H loop is more rounded and slower to saturate. Cubic 
systems can show discontinuous magnetization jumps for certain conditions. 
Demagnetizing fields can shear over a loop that is intrinsically vertical and can 
lower the slope of a hard-axis loop that intrinsically would saturate at H = Ha.  

Various defects and their interaction with domain walls were considered. 
The strength of the pinning effect of a defect depends on two factors: (1) the 
difference between the magnetic properties of the defect and the matrix and (2) 
the ratio of the defect size to the domain wall size. For small defects, the 
coercivity increases roughly linearly with defect size; for defects larger than the 
wall thickness, the coercivity is either constant (sharp defect) or varies as the 
inverse of the defect size (fuzzy defect). These models are qualitatively sup- 
ported by coercivity data in a variety of magnetic systems. 

As magnetic materials are driven to higher frequencies, the magnetization 
process is more rapid and Faraday's law demands that a voltage be induced 
in the sample, in a closed path normal to the flux change. This voltage induces 
eddy-currents if the material is not an insulator. When domain walls are 
present, the eddy-current loss is anomalously large compared to the classical 
loss for uniform magnetization. The worst case is for a single domain wall, 
where power loss goes as wall velocity squared. Introduction of more domain 
walls leads to eddy-current cancellation and the loss drops toward that for 
uniform magnetization. While the models predict magnetic core loss to vary as 
CO'B:, the frequency dependence of the loss is often closer to 1.6 and the 



induction power dependence increases from about 1.6 as the material is driven 
closer to saturation. 

At microwave frequencies, eddy-current losses dominate in metals and other 
microscopic relaxation processes play a role in insulators. 

PROBLEMS 

9.1 Solve for the magnetization versus field for (a) a thin film of amorphous 
iron boron silicon (assume p,Ms = 1.6T and M = 0) with the field 
applied normal to the film surface and (b) a single-crystal sphere d Ni 
with the field applied along the [I 111 direction. 

9.2 Does the energy required for complete saturation in the Stoner-Woh- 
Ifarth model as described by Eq. (9.13) diverge for 0 < 8, < 4 2  or take 
on a finite value? 

9.3 Consider the magnetization process in a single-domain particle having 
cubic anisotropy using a field applied along an easy axis orthogonal to 
the initial magnetization. (Because of the uniqueness of this initial 
condition, i.e., the special way the sample is prepared before application 
of the measuring field, the result you derive will not be typical for cyclic 
magnetization.) Write and plot the energy density against 8, then find the 
shape of the m-h curve. Locate the critical parameters by combining the 
equilibrium condition with the condition that the solution to f'(8) = 0 
also be an inflection point. 

9.4 Consider the two dimensional magnetization of a thin film with fourfold 
in-plane anisotropy S, = K ,  cos228 with an external field and stress a,, 
applied collinearly as shown below: 

Solve for the equation of magnetization and sketch the results for B,e,, > 8 
and <O. Compare with the results in Problem 9.4. 

9.5 Consider a thin film with in-plane cubic anisotropy K ,  and a superim- 
posed uniaxial anisotropy with easy axis along one of the fourfold EAs. 
A field is applied in-plane, perpendicular to the uniaxial easy axis. 
(a) Write the expression for the free energy. 
(b) Sketch the energy surfaces for the various terms. 
(cc)  Write the equation of motion and sketch rn versus %-I. 

(d) How does m-H differ for K,> or < 5K,? 

9.6 Work out the steps to derive the field dependence of magnetization M ( H )  
for a material with uniaxial magnetic anisotropy and N applied perpen- 
dicular to the easy direction of magnetization. 

9.7 Explain why the coercivity of amorphous alloys goes through a minimum 
as the magnetostriction constant As goes through zero. Give formula(s) to 
support your explanation. 
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9.8 Derive an expression for rotational permeability in cubic anisotropy, and 
compare it with Eq. (9.8) for uniaxial anisotropy. 

9.9 Determine the g factor of the YIG sphere in Figure 9.30 using Eq. (9.15). 
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CHAPTER 10 

SOFT MAGNETIC MATERIALS 

This chapter discusses the properties of a variety of soft magnetic materials, 
including both metals and ceramics. Frequent reference will be made to earlier 
chapters where the domain structure and fundamental property requirements 
for various materials are outlined and explained. This chapter includes some 
material on amorphous soft magnetic materials. In later chapters, the scientific 
basis of amorphous magnetic alloys (Chapter l l ) ,  nanocrystalline materials 
(Chapter 12), and magnetic thin films (Chapter 16) will be considered. 

Soft magnetic materials are generally used in applications where high 
permeability ( p  = BIH) is required. Referring to the magnetization curves for 
single-crystal iron (Fig. 6.1) -the prototypical soft magnetic material-it can 
be seen that the most magnetization is achieved for the least applied field when 
the field is applied along one of the (100) directions. 

In soft magnetic materials, the flux density is dominated by the contribution 
from M. Hence, the permeability is expected to be maximized when anisotropic 
( K ,  # 0) polycrystalline materials are textured so that crystallographic easy 
directions of magnetization lie predominantly along the direction of the applied 
field. 

Figure 10.1 reviews the magnetization process for a single crystal of iron. 
Assuming a simple domain structure in the demagnetized state (a), the initial 
magnetization process involves domain wall motion. This relatively easy 
process accounts for the initial permeability and the steep rise in magnetization 
for H % H ,  (states a-b). Beyond point b the magnetization in the closure 
domains must be rotated from the easy [010] directions to the easy [lOO] 
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Figure 10.1 Above, typical magnetization curves for iron along [lOO] displayed on 
high-field and low-field scales; below, schematic of domain structure changes with 
applied field. 

direction. This magnetization rotation process generally requires more energy 
than wall motion [Eq. (9.8) Problem 9.81. 

10.1 IRON AND MAGNETIC STEELS 

The most common application of magnetic steels is as cores in power and 
distribution transformers. The energy loss in these transformers generally 
consists of magnetic core loss and pure Joule heating loss in the copper coils. 
The core loss arises from (1) eddy currents induced in the core by the uniform 
changes in B, (2) microscopic eddy currents localized near moving domain 
walls, and (3) acoustic losses due to magnetostrictive deformation of the core 
under changing flux in the so-called supplementary domain structure (90" 
walls, closure domains). These three types of loss can be minimized by 
decreasing lamination thickness, increasing resistivity, decreasing domain size, 
and decreasing magnetostriction. Coil losses are iZR losses in the electrical 
windings that provide the field needed to drive the flux changes in the core and 
in the secondary winding that carry the output power. The more easily the core 
can be driven to the desired flux density, the lower the coil loss. Coil loss is 
therefore reduced in materials with higher remanence, lower magnetic aniso- 
tropy, or better crystallographic alignment. (Obviously, it is desirable to keep 
the coil resistance low also.) 
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10.1 .I Iron and Silicon Steels 

Pure iron is the prototypical soft magnetic material. It has a very high 
saturation flux density, B, = 2.2 T, and its cubic anisotropy leaves it with a 
relatively small magnetocrystalline anisotropy, K ,  = f4.8 x lo4 J/m3, and 
small magnetostriction constants, /2,,, = +21 x lop6,  A,,, = -20 x 
Domain images from a (100) iron single crystal taken by SEMPA are shown 
in Figure 1.9. Note how the magnetization follows the easy <loo) directions 
leading to 90" and 180" walls. 

It should be clear from Figure 10.1 that high anisotropy energy would 
suppress permeability in a nonoriented polycrystalline material. The higher the 
field needed to achieve a given level of flux density, the more coil loss or i2R 
loss there will be in the copper windings of an inductive device. Also, high 
anisotropy increases the domain wall energy density, making walls harder to 
move. When the domain walls are harder to move, the coercivity increases and 
energy is lost in driving the material around a hysteresis loop. 

Further, if the material has appreciable magnetostriction, localized strain 
fields due to internal stresses become localized magnetoelastic anisotropy fields 
that can hold the magnetization in a particular direction, thus pinning domain 
wall motion. 

Iron is notoriously susceptible to degradation of its magnetic properties by 
impurities. Impurities may give rise to magnetic effects through their strain 
fields if magnetoelastic coupling is nonzero. Alternatively, if the impurities 
condense or form nonmagnetic precipitates, they eliminate the domain wall 
energy over the length of the precipitate and thus may pin a domain wall. Table 
10.1 shows the major impurities in standard Armco iron (mill sheet from 
ingot). 

Of those impurities listed, carbon, nitrogen, and oxygen are interstitial 
impurities and have a relatively high mobility in the BCC lattice of iron. They 
are the major impurities responsible for magnetic aftereffects, or disaccommo- 

TABLE 10.1 Impurity Content of Armco Iron 

Element wt% 

Source: Littmann (1971). 



datisn, which degrades permeability with time at certain temperatures and 
frequencies (see Chapter 84). Removal of impurities Gom common grades of 
iron by hydrogen annealing (typically at 450-800°C) can lead to permeabilities 
as high as 105p,. Hydrogen annealing of high-purity iron can give permeabil- 
ities as high as P06p,. Processing of iron in a fluorine atmosphere can lead to 
the presence of some FeF, and tends to scavenge impurities. Such processing, 
although impractical, gives the best soft magnetic properties achievable in iron 
(Nesbitt, unpublished). 

From the materials point of view, a good high-frequency material also has 
high electrical resistivity, small dimensions normal to the direction of magnet- 
ization, and many domain walls. 

It is useful to begin by modifying iron with small amounts of selected 
elements to increase resistivity or make other favorable property changes. 
Figure 10.2 shows that for iron, silicon, or aluminum additions produce the 
most dramatic increase in resistivity. Details of the iron-rich side of the 
Fe-Si phase diagram shown in Figure 10.3 indicate silicon is soluble in a-Fe 
up to about 4 wt%. Beyond that limit, the brittle intermetallic Fe3Si (B2 or 
DO,) phase may also be present. The addition of Si to iron causes changes in a 
number of other important magnetic properties (Fig. 10.4). Values of some 
properties of 3% Si-Fe are compared with those of a-iron in Table 10.2. Note 
that silicon not only increases the electrical resistivity but also significantly 
reduces the magnetic anisotropy and has little effect on magnetostriction up to 
4%. Unfortunately the saturation flux density is decreased by about 18% for 
3 % Si additions. 

The introduction of Si into iron also produces dramatic effects in lowering 

Percent of Alloying Element in Iron 

Figure 10.2 Variation in electrical resistivity of iron with addition of selected impuri- 
ties. [After Bozorth (1994).] 
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Figure 10.3 Fe-Si phase diagram (Metals Handbook, 1973) showing solid solubility of 
up to 4 at% Si beyond which the B2 phase or the more brittle, ordered DO, phase may 
be present. 

the core loss. Figure 10.5 shows a monotonic decrease in core loss of low- 
carbon steel with increasing Si content (increasing resistivity) and lower core 
loss for thinner-gauge sheet. These changes are consistent with the simple 
model core loss presented in Chapter 9. Even though silicon reduces the 
saturation flux density, Figure 10.6 shows that the higher-silicon-content steel 
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Per Cent Silicon ( By Weight 

Figure 10.4 Variation of physical properties of iron with Si content [After Littman 
(1971).] 

TABLE 10.2 Comparison of Physical Properties of Pure Iron 
with Those of 3% SiFe 

Property BCC Fe 3% SiFe 
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Figure 10.5 Core loss at 60 Hz and driving to 15 kG for low-carbon and silicon steels. 

can be driven to considerably higher flux densities at a given level of loss. These 
results are for nonoriented steels that are favored in applications where the 
field direction changes with respect to the material, such as motors or 
generators. 

In other applications the orientation of the magnetic laminations is fixed 
relative to the field axis. Further reductions in loss can be realized by texturing 
the material so that more of the grains have a [loo] direction closer to the 
direction of the applied field. See "Grain-oriented" silicon steel in Figure 10.5. 
The permeability at a small applied field such as 10 Oe is a reliable measure of 

- 4- -0 
\ 
U) + 
c0 - I . 05  percent Si 3 
V 

U) 

g 2 - 3 ;25 percent Si 
J 

u I -  

0 5 10 15 20 
l nduction (kilogauss) 

Figure 10.6 Variation of 60-Hz core loss with maximum induction for nonoriented 
silicon steel, 0.014 in thick. 



364 SOFT MAGNETIC MATERIALS 
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Figure 10.7 Relationship between 60-Hz, 15-kG core loss and permeability at 10 Oe 
in (110) [OOl] grain oriented 3% SiFe (Shilling and Houze 1974). 

texture. The effects on core loss of increasing texture and permeability are 
illustrated by Figure 10.7 (Shilling and Houze 1974). Higher initial permeabil- 
ity correlates with lower core loss. One way of achieving this grain orientation 
was discovered by Goss in 1933. He found that rolling steel causes slip along 
(1 10) planes. The surface of the rolled sheet then contains more than a random 
number of (110) planes and the [001] direction is found to be predominantly 
along the roll direction after annealing at 800°C. This so-called Goss or 
"cube-on-edge" texture favors low field magnetization because the easy <loo> 
directions have a large component along the field (roll) direction. 

Control of grain size is also important for optimizing core loss. Figure 10.8 
shows how core loss is minimized at a particular grain size. If the grain size is 
too large, there are fewer domain walls and micro-eddy-current loss is high. If 
the grain size is too small, the internal stresses and abundant grain boundary 
pinning sites increase the loss. In 3% Si steel, optimal grain size is near 0.7 cm. 

Domain structure in textured Si-Fe can be refined without grain size 
reduction by achieving a small out-of-plane orientation 6' of the [OOl] easy axis 
(Fig. 10.9~-b). The domain structure is refined by formation of closure 
domains visible on the top surface of the sheet. Further, as [OOl] tilts out of 
the sheet plane more, the [lOO] and [OlO] cube direction have a greater 
projection in the plane and a "herringbone" pattern of obliquely magnetized 
domains appears (c, d). For an extensive discussion of grain oriented Si-Fe 
(see Shilling and Houze (1974). 
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Figure 10.8 Core loss versus grain size for two different frequencies in 3.15% SiFe 
sheets of comparable texture and purity (Littman 1967). 

Figure 10.9 Domain structure in demagnetized 3% SiFe single crystal at 5 x magni- 
fication: (a) [ l l O ]  in plane; (b) [OOl] out-of-plane angle 0 = 2"; (c) 0 = 4"; (4 0 = 8" 
(Shilling and Houze 1974). 



More recent developments in low-loss magnetic steels involve increasing the 
number of domain walls by lases scribing the surface of steel. A commerciaP 
example is Orientcore Hi B (Suzuki et al. 1972). Laser scribing leads to local 
strain fields that refine the domain structure. 

Addition of small amounts of silicon improves the soft magnetic properties of 
materials, but it does not follow that more is better. More than 3% silicon 
certainly increases resistivity and further reduces K and A. However, magnetic 
materials must be able to be formed and handled. As silicon content increases, 
ductility decreases because of the appearance of the intermetallic DO, phase 
Fe,Si. At 4% Si the elongation at yield drops to less than half of that for low 
C steel. 

But there are some applications that make use s f  a brittle material if the 
magnetic properties are sufficiently improved. Those applications make use of 
powders to form "'potted cores" and tape heads. The performance advantage 
comes not only with increased Si content but with Ali additions as well. Figure 
10.10 shows the paths of the zero anisotropy and magnetostriction lines in 
Fe,-,-,Si,A1,. A famous and appropriately named magnetic material 

Per Cent Iron 

Figure 10.10 Iron-rich corner of ternary Fe-Si-A1 diagram showing fields of positive 
and negative magnetostriction, the courses of the zero-anisotropy line and maximum- 
permeability line. The Sendust composition is defined by the intersection of the 1, = 0 
and K = 0 lines (Bozorth, IEEE Press, copyright 1994). 
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Per Cent I ron 

Figure 10.11 Contours of initial permeability on same Fe-Si-A1 ternary diagram as 
shown in Figure 10.10 (Bozorth, IEEE Press, copyright 1994). 

"Sendust" occurs near the intersection of these two lines around the composi- 
tion 10% Si, 5% A1-Fe. (Sendust was named by its discoverers at Tohoku 
University in Sendai, Japan, to reflect the fact that its very brittle nature 
usually meant that the material had to be made and used in powder or dust 
form.) Figure 10.11 shows how the permeability peaks near this zero-anisot- 
ropy and zero-magnetostriction composition. The high Si and A1 content 
reduces the saturation induction to about 1.2 T, so Sendust is not used in 
power transformer applications. Its mechanical hardness and magnetic softness 
makes it well suited to use in some magnetic recording heads. 

10.2 IRON-NICKEL ALLOYS (PERMALLOYS) 

Magnetic iron-nickel alloys are generally called permalloys. Originally Permal- 
loy was the registered trademark for certain nickel-iron alloys, but it has now 
become a generic term. There are three major Fe-Ni compositions of technical 
interest: 

1. 78% nickel permalloys (e.g., Supermalloy, Mumetal, Hi-mu 80). What 
makes the 78% nickel permalloys so important is the fact that magneto- 
striction and magnetocrystalline anisotropy both pass through zero near 
this composition (see Figs. 6.9 and 7.5). These alloys are used where the 
highest initial permeability is required. 
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2. 65% wickel permalloys (e.g., A Alloy, 8040 Allay). The 65% nickel 
permalloys show a strong response to field annealing while maintaining 
K ,  z 0. 

3. 50% nickel permalloy (e.g., Deltarnax). What makes the 50% nickel 
permalloys important is their higher flux density (8, = 1.6 T) as well as 
their responsiveness to field annealing, which gives a very square loop. 

All the FCC iron-nickel alloys with Curie temperatures in excess of 400°C 
respond very well to magnetic field heat treatments so that B-B-I loops with a 
variety of shapes can be achieved. (It will be seen in Chapter 64 that for field 
annealing to be effective, there must be atomic mobility over a range of a few 
lattice constants while the material is in the magnetic state.) Figure 10.12 
(Pfeifer and Radeloff 1980) summarizes the compositional variation of the 
important parameters over the FCC phase range from 35 to 100% Ni. The 
ordering reaction near the Ni3F'e compound is important because it makes 
possible strong induced uniaxial anisotropy K, to balance the crystal aniso- 
tropy (see Chapter 14). 

The permalloys are sufficiently ductile to be rolled to thicknesses of 2.5 pm 
(0.1 mil) or drawn to wires having diameters as small as 10 pm. 

Models of permeability invariably predict p to be proportional to M~/K,, , ,  
where K,,, includes a variety of sources of anisotropy. Folllowing English and 
Chin (6967), four sources of anisotropy can be identified: 

I. Crystal structure (magnetocrystalline anisotropy, Chapter 6) 

2. Mechanical stress or strain (magnetoelastic anisotropy, Chapter 7) 
3. Heat treatment with or without an applied field (thermomagnetic anisot- 

ropy, Chapter 14) 

4. Cold work or plastic deformation (slip-induced anisotropy, Chapter 14) 

Thermomagnetic anisotropy rarely exceeds 102 9/m3. It is not a factor if Tc 
is below the temperature at which appreciable diff~~sion can occur (e.g., in FeNi 
alloys away from the peak T ,  near 70% Ni). Slip-induced anisotropy can be as 
great at 104 J/m3 in 60% PJi permalloy. It can be relieved by annealing. Thus, 
these two sources of anisotropy can be neutralized by annealing low-T, 
compositions above T, and cooling with sufficient speed that there is insuffi- 
cient time to develop thermomagnetic anisotropy below jrc. The remaining 
sources of anisotropy may be eliminated by seeking K ,  and A = 0. 

Because K ,  can be altered by annealing more strongly than can A,,,, the 
usual practice is to select a composition for which A, = 0 and then anneal to 
achieve as near as possible K ,  = 0. If the selected composition has ;1,,, = 0, 
then K ,  slightly positive is better than K ,  slightly negative because then the 
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Figure 10.12 Variation of saturation magnetization, Curie temperature, magnetocrys- 
talline anisotropy, and magnetostriction constants with Ni content in the FCC FeNi 
alloys. Bold marks on the composition axes indicate the technically important alloy 
ranges. Values of K ,  were determined after tempering treatment at 450°C (After Pfeifer 
and Radeloff 1980). 

easy anisotropy direction will be one of zero magnetostriction. Conversely, if 
A,,, = 0, then K ,  slightly negative is preferred to K ,  slightly positive. 

From Figure 10.12 it is clear that A, and K ,  are not exactly zero simulta- 
neously in Fe-Ni alloys. If compositions having K ,  =O cannot be found for 
A,=0, then a heat treatment is designed to minimize K,. Pfeifer (1996) and 
English and Chin (1967) mapped out the composition and heat treatment effects 
in the Fe-Ni-Mo range of interest. Their results are summarized in Figure 10.13. 

Here A, is the polycrystalline average magnetostriction [Eq. (7.16)]. In the 
A, = 0 composition range K ,  < 0 for the binary Fe-Ni disordered alloy. 
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Figure 10.13 Portion of pseudoternary (Fe + Cu)-Ni-Mo phase diagram showing 
lines of zero magnetostriction (bold, solid) and lines of zero anisotropy (shaded). Values 
of 1 and K are negative to the right side of the various Pines. The 1, = 0 lines depend 
mainly on Ni content and not on the makeup of the remainder of the (Fe + @u)-Ni-Mo 
alloy. Line A defines the compositions of 65% Ni permalloys, which are strongly 
sensitive to field annealing. The intersection of the K and 1 lines below and to the right 
of A is the composition of Alloy 1040. The cooling rates for the different zero-anisotropy 
lines distinguish ordered (slow-cooled) from disordered (quenched) structures. 
[Adapted from English and Chin (19671.1 

Ordering (below 500°C) expands the K ,  < O field; stronger ordering is achieved 
by slower cooling ( lop3 K/s). Cu and/or Mo additions tend to suppress 
ordering. Ordering also can increase Ms by up to 6%. With proper use of 
alloying additions, especially Mo, Cu, and/or Cr, and careful heat treatment, 
the holy grad of zero A, and zero K,,, can be achieved in a single composition. 
Mo additions also increase electrical resistivity of iron-nickel alloys. 

Replacing iron with copper up to 14% shifts the A, = 0 composition from 
near 81 % nickel to 72% nickel. Cu and Mo additions tend to suppress Ms and 
T, because the number of empty d states is decreased by Cu and Mo and the 
width of the d band is increased [density of states (DOS) is decreased] by Mo. 

Intersection of the A, = 0 and K ,  = 0 lines can result in permeabilities in the 
range lo5- lo6 p,. 

Figure 10.14 shows the frequency dependence of permeability in 4-79 Mo 
permalloy of different thickness. Eddy-current losses, which reduce permeabil- 
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Figure 10.14 Frequency dependence of permeability in 4-79 Mo permalloy sheets of 
different thicknesses labeled in inches. 

ity, are suppressed in thinner samples (Chapter 9). It is not possible to 
reduce the thickness of permalloy indefinitely without introducing unac- 
ceptably large fractional thickness variations. [Amorphous magnetic ribbons 
(see Chapter 11) can be made in thicknesses down to approximately 12 ym]. 
Experimental samples of good quality as thin as 3 pm have been melt- 
spun in vacuum. Thin films having thickness in the range 0.2-1 pm of 
either permalloy or amorphous metals can be used to frequencies of up to 
10 MHz. 

10.2.2 Other Permalloys 

In some cases it is desirable to have a very square loop with high remanence 
ratio BJB, and high maximum permeability y,,,. First, these characteristics 
can be achieved only when the sample presents a closed flux path; second, a 
square loop requires a dominant easy anisotropy axis in the field direction. 
This anisotropy can be achieved either crystallographically (by texture) if 
K ,  Z 0, by stress-induced anisotropy, or by thermomagnetically induced 
anisotropy. 

Two classes of alloy that respond particularly well to heat treatment (i.e., 
Tc > 500°C and K ,  or A is small) are 65% Ni permalloys (alloy A in Fig. 10.13) 
and 50% Ni permalloys (Deltamax). 

In some applications that require a constant permeability (e.g., loading coils 
or pulse transformers) a sheared B-H loop is desirable. This can be achieved 
by several means, including inducing an easy axis transverse to the operating 
field direction by crystallographic texture or transverse field-induced anisot- 
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ropy, as well as by using the material in powder form where the magnetostatic 
energy shears the loop. 

When a B-H loop is limited by nucleation and the nucleation field exceeds 
the wall motion field, a very square loop results. This phenomenon is observed 
in crystalline or amorphous wires and is suitable for magnetic switches, sensors, 
or harmonic generation. 

$0.2.3 Zero-Magnetosfriction Ccsmpositions 

The occurrence of d = 0 is primarily a function of composition, ~tnlike K, = 0, 
which also depends to a significant extent on chemical ordering via heat 
treatment. It is desirable, and should be possible, to describe the course of the 
d = 0 lines with a model based on composition parameters. Early attempts at 
doing so (Rossmann and Hoffman 1968) were largely empirical. Basically they 
joined Ni-Fe and Ni-M (M = nonmagnetic metal) binary compositions of zero 
anisotropy or rnagnetostriction on a ternary phase diagram. There was no 
physical basis for the choice other than observation. 

On the other hand, Ashworth et al. (1969) and Berger (1976, 1977), in a 
series of articles, show that d = 0 when the effective orbital angular momentum 
vanishes at E,  in the alloy d band. This singular point, (L,) = 0, can be 
identified in a split-band model of a strong magnetic material (no majority-spin 
holes), Figure 5.13, as the d-band occupation for which E, lies between two 
minority-spin subbands. When E, lies in such a "gap," {k,) = 0 and a moment 
still exists because there are empty minority-spin d states above E,. The split- 
band model can be applied to alloys of any two or more transition metals for 
which AZ 3 2. 

In Chapter 5,  it was shown that for Fe,_,Ni, alloys, the condition for 
(L,) = 0 is the same as 

where n, is the number of holes in the alloy and nS,,,,, is the number of minority 
states in the low-Z (higher-energy) manifold. Clearly, n, is given by 10 - n,, 
where n,, is the number of 3d electrons. The number of minority states in the 
low-Z manifold is 5 times the low-Z atomic concentration. Both n, and nStates 
are functions of composition only. For Fe,-,Nix alloys, this equation is 
satisfied for x = 78.6%, the permalloy composition. This model is now applied 
to the ternary Fe-Ni-Mo system for which 2, = 0 is plotted in Figure 10.13. 

In ternary Fe, -,- ,Ni,Mo, alloys (band model in Figure 10.15), each Mo 
atom (4s13d5) contributes 5 holes to n, for the alloy: 

There may be some confusion in counting states in the manifolds above E, 
because it may not be immediately clear whether the Mo majority states lie 
above or below E,. 
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Energy  E n e r g y  

Figure 10.15 Split-band models for FeNi alloy with small Mo concentration. The 
energy of each group of d states is determined by the strength of the nuclear potential 
or equivalently by the atomic number 2. Spinup and spindown states are shown 
separately. States above the Fermi energy are unoccupied. Two possible models are 
shown: one for paramagnetic Mo d band and one for exchange-split Mo d band. 

In Figure 10.15 case (a), the number of empty states in the three manifolds 
shown, Mo+*-  and Fe- is given by nStates = 10y + 5 (1 - x - y) because all 
10 Mo states lie above E,. In case (b) the number of empty states in the Mo- 
and Fe- manifolds is nStates = 5y + 5(1 - x - y). The results of solving Eq. 
(10.1) are quite different for the two pictures: 

A.L 

x = - + y  (Fig 10.15~) (10.2a) 
2.8 

2.2(1 - y) 
x = (Fig. 10.15b) 

2.8 

These lines are plotted on the ternary diagram shown in Figure 10.16. 
Reference to the data in Figure 10.13 shows that the correct assumptions are 
those of Figure 10.15~. Thus the Mo d-bands are not split by an exchange 
interaction to give a magnetic moment and both spin components of the Mo 
d-band are found at an energy above E,. The composition for II  = 0 in 
Fe ,.,, - , N ~ , M O ~ . ~ ,  is calculated from Eq. (10.2a) to be 83.6% Ni. This is close 
to that found in Figure 10.13. 

It is possible also to calculate the moment in each model: 
- + nB = nh - nh 

n,  = 5(1 - x - y) + 5y - 5y = 5(1 - x - y) (Fig. 10.15~) (10.3~~) 

n, = 5(1 - x - y) + 5y = 5(1 - x) (Fig. 10.15b) (10.3b) 

The model of Figure 10.156 predicts that the moment of an iron-nickel alloy 
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Figure 10.16 Predicted lines of zero magnetostriction for Mo additions to permalloy. 
The two lines labeled (a) and (b) correspond to the two different assumed band 
structures in Figure 10.15. Comparison with the data in Figure 10.13 shows that 
assumption (a) is more realistic. 

is independent of molybdenum content. This is clearly counter to observation. 
All of the Mo d states must lie above E,. This is explained in more detail by 
the Friedel VBS model (Chapter 5). Scenario (a) is clearly the appropriate one 
based on the composition dependence of the As = 0 line and on the observed 
strong dependence of alloy moment on Mo content. 

In Figure 10.13 it is noted that the addition of Cu shifts the As = 0 
composition from 81% to 72% Ni. In terms of the split-band model, Cu shifts 
the minority d-band weight to lower energies. Thus, FE coincides with the 
singular point <Ls) = 0 for less Ni, and more Fe, content. 

10.3 IRON-COBALT ALLOYS (PERMENDUR) 

The equiatomic BCC FeCo alloys (Permendurs; Fig. 10.17~) have very high 
saturation induction (B, x 24 kG) and relatively low magnetic anisotropy, K ,  
(disordered) x - 1 x lo5 J/m3 and K ,  (ordered) x 0 (Chin and Wernick 
1980). The magnetostriction, however, is substantial: A,,, = 25 x and 
A,,, = 150 x giving a polycrystalline average of As x 60 x While 
the anisotropy (including stress-induced) sets the upper limit for the permea- 
bility and the lower limit for the coercivity of these alloys, grain size is the 
primary factor determining the technical magnetic properties actually attained. 
Hiperco 50 (an FeCo alloy made by Carpenter Technology) has a yield 
strength a,, of about 460 MPa, which increases for grain sizes below 30 pm. 

Because equiatomic BCC FeCo shows an order-disorder transformation to 
the CsCl structure below 730°C, the anisotropy, magnetostriction, and mech- 
anical properties depend strongly on annealing and on cooling rates. The 
ordering can be suppressed by addition of vanadium (vanadium-Permendur 
or Supermendur: Fe4,Co4,V,), which renders the alloys ductile enough to be 
rolled into thin sheets. Unfortunately, rolling can give rise to a duplex texture: 
(112) [ l l O ]  and (001) [110], neither of which contains a < I l l )  easy axis 
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Amorphous 4 
(a) 

Percent Co in bcc Fe Co x 0 ~ c o i n ' ( ~ e I ~ x ~ o x ) 8 0 ~ 2 0  (b) 

Figure 10.17 (a) Magnetic properties of BCC Fe-Co alloys. Anisotropy and magneto- 
striction after Hall (1960); dotted line is for ordered CsC1-ordered phase. (b) Magnetic 
properties of amorphous FeCoB alloys for which the anisotropy is essentially zero over 
the entire composition range (O'Handley et al. 1979). 

(K, < 0) in the plane of the sheet and the latter containing the [loo] 
high-magnetostriction axis. Table 10.3 compares the properties of some FeCo- 
based alloys. Permendur shows a resistivity of under 10 $2-cm,  while 2% 
vanadium-Permendur and Supermendur show p rz 25 pl2. cm, which is more 
favorable for higher-frequency applications. Recent studies of high-temperature 
properties of Hiperco-50 indicated a degradation of magnetic properties over 
time at 450°C (Li, 1996). 

These soft FeCo alloys are typically hot-rolled in the FCC phase 
(T > 912°C) and then quenched for cold rolling in the BCC phase. Optimal 
magnetic properties are then achieved by heat treatment near 850°C to develop 
the disordered BCC phase, although treatment at temperatures near 695°C has 
been shown to improve mechanical strength and ductility (Thornburg 1969). 

TABLE 10.3 Room Temperature Properties of FeCo-Based, High-Induction Alloys 

Bs Pmax Hc P 
(kG) (lo3) (Oe) (pC2.cm) (GPa) 

Permendur 24.5 5 2 7 - 
(50% FeCo) 

Hiperco-50 24 17 5 40 0.36-0.63 
2% V-FeCo (ordered) 

Amorphous Fe-Co-B 19 50 0.5 130 2.4 



The  soling rate after this anneal is important; the best permeability and 
coercivity are achieved for intermediate cooling rates. Ni additions up to 4.5% 
improve the mechanical ductility of vanadium-Permendur without significant- 
ly degrading magnetic performance for heat treatments over a broad tempera- 
ture range. 

Iron-cobalt alloys of the Permendur family are used in applications where 
the highest flux density (hence lowest weight) is more important than AC loss 
or cost. Thus these alloys are used in transformers and generators on aircraft 
power systems. Such systems generally operate at 400 Hz instead of 60 Hz in 
order to increase the power per unit mass of the devices. 

60.4 AMORPHOUS ALLOYS 

The attraction of Sendust and the permalloys is that two of the major sources 
of anisotropy (crystallography and stress) can be effectively nulled by careful 
selection of composition and heat treatment. 

Amorphous metallic alloys are materials that are rapidly quenched from 
the melt, so their atomic structures lacks the long-range order of a crystal- 
line solid. Without long-range order, amorphous alloys have no magneto- 
crystalline anisotropy. They retain a fair degree of short-range order, compar- 
able to the order that characterizes the liquid state. Thus amorphous metallic 
alloys based on transition metals can show a very easy magnetization process. 
Magnetoelastic, therrnomagnetic, and slip-induced anisotropy remain as sour- 
ces of anisotropy in amorphous alloys. Also, the high electrical resistivity of 
amorphous alloys (820-1 50 pQ ;d? cm) compared to Si-Fe and iron-nickel alloys 
(30-50 pQ.can) makes them attractive for high-frequency operation. Chapter 
11 describes some of the more fundamental aspects of these fascinating 
materials. Here, attention is given to the soft magnetic properties of amorphous 
alloys. 

Reasonably strong magnetization can be realized in a variety of amorphous 
alloys based on iron, cobalt, and/or nickel. However, as will be seen in Chapter 
18, the saturation magnetization of an amorphous transition metal-metalloid 
(T-M) alloy is generally smaller than that of a crystalline alloy of the transition 
metals alone. This moment reduction is due to the presence of the metalloid 
atoms, B, P, Si, and so on, which are needed to stabilize the glassy state. It is 
not a result of the absence of long-range order. 

10.4.1 High-Induction Amorphous Alloys 

Not long after the discovery of high permeability in ferromagnetic amorphous 
alloys based on Fe-P-C in 1964 by Duwez and Lin, work began in several labs 
to develop higher-induction metallic glasses suitable for distribution trans- 
formers. High-induction amorphous alloys meet many of the criteria outlined 
in Section 10.1 for high-power transformers. 
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Figure 10.17b shows the variation of 4nMs and magnetostriction for 
amorphous (FeCo),,B,, alloys for comparison with the properties of crystal- 
line Fe-Co alloys at lelt. The lower values of magnetostriction in amorphous 
alloys compared to crystalline Fe-Co alloys makes them less sensitive to 
stress-induced anisotropy. Amorphous Fe-Co-B alloys containing less than 
20% glass former and exhibiting B, up to 19.6 kG (still only 80% of the flux 
density of the Permendurs) have been made (shaded area, Figure 10.17b). 
Other advantages that metallic glasses bring to high-induction applications are 
their inherently high values of electrical resistivity and yield stress (2.4 GPa 
for Fe,,B,, compared to less than 0.7 GPa for Hiperco-50 and V-Permendur; 
see Table 10.3). 

High-induction amorphous Fe-B alloys (B, z 16 kG) are used commercially 
in 60 Hz, 25-kVA distribution transformers because of their very low core and 
excitation losses (L < 0.1 W/kg at 15 kG, 60 Hz). In these applications, con- 
tinuous operation at 100°C with transients to 200°C has not been found to 
degrade performance. Crystallization typically occurs near Tx = 400-450°C 
and is a function of composition. In some amorphous Fe-B-Si alloys, Tx 
exceeds 500°C (O'Handley et al. 1979). Amorphous Fe-Co-B alloys containing 
less than 20% glass former and exhibiting B, up to 19.6 kG have been made 
(shaded area, Fig. 10.17b). It should be noted that reducing boron content in 
amorphous Fe-B alloys lowers the Curie temperature. (This is believed to be 
associated with the close-packed nature of the amorphous structure, unlike the 
more open BCC structure of a-Fe.) This decrease in T, can be offset signifi- 
cantly by replacement of Fe with Co (O'Handley et al. 1979). 

Figure 10.18 summarizes the core loss under sine-flux conditions" in several 
early amorphous alloys (Hatta et al., 1978; Luborsky et al., 1978; O'Handley 
et al., 1979). These results are compared to Armco M-4-grade 3% Si-Fe, 
Orientcore HiB (Suzuki et al. 1972), and Nippon Steel's laser scribed 3% Si-Fe. 
Laser irradiation of 3% Si-Fe was exploited by Nippon Steel to dramatically 
refine the domain structure and thereby reduce core loss. 

Note that the core loss increases rapidly with maximum flux level and 
diverges as B,,, approaches B, of the particular alloy. Core loss is found to 
increase approximately linearly with frequency. 

*When a magnetic core is operated under AC conditions, it makes a difference whether it is driven 
by a sinusoidal H field (sine H) or driven so as to produce a sinusoidal voltage in the windings 
(sine B). The latter implies a single frequency for dB/dt in the material. But sinusoidal H drive 
results in components of dB/& = (aB/BH)dH/dt at the drive frequency, w, as well as at 3 0 ,  5w.. . . 
This is because B = pH and p is nonlinear (p = p, + H3p, + H4p4.. .), especially at high flux 
density. Sine-H drive results in much more eddy current loss than sine-B because a significant 
component of the flux is being driven at multiples of the fundamental frequency. Most transformers 
have such a large inductance that they draw very little current from the source and sine-B 
conditions are maintained. Many laboratory test coils are not well designed to be optimally filled 
by the sample. Also the power sources used in the laboratory may not be sufficiently "stiff to 
maintain constant drive voltage (sine-B) throughout the drive cycle. The back EMFs are small, 
and sine-H (sine current) conditions obtain unless a feedback system is employed to maintain 
sinusoidal voltage. 
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Figure 10.18 Variation of 60-Hz core loss with maximum flux density (under sine flux 
conditions) for selected amorphous and crystalline alloys. 

The reduced loss of amorphous alloys has been estimated to be due mostly 
to their high electrical resistivity (120-150pQ.cm) compared to that of 3% 
Si-Fe (40 pl2. cm). One problem with amorphous alloys paradoxically has been 
their very low-coercivity DC B-H loops, which rapidly degrade at higher 
operating frequencies. This degradation is due to the large domain size, which 
may be traced to their lack of internal surfaces (grain boundaries) at which new 
domain walls may be nucleated. In this regard, Gyorgy once described metallic 
glasses as behaving like "lousy single crystals." With very few domain walls, 
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wall velocity increases sharply with increasing frequency, and with it, micro- 
eddy currents increase (Chapter 9). 

One solution to this problem was successfully demonstrated in the early 
1980s by several groups. Figure 10.19 shows the results that Datta et al. (1982) 
achieved by annealing Fe,,B,,Si, to different stages of crystallization in order 
to minimize 50 kHz loss. Annealing for 20 min at 450°C leaves the DC B-H 
loop with an attractive square character (curve a). In this case, the 50 kHz core 
and coil losses are moderate, and the domain structure (Fig. 10.19, upper right) 
is marked by relatively few walls. Annealing for 40min at 450°C leads to a 
rounded B-H loop (curve b). Both core and excitation losses at 5OkHz 
decrease dramatically even though the DC B-H loop is somewhat rounded. 
This heat treatment leads to incipient crystallization of a small volume fraction 
of a-Fe phase crystallites (Fig. 10.19, lower right). The a-Fe crystallites are seen 
by Lorentz microscopy to have nucleated additional domain walls and 
increased the angular dispersion of domain magnetization vectors. Annealing 

Figure 10.19 Upper left, B-H loops representing three annealing conditions leading 
to (a) square, (b) round, and (c) sheared loops (Datta et al. 1982). Clockwise, from upper 
right: transmission electron micrographs illustrating the microstructures of the heat- 
treated amorphous alloys having square, round, and sheared B-H loops, respectively. 
(Micrographs courtesy of DeCristofaro). 



for one hour at 450°C resulted in a highly sheared loop (curve c) and a 
dramatic increase in excitation Boss. Core loss remains low on this case because 
the magnetization process is characterized less by domain wall motion, and 
more by magnetization rotation. These characteristics are the result of copious 
crystallization (Fig. 10.19, lower left), which leaves the material highly stressed 
and inbornogeneous. These techniques for lowering 50 kHz losses are analog- 
ous to the Goss texturing and laser scribing used to lower 60Mz loss in 
crystalline Si steels: they promote a finer grain structure by microscopic 
magnetostatic effects. 

Some special high-induction applications place more importance on operat- 
ing induction level than on cost. In such applications iron-cobalt alloys offer 
some advantages (Section 10.3). It is useful here to recall what can be achieved 
for such applications by amorphous alloys. Figure 10.17b shows that while 
cobalt enhances the flux density of amorphous Fe-B(-Si) alloys, the presence 
of the metalloids prevents the flux density from reaching the levels achieved in 
Permendur (Fig. 10.17~1). The Fe-Co-based amorphous alloys do offer several 
advantages over crystalline Fe-Co alloys. First, the amorphous alloys have no 
rnagnetocrystaline anisotropy, whereas K ,  is a strong function of composition 
in the crystalline counterparts. Amorphous alloys also show advantages in 
terms of electrical resistivity, mechanical strength, and readily obtained thin 
gauge suitable for high-frequency rotating machinery. 

10.4.2 Other Amorphous Alloys 

Because the magnetocrystalline anisotropy of amorphous alloys is zero, most 
soft magnetic properties are controlled by stress and by the magnetostriction 
coefficient. Figure 10.20 shows that for Co,Fe, -,B,, amorphous alloys, the 
coercivity of the as-prepared amorphous ribbon passes through a minimum 
close to the composition for which A, FZ 0. As the Fe:Co ratio is varied, A, goes 
from positive (Fe-rich) to negative (Co-rich). Where A PZ 0, H ,  reaches a 
minimum. Such zero-magnetostriction alloys are important for some of the 
same reasons permalloy is important. 

The ternary diagram in Figure 10.21 shows the compositional variation of 
magnetostriction over a field of Fe-Co-Ni amorphous alloys containing 20% 
boron. Zero-magnetostriction compositions are found along the solid line. 

What is seen in Figure 10.21 is that the magnetostriction is of order 
30 x for iron rich glasses and drops to zero with cobalt additions near 
Fe:Co PZ 5:75. This ratio is close to the Fe/Co ratio for zero magnetostriction 
in crystalline Fe-Co alloys (Fig. 7.7). A line of zero magnetostriction runs near 
the Co-Ni side of the phase diagram, but alloys rich in nickel have low 
magnetization and are difficult to make by melt spinning when boron is the 
major glass former. The compositions of zero magnetostriction can be pre- 
dicted with a simple split-band model (like that in Fig. 10.15) in certain cases 
(O'Handley and Berger, 1978). Changes in glass former from all boron to 
mixtures including Si, C, or P have only small effects on A,. Changes in 
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Figure 10.20 Variation of coercivity (left scale) and magnetostriction (right scale) with 
Fe:Co ratio in amorphous (CoFe),,B,, alloys (O'Handley et al. 1976). 

Amorphous 

T"80B20 24 7 " ,  T7 

Figure 10.21 Saturation magnetostriction at room temperature for amorphous 
(FeCoNi),,B,, alloys. Solid line shows course of zero-magnetostriction compositions, 
and dashed line shows predictions based on split-band model (O'Handley 1978). 



meta1l:metalloid ratio can have significant eEects on A, in the iron-rich glasses 
(09Handley et al. 8977). 

There are also important A, = 0 compositions in the (FeCoNi),,,-,TE, 
system. Here, TE represents an early transition metal element such as Zr, Ta, 
Nb, or Hf; metalloids need not be present in such metallic glasses (see Chapter 
11). Figure 10.22 is a pseudoternary magnetostriction phase diagram for the 
amorphous (FeCoNi),,Zr,, system (Ohnuma el al. 1980). Contours of equal 
magnetostriction are shown. Along each axis of the ternary diagram the 
variation of magnetostriction in the pseudobinary system is shown. Note the 
small magnetostriction of the iron-rich zirconium-stabMzed glasses and the 
zero magnetostriction near Co,,Ni,,Zr,,. The low magnetostriction in the 
Fe-rich Zr-stabilized glasses is due mainly to the low Curie temperature there. 
These amorphous %L,,TE,, (late transition metal-early transition metal) 
materials are characterized by good mechanical hardness, corrosion resistance, 
and - in the Fe-Go rich members - large values of 4.nMs. Amorphous alloys 
based on this system are sometimes used in thin-film recording heads and as 
shields in magnetoresistance heads (Chapter 17). 

Because of the technological importance of low magnetostriction, consider- 
able efforts have been made to reduce the magnetostriction of amorpliaous 

Figare 10.22 Quasiternary diagram for amorphous (FeCoNi),,Zr,, alloys showing 
contours of equal linear magnetostriction A,. Off each ide of the ternary diagram, the 
magnitude of A, is plotted for a range of the binary alloys along that side (Ohnuma et 
al. 1980). 
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alloys based on iron. Iron has a higher saturation magnetization and is 
relatively abundant in nature compared to cobalt; the magnetostriction of 
Fe,,B,, is approximately 32 x at room temperature. Room temperature 
magnetostriction of (FeNi),,B,, glasses was shown to scale with 111' 
(O'Handley 1977) so that A, = 0 could be approached only with a loss of 
magnetization. Nevertheless, it has been found that with substitutions of Mo, 
Cr, or Nb for Fe, it is possible to achieve A, < 5 x l op6  while retaining 
reasonable values of magnetization (Hasegawa and Ray 1978, Inomata et al. 
1983, Corb et al. 1983, Yoshino et al. 1984). In these Fe-TE-metalloid alloys 
the decreased room temperature magnetostriction is due partially to the 
suppressed Curie temperature. 

When the highest permeability is required, the amorphous cobalt-rich alloys 
sometimes represent an attractive alternative to crystalline 78% Ni permalloy. 
One advantage that amorphous alloys have over permalloy is their much 
higher hardness and greater yield stress. The high yield strength of amorphous 
metallic alloys generally makes them much more resistant to plastic deforma- 
tion and slip-induced anisotropy than crystalline alloys. This is important in 
many applications. 

Because amorphous magnetic alloys are generally made by rapid solidifi- 
cation, they are presently limited to thin ribbon and sheet form, typically 20- 
50 pm in thickness. This limits their use in some applications while it is an 
advantage in others. 

10.5 SOFT FERRlTES 

The most widely used soft ferrites are manganese-zinc ferrite and nickel-zinc 
ferrite. These materials are based on the spinel structure of Fe30, discussed in 
Chapter 4: 

where T = Ni or Mn. Recall that the addition of zinc drives the trivalent iron 
from the A to the B sublattice because Zn2+ has a greater affinity for 
tetrahedral coordination than does Fe3+. With more Fe3+ (p, = 511, per 
Fe3+) on the same (B) sublattice, the magnetic moment per formula unit 
increases. This increased magnetization is important, but the major shortcom- 
ing of ferrites remains their low magnetization compared to that of 78% Ni 
permalloys. Their major advantages are high electrical resistivity and low cost, 
due to both the abundance of the raw materials and the relative ease of 
processing to final form. 

Figure 10.23 compares the temperature dependence of magnetization in 
NiZn ferrites and MnZn ferrites. While MnZn ferrites have more magnetiz- 
ation at room temperature than do NiZn ferrites, their Curie temperatures are 
generally lower. 
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Figure 10.23 Temperature dependence of magnetization in (a) manganese-zinc fer- 
rites, Mn,-,Zn,Fe,O, [after Guillaud and Roux (1949)l and (b) NiZn ferrites, 
Ni, - ,Zn,Fe,O, [after Pauthenet (1952)l. 

The addition of zinc to manganese ferrite results in greater magnetization. 
It also causes the A,,, = 0 line to move from a composition field where K ,  < 0 
(where [lll] is the easy axis), through a region of K ,  > 0 compositions and 
back to compositions of K ,  < 0 (see Fig. 10.24). These sort of data are very 
helpful in designing compositions for specific applications. Polycrystalline 

MnFe204 Z n O  - Zn Fe204 

Figure 10.24 Compositional dependence of crystal anisotropy and magnetostriction 
constants in the mixed oxide system (MnZnFe)-Fe,O, at 20°C (Ohta 1963). 
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samples in a K,  > 0 field (easy axis [100]) show highest permeability when 
A,,, = 0. These compositions exist along the intersection of the shaded area 
and the boundary of the /2,,, < 1 region. Similar considerations show where 
to find compositions with K, < 0 and A,,, small. 

These effects lead to high permeability in (MnO)o,2,(ZnO)l,,2(Fe203)o,52, 
close to the composition where the A, = 0 line intersects the K, = 0 line 
(Figure 10.25). 

Figure 10.26 shows the variation of magnetostriction and permeability with 
Fe203 content in [(MnO)o~,(ZnO)o,3],-,(Fe203),. These compositions are 
found along the nearly vertical dashed line in Figure 10.24. In these composi- 
tions, K ,  is small so the permeability pealts near the composition at which 
A, = 0. 

Figure 10.27 shows the variation of permeability and anisotropy with 
temperature in (MnO),~3,(ZnO)o~ll(Fe203)o058 (the dot in Figure 10.24). Note 
that at temperatures where K, passes through zero, the permeability peaks. 
When K, = 0, the permeability is still limited by magnetoelastic anisotropy 
(3/2>A, 0. 

A peak in permeability occurs also in nickel zinc ferrites near a maximum in 
A, (Fig. 10.28). In this case the permeability is dominated by a large K,, not A. 

The attraction of the ferrites is their high electrical resistivity. They can be 
used at frequencies well above 1 MHz, whereas magnetic metals, depending on 
their thickness, can rarely be used above 100 kHz except in thin film form. 

10.6 SUMMARY 

Figure 10.29 shows that while the ferrites are suitable for high-frequency 
applications, they do not provide the flux density that the permalloys or 

15 2 0 25 mole % 30 
Z n O  - 

Figure 10.25 Constant permeability contours and lines of zero crystal anisotropy and 
magnetostriction for the (MnZnFe)-Fe,O, system (Roess 1971). 



386 SOFT MAGNETIC MATERIALS 

Figure 10.26 Variation of permeability and magnetostriction with iron oxide content 
in [(MnO)o~,(Zn0)o~3],~x[Fe203]X ferrites. [After Guillaud (1957).] 

amorphous alloys do. This figure serves as a useful summary comparing the 
properties of three of the major classes of soft magnetic materials described 
above. 

Iron-rich crystalline alloys and selected amorphous alloys provide sufficient- 
ly large saturation flux density for use in high-power-density applications such 

Figure 10.27 Variation of permeability and anisotropy constant with temperature in 
the MnZn ferrite (MnO)o~31(ZnO),,l,(Fe203)o,58. [after Slick (1980).] 
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Figure 10.28 Dependence of permeability and magnetostriction on Fe,O, content for 
NiZn ferrites with Ni0:Zn:O ratio of 15:55 (Guillaud et al. 1957). 

Figure 10.29 Pulse permeability versus maximum flux swing for three classes of soft 
magnetic materials: amorphous metallic alloys (CoFeNbBSi and CoMnFeMoBSi), 
crystalline Mo permalloy (NiFeCuMo), and ceramic MnZn ferrites; data for two 
thicknesses are given in each case (Boll and Hiltzinger 1983). 
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as 40-Ha distribution transformers. While core loss and coil loss can be low in 
the amorph~ass alloys, they cannot be driven to the same Wuw levels as can Si 
steels. 

PROBLEMS 

110.1 Assume that a 180" domain wall exists in a demagnetized, uniaxial 
magnetic material. 
(a) Sketch what happens to the domain magnetization and domain wall 

in the two cases described below for H > 0 but less than saturation: 
(i) applied field parallel to the easy axis and (ii) applied field 
perpendicular to the easy axis. 

(b) Sketch the M-H loops in each case. 
(c) Describe how a defect might pin or impede domain wall motion. 
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CHAPTER 11 

AMORPHOUS MATERIALS: 
MAGNETISM AND DISORDER 

In Chapter 10, the principles of soft magnetic behavior were considered and 
illustrated with examples. These examples included some data on metallic 
glasses, or amorphous magnetic alloys. In the present chapter, amorphous 
magnetic alloys are examined more from the point of view of the influence of 
atomic and chemical disorder on magnetism. These new materials now 
represent a major class of magnetic materials finding applications in distribu- 
tion transformers, power supply transformers, inductors, and security labels. 

11 .I INTRODUCTION 

Amorphous alloys are materials having a noncrystalline structure that is 
produced by some form of nonequilibrium processing, often rapid solidification 
from the melt. Cooling rates of order lo5 C/s are generally required. This high 
rate of heat removal often dictates that the sample have at least one small 
dimension to facilitate thermal transfer. Rapid solidification precludes the 
development of long-range topological and chemical order in the alloy. In 
order to stabilize the glassy state, it is generally necessary to alloy the metallic 
elements with glass formers such as boron, carbon, silicon, or phosphorus. 
Other strongly interacting metallic species suffice in some cases (Section 11.5.1). 
While the structure of amorphous alloys has been referred to as random 
dense-packed, the atoms of a metallic glass are not arranged randonlly as in a 
gas. The chemical interactions among the constituents enforce a degree of 
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short-range order that is similar to "rat in the liquid phase of the material. The 
absence of long-range order leaves amorphous materials devoid of rnicrostruc- 
ture such as grain boundaries, precipitates, or phase segregation. (The terms 
amorphous, glassy, and noncrystalline are used interchangeably here, as in the 
literature.) 

The history of amorphous magnetic alloys is relatively short compared to 
that of oxide glasses. Various researchers appear to have stumbled across 
noncrystalline metallic alloys in their quest for new materials. One example is 
the early observations on NIP electrodeposits (Brenner and Riddell 1946). 
However, it is generally accepted that until Pol Dnwez began his extensive 
research on metastable and amorphous alloys at the California Institute of 
Technology in the late 1950s, the intrinsic scientific interest and the technologi- 
cal potential of such materials were not widely appreciated. 

A ferromagnetic amorphous COP alloy was first reported in 1965 (Mader 
and Nowick 1965) and splat-quenched, glassy ferromagnets with attractive soft 
ferromagnetic properties were reported by Duwez' group in 1966 (Tsuei and 
Dewez, 1966; Duwez and Lin 1967). The subsequent growth of interest in 
amorphous magnetic alloys was rapid. 

Under equilibrium processing conditions, local atomic arrangements are 
essentially determined by the thermodynamics of interatomic (chemical) inter- 
actions. However, under nonequilibrium conditions (e.g., rapid heat removal, 
rapid solidification front velocity, or solid-state treatment in a time-tempera- 
ture regime where the time needed for diffusion to the equilibrium crystalline 
state exceeds that required to reach metastable states), the kinetics of the 
fabrication process itself can override the tendency for the atoms to order 
locally the way they do in the equilibrium ground state. 

Essentially all of the successful methods for fabrication of amorphous metals 
remove heat from the molten alloy at a rate that is fast enough to preclude 
crystallization of the melt. Thus, certain metallic alloys can be rendered 
amorphous by thin-film deposition techniques such as sputtering, or by melt 
spinning, splat quenching, or gas atomization of fine particles. It is also 
possible to make glasses from the solid crystalline state by careful exploitation 
of fast diffusion and chemical thermodynamics (Schultz, 1990). The critical 
cooling rate required for glass formation can be reduced if the kinetics of atom 
transport in the melt are slowed down. This is the case for processing at low 
temperatures. It also occurs at eutectic compositions where the two or more 
species constituting the alloy have strong chemical interactions favoring two 
competing short-range orderings. 

Amorphous alloys of magnetic interest are based either on 3d transition 
metals (T) or on rare-earth metals (R). In the first case, the alloy can be 
stabilized in the amorphous state with the use of glass-forming elements or 
metalloids (M), such as boron, phosphorus and silicon: TI  -,M,, with approxi- 
mately 15 < x < 30 at%. Examples include Fe,,B,,, Fe4,Ni4,P14B,, and 
C O , ~ F ~ , B ~ , S ~ , .  

The late transition metals (TE = Fe, Co, Ni) can be stabilized in the 
amorphous state by alloying with early transition metals (TE) of 4d or 5d type 
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(Zr, Nb, Hf): TE,-,TL,, with x approximately in the range 5-15 at%. 
Examples include Co,,Zrl0, Fe,,Nb,,B,, and Co,,Nb,,B,. 

Rare-earth metals can be stabilized by alloying with transition metals and 
metalloids: Rl-,-,T,M, with x in the approximate range 10-25 at% and y 
from 0 to 10 at%. Examples include Co,,Gd,, and Fe,,Tb,,(B). 

The 3d transition-metal-based amorphous alloys are generally soft magnetic 
materials, while the rare-earth-based amorphous alloys can be tailored to span 
a range from hard (permanent) magnets to semihard materials suitable for use 
as magnetic recording media. 

Amorphous metallic alloys of the technologically useful variety discussed 
here may be represented as TL, -,(TE, R, M),. They are typically made up of 
1 - x = 60-90 at% late transition metal (TL; e.g., Fe, Co, Ni), in which the 
balance x is some combination of early transition elements (TE; e.g., Cr, Mo, 
Nb), rare earths (R; e.g., Gd, Tb, Sm), and/or metalloids (M; e.g., B, Si, C). 
These are the approximate compositional limitations defining room tempera- 
ture ferromagnetism in these materials. 

Amorphous magnetic alloys lack long-range atomic order and consequently 
exhibit: (1) high metallic resistivity (100-200 p!2. cm) due to electron scattering 
from atomic disorder, (2) no macroscopic magnetocrystalline anisotropy (re- 
sidual anisotropies, due mostly to internal stress, typically averaging 10-100 
J/m3 for 3d-based alloys but they can approach 10, eJ/m3 for certain rare-earth 
containing alloys), and (3) no microstructural discontinuities (grain boundaries 
or precipitates) on which magnetic domain walls can be pinned. As a result, 
ferromagnetic metallic glasses based on 3d transition metals are generally good 
"soft" magnetic materials with both low DC hysteresis loss and low eddy- 
current dissipation. In addition, they are characterized by high elastic limits 
(i.e., they resist plastic deformation) and, for certain compositions, they show 
good corrosion resistance. Amorphous magnetic alloys containing appreciable 
fractions of R metals show magnetic anisotropy and inagnetostriction that can 
be varied up to very large values by changing the R composition. These 
characteristics, combined with the expectation that metallic glasses can be 
economically mass-fabricated in thin gauges, have led to broad commercial 
interest. 

11.2 STRUCTURE AND FUNDAMENTAL MAGNETIC PROPERTIES 

This section describes observations of some of the fundamental (M,, T,, K, and 
A,) and technical (H, ,  domains) magnetic properties that characterize amor- 
phous magnetic alloys. 

It was recognized quite early that the local atomic arrangement in amorphous 
alloys is not completely random. Dense packing of hard spheres with no 
chemical interaction (Polk 1972) still imposes a degree of local structural order 
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typified by the Bernal polyhedra (Fig. 1l.la). In amorphous alloys, the 
short-range order is likely similar to that of Bernal polyhedra (a) and (b) 
constructed of transition metal atoms and having metalloid atoms at their 
centers. In polyhedron (c), the trigonal prism of T atoms may have M atoms 
off each face and possibly at the prism center. The role of chemistry in 
determining the local order was demonstrated by EXAFS measurements on 
Pd,,Ge,, glasses (Hayes et al. 1978). In that eutectic glass, the germanium 
environment was found to be very similar to that in crystalline PdGe and, in 
particular, contained essentially no Ge-Ge nearest neighbors. 

The short-range order of metallic glasses generally results in X-ray difTrac- 
tion patterns similar to that in Figure 11.1 right, center. Fourier transformation 
of such data leads to radial distribution functions or to pair correlation 
functions indicating T-T pairs and T-M pairs but no M-M nearest neighbors. 
Coordination numbers for metallic glasses are usually close to 12, as in close 
packed crystals. Hence the structure of amorphous alloys is often referred to 
as dense random packing. 

Gas 

( No SRO) 

Glass 

Figure 11.1 Left, structure of the Bernal polyhedra that are believed to represent the 
short-range ordering of atoms in many metallic glasses. Right, schematic of scattered 
x-ray intensity versus scattering angle 20 for a completely random arrangement of 
atoms (gas), and for an amorphous alloy with short-range order (glass). The pair 
correlation function G(r), derived from I(0) by Fourier transform, indicates the 
statistical distribution of nearest-neighbor distances. 
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11 2.2 Magnetic Moments and Curie Temperatures 

Figure 11.2 shows the variation of saturation moment per transition metal 
atom (4.2 K) as a function of T content for amorphous alloys based on boron, 
T,,B2,, and on phosphorus, T,,P2,. The variation of magnetic moment in 
crystalline alloys (cf. Fig. 5.1) is shown as a dotted line for reference. Amor- 
phous T,,B2, alloys show magnetic moments that are shifted relative to the 
Slater-Pauling curve in a way that is consistent with data for crystalline TB 
and T2B compounds and alloys (Cadeville and Daniel, 1966, Mizoguchi et al. 
1973, O'Handley 1983). 

Reasonably large magnetic moments can be realized in a variety of amor- 
phous alloys based on iron, cobalt, and/or nickel. The generally reduced 
moments of amorphous alloys compared to crystalline alloys reflect the 
presence of the nonmagnetic M atoms such as B, P, and Si, which are needed 
to stabilize the glassy state. The effect on the magnitude of the local magnetic 
moment due to the absence of long-range order is negligible. 

The effects of early transition metal species (Cr, V, Nb . . .) on the saturation 
moment of amorphous magnetic alloys based on Fe, Co, and Ni can be 
understood in terms of the virtual-bound-state model (Chapter 5, O'Handley, 
1981). 

Figure 11.3 shows the variation of Tc in amorphous (FeNi),,B,,, 
(FeCo),,B2,, and other assorted alloys. The Curie temperatures of crystalline 
FeNi alloys are shown by the dotted lines. The compositional dependence of 
the Curie temperature is not readily' described by fundamental theories. 

Valence electrons 
Figure 11.2 Variation of magnetic moment per transition metal atom in crystalline 
and amorphous alloys as a function of number of valence electrons n,. The values 
n, = 8,9, and 10 correspond to Fe, Co (or Feo~,Ni0,,), and Ni, respectively. The data 
for crystalline materials are based on Figure 5.1. 
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Figure 11.3 Curie temperatures of TM-B alloys versus transition metal content. Solid 
line over (FeNi)B data is a mean field fit to the data. Dotted lines show trends for 
crystalline FeNi alloys. 

Molecular field theory can be used to get phenomenological parameters that 
describe the compositional dependence of T, in certain alloy systems. The solid 
line on the (FeNi)B data in Figure 11.3 is fit to the data by adjusting the 
exchange parameters: fFeFe = 1, fFeNi = 1.5 and yNiNi = 0.2 (O'Handley and 
Boudreaux 1978). On the other hand, the compositional dependence of the 
magnetic moment in alloys is amenable to analysis by either electronic 
structure calculations or simple band models (see Section 11.5.2). 

The saturation moments and Curie temperatures vary as the TIM ratio 
deviates from 80120. Figures 11.4 and 11.5 show how the saturation magnetic 
moment per TM atom and the Curie temperature vary with meta1:metalloid 
ratio in amorphous Fe-based and Co-based systems, respectively. In both cases 
the moments increase with decreasing metalloid content, extrapolating to 
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Figure 11.4 Variation of magnetic moment and Curie temperature with metal-metal- 
loid ratio in binary FeB and FeP metallic glasses (O'Handley 1983). 
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Figure 11.5 Variation of magnetic moment and Curie temperature with metal-metal- 
loid ratio in binary Co-B, Co-P, and Co-Zr metallic glasses (O'Handley 1983). 
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values close to those of BCC Fe (2.2pB/atom) and HCP Co (l.7pB/atom), 
respectively. Magnetic moment data for CoZr-based glasses are included in 
Figure 11.5 (Ohnuma et al. 1980). These alloys exhibit low magnetostriction 
(Fig. 10.22) combined with high magnetization and hardness as well as good 
corrosion resistance. 

The Curie temperatures of most cobalt-rich metallic glasses exceed their 
crystallization temperatures, so their trend with metalloid content is shown 
over a limited metalloid range (Fig. 11.5). Tc for cobalt-rich glasses increases 
for decreasing metalloid content much as does the magnetic moment. The 
behavior of the Curie temperature for the Fe-based glasses is quite different 
(Fig. 11.4): Tc decreases with decreasing metalloid content for both Fe-B and 
Fe-P glasses. This demands an explanation. 

Figure 11.6 shows the variation of Tc in amorphous Fe, -,B, alloys over a 
wider range of boron content. The Curie temperatures are seen to vary 
nonmonotonically with x following the pattern established by Tc values of the 
three crystalline compounds FeB, Fe,B, and Fe,B (Chien and Unruh 1981). 
This suggests that Tc is a function of the local coordination of magnetic atoms, 
not just the overall content of magnetic atoms. Further, it suggests a correla- 
tion between the local coordination in Fe,-,B, glasses and that in Fe,B 

Figure 11.6 Curie temperatures of amorphous FeB alloys versus boron concentration 
and for relevant crystalline FeB phases from Chien and Unruh (1981) and Hasegawa 
and Ray (1978). 

100 

! a - ~ e  I 
I I I 

x (at.% B 

1000 

- 800 
Y - 
2 
2: 600 52 
Q) e 
a, 
+ 400 
Q) .- 
L 
3 
U 

200 

0 

- Fe2B A Amorphous Feloo-, Bx - 
0 Chien and Unruh 
0 Hasegawa and Ray 

Fe3B A Crystalline Fe,B - 
A Chien and Unruh - 

- 
\A F ~ B  - 

- - i 
I 0 

- t - 

I I I 
0 20 40 A- 80 



STRUCTURE AND FUNDAMENTAL MAGNETIC PROPERTIES 399 

compounds. The extrapolations of the Curie temperature data for amorphous 
Fe-B and Fe-P alloys toward zero metalloid content in Figures 11.4- 11.6, leads 
to Tc values well below that of BCC iron (Tc = 1044 K). This is presumably 
because the local coordination of an amorphous alloy (approximately 12 
nearest-neighbor transition metal atoms) is not like that of a BCC structure (8 
nearest neighbors). Instead, the amorphous structure is more like that of an 
FCC crystal. FCC iron is antiferromagnetic, a fact often explained in terrns of 
the Bethe-Slater curve (Fig. 5.3) and the smaller interatomic spacing in this 
close-packed structure. 

Changes in magnetization and Curie temperature with M-atom type (Fig. 
11.7) are generally weaker than changes with TM/M ratio or with TM makeup. 

Phosphorous is seen to have a stronger effect than boron in suppressing 
both the magnetic moment and Tc in Fe-based and Co-based amorphous 
alloys. For Fe-based glasses, C,  Si, and Ge are less effective, in that order, in 
suppressing magnetism. These trends may be related to the size of the 
metalloid; larger metaloids expand the amorphous structure, moving Fe pairs 
away from their antiferromagnetic exchange range and generally reducing 
Fe-Fe coordination from that of a random dense-packed structure to one that 
is less densely packed. The effects of metalloid type on magnetic moment and 
Curie temperature in cobalt-based glasses are different. Only carbon enhances 

x (a t  %) in FegOB20-xMx 

Figore 11.7 Variation of saturation moment and Curie temperature with metalloid 
content for amorphous alloys based on Fe [left, Mitera et al. (1978) and Kazama et al. 
(1978a, 1978b)l and Co [(right, Kazama and Fujimori 1982).] 



n, OP K .  These trends in average magnetic m.oment with metalloid type will be 
modeled in Section 11.5.2. 

11 -9.3 Magwetie Anisotropy and Magnetostriction 

Clearly, magnetic anisotropy due to long-range crystalline order is not a factor 
in amorphous alloys. Thus, there is no fundamental anisotropy constant (other 
than perhaps KO)  that can be attributed to an amorphous alloy of a particular 
composition as was done for crystalline magnetic materials in Chapter 6. 
However, the local atomic order of amorphous magnetic alloys, which varies 
randomly in direction, gives rise to a random anisotropy that plays an 
important role in their magnetic properties. This will be covered in Section 
11.4. The ease or difficulty of reaching saturation in a given direction in an 
amorphous magnet is also affected by sample shape, by strain-induced aniso- 
tropy (Egami et al. 1975, 09Handley 19751, or by field-induced anisotropy 
(Chapter 14). These factors still operate in noncrystalline materials. 

Because strain-induced anisotropy depends on the magnitude of A,, the 
coercivity of amorphous alloys is expected to scale with 1A,1. The magnetostric- 
tion of amorphous alloys was described in Chapters 7 and 10 and has been 
reviewed by Eacheisserie (%982), O'Handley (1983), Eachowicz and Szymczak 
(19841, and, for random-anisotropy, amorphous rare-earth materials, del 
Moral (1993). 

11 -3 DOMAINS AND TECHNICAL PROPERTIES OF 
AMORPHOUS ALLOYS 

Figure 11.8 compares the domain structure of polycrystaPline permalloy 
(Tanner, unpublished) with that of an amorphous iron-rich alloy (Celotta et al. 
1997). The SEM image of the polycrystaline Ni,,Fe,, sample shows several 
domains with rectilinear domain walls in one grain. (The magnetization 
directions in the other grains are not at the optimum angle to show magnetic 
contrast in this titled specimen, type P I  contrast, image.) The domains in the 
amorphous sample were imaged using scanning electron microscopy with spin 
polarization analysis (SEMIPA) (Unguris et al. 1991). Note the absence of 
rectilinear domain walls in the noncrystalline material. This reflects the absence 
of long-range crystalline order in the metallic glass and consequently the 
absence of magnetocrystalline anisotropy. The magnetization tends to follow 
the local easy axis, which, in this case, is largely dictated by internal stress. 

We saw in Chapter 9 that for a defect to strongly impede wall motion, it should 
have magnetic properties very different from those of the matrix and it should 
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Figure 11.8 Magnetic domain pattern in polycrystalline permalloy foil (a), contrasted 
with that in an amorphous FeBSi alloy (b). Permalloy image taken by type I1 contrast 
(45" tilt of sample stage) in SEM; the grain size is 30 pm (courtesy of Tanner). The 
amorphous alloys was imaged by scanning electron microscopy with spin polarization 
analysis (SEMPA) after Celotta et al. (1997); the field of view in (b) is 1 mm. 

have dimensions comparable to the domain wall width (approximately 0.2- 
2 pm). For the most part, amorphous alloys are homogeneous; specifically, 
there are no grains, no grain boundaries and no precipitates of any appreciable 
size. Because these alloys are rapidly quenched from the melt, most impurities 
tend to remain in solution rather than precipitating out. Thus chemical or 
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structural inhomogeneities (except for surface roughness, pinholes, and strain 
fields) have a scale less than 2 or 3 nm. Because the domain walls are wide in 
amorphous alloys and the defects are narrow, there is little pinning of domain 
walls on defects in amorphous materials and H,  can be very small, or 
equivalently, the permeability can be very large. Transition-metal-based amor- 
phous alloys make excellent soft magnetic materials, as was seen in Chapter 10. 

Decades ago it was appreciated that single-crystal, soft magnetic metals 
typically show a low density of highly mobile domain walls. Soft magnetic 
crystals often show good magnetic characteristics under quasistatic conditions; 
however, these properties degrade rapidly with increasing frequency. The 
increase in M, with frequency was understood to be a consequence of the 
concentration of eddy currents around the few active walls involved in the 
magnetization process (see Chapter 9, Section 9.4). Increasing the number of 
walls (by grain refinement in crystalline materials) lowered these anomalous 
losses and improved high-frequency magnetization performance (see Figure 
10.19). Well-quenched magnetic glasses behave much like single crystals in this 
respect. They show a low density of domain walls because of the shortage of 
nucleation sites. Thus, their magnetic response deteriorates strongly with 
increasing frequency (O'Handley 1975). Figure 10.19a shows the magnetic 
properties and core loss of an amorphous iron-base alloy. While the DC loop 
is attractive, the core loss at 50 kHz is high. Techniques for optimizing AC 
magnetic response in magnetic glasses involve careful precipitation of finely 
dispersed phases whose properties are such that their benefits in terms of 
domain wall nucleation outweigh their pinning and induced anisotropy effects 
(Fig. 10.19b) (Datta et al. 1982, Hasegawa et aP. 1982). It was shown that fine, 
low-anisotropy precipitates that strain the amorphous matrix only weakly are 
useful in this regard and their volume density should be small (1-2 ~01%). 
More copious crystallization (Fig. 80.19~) leads to stresses and domain wall 
pinning, degrading both DG and A@ properties. 

The atomic disorder of amorphous alloys increases the electrical resistivity 
to values of order 120 p%& - cm because conduction electrons probe the material 
on a scale of about one nanometer. This high electrical resistivity suppresses 
eddy currents, which are induced when rapid flux changes occur. This makes 
amorphous alloys attractive for higher-frequency operation, provided the 
number of active domain walls can be kept high. 

11.4 MAGNETBSM AND SHORT-RANGE ORDER 

11 1 .$.I Ingredients sf ShoH-Range Order 

We first address the issue of the differences and similarities between the 
fundamental magnetic properties of amorphous and crystalline alloys as 
depicted primarily in the saturation moments (Fig. 11.2) and Curie tempera- 
tures (Fig. 11.3). Early interpretations of the Slater-Pauling-Pike curves of 
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magnetic moment variation with composition (or electron concentration) 
invoked charge transfer from the valence band of the glass former to the 3d 
band of the T species to explain what appears to be a shift of the data for the 
glasses relative to that for pure crystalline alloys. The assumption was that the 
addition to the alloy of metalloid p electrons would tend to fill the 3d band, 
thus reducing the local magnetic moment. However, a net charge transfer 
between atomic sites cannot be supported in a metal because the conduction 
electrons will move to screen out the electric fields created by charge transfer. 
Further, the metalloid p states are found at energies below E, and thus will 
not give up their electrons to fill empty d states. The naive charge transfer 
models soon gave way to a more realistic understanding of variations in 
magnetic moment with composition in terms of (sp)-d bonding. This ( sp)  -d 
bonding or hybridization is evident in theoretical treatments and experimental 
data on electronic structure and bonding of metallic glasses. 

Hund's rules (Chapter 4) describe the formation of magnetic moments on 
isolated atoms. Orbitals fill so as to maximize the sum of their spin quantum 
numbers. The basis for this rule is found in the Coulomb interactions that 
lower the energy of electrons whose motions are correlated by occupying 
orbitals of different angular momentum. Essentially Hund's rule can be 
described as an intraatomic interaction that favors parallel spins. But what 
happens to this intraatomic interaction as atoms come together to form solids? 

We saw in Chapter 5 that the fundamental characteristics of magnetic 
materials, namely the local atomic moment and the Curie temperature, are 
mostly functions of the short-range order (described in local environment 
models by the number, type, distance, and symmetry of the nearest neighbors). 
Thus, the fact that the absence of long-range order in amorphous magnetic 
alloys does not destroy magnetism should be no surprise. The decreased values 
of p, and T, of 3d-based metallic glasses has more to do with the presence of 
nonmagnetic glass-forming species than with the absence of long-range order. 
Are there any effects on magnetism due to the absence of long-range order? 

11.4.2 Exchange Fluctuations 

It is well known (Moorjani and Coey 1984, Mizoguchi et al. 1977) that many 
antiferromagnetic (AF) compounds become ferromagnetic (F) in the amor- 
phous state. Two factors may be contributing to this. The first is the frustration 
of perfect A F  coupling in a disordered structure. For atoms with two of their 
nearest neighbors also being nearest neighbors to each other (e.g., odd- 
numbered rings of nearest neighbors), frustration of A F  coupling sets in. This 
leads to fluctuations in the strength of nearest-neighbor interactions and allows 
for local departures from A F  exchange. The second factor is the positive slope 
of y(r) near the equilibrium atomic spacing for iron, assuming that the 
exchange interaction $(r), varies according to the Bethe-Slater curve. The 
increase in mean atom spacing characteristic of the amorphous state then 
drives the system from Ah; to F coupling. Fluctuations in short-range order 
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also cause the strength of the exchange interaction to vary spatially. This leads 
to local variations in the saturation moment. 

The effect of local disorder on the exchange interaction and hence on the 
reduced magnetization curve m(T/Tc) = M(T/Tc)/M(0) was considered theor- 
etically by Handrich (1969). He explained the exchange about its mean value 
< f i j )  (where <..-) is an average over the random bonds): 

in terms of the exchange fluctuation A f i j .  The Brillouin function [Eq. (3.34)] 
is then suppressed: 

Here 6 is the root-mean square (RMS) exchange fluctuation 

and x is the effective field variable x = ,u,p,H/k,T This effect of random 
exchange on m(T/Tc) is shown in Figure 11.9a. Many observers have inter- 
preted reduced magnetization data m(T/Tc) for amorphous alloys in terms of 
this model (Tsuei and Lillienthal 1976). Figures 11.9b and 11.9~ show the 
suppression of m(T/Tc) by random exchange in two different alloy systems 

Transition 

Amorphous \, 
alloy 

Figure 11.9 Reduced magnetization versus temperature m(T/T,) for crystalline and 
amorphous alloys: (a) Brillouin function and fluctuation-modified reduced magnetiz- 
ation [Eq. (11.2)] for amorphous alloy. Panels (b) and (c) show data for crystalline and 
amorphous Gd-based and Fe-based metals compared with theoretical curves [After 
Kaneyoshi (1985).] 



Figure 11.10 Hyperfine field (magnetic moment) distribution for Dy in amorphous 
DyNi compared with that for Co in amorphous COP alloys. The Fe distribution in the 
insulating compound Fe(OH),0.9H20 is shown for comparison (Coey, 1978). 

(Kaneyoshi 1985). However, Alben et al. (1978) have cautioned against such 
interpretations, noting that chemical disorder alone can suppress m(T/T,). 

It is observed that rare-earth moment distributions, as measured by nuclear 
magnetic resonance or Mossbauer spectroscopy, remain quite narrow in 
amorphous alloys whereas those of 3d species are strongly broadened (Figure 
11.10). In the case of 4f amorphous alloys, the more highly localized nature of 
the R magnetic moment leaves its magnitude relatively insensitive to its 
environment (Kaneyoshi and Tamura 1984). The more delocalized 3d orbitals 
that are responsible for magnetism in transition metals are more strongly 
perturbed by the irregularity of their local environment. 

1 I .4.3 Random Anisotropy 

Magnetic anisotropy arising from long-range crystallinity is clearly absent in 
amorphous alloys. However, the same "crystal field" or more accurately 
"local-field that gives rise to magnetocrystalline anisotropy is effective in 
noncrystalline materials on a scale of a few nanometers (Harris et al. 1973; 
Imry and Ma 1975). The orientation and strength of this local anisotropy in 
amorphous alloys varies with position, hence the term random anisotropy. It is 
important to determine the degree to which this random local anisotropy field 
affects macroscopic magnetic behavior or, on the other hand, is averaged out 
because of fluctuations in orientation of the local "easy axes" (see Fig. 11.11). 

The local crystal field energy can be represented by a uniaxial (dipolar) term 
of strength K,,,. The orientation of the easy direction of this uniaxial aniso- 
tropy in an amorphous alloy fluctuates with a correlation length I determined 
by the local structure: 1 is a few nanometers for amorphous alloys. Further, the 
local magnetic moments are assumed to be coupled to each other by an 
exchange interaction of stiffness A expressed by the form A[Vm(r)I2, where 
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c+-q-+ 
Local 

Easy Axes 1- kt 1 

Figure Il.11 Schematic representation of the variation of local anisotropy easy axis 
with position and the variation of magnetization direction in response to the local 
anisotropy and exchange coupling. M(x) closely follows a strong local anisotropy and 
is a smoother function of x for weak local anisotropy. 

m(r) = M(r)/M, is the local reduced magnetization (Hmry and Ma 1975, Alben 
et al. 1978). 

Assuming a strength for the local anisotropy K,,,, it is important to know 
the orientational correlation length L of the local magnetic moments. In other 
words, how closely can the exchange-coupled magnetic moments follow the 
short-range changes (over distance, I )  in local easy-axis orientation given by 
the random unit vector n(r)? Mathematically the problem reduces by minimiz- 
ing two competing terms in the free energy F, namely, the exchange, promoting 
long-range correPation in the magnetization direction; and the random crystal 
field, favoring short-range fluctuations in the magnetization direction. The 
exchange and random uniaxial anisotropy contributions to the free energy are 
given by 

10 = A[Vm(r)]' - K,,,{[m(r) .6;e(r).)1 ' - f) (1 1.4) 

Clearly the first term scales as AIL2 provided L >> 1. The strength of the 
random local uniaxial anisotropy expressed by the second term can be 
evaluated using random-walk considerations (Alben et al. 1978). The net 
anisotropy from a random collection of N = local anisotropies of 
strength K,,, goes as 1V-'12.  The macroscopic anisotropy can then be expressed 
as K,oc(1/L)312, a scaling down of the local anisotropy by the ratio (l/L)312. 
Energy minimization of F with respect to L then gives 

where A = 10-'I J/m and k FZ 2 nm have been assumed for amorphous alloys. 
For a 3d-based amorphous alloy, K,,, is of order 5 x 1Q4 J/m3 while for 4f-rich 
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alloys it is of order lo6 J/m3. Hence for these two cases, the correlation length 
L, over which the magnetization orientation is roughly constant despite 
fluctuating local anisotropy, is approximately 

These results indicate that in 3d-based amorphous alloys, exchange stiffness 
can maintain local moment orientational correlation up to 20pm despite 
changes in the local anisotropy direction. The weak local anisotropy hardly 
perturbs the stiff spin system. However, in 4f-based amorphous alloys the local 
magnetic moment may fluctuate over a much shorter range, possibly approach- 
ing a few nanometers (following the local anisotropy field). Pictures of 
ferromagnetic domains in 3d-based amorphous alloys (e.g., Fig. 11.8) support 
the first estimate (Chen et al. 1975; Hasegawa et al. 1976, Livingston and 
Morris 1985) and the dispersion of rare-earth moment directions observed in 
many R-T amorphous alloys supports the second (Coey, 1978). 

The technical implications of these estimates of L lie in the wide range of 
macroscopic magnetic anisotropies and coercivities that can be realized in 
amorphous and nanocrystalline alloys (Chi and Alben 1977; Alben et al. 1978). 
When L >> 1, the effective macroscopic anisotropy is small and soft magnetism 
is observed. When LIZ decreases toward unity, the magnetization vector is more 
strongly constrained by the orientation of the local anisotropy and saturation 
of the magnetization is harder to achieve. 

Sellmyer and Nafis (1985) have gathered the effects of exchange fluctuations 
and local field disorder into a simple model Hamiltonian: 

In the first term, the isotropic exchange interaction between magnetic 
moments at two sites (expressed in terms of total angular momenta Ji and Jj) 
is expanded to include the effects of exchange fluctuations AYij .  The second 
term allows for disorder in the distribution of the axes of the local crystal field 
of strength D by introduction of the local unit vector ni [cf. Eq. (11.4)]. By 
defining the dimensionless variables t = k,T/yo, d = D / y o ,  and 6 = (by)/$,, 
a ternary phase space can be constructed which illustrates the rich variety of 
magnetic orderings that can be realized in disordered magnets through the 
introduction of exchange fluctuations and random magnetic anisotropy (Sel- 
lmyer and Nafis 1985) (Fig. 11.12). The existence of the multicritical point 
(MCP) and the "reentrant" aspect of the phase diagram along the 6 axis [i.e., 
the replacement of the ferromagnetic (F) phase by a metamagnetic (M) or spin 
glass (SG) phase on cooling] have been observed in many systems (Rao et al. 
1982; Geohgean and Bhagat 1981). These are features that are unique to 
disordered magnets. 
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Figure 11.12 Phase diagram in t ,  d, 6 space showing the rich variety of magnetic 
structures [spero- and sperimagnets (SM), canted speri(o)magnets (CSM), ferromagnets 
(F), metamagnets (M), and spin glasses (SG)] created by interplay of random anisot- 
ropy and exchange (Sellmyer and Nafis 1985). 

When the reduced crystal field energy d approaches zero as in 3d-based 
amorphous alloys (see Fig. 11.12), local anisotropy is basically not felt by the 
strongly coupled spins. Andreev (1978) noted that then one can have either 
collinear ferrornagnetisrn (Si.Sj FZ ISi[ lSjl (Fig. 11.13~) or, in a two magnetic 
sublattice alloy, collinear ferrimagnetism (0 < Si. Sj < ISil lSjl) (Fig. 11.13b). 
There is no strongly preferred direction for the net magnetization. If, at the 
same time that d -+ 0, strong exchange fluctuations exist (6 large), then the spin 
glass (SG) state results and C Si = 0 in the absence of a field. 

11 -4.4 Dispersed-Moment Structures 

Coey (1978) has added to these categories by considering first the additional 
effects of a strong local anisotropy Di (as in 4f-based amorphous alloys) 
competing with exchange and then allowing for more than one magnetic 
species. Random anisotropy can promote spatial dispersion of the local 
moments, and the additional presence of more than one magnetic species can 
lead to a rich variety of magnetic structures with dispersed parallel (speromag- 
netic) or dispersed antiparallel [sperimagnetic (SM)] magnetic sublattices. For 
smaller values of d, canted speromagnetism (&ISM) can be observed. 

When the spin on one sublattice (in Fig. 11.13, 1 = R species) couple more 
strongly to the local crystal field than with each other (d >> 1) or than with the 
other species, D l /y l l  = D,/y12 >> 1, speromagnetism y12 > 0 (early R-T 
amorphous alloys) (Fig. 11.13~) or sperimagnetism fl, < 0 (late R-T amor- 
phous alloys) (Fig. 11.124) can result. The spins on the second sublattice as 
well as the first may also be dispersed in direction either by strong coupling to 
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Figure 11.13 Schematic representation of some of the magnetic structures identified in 
Figure 11.15. (a)  yI2 > 0, ferromagnet (fl,,/D, >> 1, k = 1 or 2); (b) y12 < 0, antifer- 
romagnet if ISII = IS21 or ferrirnagnet if IS,I # IS21; (c) y12 > 0, speromagnet (flll/Dl << 
1, flZ2/D, >> 1); (d) J12 < 0 sperimagnet (yl1/Dl << 1, yZ2/D2 >> 1). 

their own local crystal field fl12/D2 << 1 and f12,/D, << 1 or by strong coupling 
to the spins of a dispersed sublattice 1, J ~ ~ , / D ,  >> 1 and f 1 2 / ~ , ,  >> 1. Inter- 
mediate cases also exist. 

Examples of such behavior abound in the literature. Most 3d-based alloys 
exhibit the magnetic structure shown in Fig. 11 .13~ with full saturation 
achieved in relatively weak applied fields. The behavior shown in Fig. 11.13b 
is exhibited by Gd-Co or Gd-Fe (Orehotsky and Schroeder 1973, Taylor et al. 
1978). 

Speromagnetism is observed in Fe-Nd and Co-Nd (Taylor et al. 1978). 
Difficulty in saturating these materials (closing down the cone angle with an 
applied field) can be considered to have the same origin as the magnetic 
hardness of Fe-Nd-B permanent magnets (see Chapter 13). Sperimagnetism is 
typified by Fe-Tb (Rhyne et al. 1974) or Co-Dy (Coey et al. 1976, Jouve et al. 
1976). Weaker coupling of the RE sublattice to the random local field occurs 
for smaller values of atomic orbital angular momentum. 

The special case of Co,,Gd,, amorphous alloys is worth mention because 
of its technical importance first as a bubble material then as a prototype for 



410 AMORPHOUS BVJATERIALS: MAGNETISM AND DISORDER 

magnetooptic recording [Chaudbari et a]. 8973). While G d  is an S-state ion 
(zero angular momentum), it has sufficient spin-orbit-induced angular mo- 
mentum so that /l,/D, is close to unity. Also, although Gd can be thought s f  
as separating the light from the heavy R elements, its moment couples 
antiferromagnetically with that of cobalt, jl, < 0. At low temperatures, 
N,,p,, > N,op,o, but the magnetization of the Gd sublattice drops more 
steeply with increasing temperature than does that of the Co sublattice. Thus 
a magnetic compensation temperature exists for which N,,p,, + N,,p,, = 0, 
where N, is the number of atoms with moment pi. More recent interest in 
higher lcoercivity perpendicular media, exclusively for magnetooptic memory, 
has focused on the higher anisotropy TbFe sperimagnetic system (Connell and 
Bloomberg 1985). 

11.4.5 Induced Anisotropy 

It is possible to alter the technical properties of a metallic glass by field 
annealing. Dramatic micrographs of the magnetic domains in amorphous 
ribbons annealed in longitudinal and transverse fields illustrate the magnetic 
consequences of field annealing (Fig. 11.14). Notice how the domain walls in 
field-annealed amorphous ribbons follow the direction of field-induced aniso- 
tropy in order to minimize magnetostatic energy. [In asquenched amorphous 
ribbons, the domain patterns are more often wavy, as shown in Fig. 11.8; the 

Figure 11.14 Domain images of a cobalt-rich amorphous alloy as cast, left, and 
annealed in a transverse field, right (Chen et al., 1975). The ribbon length direction and 
applied field direction during annealing are indicated by R and H, respectively. 
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magnetization there tries to follow the average anisotropy (Eq. 11.5) and any 
stress-induced anisotropy.] The atomic mechanism behind field-induced aniso- 
tropy is essentially that the local atomic order is biased by field annealing to 
have a small degree of directional order. This effect will be discussed in Chapter 
14. 

Briefly, when a magnetic material is heated below its Curie and crystalliza- 
tion temperatures but at a temperature high enough to allow substantial 
short-range atomic mobility, the thermal motion of the atoms may result in a 
slight biasing of the local structure toward an atomic configuration that is more 
stable with respect to the local direction of magnetization (Fig. 11.15). If a field 
is applied during the annealing process, then the local atomic rearrangements 
may result in a long-range correlation of a small fraction of the bond directions 
with the magnetization direction. On cooling, the magnetization of the entire 
sample will have a tendency to orient in the direction it had during the 
annealing process. The metalloids play a role in this process because of their 
high mobility and strong chemical interaction with the T metals (Allia and 
Vinai, 1978; Becker, 1978). If they assume a nonrandom orientational distribu- 
tion around the T sites, they may favor magnetization in a particular direction. 

The role of pair ordering in field annealing was illuminated by pioneering 
studies of induced anisotropy in the Fe-Ni-B series of glasses (Luborsky, 1977; 
Fujimori, 1977; Takahashi and Miyazaki, 1978). 

Annealing in the absence of a field also induces a local magnetic anisotropy 
that changes in direction as the direction of magnetization changes from 
domain to domain. Further, where a domain wall exists during annealing, it 
will be stabilized or pinned in that position by the same mechanism that 
stabilizes the axis of magnetization during field annealing. Such wall pinning 
is illustrated by the M-H loops of amorphous cobalt-rich alloy ribbons, shown 
in Figure 11.24. 

Uniaxial magnetic anisotropy can be induced also by stress annealing. In 
contrast to field-induced anisotropy, stress-induced magnetic anisotropy can be 

Figure 11-15 Schematic representation o f  short range order in  a binary amorphous 
alloy. Lef t ,  n o  applied field and n o  net magnetization. T h e  bond directions o f  strongly 
interacting magnetic pairs have a random distribution. Right, magnetization ordered 
under influence o f  field, results in  bond directional order. 
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cEected even above the Curie temperature. This characteristic indicates that the 
source of stress-induced anisotropy lies in -viscoelastic effects rather than in 
magnetoelastic effects. The magnitude of stress-induced anisotropy can be 
much greater than that of magnetic-field-induced anisotropy (see also Chapter 
14). 

Essential%y, a magnetic anisotropy due to field annealing or stress annealing 
refects a perturbation of the otherwise random local anisotropy in a way that 
provides a weak long-range order. 

11 -5 ELECTRONIC STRUCTURE 

Modern theory of electronic structure indicates that the nature of electronic 
states is more a function of local atomic arrangements than of long-range 
atomic order. 

Evidence has been presented indicating that amorphous materials are not 
completely random in their atomic structure. A degree of short-range order 
exists, albeit an order that fluctuates randomly in its orientation and strength. 
Because the compositions of amorphous alloys are often close to eutectic 
compositions, their short-range order is characterized by a cornpetititon 
between the two bracketing stable phases that are responsible for the existence 
of the eutectic. (It is this competition that inhibits crystallization to one of the 
two adjacent stable crystalline phases. Further, the local order of the amor- 
phous solid may or may not resemble that of nearby crystalline phases.) Hence 
the electronic structure of an amorphous alloy on a local scale (Fig. 11.16, left, 
center) need not resemble that of any related crystalline composition. Further, 
because of the long-range orientational disorder in the local structural units, 
the features of the electronic structure that may exist on a local scale are 
angle-averaged on a macroscopic scale (Fermi surface, Fig. 11. 16, right). 

Local Local Angle- Averaged 
Band Structure Fermi Surface Fermi Surface 

F 

E ( k  1 . . . . ... 

k 

Figure BI.14 Left, schematic representation of electronic structure in a small region 
(1 nm3) of an amorphous alloy and its corresponding Fermi surface, center. At right is 
displayed the effect of averaging local Fermi surfaces having random orientations at 
different locations in an amorphous alloy. 
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The electronic structure of amorphous alloys shows subtle effects due to the 
noncrystallinity of the material. However, the chemical effects due to the 
presence of glass-forming species are often more dramatic. It is important, 
therefore, when discussing features of electronic structure that characterize the 
glassy state, to distinguish, where possible, chemical effects due to the necessary 
presence of glass-forming species from the effects due solely to the structural 
and/or chemical disorder. 

11.5.1 Split d Bands and p-d Bonds 

d-d Splitting The valence bands of an alloy A, -,B, are often split into two 
resolvable components having different energies when their atomic number 
difference is greater than or equal to two (e.g., polar d-d bonding). The lower- 
energy states are identified primarily with electrons having greater probability 
density at the site of the more attractive species (i.e., the anion, which for two 
metals of the same row is the one with higher atomic number). 

Figure 5.14 (top panel) shows UPS (ultra-violet photoelectron spectro- 
scopy) data for amorphous PdZr (Oelhafen et al. 1979). The lower energy 
(greater binding energy) feature reflects the chemical stabilization due to the 
more attractive core potential at the Pd site compared with that at the Zr site. 
The calculated state densities shown in the lower panel (Moruzzi et al. 1978), 
clearly identify the two UPS peaks as due separately to Pd and Zr. 

The connection between split bands and chemical bonding can be seen in 
UPS spectra on a variety of amorphous TE-TL alloys. The splitting of d-band 
features in an alloy correlates with the valence difference between the two 
transition metal species [Fig. 11.17; Oelhafen et al. (1980)l. (The deviation of 
Cu-based glasses from linear dependence would be remedied by using elec- 
tronegativity difference as the abscissa instead of valence difference.) The 
general increase in binding energy with T valence difference correlates with the 
compound heat of formation as well as with the stability of the glassy phase. 
This implies that an increasing polar character stabilizes bonding in amor- 
phous alloys as it does in crystalline alloys. 

p-d SpiitBing An important aspect of the behavior of transition metal 
d-bands that differs between amorphous TE-TL alloys and T-M alloys is 
revealed by photoemission studies. In the former case the individual (TE and 
TL) components of the d bands become narrowed slightly on alloy formation, 
whereas in T-M alloys the d bands are broadened compared to those of the 
pure metals. In the latter case, XPS data (Amamou and Krill 1980) show the 
38 bandwidth of amorphous Fe-B and Fe-P alloys (and crystalline com- 
pounds) to be significantly greater than that of pure Fe (Fig. 11.18). 

This difference between amorphous TE-TL and T-M electronic state den- 
sities arises from the nature of the bonding responsible for alloy formation in 
the two cases: d-d bonding in TE-TL alloys and sp-d as well as d-d bonding 
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Valence difference 

Figure 11.17 Binding energy shifts AE, of the late T-species d-band maximum on 
alloying as a function of the late-early T metal valence difference. The lines suggest that 
3d, 4d, and 5d late T species define three separate alloy groups (Oelhafen et al. 1980). 

in T-M alloys. In TE-TL alloy formation, the d-d bonding is such that 
electronic wavefunctions associated with the lower-energy DOS peak (domi- 
nated by the strongly attractive TL core potential) have small amplitude at the 
TE sites. Conversely, the higher-energy wavefunction has greater amplitude at 
the TE sites. Once the stabilization of the states has occurred as a result of 
alloying [the one-center integral Tii of Johnson and Tenhover (1983)], the 
system behaves to an extent like two interpenetrating but only weakly 
interacting sublattices. The electrons occupying the two energy ranges of high 
state density respond mainly to the core potentials of their own sublattice. 
Thus, the like-atom overlap (TE-TE or TL-TL covalency) is reduced because 
of the large average spacing of similar atoms and, therefore, the two compo- 
nents of the DOS are narrower than they would be in a pure metal; that is, the 
two center integrals Tij are smaller than in the pure metal (Johnson and 
Tenhover 1983). 

In amorphous T-M alloys, (sp) -d bonding predominates. The hybridization 
between metalloid sp states and metal d states reduces the degree of localiz- 
ation of the d electrons and tends to broaden the d band into a manifold of 
states that is more free-electron like, less like those of a tight-binding approxi- 
mation. This (sp) -d hybridization broadens the d-electron contribution to the 
DOS in T-M alloys to differing degrees depending on the extent of hybridiz- 
ation. It also gives rise to the discrete (sp)-d bonding states seen in Fe-based 
alloys at - 9.5 eV and lower energies but not seen in a-Fe [Fig. 11.18; Amamou 
and Krill (1980)l. 
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Energy (eV) 

Figure 11.18 XPS valence band spectra for the TM glassy alloys Fe,B,~,P,~, ("Fe3Bm) 
and Fe,P compared with that for crystalline Fe (Amamou and Krill 1980). 

Calculations on finite clusters of atoms allow for the direct study of the 
effects of local order on electronic structure (Messmer 1981). The self-consis- 
tent-field, X - a, scattered wave, molecular orbital method was used to model 
the electronic structure of tetrahedral clusters of Fe, Ni, and metalloid atoms. 
At the left in Fig. 11.19, a Ni,Fe, cluster is shown and below are displayed the 

S P I N  
UD down 

Figure 11.19 Spin-split electronic states calculated for Fe,Ni, tetrahedral clusters 
without (left) and with (right) a central boron atom present. Dashed lines indicate 
unoccupied states. States labeled with curly brackets are localized near the species 
indicated. Unlabeled states near - 5.2 eV (left) mark the locations of FeNi hybrid states. 
Square brackets to right of eigenstates mark NIB bonding states (Messmer 1951). Fe 
and Ni atomic d states lie at - 8.2 eV, while boron atomic 2 p  levels lie at -3.9 eV. 
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calculated spin-split eigeirastates, identified by their site localization. Adding 
central B or P atoms to these clusters reveals the chemical bonding effects 
important in T-M metallic glasses. The formation of metal-metalloid bonding 
states is found to decrease the amount of d-band character and hence 
decreases the magnetic moment. The occupied (sp) -d hybrid states (square 
brackets at -6,  -4.5e'V below the vacuum Bevel) appear at lower total 
energy than do the corresponding states in the pure metal clusters, account- 
ing for the stabilization on alloying. Fe-P and Ni-B bonds were found to 
be stronger than were Fe-B and Pdi-P bonds. The p-d bonding states are 
the small-cluster analogs of the p-$ hybrid peak observed by XPS at -9.5 eV 
(Fig. 11.18). 

Electronic states have been calculated for clusters of 1500 atoms arranged 
as determined by dense random packing (Fujiwara 1984). The location of 
spectral features arising mainly from boron s states, from iron-spd bonded with 
boron p states, and from iron-d states, are consistent with those observed by 
ghotoemission in Figure 11.18. 

Table 11.1 compares the binding energies of the major bonding features in 
the Fe-B system determined by different methods. Calculational results are 
listed for small clusters, large clusters, and band structures. Experimental 
results are also listed. All three calculational approaches, namely, band 
structures based on simple close-packed structures, cluster calculations on 
large random clusters as well as on small, high-symmetry clusters, agree quite 
well on the basic chemical physics of bonding and electronic structure. Small 
clusters always show narrower bands and weaker binding energies for bonding 
states because of the smaller number of interactions. Also, all the calculations 
are consistent with the experimental XPS data on 'Te,B." 

These calculations and observations on transition metal-metalloid alloys 
suggest the mechanisms behind the general observation that chemical bonding 
weakens magnetism. When magnetic d orbitals are involved in bonding, some 
states are shifted from the d band to low-lying bonding orbitals. These bonding 
orbitals are fully occupied and therefore do not contribute to the magnetic 
moment. The remaining states in the d band become somewhat delocalized as 

TABLE 11.1 Binding Energy (in eV below EF) for Boron s and Fe-d-B-(sp) Hybrid 
Bonding States as Determiwed by Four DiEerepat Calculations and by XPS Studies 

Fe-d-B-(sp) 
Method Boron s States Hybrid Reference 

Fe,B cluster 10.4 7 Collins et al. (1988) 
Fe2Ni2B cluster - 6.5 Messmer (1981) 
1500 atom Fe,,B2, 12.5 6.8 Fujiwara (1984) 
ASW Fe,B band structure - 8-10 Moruzzi (unpublished) 
Experimental Fe,B XPS 11.5 9.5 Amamou and Krill (1980) 
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Figure 11.28 Left, average Ni moment as a function of heat of alloying in various Ni 
alloys of compositions such that the coordination sphere about an average Ni atom is 
about 80% covered, CS,, = 0.8; right, average effective hyperfine field or average Fe 
moment as a function of heat alloying for amorphous Fe-based alloys such that 
CS,, = 0.5 (Buschow 1984). 

if they corresponded to d states of a lighter T species (Fig. 5.18). The increased 
kinetic energy of the electrons in a broadened d band makes it more difficult 
for intraatomic exchange to operate and the magnetic moment decreases. 
Figure 11.20 illustrates the competition between bonding and magnetism in 
systems based on transition metals and nonmagnetic metals. The stronger the 
bonding (the more negative the heat of alloy formation), the smaller are the 
magnetic moments or hyperfine fields (Buschow 1984). 

11 5.2 Modeling Magnetic Moment Variations 

It is not always possible to determine from first-principle electronic structure 
calculations what the magnetic moment per transition metal atom is in an 
amorphous alloy. There are some simple empirical models that relate the 
average transition metal magnetic moment (p , )  to the metalloid type and 
concentration. Some of these models are reviewed by O'Handley (1987). 

It is useful here to mention one of these models because of the physical 
insight it provides. Corb et al. (1983) recognized that it is the metalloid-spl 
metal-d bonding that is largely responsible for moment reduction in 3d-based 
metallic glasses. He formulated a model based on the assumption that the 
extent of sp-d bonding is proportional to the number of T atoms, z;, that can 
fit around a metalloid atom of a given size. Hence the moment suppression of 
the average T atom is proportional to z;: 

The coefficient of Z& is a measure of how much bonding each T atom 
experiences with the M atoms. In Eq. (1 1.7), n, is the magneton number of the 
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pure metallic T species and NM/N, = x/(% - x) for TI -,Mx alloys. The factor 
of 5 reflects the assumption that each T atom forms one bond with M and 
hence loses one of its five 3d orbitals to nonmagnetic bonding states. The 
implication is that smaller metalloids Qe.g., IS), which can be surrounded by 
fewer T atoms because of their size, are less effective in moment suppression. 
Larger glass formers (e.g., P or Si) can be surrounded by more T species and 
thus a given number of them, N,, is more effective in moment reduction. 

Figure 14.21 shows the success of this simple concept in describing moment 
suppression in various cobalt-based crystalline amorphous alloys. The solid 
lines express Eq. (41.7). The coordination number Z& is determined from that 
of a related crystalline phase as follows. 

Amorphous COB: local order resembles that of Co3B (the structure of Fe3C, 
cementite), thus Z? = 6. 

Amorphous COP: local order resembles that of Co3P(BCT), thus Z? = 9 

HCP Cs(P): local order resembles that of MCP Co, thus Z? = 12 
at low x 

Crystalline COP: local order resembles that of BCT Co3P, thus Z? = 9 
at large x 

In summary, these calculations and data Aesh out our physical insight into 
the effects on magnetism of changes in local environment (number, type, 

Figure 11.28 Average magnetic moment per magnetic atom as a function of concen- 
tration of nonmagnetic metalloid species M to transition metal species, N,/N,. Solid 
lines are calculated from Eq. (11.7) for appropriate M coordination (Corb et al. 1983). 



ELECTRONIC STRUCTURE 41 9 

distance, and symmetry of nearest neighbors; see Chapter 5). They prescribe the 
principal ingredient favoring magnetism in alloys, whether amorphous or 
crystalline: (1) strongly positive heat of formation to favor like-atom clustering 
rather than ordering and (2) minimum p-d hybridization (smaller TM coor- 
dination as is usually found for metalloids of small radius; this tends to reduce 
p-d bonding). 

11.5.3 Electron Transport 

Amorphous magnetic alloys have electrical resistivities falling usually in a 
range from 100 to 15OpQ-cm (3 times to 5 times those of most crystalline 
magnetic alloys). The loss of structural and chemical order beyond a length of 
about one nanometer contributes to electron scattering and limits the elec- 
tronic mean free path to a distance of order 1 nm. Metallic glasses are 
characterized by small positive or negative temperature coefficients of resistiv- 
ity (Mooij, 1973; Tsuei, 1986). In this sense, metallic glasses bear a close 
resemblance to liquid metallic alloys of similar composition. Figure 11.22 
shows the resistivity of Pd-Cu in the crystalline, amorphous and liquid phases 
(Guntherodt and Kunzi 1978). This similarity led to the application of Ziman 
liquid metal theory to the understanding of electrical transport in metallic 
glasses. That theory is based on the scattering of electrons by the random 
structure. The randomly oriented scattering vector of the structure has a 
magnitude given by the k = 4n sin @/,I value corresponding to the location of 
the peak in the structure factor, S(k). One consequence of liquid metal theory 
is a simple explanation of the systematics of occurrence of positive or negative 
temperature coefficients of resistance, depending on the values of the Fermi 
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Figure 11.22 Electrical resistivity of Pd, ,Si,, and Pd,,,,Cu,Si,,,, in the amorphous, 
crystalline, and liquid states (Giintherodt and Kiinzi 1978). 
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wavevector relative to the peaks of the structure factor [Fig. 18.23; Gkantherodt 
and Kiinai (B978)1. Alloy systems having theirs Fermi energy near the peak of 
the structure factor exhibit lower electrical resistivity at elevated temperatures 
[less scattering due to reduced peak in S(k)] ,  while those with E, on the wings 
of S(k)  show increased p with increasing temperature. Other aspects of electron 
transport in amorphous solids are competently reviewed by Harris and 
Strom-Olsen (19839, Cot6 and Meisel (8981), and Rao (8983). 

In a nonmagnetic material the application of a magnetic field perpendic- 
ular to the primary current can alter the longitudinal resistance Aplp and 
induce a Hall voltage in a direction orthogonal to both the current and 
applied field. In nonmagnetic materials these anisotropic effects can be 
understood as consequences of the Eorentz force on the primary current 
carriers. In a ferromagnetic material these ordinary anisotropic transport 
effects are generally overshadowed by phenomena with similar geometrical 
dependences but arising from the much stronger spin-orbit interaction be- 
tween the current carrier (orbit) and the local magnetization (spin). Amor- 
phous magnetic alloys show weak anisotropic magnetoresistance (pll - p,)/ 
p ,  = Qplp compared to crystalline transition metal alloys. (Here I/ or I refer 
to the orientation of the magnetization relative to the direction of the current.) 
This weak magnetoresistance is due in part to the large value of electrical 
resistivity that characterizes metallic glasses. Metallic glasses do show a strong 
spontaneous Hall effect, $/, = R,(J x Wg),  where J i s  the current density vector, 
M is the magnetization vector, and R, is the spontaneous Hall coefficient 
(O'Handley 1978). 

Figure 11.23 Scattering factor S(k) versus scattering vector k for lower and higher 
temperatures in an amorphous alloy (Giintherodt and Kiinzi 1978). 
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Amorphous metallic alloys lack long-range atomic order and consequently 
exhibit many characteristics important for a variety of applications. Some of 
their attractive technical characteristics are listed below. 

1. Amorphous magnetic alloys exhibit high electrical resistivities (p z 100- 
200pQ.cm) due to electron scattering from atomic disorder. High 
resistivity is important in suppressing eddy currents during high-fre- 
quency magnetization reversal. 

2. They show no macroscopic magnetocrystalline anisotropy. Residual 
anisotropies typically amount to 10 J/m3 for 3d-based alloys but can 
approach lo6 J/m3 for certain rare-earth-containing alloys. Hence mag- 
netization rotation is relatively easy in the former class of amorphous 
alloys; anisotropy fields Ha of a few oersteds are readily achieved. 

3. Amorphous alloys have no microstructural discontinuities (grain bound- 
aries or precipitates) on which magnetic domain walls can be pinned. 
Hence magnetization by wall motion is relatively easy. Coercive fields H ,  
of a few millioersteds are readily achieved. 

4. They exhibit high elastic limit due to the absence of an ordered atomic 
lattice through which dislocation motion would be relatively easy. Highly 
elastic behavior (i.e., little plastic deformation) renders metallic glasses 
less prone to magnetic degradation during handling. However, many 
metallic glasses are brittle after annealing and subject to considerable 
flow and to anelastic relaxation at elevated (150°C < T < 400°C) tem- 
peratures (Chen 1982, Berry 1978, Greer 1984). 

5. Many amorphous metals can show attractive corrosion resistance that is 
now understood to result from a variety of factors, including the absence 
of grain boundaries along which contaminants can enter. The fine scale 
of oxide/corrosion layers renders the materials less susceptible to pitting 
(Hashimoto, 1983, Hashimoto and Masumoto, 1983) and the general 
presence of strong oxide formers in solution as glass formers (B, Si, P) 
affords a ready source of material for surface passivation (Cotell and 
Yurek 1986). 

As a result, ferromagnetic metallic glasses based on 3d transition (T) metals 
are generally good "soft" magnetic materials with both low DC hysteresis loss 
and low eddy-current dissipation. In addition, they are characterized by high 
elastic limits (i.e., they resist plastic deformation), and, for certain compositions, 
they show good corrosion resistance. Amorphous magnetic alloys containing 
appreciable fractions of rare-earth (R) metals show magnetic anisotropy and 
magnetostriction that can be varied almost continuously with composition up 
to very large values. These characteristics, combined with the fact that metallic 
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glasses ean be economically mass-fabricated in thin gauges, has led lo broad 
commercial interest. 

11.6.1 Distribution Transformers 

The technological development of amorphous magnetic alloys was motivated 
largely by their application as cores in distribution transformers (O'Handley 
1975, Luborsky 1983, Hasegawa 1983, Fish 1990). Power distribution trans- 
formers rated at about 25 kVA contain approximately 100 kg of magnetic 
material. Close to one million distmbution transformers are installed annually 
in the United States alone. Amorphous alloy transformer cores have lower 
losses and thus save power and reduce the cooling requirements of the 
transformer construction (O'Handley et al. 1979). However, the metastable 
nature of the amorphous state was a cause for some initial concern for a device 
that is expected to operate for a minimum of 20 years: What would happen to 
a transformer if the core crystallized and the losses increased dramatically? The 
stability of many commercial amorphous magnetic alloys is now known to be 
sufficient for hundreds of years of operation at 200°C (09Handley et al. 1979). 
]Installations of amorphous alloy core transformers began in the early, 1980s 
and field performance of the amorphous cores has improved with aging. 

Figure 10.19 compares the 60-Hz core loss versus maximum induction level 
during operation for amorphous Fe-based alloys with that for various com- 
mercial crystalline alloys. While the amorphous alloys show dramatically lower 
loss, they cannot be driven to as high a flux level because of their reduced 
saturation magnetization compared to crystalline iron alloys. 

When the highest permeability is required, as in smaller transformers and 
other inductive elements, the amorphous cobalt-rich alloys represent an 
attractive alternative to 78% Wi permalloy. One advantage they have over 
permalloy is their much higher hardness. The high yield strength of amorphous 
metallic alloys generally makes them much more resistant to plastic deforma- 
tion and slip-induced anisotropy than crystalline alloys. 

Pron-rich amorphous alloys can be used in high-frequency applications if 
they are heat treated to develop a small volume fraction of domain-nucleating, 
a-Fe precipitates of nanocrystalline dimensions [Fig. 10.19; Datta et al. (1982)l. 

11 -6.2 Electronic Article SurwellBiance Sensors 

A growing application of magnetic metallic glasses is in the field of electronic 
article surveillance (EAS), the process of placing remotely detectable tags on 
items to locate them, to control inventory, or to deter theft. EAS requires an 
interrogation zone (usually defined by a magnetic antenna pair) near the exit 
from an area to be secured. When the magnetic field in the interrogation zone 
is perturbed by an active tag, the system is alerted. The tags of interest here 
most often consist of a small strip of amorphous magnetic alloy. Magnetic tags 
change the characteristics of the field in the interrogation zone in frequency or 
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in tinze (O'Handley 1993). We describe each technique briefly. 
When a material in the presence of an external AC field shows a response 

at a frequency different from that of the drive field, it is referred to as harmonic 
(or subharmonic) generation. Harmonic tags multiply the drive frequency due 
to the nonlinear permeability of the tag. Materials for such tags must have very 
low coercivities and large, nonlinear permeabilities. Cobalt-rich, zero-mag- 
netostriction alloys are most often used for harmonic tags. The transmit 
antennas can operate in a continuous-wave mode at one frequency while 
listening continuously for the tag response at a different frequency. Thus the 
transmit signal is not a source of noise for the receive antenna. 

A novel type of harmonic tag is based on the concept of domain wall 
pinning. By annealing a strip of soft amorphous alloy in zero field, the domain 
walls are stabilized in their demagnetized locations (Schafer et al. 1991). After 
annealing, a small field is required to free or depin the walls. When this field 
threshold is exceeded, the walls snap to a new position with a resultant sharp 
change in magnetization. This pinned-wall behavior (Fig. 11.24) is the same 
effect in a small sample comprised of a few magnetic domains, as the 
well-known perminvar efect in larger multidomain samples. 

Some magnetic materials respond to a pulsed excitation field in a way that 
persists for a time after the excitation field is off. Resonant magnetoelastic tags 
operate in this way. When a magnetoelastic tag is excited by a primary 
magnetic field signal for a period of time, it stores magnetic energy in a coupled 
magnetoelastic mode. Once the excitation field is turned off, the magnetoelastic 
tag "rings down" in a characteristic way that allows its signal to be separated 
in time from the drive signal as well as being distinguished from the signals of 
most other possible magnetic objects passing through the interrogation zone. 
The requirement here is for a magnetically soft material having nonzero 
magnetostriction. Amorphous alloys are very suitable for these magnetoelastic 
resonant devices because of their very low acoustic losses, their high electrical 
resistivity (low eddy current losses), and the ability to tailor their magneto- 
striction to optimize magnetomechanical coupling (Chapter 7). 

( a )  Perminwar ( b )  Pinned- wall 

Figure 11.24 (a) Typical Perminvar loop; (b) pinned wall loop of a small amorphous 
ribbon (O'Handley 1993). 
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Far from being random in their atomic structure, amorphous metallic alloys 
are characterized by well-defined short-range order. The unusual magnetic 
behavior of Fe metalloid glasses was reviewed. First noted was the disparity 
between the high Curie temperature of pure a-Fe and the decreasing Curie 
temperature toward the low-metalloid-content limit of the glass forming range 
in amorphous Fe,,,-,B,. This is now understood to be a consequence of the 
dense packing in the glassy phase leading to increased antiferromagnetic 
exchange interaction with increasing Fe content. 

Rapidly solidified alloys exhibit a range of properties that challenge our 
ability to process and understand materials. Further, they offer a variety of new 
technical opportunities in diverse magnetic applications. Their fundamental 
magnetic properties can be understood as consequences of their electronic 
structure, which, in turn, reflects their short-range chemical and topological 
order. Short-range order is a consequence of the chemical interactions between 
the constituents of a material. 

Many of the technical advantages of metallic glasses stem from the fact that 
these materials are quenched from the melt; most impurities remain in 
metastable solid solution, there are no grain boundaries or precipitates, and 
little segregation, and a broad range of compositions can be fabricated by the 
same process, yielding a continuous spectrum of property values. The electrical 
resistivity is high for metallic alloys, suppressing eddy currents in AC applica- 
tions. Further, the exchange interaction tends to average out any local 
magnetic anisotropy, ensuring soft magnetic characteristics in many alloy 
compositions. Magnetostriction remains one of the major factors inhibiting 
easy magnetization in some metallic glasses. 

Many good reviews of amorphous alloys are available, covering a variety of 
physical properties. Moorjani and Coey (1984) present a wealth of information 
on metallic as well as on insulating disordered magnetic systems. Alben et aP. 
(6978) treat several ft~ndamental issues in amorphous ferromagnetism, notably 
the effects of random anisotropy on coercivity, spin wave demagnetization, and 
chemical versus structural disorder effects on the temperature dependence of 
magnetization. Petrakovskii (1981) gives a lucid survey of some fundamental 
issues related to the effects of amorphous structure on the magnetic state of a 
system. O'Handley [in Luborsky (1983)l covers a number of topics, such as 
charge transfer, bonding, and crystal field anisotropy, that emerge from the 
body of the data available on transition-metal base glasses. Wohlfarth [in 
Luborsky (1983)l examines many aspects of magnetism in light of itinerant 
electron theory. Durand (1983) focuses on the effects of structural disorder on 
transition metal amorphous alloys [in Beck and Giintherodt (1983)l and 
elsewhere (Hasegawa 1983) gives a thorough treatment of the local structure 
of amorphous alloys as seen by various local magnetic probes. Kaneyoshi [in 
Hasegawa (1983); see also Kanayoshi (1985)] reviews theoretical issues related 
to exchange and moment fluctuations as well as spin wave states. The 
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electronic structure of metallic glasses, as determined by various electron 
spectroscopies and compared with results of augmented spherical wave (ASW) 
calculations (Moruzzi et al. 1978) on model structures, is thoroughly reviewed 
by Oelhafen (Beck and Giintherodt 1983). Electronic structure, particularly for 
some superconducting alloy compositions, is reviewed by Johnson and Tenh- 
over (Hasegawa 1983). O'Handley (1987) reviews some issues of the physics of 
ferromagnetic amorphous alloys. 

Topics of a more applied nature are covered in several good reviews. 
Luborsky (1983) treats anisotropy, moment variations, coercivity, and losses. 
Hasegawa (1983) treats a number of basic properties that affect magnetic 
applications at low frequency. Soohoo reviews several issues important to the 
use of amorphous rare-earth-containing thin films in magnetic recording [in 
Hasegawa 1983)l. Fujimori (1983) treats magnetic anisotropy and specific 
applications are reviewed by Boll, Hiltzinger, and Warlimont [in Hasegawa 
(1983)l. 

APPENDIX: MAGNETISM IN QUASICRYSTALS 

Quasicrystals (QCs) are a class of noncrystalline materials first observed in the 
AlMn system (Shechtman et al., 1984). They show sharp x-ray diffraction peaks 
as do crystals, and the electron microdiffraction patterns can exhibit fivefold or 
other symmetry not allowed by classical crystallography. The diffraction peaks 
do not index to any known crystalline phase; instead they occur at intervals 
that are multiples of the "golden ratio" r = (1 + 45)/2 (Bancel et al. 1985). The 
scattering can be explained by structures of randomly assembled icosahedra 
(Shechtman and Blech 1985, Stephens and Goldman 1986) or by Penrose 
tilings composed of two rhombohedra1 bricks arranged so as to preserve 
long-range five-fold orientational order with translational quasiperiodicity 
rather than periodicity (Levine and Steinhardt, 1984, 1986). Another structural 
model for quasicrystals proposed by Guyot and Audier (1985) describes the 
Al-Mn QC structure as a quasiperiodic distortion of the a-Al-Mn-Si crystal 
structure. In this structure there are no central atoms present in the icosahedral 
units. All three of these models give diffraction patterns in good agreement with 
scattering studies. The actual decoration of the Penrose lattice or of the 
icosahedral glass structure with various species of the QC alloy is an important 
issue not adequately resolved yet. The QC composition (Ti, -,V,),Ni (Zhang 
et al. 1985) appears to have a Ni atom in the icosahedral site (Zhang et al. 
1986). 

Quasicrystals appear to be metastable phases clearly distinct from the 
amorphous state. Some metallic glasses devitrify directly to the crystalline state, 
while others can pass through the quasicrystalline (icosahedral) state before 
crystallizing (Lillienfeld et al. 1985; Poon et al. 1985). Much of the research on 
quasicrystals began as an effort to model the structure of amorphous materials 
(Nelson, 1983; Sadoc, 1980; Sethna, 1983; Levine and Steinhardt, 1984, 1986). 
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Qusasicrystals (QCs) appear to form at corngssitions where the preference 
for local icosahedral order is strong. This is the case for many Frank-Masper 
(1958) phases. A classic example is the a-Al-Mn-Si structure for which the 
MacKay icosahedron is the important building block (Guyot and Audier 
1985). One means of achieving the QC! structure rather than long-range 
crystalline order is by some form of nonequilibrium processing, such as melt 
spinning (Shechtman et aP. 1984), ion implantation (Budai and Aziz 19861, ion 
mixing by energy beam irradiation (Knapp et al. 19851, or solid state diffusion 
(Knapp et al. 1986). Thus, the QC state appears to be an intermediate phase 
between the glassy and crystalline states, in terms of both the degree of atomic 
order and the extent of nonequilibrium processing needed lo achieve that 
order. 

Symmetry requires (McHenry et al. 1986, O'Handley et al. 1991) that an 
atom in an icosahedral environment have fully degenerate d orbitals (no crystal 
field splitting, unlike the splitting in cubic symmetry sites; see Fig. 6.14) and 
any orbitals off symmetry would be split into a fourfold degenerate state and 
a threefold degenerate state, unlike the f splitting in cubic symmetry (2-2-3). 
Consequently the DOS should be highly peaked and unusual magnetic and 
other physical properties could result, depending on the position of these peaks 
relative to E, as well as on the bonding or antibonding nature of the states at 
EF. 

The high degree of symmetry in the icosahedral group implies small values 
of the magnetic anisotropy. This is evident from an expansion of anisotropy 
energy in harmonic functions such as in Eq. (6.4) where the first three lowest 
symmetry terms, k = 0,2,4, vanish for icosahedral symmetry. Furthermore, the 
multiplicity of symmetry axes in an icosahedral sample can be shown to give 
rise to a variety of new types of domain wall and to lead to easy magnetization 
by wall motion or rotation processes (McHenry et al. 1987a). 

Most reported quasicrystals (e.g., Al-Mn-(Si), AI-(Fe, Cr, U, Mo, Rub, 
Pd-U-Si, AP-Li-Mg-Cu, (Ti,-,%r,),Ni(x < 0.1), or (Al, Zn),,Mg,,) are not 
strongly magnetic. However, the possibility of studying magnetic systems in 
which a magnetic ion may reside in the high-symmetry icosahedral site has 
driven a search for strongly magnetic icosahedral phases (McHenry et al. 
1984). This search is supported by the observation of enhanced magnetic 
susceptibility in icosahedral (I) A1-Mn alloys relative to the orthorhombic 
A16Mn crystalline phase (Hauser et al. 1986, Youngquist et aP. 1986). While 
crystalline A1,Mn is nonmagnetic and has no Mn atom at the center of its 
McKay icosahedron, I Al-Mn alloys show the presence of a local moment that 
increases with the square of the Mn concentration (Hauser et al. 1986). 
However, Mossbauer studies (Swartzendruber et al. 1985) show an appreciable 
electric field gradient, that is, no icosahedral symmetry, for Fe atoms at the Mn 
sites in I A1-Mn. Also, NMR studies (Warren et al. 1985) have found no 
tendency toward stronger magnetism in QC Al-Mn relative to the crystalline 
state. Some results of a program to produce strongly magnetic icosahedral 
quasicrystals have appeared (O'Handley et al. 1981b, McHenry et al. 1987). 
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Quasicrystals continue to be a source of scientific curiosity but have yet to 
show properties that would recommend them for any significant applications. 
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MAGNETISM IN SMALL STRUCTURES: 
EXCHANGE COUPLING 
AND NANOCRYSTALS 

Composite materials in which one of the component microstructures has one, 
two, or three nanoscale dimensions allow new properties and functions to be 
realized that are not achievable in simpler materials. Nanostructured soft 
magnetic materials often are composed of single-domain crystalline particles in 
an amorphous matrix. The prototype of this class of materials is the nanocrys- 
talline magnet FeSiBNbCu (a-Fe,Si particles in a matrix of residual arnor- 
phous phase). In these materials, the properties can vary widely, depending on 
the size of the nanocrystalline particles as well as the dimensions and magnetic 
properties of the intervening amorphous matrix. A glimpse of this behavior was 
seen in Figure 9.69. There the coercivity was shown to increase by five orders 
of magnitude as amorphous Co-Nb-B was heat treated to grow crystalline 
Go,B particles of increasing size in a nonmagnetic Nb-B-rich matrix. A 
geometric classification (based on the number of nanometer-scale dimensions 
of one of the phases) and examples of nanostructured materials are given in 
Figure 12.1. Panels (a)  -(c) depict systems having three small dimensions: (a) 
granular solids in which one or both phases are magnetic, (b) quasigranular 
films made by heat treating multilayers of immiscible solids, and (c) nanog- 
rained layers grown on columnar films. Panels (d) and (e) illustrate systems 
having two small dimensions: (d) columnar thin films and engineered 
nanowires; (e) acicular particulate recording media. Panel ( f  represents four 
different types of thin-film structures whose unique properties arise from one 
nanoscale dimension: [Fe/Cr], multilayers, spin valves, spin switches, and 
spin-tunnel junction. Some aspects of these materials and, in some cases, the 
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Dimensions of nanometer scale 

3 small dimensions 

2 small dimensions 

1 small dimensions 

Material examples 

a. Composite nanostructured permanent 
magnets a-FelFe-Nd-B 

a. Granular GMR materials 
Fe/Cu, Fe-Ag, Co-Cu 

b. Quasi-granular GMR films 
[Fe-Ni/Ag], 

c. Thin film magnetic recording media: 
Co-Cr-Ta/Co-Cr 

a. Columnar structures 

a. Nanowires 

b. Particulate media 

Magnetic multilayers: [Fe/Cr], 

Spin valves: Co/Cu/Ni-Fe 

Spin switches: Ni-Fe/Cu/Ni-Fe 

Figure 12.1 Classification of nanostructured materials by the number of their small 
dimensions. 

devices based on them, are discussed in the remaining chapters. This chapter 
focuses mainly on magnetic size effects and their manifestations in nanocrys- 
talline magnetic materials. 

What are the interactions that make magnetism so sensitive to nanoscale 
structure in these materials? Some of the effects are simply magnetostatic. 
Others also involve as well the limitations that size puts on the ability of the 
magnetization to change its direction across the thin dimension of the structure 
(exchange energy and single-domain behavior). Also relevant is the effect of 
thermal energy in demagnetizing particles that are so small that the total 
energy defining their quiescent magnetization state (K,I/) is less than some 
multiple of k,T (superparamagnetism). The concept of random anisotropy, 
introduced in Chapter 11, is also relevant here in treating the variation in 



direction of magnetization from particle to particle. Another eEect observed 
only in samples with at least one small dimension is the coupling between spins 
on different sides of a physical interface (exchange coupling). Because this 
phenomenon is critical to understanding the magnetic behavior of nanocrys- 
talline materials and the behavior of many thin-film magnetic structures and 
devices (see Chapters 15-44), a thorough introduction to this topic will be 
given here. There are also transport effects in which the direction of spin in one 
magnetic layer is communicated across an interface by a current carrier to 
produce a spin-dependent scattering in another magnetic layer. This subject 
will be covered in Chapter 15 on transport properties in magnetic materials. 

These various competing interactions should ideally be treated by a mi- 
cromagnetic approach where all interactions are considered locally, simulta- 
neously and self-consistently. Here, the physical principles behind the 
ingredients of such calculations are introduced and the consequences of these 
interactions are illustrated with examples from nanostructured materials. 

For several reasons it is appropriate to cover the remarkable properties of 
nanostructural magnetic materials after Chapter 10 (soft magnetic materials) 
and Chapter 11 (amorphous magnetic materials), and prior to the chapter on 
permanent magnets (Chapter 13): 

1. Nanocrystalline magnetic materials were first made by devitrification of 
amorphous alloys and hence are a logical sequel to the chapter on 
amorphous magnetism. 

2. Depending on the size and composition of the nanocrystallites and the 
intergranular material, either soft or hard magnetic properties can be 
engineered. These properties can be very different from what would be 
expected based on the constituent magnetic elements present. In other 
words, the nanoscale structure can be as important in determining the 
properties of these materials as is the overall chemistry. 

3. Nanocrystalline materials form a conceptuaP and practical bridge be- 
tween soft, amorphous magnetic alloys and permanent magnets. This will 
be appreciated when the concept of random anisotropy is presented in 
the context of finely structured magnetic materials. 

4. Nanocrystalline materials provide an excellent context in which to review 
the relations between microstructure and properties in magnetic ma- 
terials prior to the following chapters on permanent magnets, transport 
properties, surface magnetism, and magnetic recording. 

12.1 REVIEW 

It is appropriate to begin with a review of some concepts that were discussed 
in earlier chapters and are key to understanding nanocrystalline behavior. 

For homogeneous magnetic particles, free of defects, the rotational coerciv- 
ity is governed by magnetic anisotropies (including shape). However, H,  can 
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be appreciably smaller if mobile domain walls are present. Because there are 
generally more domain walls in samples having a larger thinnest dimension, t, 
[Eq. (8.22)], it may be expected that H ,  cc l/tn (see Fig. 12.2 for spherical 
particles with r > r,). (This decrease in H, with increasing d assumes a constant 
pinning defect density.) 

12.1 .I Single-Domain Particles 

It was shown in Chapter 8 that below a certain thickness, a thin film should 
be composed of a single domain. Also, magnetic particles are comprised of a 
single domain if it costs more energy to create a domain wall than to support 
the magnetostatic energy of the single-domain state. Expressions were derived 
for the single-domain particle radius, r,, in the strong and weak anisotropy 
limits. The magnetization processes in such particles were reviewed in Chapter 
9. The coercivity of an assembly of identical, noninteracting, single-domain 
particles has been shown to go as H ,  z a/r2 - b [Eq. (9.16)] as the super- 
paramagnetic limit is approached from larger radius. Later in this chapter, a 
derivation will be given for the coercivity of randomly oriented, single-domain 
particles in an exchange-coupling matrix. With exchange coupling, it will be 
shown that H, M r-6! These forms are illustrated in Figure 12.2 in the range 
r, < r < r,. The presence of exchange coupling between particles reduces the 
coercivity by extending the range of the magnetization fluctuations in particles 
that switch more easily. Single-domain particles will be seen to play a central 
role in the history and present engineering of hard magnetic materials, 
including thin film magnetic recording media. 

(strong anisotropy) 

yr % (92uT)1'3 - rc = (weak anisotropy) 
POMS 

ro r~ 

Par t ic le  Size, r 

Figure 12.2 Overview of the size dependence of coercivity exhibited by magnetic 
particles: H, = 0 below the superparamagnetic (SP) particle size limit r,; single-domain 
behavior (SD) between r, and the single-domain limit, r,; and multidomain behavior 
(MD) for r > r,. In the SD regime, H, is given by Eq. (9.16) or for noninteracting 
particles, and it goes as r-6 for exchange-coupled SD particles. 



436 MAGNETISM IN SMALL STHUC-6hlWES 

Single-domain particlles can show a broad range of coercivities from zero to 
ZK,/Ms. The Bower limit applies when the particles become so small that 
thermal energy is sufficient to flip the magnetization direction over the energy 
barrier established by the uniaxial anisotropy of the particle. The upper limit 
is approached for particles close to the upper limit of the single-domain particle 
size. 

%la Chapter 8, the critical radius r ,  for superparamagnetic behavior was derived 
and in Chapter 9, the magnetization process of such particles was described. 
Their magnetization curve is like that of a paramagnet with a giant local 
moment. Thus M ( N )  saturates in achievable fields below the blocking tempera- 
ture and exhibits zero coercivity. When thermal relaxation is added to 
single-domain behavior for particles near the superparamagnetic limit, it was 
shown in Chapter 9 that M, z a - b/r3I2. 

These three ranges of particle behavior-multidomain (MD), single domain 
(SD), and superparamagnetic (SP)-are summarized in Figure 12.2. This 
figure should not be confused with a similar figure in Chapter 9, where the 
effects of defects (nonmagnetic and otherwise) on coercivity of a ferromagnetic 
matrix were described. It was found that H ,  increases linearly with defect size 
D in the range D < ddw, the width of a domain wall. The coercivity reaches a 
maximum when D/6,, GZ 1. Beyond that limit, H ,  may decrease as P/D or 
remain constant, depending on the nature of the interface between the defect 
and the matrix. That dependence of coercivity on defect size for a magnetic 
material is to be distinguished from the case considered here, namely, H,  for 
magnetic particles in a nonmagnetic matrix. The operative mechanisms in the 
two cases are entirely different. 

12.1 -3 Random Anisotropy 

In Chapter d l  it was shown that when spins in a continuous magnetic material 
experience a randomly oriented local magnetic anisotropy and are exchange- 
coupled to each other, two important effects occur. First, as long as the length 
scale of the microstructure is smaller than the exchange length, the magnetiz- 
ation experiences an anisotropy reduced from its local value Pi;,,, by exchange- 
averaging over the random local anisotropy: 

Second, the magnetization shows an orientational coherence over a length 
L = l,, that can range from the length scale of the random anisotropy 1 to 
much larger values (Figure 9.20) depending on the ratio of the exchange 
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stiffness A to the strength of the local anisotropyK,,,: 

In the present context, the random local anisotropy will be that of each 
single-domain nanoparticle. When nanocrystalline particles are part of a 
composite, their behavior depends not only on particle size and anisotropy but 
also on the properties of the intergranular phase. If the intergranular material 
is nonmagnetic, the nanocrystals behave essentially like single-domain par- 
ticles, interacting only by their weak magnetic dipole fields; the results of 
Section 9.2 apply. If the intergranular phase is magnetic, the behavior will be 
governed by Eqs. (12.1) and (12.2). Either hard or soft magnetism can result, 
depending on the strength of the magnetic anisotropy and the physical size of 
the particles as well as on the strength of the exchange coupling between them. 
Before the magnetic properties of nanocrystalline materials can be analyzed, it 
is necessary to understand exchange coupling in more detail. 

12.2 EXCHANGE COUPLING 

Exchange coupling refers to a preference for specific relative orientations of the 
moments of two different magnetic materials when they are in intimate contact 
with each other or are separated by a layer thin enough (< 60 A) to allow spin 
information to be communicated between the two materials. One material is 
generally magnetically softer and the other harder (or is antiferromagnetic). 
Exchange coupling is manifest as a displacement of the loop of the soft material 
along its field axis. The term exchange coupling does not apply to dipole 
coupling, namely, the longer-range mutual influence of the magnetic moments 
of two nearby materials due to their dipole fields. Such magnetostatic coupling 
can arise from interfacial charges due to roughness of the boundary between 
two materials. 

12.2.1 Ferromagnetic-Antiferromagnetic Exchange Coupling 

The ferromagnetic-antiferromagnetic (F/A) form of exchange coupling is 
considered first. In 1956 Meiklejohn and Bean observed that the M-H loops 
of fine cobalt particles (2r = 20 nm) could be displaced on the field axis by 
more than 1 kOe (Figure 12.3) if the particles were cooled in a magnetic field. 

This effect was traced to the presence of a thin layer of COO on the surface 
of the particles. COO is antiferromagnetic (A) with a Niel temperature of 
T, = - 3°C. Above this temperature COO is paramagnetic, and below T, the 
cobalt moments are ferromagnetically coupled in (111) planes with the 
moments in adjacent (1 11) planes antiparallel. The spins align along one of the 
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A layer 
F layer 

I .  

Figure 12.3 Schematic representation of effect of exchange coupling on M-H loop for 
a material with an antiferromagnetic (A) surface layer and a soft ferromagnetic (F) 
interior. The arrow in the A layer is not the axis along which its two sublattices are 
oppositely magnetized; it is the direction of the exchange field exerted by the A layer 
on the soft, F layer. Coercivity and exchange fields are defined on an easy-axis loop, 
left. The anisotropy field is defined on a hard-axis loop, right. 

<loo> directions in the rocksalt structure of this oxide. The Curie temperature 
of cobalt exceeds 1000°C. When the oxidized cobalt particles are cooled 
through TN in the presence of an external field, the COO antiferromagnetism 
gets "turned on" at TN in the presence of the magnetized Co. As a result, the 
magnetic moments in the COO chose an axis of magnetization that minimizes their 
energy of interaction with the Co moment across the interface. For T < TN, the 
cobalt magnetization, which for generality is identified here as M,, is now 
observed to be biased to the direction it had when the A layer was cooled 
through its Nkel temperature. This bias field (not the A magnetization axis) is 
represented by the arrow in the A layers in Figure 12.3. As long as the memory 
of this direction is not erased by heating above TN, the particle retains a 
preference for magnetization in that direction. A stronger negative field is 
required to demagnetize the sample than if it had been cooled in zero field. 
Meiklejohn and Bean referred to this field-displaced loop as exhibiting ex- 
change anisotropy, and it is said to result from an exchange coupling between 
the moments of the Co and COO. The vertical scale of the M-H loop of the 
sample refects only the cobalt magnetization because the antiferromagnetic 
COO is essentially unmagnetized by weak fields. 

Figure 12.3 shows the definitions of the coercivity and exchange field in 
systems exhibiting exchange anisotropy. When the field is applied in the same 
direction used during cooling (HII) the hysteresis loop is shifted toward the 
negative field direction by He,. The coercivity is half the width of the M-HI, 
loop at M = 0. No exchange shift in the loop is observed if the external field 
is applied orthogonal to the direction of the field present during cooling. The 
hard axis loop serves to define the anisotropy field Ha of the system. The 
coercivity vanishes in H , .  

Pin-Wei
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Meikeljohn and Bean also observed that the exchange field vanished if the 
thickness of the COO layer on the Co particles was below a certain threshold. 
Further, these thin oxide systems exhibited a rotational hysteresis, which would 
not be expected from a simple Stoner-Wohlfarth rotational magnetization 
model. How can this be understood? 

Initially, models of exchange coupled materials considered the spins to be 
either parallel or antiparallel to their neighbors across the interface. The actual 
microscopic moment arrangement for exchange-coupled F (soft, ferromagnetic) 
and A (antiferromagnetic) layers is now believed to resemble that illustrated in 
Figure 12.4. The exchange coupling across the interface is such that the moments 
in the A material lie on an axis that is orthogonal to the F moment at the time 
of cooling through 6, (Jungblut et al. 1994, 1995). This is the lower energy 
configuration because it is easier to cant the A moments into the direction of 
an orthogonal field than one that is parallel to the preferred A axis. That is, 
for an antiferromagnet, X, > x,,. This magnetic moment configuration gives 
rise to an exchange field parallel in the direction of the F moment during field 
cooling. 

Once the exchange coupling is established by field-cooling through T,, a 
preferred direction of magnetization (not just a preferred axis) exists at the 
interface. This can be appreciated as follows. On application of a weak or 
moderate field to an exchange-coupled system, the soft material will tend to 
follow the field subject to the coupling at the interface. It is important first to 
establish that for semiinfinite media on each side of the interface, most of the 
twist in magnetization caused by the field would occur in the soft material 
(Fig. 12.4, right). (This twist occurs over a length comparable to a domain wall 
thickness.) There are two reasons why the twist occurs mostly in the soft layer. 

Exchange Exchange 

Y 

Figure 12.4 Schematic representation of soft ferromagnetic (F) layer (y > 0) exchange 
coupled to an antiferromagnetic (AF) layer (y < 0). Left, direction of the spins near the 
interface between the A F  and F layers after cooling through NCel temperature of A F  
material. Right, effect on spins in soft material of a field applied opposite to the 
exchange field. 
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First, the magnetic anisotropy in the F Baycr is sma9B. Second, the external field 
exerts no net torque on the A moments because they sum to zero and are held 
to a particular crystallographic direction by a strong rnagnetocrystaPPine 
anisotropy. When the applied field is reduced, the energy stored in the twist 
(domain wall) causes M ,  to return to alignment with the hard material sooner 
than it would if there were no exchange coupling at the interface. The 
additional applied field energy needed to create an interfacial magnetization 
twist in the soft material shows up as a shifted M-W loop (toward negative H 
in the case shown here). 

If the thickness of the F material is less than the thickness of a domain wall 
or an exchange length, then it cannot support a magnetization twist. In this 
case the soft magnetization may respond to the field by storing energy in the 
exchange coupling at the interface or by twisting the A moments away from 
their preferred axis. Here, the model in Figure 12.5 applies. 

In this thin film regime, if the A material were not sufficiently thick, the 
exchange torque exerted on it at the interface with the soft magnetic compo- 
nent could cause the magnetic moments in the entire A Payer to flip to an 
orientation with lower total energy. The unidirectional symmetry of the 
exchange coupling would then be broken and uniaxial symmetry would 
remain. This can be seen in Figure 12.6 (Mauri et al. 1987) for permalloy films 
exchange coupled to the antiferromagnet, FeMn. Note that He,  vanishes for 
tFeMn < 50 A. 

To analyze this loss of exchange coupling, K ,  and K ,  are defined as the 
respective uniaxial anisotropies in the two layers of thickness t ,  and t,, and J 
is the exchange energy per unit area of interface coupling the two media. 

Figure 12-55 Above, the interfacial moment configuration in zero field. Below, left, the 
weak-antiferromagnet limit, moments of both films respond in unison to field. Below, 
right, in the strong-antiferromagnet limit, the A moments far from the interface 
maintain their orientation. 
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MnFe Thickness (i) 
Figure 12.6 Exchange field and coercivity as functions of FeMn thickness, after Mauri 
et al. (1987). 

In the weak-antiferrornagnet limit, KAtA << J ,  the F and A layers respond in 
unison to the field. This condition defines the A thickness range for which no 
exchange anisotropy is observed: 

For the FeMn system shown in Figure 12.6, t> w 50A. This suggests that 
J = 0.1 mJ/m2 if K ,  w 2 x lo4 mJ/m3. In this case, the moments in the A layer 
are pulled away from their preferred axis by their strong coupling to M ,  (Fig. 
12.6, lower left) and unidirectional anisotropy does not exist. The M - H  loop 
has a coercivity dictated by the harder (both processes must occur) of the two 
processes: coherent rotation of M ,  against its anisotropy K ,  

or rotation of the M A  against K A  by the interfacial torque (Fig. 12.5, lower, 
left): 
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Equation (12.4~~) suggests H ~ " " ' " ~  sz 1 OeS whereas Eq. (12~4b) indicates a 
coercivity of order 108 0 e .  In SD particles, Eq. (12.4b) would apply. The 
observed coercivity in the exchange-coupled FeMn/FeNi films is about 5 Oe. 
If the F film has a tendency to break up into domains, it can do so with little 
cost in energy because of its exchange coupling to the A layer, because A is 
weakly pinned. Magnetization reversal by wall motion will always be an easier 
process than either of these coherent rotation processes. Thus wall motion 
could be responsible for lowering the coercivity from its Eq. (12.4b) value in 
FeMn/NiFe films. 

On the other hand, in the strong-antiferrornagnet limit, K,L, >> J ,  when the 
soft film responds to a field, it causes an exchange twist in the A layer near the 
interface (Fig. 12.5, lower right). (Remember that t ,  < ddW, so a twist cannot 
be supported in the soft Payer. If, instead of generating a twist in the A layer, 
the exchange coupling were broken, then the unidirectional exchange coupling 
would be lost. Observation shows that it is not.) If the exchange coupling is 
established by cooling through TN with the F layer saturated, then the A layer 
is locked in a single domain state and the F layer will not demagnetize in zero 
applied field. The slightly larger coercivity observed in this exchange-coupled 
case (Fig. 12.5) is difficult to explain quantitatively because of its small 
magnitude. However, Eq. (d2.4b) for the weak antiferromagnet indicates that 
the full thickness of the A layer is responsible for the coercivity in that case. In 
the strong-antiferromagnet case of interest here, Figure 12.5, lower right, shows 
that only a thin layer of A near its interface with F is rotated to a high-energy 
configuration. Thus, the coercivity can be modeled in the case KAt,  > J as 

A where odw = (AKA)''' is the energy of a magnetization twist or domain wall in 
the antiferromagnet. It will be shown below that 6, is of order 1 nm. Choosing 
K ,  z lo4 J/m3 and M,t, = 0.02 A (2 x 1 V 3  emu/cm2), Eq. (12.5) gives the 
coercivity of 10 Oe observed in Figure 12.5. 

Mauri et al. (1987) derived an expression for the M-M loop of the soft film 
in the exchange-coupled regime ( t A  > t;). The free energy of the system in 
Figure 12.5, with an external field applied along the + z  direction, is given by 

IF -- - - 
Area 

M,Nt,  cos @ + K ,  t ,  sin20 - 

Here, the orientation of the magnetization in the soft film is defined by its angle 
with respect lo the + z  axis, 8. The soft magnetization M ,  is subject to an 
external field, H (a negative field is shown in Fig. 12.3), a uniaxial anisotropy 
with easy axis parallel to z,  and the exchange coupling favoring 0 = 0. 
(The exchange term accounts for the effects of all the energies in the A 
layers.) Minimization of this energy leads to the expression for the easy-axis 
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magnetization: 

There are stable solutions at 8 = 0 and .n corresponding to + M F .  The 
magnetization makes a transition between these two states at m = cos 8 = 0 for 

In other words, for ferromagnetic exchange coupling, the easy-axis loop is 
displaced to the left by He,  [cf. Eq. (12.3)]. This expression predicts that the 
exchange field should decrease for thicker F layers. Figure 12.7 (Mauri et al., 
1987) shows that this t i 1  dependence is observed for permalloy coupled to 
FeMn. These Hex data are fit with Eq. (12.8) for M ,  = 5 x lo9 A/m (500 
emu/cm3 and J = 0.075mJ/m2. The H ,  data in Figure 12.6 are described by 
Eq. (12.5) for ofw = 0.12 mJ/m2. 

Cain and Kryder (1988) have shown that Ha also varies almost as tg l  
(Fig. 12.7). This situation also can be modeled by writing the energy for the 

I I I I  I I I 
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Ni Fe Thickness ( A  1 

Figure 12.7 Log-log plot of exchange field (closed circles) and coercivity (open circles) 
versus NiFe thickness. Solid lines show inverse t ,  dependence [After Mauri et al., 
1987).] 
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hard-axis magnetization process. With the field along the x direction in Figure 
12.5, this gives 

F 
-- - -M,Ht,cos8 + ~ , t , c o s ~ 9  - J s i n e  (82.9) 
Area 

The zero-torque condition gives for the hard-axis magnetization process: 

cos 8 = m, = 
MF e~ H H E - -  

2K,t, + J Ha 

where 

The exchange energy had been estimated to be J z 0.1 rnJ/m2. Thus J > 2KFtF 
for t, < 10nm if K, = 5 x lQ3 J/m3. Only in this weak K,t, limit does H,  
come close to varying inversely with t, (see Fig. 12.8). For much thicker F 
layers, or generally 2K,t, > 9, KT, is predicted to become independent of t,. 

Perrnal loy / FeMn system 
8 

0 =Anisotropy I W,I - 
a =Exchange H,, 1 
A=Coerci\/ i ty I w,I 
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w 
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- 

0 I I 
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Figure 12.8 Anisotropy, exchange, and coercive fields as functions of permalloy 
thickness. The dotted line goes as l / t f .  [After Cain and Rryder (1988).] 
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Thus, several parameters are important in exchange coupling: the strength 
of the interface exchange, J, the anisotropy-thickness products of the two 
materials, and the magnetization-thickness product of the soft layer. 

Koon (1997) reported micromagnetic calculations on body-centered tetrag- 
onal, A/F exchange-coupled films sharing a (1 10) interface. His results show in 
more quantitative detail the implications of A/F exchange coupling. The results 
described here assume antiferromagnetic interactions across the interface as 
well as antiferromagnetic interactions in the A layer and ferromagnetic inter- 
actions in the soft layer. The calculations show first that far from the interface 
the equilibrium orientation of M, is orthogonal to the easy axis in the A layer: 
q5 = 90" (Fig. 12.9). Close to the interface the spin orientations are more 
complex. The F spins try to remain parallel to each other ( J ,  > 0) and 
orthogonal overall to the A axis while being antiparallel to their A nearest 
neighbors (half way across a body diagonal (J,,, < 0). Similarly, the A spins 
try to maintain their nearest-neighbor A coupling ( J ,  < 0) and remain orthog- 
onal to the overall F axis while being antiparallel to the F spins to which they 
couple. The incompatibility of these three requirements on each interface spin 
is called "frustration." It leads to a canting of the interface spins (q5 > 90") as 
they try to balance the competing interactions. The canting of the interface spin 
decays within 5 or 6 monolayers (MLs) of the interface. Koon obtained similar 
results for F exchange across the interface, but in that case the canting from 
4 = 90" is such as to favor 4 < 90" near the interface. 

Figure 12.10 shows one of the results of Koon's calculations illustrating the 
switching behavior of antiferromagnetically coupled A and F layers as func- 
tions of the A layer thickness, t,. These more thorough micromagnetic results 
confirm the simple model just described and add further details. For small t,, 
switching of the F layer is reversible and requires only the energy needed to 
rotate the A moments over the energy barrier between their uniaxial [OOl] 

Figure 12.9 Local-moment orientations in an antiferrornagnet (A) and ferromagnet 
(F) that share a [ l l O ]  plane across which antiferromagnetic exchange coupling exists. 
[Adapted from Koon (1997)l. 
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Figure 12.10 Energy per unit area of the exchange-coupled system in Figure 12.9 as a 
function of the angle 4 between the F moments and the [OOl] direction (the easy axis 
in the A layer) for different A layer thicknesses t,. [After Koon (1997).] 

anisotropy energy minima [see Eq. (12.4b)l. This behavior was observed by 
Mauri et al. below t ,  = 50A (Fig. 12.6). For t ,  >> 6,, the A domain wall 
thickness, application of a field rotates the F moments and stores energy in an 
A magnetization twist (antiferromagnetic domain wall) near the interface 
(Fig. 12.5, lower right). The A moments in the layer farthest from the interface 
are least affected by torque from the F moments. After removal of the applied 
field, the F moments spring back to their initial orientation 90" from [OOl] due 
to the energy stored in the A wall. This unidirectional behavior is not complete 
for intermediate values of t,K,; for t ,  not too large, the A magnetization can 
still be switched discontinuously as a result of the torque from the F moments 
at the interface. This switching behavior provides a reasonable description of 
the high-field loss that Meiklejohn and Bean noted as a characteristic of 
exchange coupling in many Co-COO samples. 

The calculated interfacial configuration shown in Figure 12.9 and Koon's 
results in Figure 12.10 explain many of the features of exchange coupling that 
had eluded earlier models (Malozemoff 1987) and provides a more solid 
foundation for the insights of the model due to Mauri et al. (1987). These 
include the following: 

1. Exchange coupling does not vanish but is strongest when the A layer 
closest to the interface is compensated as in Figure 12.9 (zero net spin). 

2. The effect of surface roughness is always to weaken exchange coupling. 

3. For small A layer thickness, t ,  c 6, z 9 M L ,  the exchange coupling is 
reversible and uniaxial rather than unidirectional. 

4. For thicker A layers, the rotation of the F moment involves a discontinu- 
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ous jump, hysteresis. This additional loss process for intermediate t ,  may 
explain the tendency for H,  to peak near the transition from uncoupled 
(t, < t>) to coupled behavior (Fig. 12.6). 

5. For tA >> tt",, the magnetization process of the F layer is unidirectional 
and reversible. 

6. The effective exchange coupling is much smaller than the magnitude of 
the microscopic exchange integral (used in primitive estimates of Hex) 
would indicate, because a domain wall is formed parallel to the interface 
allowing the F layer to reverse more easily. 

Despite the clear, intuitive picture this model gives of the structural 
phenomenology of F/A exchange coupling, uncertainties still exist concerning 
the strength of the exchange coupling (items 1, 2, and 6, listed above). A 
complementary microscopic model that addresses the strength of J from a 
statistical perspective has been described and supported with data by Takano 
et al. (1997). This model starts from an assumed Heisenberg exchange across 
an atomically smooth F/A interface (cf. Eq. 12.8): 

The parameters SF and S, are the spins in the F and A layers, respectively, ye, 
is their Heisenberg exchange (not to be confused with the phenomenological 
interfacial exchange energy density J ,  in Eq. 12.8) and n is their spacing. The 
challenge is to explain why the observed exchange fields are typically of order 
one percent of this Heisenberg exchange field, or equivalently, why JeX 
(energylarea) << BS, .SF/a2. Takano et al. studied the thermoremanent mo- 
ment (TRM) of CoO/MgO multilayers, which is due to uncompensated Co 
moments at the CoO/MgO interfaces. (These uncompensated spins select a 
direction close to their easy axis that minimizes their energy with respect to the 
direction of MF established by the applied field on cooling through the Net1 
temperature. See Fig. 12.9). The magnitude of the uncompensated interfacial 
spin moment shows the same temperature dependence as does the strength of 
the exchange coupling in permalloy/CoO bilayers. The COO grows coherently 
on MgO (both have the FCC rocksalt structure with lattice constants differing 
by about 1.5%: a = 0.427 and 0.421 nm, respectively). 

The magnitude of the TRM of the CoO/MgO multilayers was found to scale 
with the number of COO interfaces but remained independent of the COO layer 
thickness, indicating that it was due to uncompensated interfacial spins rather 
than those at internal defects such as grain boundaries. The thermoremanent 
cobalt moment appeared on cooling below 295 K and had a constant magni- 
tude from about 250K down to 50K (Fig. 12.11, upper panel). The TRM 
moment value at the plateau corresponded to approximately 1% of the total 
interfacial moment, that is the sum of the Co2+ moments in one monolayer. 
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Figure 12.11 Upper panel: Thermoremanent magnetization (TRM) as a function of 
temperature for [CoO/MgO] multilayers in field cooled (FC) and zero-field cooled 
(ZFC) states. Lower panel: exchange field versus temperature for NiFe/CoO bilayers 
having different COO layer thicknesses. After Takano et al. 1977. 

When the exchange coupling of the NiFe/CoO bilayer films was measured, 
it also showed the same temperature dependence: onset at 295 K and constant 
magnitude from about 250K to 50 K (Fig. 12.11, lower panel). Further, the 
exchange coupling data suggest that the density of uncompensated spins is 
proportional to the radius of curvature of the COO grains which in turn can 
be controlled by the COO layer thickness (Fig. 12.11, lower panel). Thus, 
He, oc (grain diameter)- ' was observed. 

Takano et al. made a statistical analysis of the number of uncompensated 
spins <N) on a surface inclined at an angle 0 to the ferromagnetically coupled 
(111) planes (Fig. 12.12). For an ideal stepped surface, < N )  = 0 for any 0. 
However, for rough surfaces typical of a small grain size, L < 10 nm, the model 
predicts N w 0.6 Lid,,,, so He, cc NIL2 cc L- l as observed. 



EXCHANGE COUPLING 449 

Figure 12.12 Schematic of COO surface with normal n having (111) parallel-spin 
planes inclined at an angle 8 to the physical surface. The easy axis of the COO is given 
by e. After Takano et al. 1997. 

Exchange fields were numerically calculated to range from 31 Oe to 107 Oe 
for grain size ranging from 48 nm to 1.2 nm. The experimentally observed grain 
diameter in the COO films, L = 12 nm, indicates Hex = 50 Oe, consistent with the 
observed value of 48 Oe. The strength of the exchange coupling varies inversely 
with the grain size. The focus of this model on uncompensated interfacial spins 
appears counter to the mechanism pictured in Figure 12.9. 

It has recently been shown (Gokenmeijer et al. 1997) that the exchange 
coupling between an antiferromagnet and a ferromagnet need not result from 
a nearest-neighbor exchange mechanism such as that pictured in Figure 12.9. 
They show that the exchange coupling between permalloy and COO drops off 
exponentially with the thickness of an intervening layer of Cu, Au, or Ag 
(Fig. 12.13): He = He, exp(-t/L) where L is a measure of the range of the 
exchange coupling. The effects of exchange coupling are still seen to be 
measurable above 5 nm of Ag. Further, they showed that the exchange 
coupling is unidirectional while the coercivity is uniaxial in the orientation of 
an applied field relative to the setting-field direction. However, neither Hex nor 
H, is a simple harmonic function; they both contain higher order terms, 
perhaps related to the rotational hysteresis that characterizes exchange coup- 
ling. Clearly, all the details of the mechanisms of exchange coupling are not yet 
understood. 

12.2.2 Ferromagnetic-Ferromagnetic Coupling 

Examples of F-A exchange coupling across a nonmagnetic layer were seen in 
Figure 12.13. A more complex dependence on spacer thickness is observed for 
F-F coupling (see Section 12.2.3). Of interest here are the consequences of 
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Figure 82.13 (a) Variation of the NiFe-COO exchange field and coupling strength 
with Ag thickness in manometers. The inset shows a semilogarithmic plot of this data. 
(b) Normalized exchange field versus spacer thickness for three different metals. The 
solid lines are fits to expq-t/L). [After Gijkenmeijer et al. (1997)l. 

exchange coupling on the spins near the interface between two ferromagnetic 
media. Exchange coupling across a ferromagnetic-ferromagnetic interface is 
assumed to arise from a direct, such as Heisenberg-like, - k y i j S i S , ,  exchange 
interaction, or from an indirect, RMKY-like (Section 5.6), exchange interaction. 

In Chapter 8, Section 8.4, the thickness of the twist, or pinned domain wall, 
near the interface of a single ferromagnetic material was considered. Two cases 
were identified. In one case, the spins rotate in the plane of the interface and, 
hence, the exchange length in each medium was given by the square root of the 
ratio of the exchange stiffness to the anisotropy in the ferromagnetic medium 
[Eq. (8.19a)I. In the other case, the anisotropy at the interface is assumed to 
cause a component of the magnetization to be perpendicular to the interface. 
Under such circumstances, the magnetostatic energy associated with the 
discontinuity of the magnetization across the interface combines additively 
with the anisotropy in the ferromagnetic medium to determine the exchange 
length [Eq. (8.19b)l. The results are showr, schematically in Figure 8.15. 
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Here, the interest is in the form and thickness of the twists or pinned domain 
walls that exist on either side of the interface between two exchange-coupled 
ferromagnetic materials. In each medium, the exchange length I,, is governed 
by the ratio of the exchange stiffness A to either the anisotropy K ,  or the 
anisotropy plus magnetostatic energy, K, + ~ X A M ; ,  depending on whether the 
magnetization twist is in the plane of the interface or perpendicular to it 
(Fig. 12.14). A mathematical derivation is not given here. Instead, it is 
suggested that the form of magnetization on either side of the interface is 
similar to the partial domain wall solutions given in Eqs. (8.19). The actual 
solution should satisfy continuity of the magnetization orientation and its first 
derivative (torque) across the interface. [It should be pointed out that the 
solutions leading to Eqs. (8.19) do not simultaneously satisfy continuity of both 
0(z) and aB(z)/dz across the interface.] 

When the magnetization at the interface has no perpendicular component, 
it is the anisotropy energy of the spins in each medium that governs the 
exchange length there: 

A(') 112 

M parallel to interface: I"" = (F)  i = medium 1,2 (12.13a) 

The spins in the stronger (weaker) anisotropy medium vary more abruptly 
(more gradually) from their orientation at the interface to the value they 
assume in the interior. The spin orientation at the interface will be biased 
toward that of the stronger anisotropy material. 

When there is a perpendicular component of magnetization at the interface, 
there will be an asymmetric magnetic charge distribution near the interface if 
the gradients of the magnetizations in the two media differ from each other 
[K:' # K?']. This charge distribution produces a magnetostatic field distribu- 
tion near the interface which will tend to equalize the forms of the magnetiz- 

Figure 12.14 Illustration of the two limiting cases important for determining the range 
of the effect of exchange coupling. Left, both media have easy magnetization axes 
parallel to the interface between them. Right, one of the media has a preferred direction 
of magnetization perpendicular to the interface. The range of the exchange twist in M 
is greater in the weak anisotropy medium. 
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ation distributions on either side of the interface. The mathematicali forms of 
these two lengths may be approximated as 

A(') 
M perpendicular to interface: 1::" = 

K:' f 2n AM: 
)'I2 (12.13b) 

The appropriate sign is that which tends to equalize the denominators in the 
exchange lengths of the two media. 

The parallel case (Fig. 12.14, left) is most frequently encountered. The 
perpendicular case (Fig. 12.12, right) would apply to exchange coupling 
between a perpendicularly magnetized film and a longitudinally magnetized 
one. 

Table 8.1 lists the magnitude of the magnetostatic energy, anisotropy energy, 
and the calculated exchange lengths for Fe, Co, and Ni interfaces. Note that 
for high-anisotropy materials, the parallel exchange length can be very small. 
This result was assumed in the previous section on F/A interfacial exchange; 
in the strong antiferromagnet case, a domain wall measuring about 5 or 
6 monolayers in thickness was found near the interface in the A layer in Koon's 
micromagnetic calculations. 

An important consequence of this result is that the exchange interaction, 
through the parameter l,,, has the effect of communicating the magnetization 
direction in one region over distances of several nanometers into another, 
exchange-coupled region. 

12.2.3 Qsclilatow Exchange Coupling 

Multilayers of rare-earth metals and yttrium were shown to exhibit an 
exchange coupling of the RE layers through the Y layers that oscillates in sign 
with the thickness of the Y layer (Erwin et al. 1986). Baibich et al. (1988) 
observed a very large field dependence to the resistance in [F'e/Cr], multi- 
layers, where N is the number of Fe/Cr bilayers (see Chapter 115). The iron 
layers are ferromagnetic and Cr layers, antiferromagnetic. They observed that 
adjacent iron layers are antiferromagnetically coupled to each other through 
the Cr layers with a strength that decreases with increasing Gr thickness over 
the range they investigated, 0.9-1.8 nm. This observation initiated extensive 
research into transition metal-noble metal multilayers. Parkin et al. (1990) 
observed that the Fe/Fe coupling oscillates smoothly between ferromagnetic 
and antiferromagnetic as the thickness of the spacer layer varies. Figure 12.15 
shows the Cr thickness dependence of the field needed to saturate [Fe/Cr], 
multilayers in a hard (110) in-plane direction. The large saturation field for 
10, 24, and 45 A of Cr implies strong antiferromagnetic coupling between the 
Fe (or Co) layers; a small saturation field implies ferromagnetic coupling 
between the Fe layers. 

Parkin et al. (1990) showed that the multilayer system [Co/Cu] also is 
characterized by an exchange coupling of the Co layers that oscillates from 
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Figure 12.15 Field needed to saturate the magnetization at 4.2 K versus Cr thickness 
for Si(111)/100 A Cr/[20 A Felt,, Cr],/SO A Cr, deposited at temperatures of 4OoC, 
N = 30 (triangle and square) and at 125'C, N = 20 (circle). The insert shows on an 
expanded field scale the oscillations in the thick Cr region [After Parkin (1990)l. 

antiferromagnetic to ferromagnetic as the thickness of the nonmagnetic Cu 
layer increases. The oscillation period is typically of order 1 nm and oscillations 
have been observed out to spacer thicknesses of 5 or 6 nm. 

This oscillating exchange coupling is beautifully illustrated by a series of 
experiments done by Unguris et al. (1991) using a wedge-shaped Cr layer on a 
single-crystal Fe whisker, capped with another Fe layer (Fig. 12.16, below). When 
the magnetic domain pattern in the top Fe film is imaged [this group used 
scanning electron microscopy with spin polarization analysis (SEMPA)], the 
pattern shown in Figure 12.17 is observed. The demagnetized Fe whisker substrate 
consists of two domains magnetized along the whisker length and separated by a 
180" domain wall. The iron film above each domain is exchange coupled through 
the Cr layer to the magnetization in the whisker below. For zero Cr thickness the 
Fe film is magnetized parallel to the underlying domain. As t,, increases, the 
exchange coupling is directly observed to oscillate to antiferromagnetic and back 
to ferromagnetic with a period corresponding to 11 Cr atomic layers. 

The physical mechanism responsible for this long-range oscillation in 
exchange coupling in two-dimensional magnetic nanostructures is believed to 
be related to the spin polarization of conduction electrons as described by the 
RKKY model (Chapter 5). It can also be explained in terms of the symmetry 
of the electronic wavefunction trapped in the quantum well defined by the 
layered structure. (Wavefunction spatial symmetry is necessarily connected to 
its spin symmetry by the Pauli exclusion principle, which demands that the 
total wavefunction be antisymmetric; Chapter 4). 

No oscillations have yet been observed in F/A exchange coupling 
(Section 12.2.1). 
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Figure 12.16 Below, structure of Fe film/Cr wedge/Fe whisker illustrating the Cr 
thickness dependence of FeFe exchange-whisker has simple domain pattern illus- 
trated, and magnetic domain pattern in Fe overlay is also depicted; above, SEMPA 
image of domain pattern generated from top Fe film (Unguris et al. 1991). 
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Figure 12.17 Application of the random anisotropy model to a nanocrystalline 
material where the nanocrystal anisotropy is greater than the anisotropy of the 
amorphous intergranular layer. The weak nanocrystalline anisotropy is described by 
Fig. 11.12. 
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12.2.4 Random Anisotropy in Nanostructured Materials 

The preceding sections have described how exchange coupling, either F-A or F-F, 
can exist between two distinct materials and in both cases can operate over 
distances of several nanometers of intervening nonmagnetic material. The 
implications of such interactions for nanostructured materials are very important. 
The spins in magnetic particles or layers of different materials can be coupled with 
different strengths or even different signs depending on the nature of their exchange 
interaction and the thickness and properties of the material between them. 

At the beginning of this chapter, the concept of random anisotropy in 
continuous magnetic systems such as amorphous alloys was reviewed. It is now 
illustrated how interparticle exchange and random anisotropy combine to 
affect the magnetic properties of discrete magnetic systems such as nanocrys- 
talline alloys. In the random anisotropy situation, the effective anisotropy is 
reduced by averaging K,,, over the exchange length of the magnetic moments, 
Eq. (12.1). In nanocrystalline materials, K,,, applies over the entire nanocrystal 
volume, and hence the appropriate length scale for the random anisotropy 
variation 1 is given by the thickness of the interparticle layer. The variation in 
magnetization direction occurs over the intergranular material between the 
particle surfaces if K,,, is strong compared to the anisotropy of the intergranu- 
lar, amorphous matrix K,, (Fig. 12.17), or over a larger length if K,,, is 
comparable to K,, (Fig. 11.13). 

Herzer (1993) suggested that it is the average anisotropy of a nanocrystalline 
material, ( K ) ,  and not the local anisotropy K,,,, that should appear in the 
expression for the exchange length, Eqs. (12.13a) or (12.13b). A reason for this 
is that the exchange length is defined largely in the amorphous matrix between 
the nanocrystalline particles, where the direction of M changes most, not in the 
interior of the particles where K,,, is uniform (Fig. 12.17). By eliminating the 
exchange length between Eqs. (12.13a) and Eq. (12.2), Herzer (1989) found that 
the exchange-averaged anisotropy of a nanostructured material [(Eq. 11.4)], 
which controls the technical properties and in particular the coercivity, scales 
as the sixth power of I, the thickness of the interparticle layer: 

Because coercivity is limited by the relation, H,  d 2 ( K ) / M s ,  nanostructural 
materials may show a range of coercivities controlled by the sixth-power 
dependence on microstructure length scale. The sixth-power dependence fits 
very well the steep rise in coercivity first reported in a nanostructured system 
with variable length scale (Fig. 9.19). There the steep line goes as D6; assuming 
1 cc D, the data are consistent with 16. Thus nanostructured materials may show 
coercivities far lower than a microcrystalline sample of the same phase 
depending on the scale 1 of the nanostructure. 
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Nanocrystalline alloys are comprised primarily of crystalline grains having at 
least one dimension on the order of a few nanometers. Each magnetic 
nanocrystallite is a single-domain particle that may or may not be exchange 
coupled to other nanocrystallites. Thus such materials provide an ideal context 
in which to demonstrate the principles of magnetism in small structures. 

12.3.1 Processing sf Magnetic Nansstructures 

Wanocrystalline alloys can be fabricated by quenching certain alloy composi- 
tions from the melt at a rate insuficient to achieve a homogeneous noncrystal- 
line structure. Fine-grain structures may result from the large undercooling and 
kinetically frustrated grain growth. Alternatively, nanocrystalline materials 
may be made by heat-treating an amorphous alloy precursor. Amorphous 
alloys inherently have a uniform distribution of constituent elements, a 
condition suitable for the formation of nanocrystalline alloys. Elements are 
added to the glass-forming alloy to promote massive nucleation (insoluble 
species such as CU) and other elements are added to inhibit grain growth 
(stable, refractory species such as Nb or TaC). 

The major volume fraction of nanocrystalline alloys is a random dis- 
tribution of crystallites having dimensions of order 2-40 nm. These crystallites 
are nucleated and grown from the amorphous phase, rejecting insoluble species 
during the growth process. The residual amorphous phase therefore 
has a chemistry different from that of the parent amorphous alloy. A widely 
studied nanocrystal-forming amorphous alloy has nominal chemistry 
Fe,,,,Cu,Nb,Si,,~,B,. The presence of Cu, insoluble in Fe, promotes massive 
nucleation, and the Nb retards grain growth. The nanocrystalline phase in 
these alloys is a-Fe,Si (B2 if disordered, DO, if ordered), which occupies some 
70-80 ~01%.  The amorphous grain boundary phase in the fully mature 
nanocrystalline alloy has a thickness of about 1 nm. 

Two-dimensional films and multilayers, sometimes with nanoscale pattern- 
ing in the film plane, can also be considered as nanostructured magnetic 
systems. Thin-film microfabrication techniques, including sputter deposition, 
electrodeposition, metal-organic chemical vapor deposition, and electron- 
beam evaporation/condensation, are used. 

12.3.2 Examples of Nanocrystaliine Alilegys 

Example 12.1: Co-Nb-B The amorphous Co-Nb-B system shows near-zero 
magnetostriction and relatively strong magnetization, combined with good 
mechanical strength and corrosion resistance. 

An early example of the effects of nanocrystalline structure on magnetic 
properties was achieved in amorphous Co-Nb-B subjected to various anneal- 
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ing schedules (Q'Handley et al. 1985). Figure 9.19 shows the coercivity of this 
alloy in various stages of devitrification corresponding to various nanostruc- 
ture length scales. The size scale of the nanocrystallites was determined from 
TEM studies. It is difficult to establish the size dependence of H, below the 
peak because H, rises so sharply. However, the data are consistent with the l6 
power law [(Eq. 12.14)] derived by Herzer (1989). The falloff in H ,  above the 
peak is more gradual, consistent with the 1/D behavior predicted for "fuzzy" 
defect of sizes greater than the domain wall width. Herzer has verified the l6 
dependence in a variety of other nanostructures (Herzer 1990). 

In addition to having a strong impact on DC coercivity as illustrated above, 
nanocrystalline precipitates can also be used to enhance AC performance of 
otherwise amorphous alloys. Datta et al. (1882) reported that the high 
frequency losses of Fe-rich amorphous metallic alloys could be reduced by a 
mild heat treatment that produced a few volume percent of primary, a-Fe 
crystallites measuring about 100nm in diameter. The low volume density of 
these large nanocrystalline particles precludes their magnetic interactions other 
than with the amorphous matrix. In this material they serve to nucleate 
domain walls in the amorphous matrix by virtue of the magnetization 
discontinuity at their interface. The increase in the number of domain walls 
greatly greduces the AC loss (Chapter 9). 

Example 12.2: Fe-B-Si-Nb-Cu Iron-rich amorphous and nanocrystalline 
alloys generally show larger magnetization than those based on Co and much 
greater than those containing Ni. However, iron-rich amorphous alloys gen- 
erally have fairly large magnetostriction, limiting their permeability. Formation 
of a nanocrystalline iron-rich alloy can lead to a dramatic reduction in 
magnetostriction, thus favoring easy magnetization. 

The prototype iron-rich nanocrystalline magnetic alloy is Fe,,Si,,B,- 
Cu,Nb3 (Yoshizawa et al. 1988). The Cu and Nb are added to what is 
otherwise a common glass-forming composition in order to enhance nucleation 
(Kataoka et al. 1989, Hono et al. 1992) and to retard growth of those nuclei, 
respectively. Annealing of the parent amorphous phase (typically at 550°C for 
60min) results in nucleation of a-Fe3Si in the vicinity of local Cu concentra- 
tions. Growth of a-Fe3Si is sluggish, inhibited by Nb buildup at its grain 
boundaries. The amorphous intergranular phase is enriched in Nb and hence 
has a lower Curie temperature than do the Fe3Si nanocrystals. 

Yoshizawa et al. (1988) report a grain size of 10-15 nm for the nanocrystal- 
line alloys and attractive soft magnetic properties including coercivities in the 
range of 0.01 Qe, 4zMS z 10-12 kG, and permeabilities of order lo5. The 
strong saturation magnetization is a result of rejection of moment-suppressing 
Nb from the Fe3Si nanocrystals. Yoshizawa also observed that the magnetos- 
triction of the nanocrystalline alloy is sharply reduced (from 1, = 20 x to 
3 x 10- 6, on annealing. 

These properties can now be understood in terms of Eq. (12.14). The local 
magnetic anisotropy strength of a-Fe,Si is of order 8 x 10, erg/cm3, about 
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Figure 12-18 Schematic microstructure of nanocrystalline alloy, FeBSiNbCu. 

20% of that of a-Fe. Hence (K) is of order 50 erg/cm3, which implies an upper 
limit to the coercivity of N, FZ 0.1 Oe, in fair agreement with that observed. 

The fact that the intergranular amorphous phase acts as an exchange 
coupling medium between the single-domain Fe3Si particles is strongly in- 
dicated by experiments of Skorvanek and O'Handley (1995). They studied the 
effects of variations in Nb content on magnetic properties. Nb has a strong 
suppressing effect on ferromagnetism and hence excessive Nb buildup in the 
intergranular phase can lead to a breakdown of the exchange coupling between 
the Fe,Si nanocrystals (Fig. 12.68). With 6% Nb in the starting alloy, the T, 
of the amorphous phase is reduced so that the magnetic properties of the SD 
Fe,Si particles can be observed in the exchange coupled T < T, (amorphous) 
and decoupled T >. T, (amorphous) states (Fig. 12.19). The peak in coercivity 
at the decoupling temperature may have an origin similar to that at the 
decoupling thickness in Figure 12.6; that is, as the exchange coupling weakens, 

Temperature 

Figone 112.19 Schematic summary of the results of measurements on nanocrystalline 
FeBSiNbCu alloys having increased Nb contents (Skorvanek et al. 1995). 
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the particles no longer switch in unison for the entire magnetization cycle. 
Discontinuous response for some particles generates hysteresis in the system. 
The vanishing of H ,  for T, (amorphous) < T < T, (a-Fe,Si) reflects the 
superparamagnetic behavior of these SD particles. 

Example 12.3: (Fe, Co),,M,C,,(M=Ta, Hf, Zr, Nb,. . .) These thin-film alloys 
offer strong magnetization density and the possibility of low magnetostriction 
in the nanocrystalline form, as do certain other iron-rich alloys. The inclusion 
of refractory metals increases the strength, stability, and corrosion resistance of 
these alloys. 

Hasegawa et al. (1991, 1993) and Hasegawa and Saito (1989) made use of 
spinodal decomposition in metastable amorphous transition metal carbon 
alloys (Taylor, 1989) to form nanocrystalline alloys of the general formula 
(Fe, Co),,Ta,C,,. Annealing at 550°C for 20 min results in primary crystalli- 
zation of a-Fe (or a-FeCo) particles measuring 5-10nm in diameter and 
dispersed transition metal carbide nanocrystals (generally at triple junctions; 
see Fig. 12.20). The grain size of the carbide nancrystals is 1-4 nm. In optimally 
prepared materials, there is no evidence of a residual amorphous phase 
between the primary nanocrystals as there is for the FeSiBNbCu nanocrystal- 
line system. Hence, the primary nanocrystals share grain boundaries, making 
grain-to-grain exchange coupling stronger. The softest magnetic properties are 
obtained for the smallest nanocrystalline grain sizes. 

In these alloys the stable carbide grain boundary phase inhibits grain 
growth just as Nb does in Fe-B-Si-Cu-Nb. 

Because of the significant tantalum concentration in these alloy systems, the 
parent amorphous phase is only weakly magnetic. On annealing, the appear- 
ance of primary Fe or Co results in a significant increase in magnetization (Fig. 
12.21). The change in magnetization has been taken as a measure of the 
fraction x of amorphous material transformed and was shown to follow 
Johnson-Mehl-Avrami kinetics very well for the Fe-Ta-C system (Fig. 12.22). 

Hasegawa et al. (1993) studied the compositional dependence of various 
properties of the carbide-dispersed nanostructured materials and determined 
that the structures and magnetic performance depend on composition in a way 

Ta carbide 

Figure 12.20 Schematic of microstructure in nanostructured magnetic materials based 
on tantalum carbide precipitation. 
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Figure 12.21 Annealing temperature dependence of saturation magnetization M, 
measured at room temperature; annealing time at each temperature is 1.2 x lo3 s 
(Hasegawa et al. 1993). 

consistent with the exchange-coupled model described in Section 12.2. Too 
much Fe results in larger nanocrystalline grains and loss of the exchange- 
averaging effect described by Eq. (11.4). Excessive Ta concentration leads to 
the decoupling of the Fe nanocrystals because an amorphous nonmagnetic 
intergranular material, rich in Ta, appears. Grain decoupling brings an increase 
in H,. Excessive C results in the formation of BCT Fe,C, which has a much 

Fraction transformed; x =I-exp(-ktn) 
Activation energy 
for crystallization: 

Q+ =330k~.mol-' 

Time, t (s) 

Figure 12.22 Johnson-Mehl-Avrami plots of crystallization of ferromagnetic phases 
in Fe8,.,Ta8~,C,,,, films; activation energy Q was obtained by an Arrhenius plot of the 
time to 50% crystallization (Hasegawa et al. 1993). 
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greater magnetic anisotropy than the primary BCC phase. Too much 
Ta and C in combination gives finer Fe nanocrystals but results in 
a volume fraction of carbide phase large enough to cause the Fe grains 
to be decoupled. 

It is important to note that zero magnetostriction can be achieved in 
iron-rich, carbide-dispersed alloys by nanostructuring. In nanocrystalline 
alloys, the sum of the volume-weighted magnetostrictions of the nanocrystal- 
line grain phase and of the amorphous grain boundary phase can result in a 
net zero magnetostriction even when the starting amorphous alloy shows 
strong magnetostriction. Figure 12.23 shows the evolution of magnetostriction 
from amorphous Fe8,.,Ta8,3C,,., (A, x + 2.5 x through various an- 
nealing temperatures to 1, x 0 for 20 min at 870°C (Hasegawa et al. 1993). The 
positive magnetostriction of the residual amorphous phase is balanced by the 
negative magnetostriction of the growing a-Fe nanocrystalline phase. In the 
Fe-Cu-Nb-B-Si nanocrystalline system, the a-Fe3Si nanocrystals have 1, < 0 
and similarly serve to reduce the magnetostriction from that of the parent 
amorphous phase. This absence of magnetostriction makes such nanocrystal- 
line alloys attractive in numerous soft magnetic applications, including high- 
frequency electronic components. Along with the approach to zero magnetos- 
triction, the amorphous -* nanocrystalline transformation also results in in- 
creased magnetic permeability, making nanocrystalline alloys even more 
attractive in soft magnetic applications. 

In these carbide-based nanocrystalline alloys, Ta can be replaced by other 
species that have low solubility in iron and that are strong carbide formers, 
such as Hf, Nb, and Zr. Nanostructures based on Ta or Hf show superior 
thermal stability, and those based on Zr or on Hf show superior saturation 
induction. Extensive studies were done, therefore, on Hf-based systems. 

I I t I I I 1 
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Figure 12.23 Annealing temperature dependence of magnetostriction 1, for Fe,,,,- 
Ta,.,C,,,, films; annealing time at each temperature, 1.2 x lo3 s (Hasegawa et al. 1993). 
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Figure 12-24 Schematic s f  cross section of Fe/Fe-HfC multilayers (Hasegawa et al. 
1993). 

Bn an effort to increase the saturation induction of these versatile alloys, 
Hasegawa et al. (1993) added Co to the Fe-HEC system and achieved 
a saturation induction over 18 kG while retaining good, soft magnetic proper- 
ties. Higher saturation indication (20 k 6 )  and good properties were also 
obtained in novel multilayered nanostructures (Hasegawa et al. 1991), such as 
Fe/Fe-Hf-C (Fig. 12.24). 

Two other classes of magnetic nanocrystalline materials show potential for 
increased the saturation flux density. Alloys of the type Fe8,Zr,B4Cu, (Suzuki 
et al. 1991) crystallize to high-magnetization a-Fe nanocrystals rather than 
a-Fe,Si nanocrystals. Willard et al. (6998) have succeeded in making bulk 
a-(FeCo) phase nanocrystalline alloys based on Fe,4C04,Zr,B4Cu, and show- 
ing saturation flux densities in excess of 20 k 6  and permeabilities of order 
2000-4000. 

Example 12.41. CoCrTa-(Pt) Recording Media CoCr alloys form the HCP 
phase below 18% Cr, and exhibit strong magnetic anisotropy with high 
coercivity. They play a key role in magnetic recording media. Modern thin-film 
recording media (see Chapter 17) are designed to meet several performance 
criteria. They must have a large enough coercivity that they do not self 
demagnetize. They must remain sufficiently magnetized in the absence of an 
external field to produce a detectable signal. The grain size must be small 
enough that typically 103 grains constitute a recorded bit (measuring approxi- 
mately 1.5 ,urn x 0.15 ,urn x 30 nm thick). This ensures low statistical noise at 
the transition between bits. Finally, the grains must be magnetically isolated 
from each other (i.e., minimal exchange coupling, unlike the soft magnetic cases 
described above) so that a magnetic transition (bit) is stable (high KT3 and its 
edges are sharply defined (low noise). 

These criteria are met in CoCr alloys doped with Ta or Pt. The Co-Cr-Pt 
film is sputter deposited on a seed layer of nonmagnetic Co-Cr that grows in 
a columnar morphology (Fig. 12.25). The Co-Cr-(Pt, Ta) grows in the HCP 
structure with its easy c axis in the plane of the film. 

The magnetic film is typically 30nm thick with grains of about the same 
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Figure 12.25 Representation of thin-film magnetic recording medium based on CoCr/ 
Ta deposited on CoCr. 

size. The Pt or Ta additions retard grain growth and promote segregation of 
nonmagnetic refractory metals and oxides to the grain boundaries. More will 
be said about these materials in Chapter 17. 

Example 12.5: Nanostructured Permanent Magnets High-energy permanent 
magnets derive their utility from the large magnetic fields they produce in the 
face of opposing fields (Chapter 13). Their ability to remain magnetized in their 
own demagnetizing field is a result of their large coercivity. Recent advances in 
Nd-Fe-B permanent magnets (see Chapter 13) have led to record energy 
product of order 50 x 106 G -  Oe. Achievable B, values are limited by the 
saturation induction, 16 kG, of the Nd,Fe,,B phase. The large anisotropy 
energy of the 2-14-1 phase provides more than adequate intrinsic coercivity, 
,H,, over 20 kOe in some cases. 

The next phase of improvement in these materials may come from increases 
in B, by exchange-coupling the high-anisotropy Nd,Fe14B, grains to a 
larger-magnetization a-Fe intergranular phase. Improvements in energy prod- 
uct can be realized by making nanostructured composites of fine (20-40-nm) 
Nd,Fe14Bl grains separated by a thin layer (5-10nm) of a-Fe (Fig. 12.26). 
However, the particles must not be exchange coupled to each other to the 
extent that they switch cooperatively and reduce H,  (as shown in Figure 12.19 
when the intergranular, amorphous material becomes magnetic on cooling 
through its Curie temperature). 

While a-Fe has a saturation induction of order 22 kG, it has only a weak 
magnetic anisotropy and will not remain magnetized in a fixed direction in the 
face of fields of any significant magnitude. When a-Fe is in contact with 
Nd,Fe14B grains, the Fe magnetization may be exchange-coupled to that of 
the magnetically hard nanocrystalline grain; the coupling tends to hold the Fe 
moments parallel to those of the nearest grain over an exchange length of order 
10 nm (Table 12.1 and Figure 12.27). In this system, the intergranular Fe that 
is exchange coupled to the Fe-Nd-B nanostructured grains is less likely to 
result in soft magnetic behavior than exchange coupling does in the cases 
considered in Sections 3.2.1-3.2.3, because of the strength of the local (grain) 
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Figure 12.26 Left, schematic of 3D nanostructured composites; right, B-H loop of 
NdFeB (fine) compared with that for an exchange-coupled a-Fe/NdFeB magnet (bold). 

anisotropy. In the present case the random anisotropy of the nanocrystals is 
approximately 107 erg/cm3, so a twist in magnetization from grain to grain 
occurs in the Fe intergranular material if it is thicker than about 20 nm. 

Figure 12.28 shows the results of one-dimensional (ID) model calculations 
for Nd,Fe,,B coated with a layer of a-Fe. The results show that large particles 
coated with 5 nm of a-Fe will experience no useful increase in average magnetic 
induction, B,,, = (thBh + tFeBF,)/(th + tFe) because the surface layer is a small 
volume fraction of the material. Here B, and BFe are the flux densities of the 
hard, Nd,Fe14Bl, phase and a-Fe, while t, and t,, are their thicknesses, 
respectively. However, if the Nd,Fe14B grains can be refined to nanometer 
dimensions, t, < 200 L$, then 50 L$ of a-Fe can have a significant impact on the 
magnetization (Figs. 12.28). The effect of the a-Fe layer is obviously greater in 
a three-dimensional (3D) nanostructure because there the intergranular a-Fe 
is a larger volume fraction of the composite. 

TABLE 12.1 Magnetostatic and Anisotropy Energy Densities for Fe, Co, and Ni and 
Exchange Lengths Calculated from Eqs. 12-13" 

~ K A M , ~  Ku lex (nm) 4, (nm) 
(10' J/m3) (lo3 J/m3) Parallel Perpendicular 

" A  = lo-" J/m(10-6erg/cm) is used in all cases. AM, is the difference in magnetization across 
the interface; the values given here assume AM, = Ms.  



Figure 12.27 Planar model of exchange coupling between soft Fe and hard Nd2Fe,,B. 
When the layer adjacent to the permanent magnet grains is thinner than the exchange 
length, the iron magnetization adds to that of the hard magnet (left). When the iron 
thickness is greater than l,,, no additional moment enhancement is achieved (right). 

The concept of using exchange coupling to enhance the energy product of 
fine-grained, two-phase permanent magnets was first described by Kneller and 
Hawig (1991). It has been shown to work for a-Fe/Nd,Fe,,B by 
Withanawasam et al. (1994) who achieved Nd,Fe,,B grain sizes of approxi- 
mately 30 nm and an a-Fe intergranular phase by heat treatment of melt-spun 
material. Significant contributions to micromagnetic modeling of such compos- 
ite magnets have been made by Schrefl and Fischer (1994) and Skomski (1994). 

Example 12.6: Nanotubes and Nanowires Reference was made in Figure 12.1 
to nanowires. Essentially these structures are made by creating nanoscale holes 

Figure 12.28 Calculated enhancement of magnetization in a-Fe/Nd2Fe,,B nanocom- 
posite films when Fe thickness is comparable to the exchange length (O'Handley, 
unpublished). 



in polymer films and filling them by ellectrodcposition with a magnetic  material 
(Piraux et al. 1994.; Blonde1 et al. 1994). Hn these cases, the pores were filled 
with alternating layers of magnetic metals and noble metals. This was done to 
create multilayered magnetic materials in which the current flows across all 
interfaces rather than parallel to the interfaces. Pt will be seen in Chapter 15, 
on transport in magnetic materials, that this '"current perpendicular to the 
plane" geometry is important for achieving strong magnetic scattering. This 
new class of nanostructured magnetic materials holds potential for other novel 
magnetic effects associated with the presence of magnetically isolated columns. 

62.4 SUMMARY 

Exchange coupling between dissimilar magnetic particles or layers, in contact 
or separated by a suitable spacer layer of a few nanometers, can give rise to 
new phenomena. While magnetic exchange is an inherently atom-scale phe- 
nomenon, it has longer-range consequences because it can constrain magnetic 
moments to be parallel over a length scale of several nanometers. In particular, 
when exchange coupling operates in the presence of a random anisotropy the 
technical magnetic properties, limited by the exchange-averaged anisotropy 
< K ) ,  depend on the length scale of the random anisotropy to the sixth power. 

Nonmagnetic nanostructured materials appear to have no mechanisms 
analogous to exchange coupling, except perhaps their long-range stress fields, 
that introduces a new characteristic length scale to material properties. The 
presence of the magnetic exchange interaction renders nanostructured magnet- 
ic materials versatile compared to less complex magnetic materials and 
distinguishes them from nonmagnetic nanostructured materials. 

PROBLEM 

12.1 Consider a magnetic thin film of dimensions L W t (length, width, 
thickness) that is oxidized so as to form a hard magnetic layer on its 
exposed surface. Assume that the thickness of this hard layer is negligible 
compared to t and that the magnetizations are exchange-coupled across 
the hard-soft interface. The hard layer is saturated by a strong field in 
the positive direction. At N = 0, the hard layer holds the magnetization 
of the film in a saturated state: M ,  = Ms. As the field is increased in the 
negative direction, a 180" domain wall moves across the width of the 
film and creates in its wake a static 180" twist in the magnetization at 
the interface between the soft and hard materials. Write a simple 
equation that balances the force on the wall due to the field with that 
due to the creation of the interfacial twist. Graph the result and discuss. 
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CHAPTER 13 

HARD MAGNETIC MAPERIALS 

13.1 INTRODUCTION 

Permanent magnets are used to produce strong fields without having to apply 
a current to a coil. Hence they should exhibit a strong net magnetization (they 
may be either ferromagnetic or ferrimagnetic). It is also important that the 
magnetization be stable in the presence of external fields. These two conditions 
indicate that the B-H loop should have large values of remanent induction B, 
and coercivity H,, respectively. Permanent magnets have coercivities in the 
range of lo4 to lo6 A/m. 

Permanent magnets are used extensively in motors, generators, loud- 
speakers, bearings, fasteners, and actuators (such as for positioning a recording 
read in a hard disk drive). The permanent magnet market is shared between 
hard ferrites (a shrinking market share), cobalt rare-earth magnets and 
Nd,Fe,,B, (a growing share). There also exist smaller markets for a variety of 
speciality hard magnets such as the mechanically ductile and magnetically 
semihard magnets, Arnokrom or Crovac ( H ,  = 20-90 Oe) which can be rolled 
to thin sheets. Finally, it must not be overlooked that the magnetic recording 
media used for information storage, both tape and disk, are also based on 
permanent magnets. The materials science of recording media is covered in 
Chapter 17. 

A mechanical analogy may be useful to put in perspective the different 
modes of operation of hard and soft magnetic materials. Soft magnetic 
materials exhibit a kind of magnetic flexibility (low stiffness); application of 
even a small magnetic force (H) results in a large and mostly reversible 
response (B). (The irreversible component of the response ideally should be 



470 HARD MAGNE IPB; MATERIALS 

minimized), This anallogy breaks down because the mechanical displacement of 
materials eventually diverges at large stress while the response of soft magnets 
eventual%y saturates at large field. Permanent magnetic materials exhibit a very 
s t 8  and, ideally, elastic behavior; they can produce a force without physical 
contact. Hard magnets lose their "permanent" magnetization if the opposing 
force is comparable to their coercive field. In that case their magnetic state is 
changed "plastically" and they no longer produce the same field. 

When soft magnetic materials were discussed, it mattered little whether an 
M-H loop or a B-H loop was used to describe the material properties; the 
shape is essentially the same because B = p, ( H  + M )  FZ p,M~ However, for 
magnetic materials with large coercivities the distinction between B and M is 
more than simply a scale factor of p, (or 4n in cgs). At N = 0 (remanence) the 
B-N and M-H curves are equal, but for fields that oppose the direction of 
magnetization of a hard magnet, a smaller external field is required to give 
B = 0 than to give M = O (Fig. 13.la, and 13.1 b). Thus, it is necessary to 
distinguish the B-H loop coercivity, .Ifc from the intrinsic, M-M loop 
coercivity, , I f c .  Pt is this intrinsic coercivity that measures the intrinsic hardness 
of a permanent magnet, independent of its shape. However, it is the area inside 
the second quadrant of the B-H loop that describes the available energy 
density of a material. The value of the intrinsic coercivity is always greater than 
the coercivity from the corresponding B-N loop. The permanent magnet 
literature deals with both M-H loops and B-M loops, and their differences 
must be appreciated. 

Figure 13.1 (a) The M-Hi loop is an intrinsic characteristic of the material (no shape 
effects). It appears for reference as the dotted loops in panels (b) and (c). The solid loops 
in (b) and (c) show the change in loop shape on going from M to B (a-b) and Hi to 
H,p,,i,, (a) to (c) showing sample shape effects]. Panel (c) shows B-H,,,,. 
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Recall from Chapter 2 that the form of the hysteresis loop is very sensitive 
to sample shape whether plotted as M-Hap,, or B-Hap,, but not when plotted 
versus internal field, M-Hi or B-Hi. When permanent magnets are used in 
"open circuit" applications (which is nearly always the case in order that the 
fields they produce may be used) their technical properties are strong functions 
of the shape of the magnet. (Closed-circuit applications could involve the use 
of a permanent magnet to bias a soft element in a magnetic circuit.) Thus, it is 
important to distinguish between intrinsic or internal field behavior (Fig. 
13.la, b) (as would be measured in a closed magnetic circuit in Figs. 13.2a), and 
extrinsic or applied field behavior, Figure 1 3 . 1 ~ ~  and 13.ld (as would be 
measured in an open circuit (Fig. 13.2b). The more the measurement technique 
or application design resembles a closed circuit (fewer free surfaces normal to 
M), the more closely the material performance will reflect the intrinsic 
properties of the magnet; more open-circuit applications and measurements 
involve properties that also reflect the sample shape. 

The load line construction introduced in Chapter 2 is commonly used when 
describing permanent magnets. It allows the use of intrinsic data (Fig. 13.la, 
or 13.lb) for determination of the properties of samples of a particular shape. 
The load line has a slope given by -(I-N)/N. This line, drawn on Figure 13.la, 
intersects the intrinsic M-Hi curve at tlie point that is the remanent point in 
an M-Hap,, curve, that is, it indicates the remanence actually achieved in a 
given shape having average demagnetizing factor N. 

The maximum energy density of a permanent magnet (BH),,, is determined 
by the point on the second-quadrant branch of the B-Hi loop that gives the 
largest area for an enclosed rectangle. It may be found at the point on the loop 
that extends furthest into the hyperbolic contours of constant BH product 
(shown by dashed lines in Figure 13.3a). 

Closed Circuit Open Circuit n 

u 
Measurement gives B-Hi Measurement gives M- Happlied 

(a) (b) 

Figure 13.2 Schematic of two ways of measuring properties of permanent magnets. 
(a) Closed circuit inductive measurements give B-Hap,, w B-Hi with negligible demag- 
netization effects from sample surfaces (Fig. 13.lb); (b)  open-circuit magnetometer 
measurements give M-Hap,, (not = M - H J  loops with full sample shape effects 
(Fig. 1 3 . 1 ~ ) .  
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Figure 13.3 (a) Partial B-H loop showing contours of constant B-H in second 
quadrant and (B-H),,, rectangle enclosed; (b)  a common way of calculating and 
displaying (BH),,, from second-quadrant data. 

From the second quadrant of the B-Hi loop (a), one can calculate the BH 
product point by point and plot its value on a horizontal axis (Fig. 13.3b, first 
quadrant) for each value of B. The location of (B-H),,, is the point at which 
the material characteristics of a permanent magnet are most efficiently used. 
How does one design a magnet to make optimal use of its maximum energy 
product? Either the shape must be chosen for a given material so that the load 
line intersects the intrinsic B-H loop at the optimal point or, given a shape, a 
material must be selected having the maximum energy product at the intersec- 
tion with the load line. 

The shapes of second quadrant M - H  loops for some common permanent 
magnets are compared in Figure 13.4~. The extremes are Alnico, which shows 
a rather large remanence but a relatively weak coercivity; and cobalt-platinum, 
which shows a weak remanence and a fairly large coercivity. The permanent 

H ( uOe) 

(a) 
Figure 13.4 (a) Second quadrant M 
(b) Increase in (BH),,, of permanent 

0 l l i  
1880 1920 1960 2000 

Year 

(b) 
'-H loops of some common permanent magnets. 
magnets over recent decades. 
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magnets with the highest energy products are based on Fe,,Nd,B,. Figure 
13.4b shows the evolution of the maximum energy product in permanent 
magnets over recent decades. In this chapter, the different classes of permanent 
magnets are described and then their properties are explained in terms of 
single-domain-particle behavior or nucleation-limited or domain wall pinning 
behavior. The magnets covered include the Alnico phase-separated magnets; 
oxide magnets based on hexagonal ferrites; and intermetallics based on Co,Sm, 
Co,,Sm,, and Fe,,Nd,B,; as well as a number of specialty permanent magnets 
such as Copt (order-disorder), FeCrCo, and MnAlC. 

Note the scales on Figure 13.4b: MGOe and kJ/m3. The left-hand scale is 
the result of a BH product or, inside the material, a 4nMH product. To 
reconcile this unit with the right-hand scale, the 4n must be removed to get 
M H  in erg/cm3: lo6 GOe + 4n = 8 x lo4 erg/cm3 = 8 kJ/m3. For example, if 
B and H at the maximum energy point are lo3 G and lo3 Oe, respectively, they 
convert to 0.1 T and 8 x lo4 A/m, respectively. This product, whether consider- 
ed as poM x H or M x poH, is 8 kJ/m3. 

The physical mechanisms or ingredients of magnetic hardening begin with 
strong, uniaxial magnetic anisotropy. In a random polycrystalline sample of 
close-packed Co ( K ,  = 4.7 x 10' J/m3), the magnetization in zero field is 
randomly oriented along the dispersed easy axes. On reducing an applied field 
to zero after saturation, the magnetization rotates to the nearest easy-axis 
direction in the hemisphere centered about the field direction, leaving the 
remanence somewhat suppressed: M, = Ms(cos€J> z 0.5Ms. To reduce the 
magnetization to zero in this case requires one of three processes: (1) the 
magnetization in some of the grains rotates uniformly against the anisotropy 
in which case H ,  < 2K,/Ms (Fig. 9.7), (2) the magnetization rotates incoherent- 
ly (i.e., by curling or buckling), in which case H, is less than that for the 
coherent case, or (3) if the grain size is sufficiently large that domain walls can 
be accommodated and if the domain walls are not strongly pinned, the sample 
may be demagnetized in a field considerably less than 2K,/Ms by nucleation 
of reversal domains followed by domain wall motion. The mathematics 
describing these situations, called the Stoner- Wohlfarth theory, were covered in 
Chapter 9. From the point of view of permanent magnets, the magnetic 
anisotropy sets the upper limit to ,H,. Three major factors can cause iH, to fall 
short of its maximum value: (1) a dispersion in easy-axis (grain) orientations, 
(2) the presence of mobile domain walls, or (3) exchange coupling between 
single-domain particles. The design of different permanent-magnet materials 
involves, among other challenges, (1) optimizing K, (by crystallography, 
chemistry, and/or particle shape), (2) maximizing B, by introducing texture 
(preferred orientation) into the grain structure, (3) eliminating domain walls 
(by making single-domain particles) or pinning domain wall motion (by 
introducing certain defects), and (4) minimizing exchange coupling between 
single-domain particles (nonmagnetic grain boundaries). 

It was shown in Chapter 6 how magnetocrystalline anisotropy depends on 
crystal structure and material chemistry ((L,) # 0). Chapters 2 and 8 illu- 
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strated how the shape and size of particles can preclude domain wall forma- 
tion, and Chapter 9 showed how defect size and properties can change the 
strength of domain-wall defect interactions. 

This chapter describes how these ingredients are combined in various 
material systems. 

Early Permanent Magnets The first known permanent magnet, lodestone, 
was an impure form of iron oxide, mostly ferrimagnetic magnetite (Fe304) with 
fine regions more strongly oxidized to antiferromagnetic y-Fe,O,. It exhibits a 
coercivity of several tens of Oe and a modest saturation induction of 0.3-0.4 T. 
Although it is the first magnetic material used in an application (by the Chinese 
in a compass), it is no longer used commercially as a permanent magnet. 

Pure metallic iron is an ideally soft magnetic material. Iron has a large 
saturation magnetization and relatively small values of cubic anisotropy and 
magnetostriction. However, the presence of impurities destroys the soft mag- 
netism. Carbon impurities render iron hard, both magnetically and mechan- 
ically. Figure 13.5 shows the phase diagram for the FeC system. Note the low 
carbon solubility in a-Fe and the eutectic near 17 at% C before reaching the 
stable cementite phase, Fe,C. 

For carbon concentrations above the carbon solubility limit, cementite 
(Fe,C) can coexist in equilibrium with a-Fe. Quenching from a temperature at 
which carbon is soluble in a-Fe to a lower temperature where that concentra- 
tion is insoluble can result in the formation of martensitic Fe,C precipitates. 
Fine martensitic Fe3C precipitates can pin dislocations, rendering the material 
mechanically hard; they can also pin domain walls, rendering the material 
magnetically hard with a coercivity of order 4 kA/m (50 0e). Iron carbon 
magnets have been used since the mid nineteenth century. 

Tungsten steel (7-8% W), first used in the 1940s, can have coercivities of 
about 7 kA/m (90 Oe). Co-Mo and Co-Cr steels show coercivities more than 
twice those of W steels and energy products of order 8 k9/m3 (1 MG.0e).  
Equiatomic FeCo alloys show saturation induction of about 2.4 T. They can 
be made either magnetically hard or soft depending on heat treatment. When 
an FeCo alloy is cooled slowly through the order-disorder transformation 
temperature, 800°C, it becomes mechanically brittle and can show coercivities 
of order lo4 A/m. 

In the early 1960s efforts were made to fabricate permanent magnets based 
on the Stoner-Wohlfarth model prediction of large coercivity for elongated 
single-domain (ESD) particles. Euborsky (1961) used electrodeposition to 
create FeCo particles 10-20 nm in diameter. Coercivities realized (160 kA/m) 
were considerably less than the p,Ms predicted for coherent rotation. Eater, 
Euborsky and Morelock (1964) made FeCo whiskers from the vapor state and 
achieved more uniform ESD shapes and higher coercivities. 
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Figure 13.5 Phase diagram for FeC (Metals Handbook). 
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132 AbNUG8 AND FeCrCo MAGbJETS: SPUNaDAL DEGOMPOSOTlON 

These two classes of permanent magnet are grouped together because they 
both make use of spinodal decomposition to achieve a two-phase microstruc- 
ture of magnetic, a, and nonmagnetic, a', phases. 

13.2.1 Alnico 

In 1932, Mishima reported the development of attractive hard magnetic 
properties in a new class of alloy derived from the intermetallic HeusPelr 
compound Fe,NiAl. Often called Mishima alloys, they offered a significant 
improvement in coercivity over the permanent magnets in wide use at the time, 
which were based on Fe-C, Fe-W, and Fe-Co. Coercivities of early Alnico 
magnets were typically .H, z 5 x lo4 A/m (600 Oe). However, because of their 
reduced saturation magnetization relative to those of the hard magnetic steels, 
they did not show better energy products: (BN),,, z 8 k3/m3 (I MG-Oe). 
Alnicos were widely used in motors and loudspeakers after the late 1930s and 
are still used in many applications today, although they have been replaced by 
hexagonal ferrites in many low-end applications and by rare-earth interrnetal- 
lics in some high-performance applications. 

The processing and performance of alnico magnets is a beautiful example of 
magnetic materials science and also provides a useful application of many of 
the concepts developed in our chapters on magnetostatics (Chapter 2) and 
magnetization processes in small particles (Chapters 9 and 12). 

Alnico magnets derive their hard magnetism from the shape of the particles 
formed on spinodal decomposition of the Heusler phase into an iron-rich phase 
(a) and a BCC NiAl-rich phase (a'). Spinodal decomposition is a form of 
precipitation distinct from nucleation and growth; it occurs below a miscibility 
gap in a phase diagram (see pseudobinary FeNiAl phase diagram, Figure 83.6) 
and generally results in a periodic array of a and a' phases. 

A BCC solid solution is seen to exist above 1000°C for Fe,NiAl. Below that 
temperature spinodal decomposition proceeds at a rate governed by tempera- 
ture and composition. Any local fluctuation in iron concentration below the 
spinodal line increases the stability of the system, and the fluctuation grows in 
amplitude. The thermodynamics of spinodal decomposition are such that 
periodic composition profiles are favored with a well-defined wavelength A, 
which is a function of the a - a' interface energy. 

Cahn (1963) pointed out that the elastic energy associated with the a - a' 
phase boundary is minimized if the wavevectors R of the periodic fluctuations 
obey the following conditions: 

R 11 (100) for 2 C,, > Cll-C,, 

R 1 1  (1 11) for 2 C,, < C ,  ,-C,, 

The first condition applies in the alnico alloys and k 1 1  (100) is, in fact, 
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Fe Composition N iA l  

Figure 13.6 Pseudobinary phase diagram for Fe/NiAl showing miscibility gap that 
gives rise to spinodal decomposition, which is essential to formation of Alnico 
permanent magnets (McCurrie 1982). 

observed. The early stage of spinodal decomposition is characterized by the 
appearance of spherical concentrations of a and a' centered on two interpenet- 
rating simple cubic lattices. As phase separation continues, the amplitude of 
the composition fluctuation increases, preserving A, and the a and a' regions 
grow along the three (100) directions and then join (Fig. 13.7). The result is a 
microstructure composed of two interpenetrating networks of elongated rods 
of Fe(a) and NiAl(at). 

Figure 13.8 shows the microstructure of Fe,NiAl after the development of 
phase elongation along the (100) directions a suggested in Figure 13.7b. 

Figure 13.7 Schematic of the evolution of the a - a' microstructure in alnico: (a )  
spheroidal precipitates of a on simple cubic lattice and a' on interpenetrating simple 
cubic lattice; (6) particles elongate along <100) during tempering; (c) one direction of 
elongation is favored if the decomposition occurs in a saturating magnetic field. 



Figure 13.8 Microstructure of Fe,NiAl after slow cooling through the spinodal 
followed by 2 h at 850°C, then quenching. The lighter-colored rod-shaped features are 
the magnetic Fe-rich phase, and their periodicity is about 80 nm [After DeVos, 1969).] 

Replacement of some of the Fe with Co was found to increase the a-phase 
saturation magnetization, leading to higher B,, and to increase the magnetiz- 
ation difference A M  = M ,  - Ad,, between a and a'. Because H ,  is due to 
magnetostatic anisotropy [cf. Eq. (2.2411) 

the coercivity is expected to increase with increasing cobalt content (Fig. 13.9). 
Cobalt also increases the Curie temperature of the a phase. Pt will be seen 

later that this improves the efficacy of magnetic field heat treatment in Alnicos 
5-9. In addition, cobalt tends to stabilize the unwanted y phase and slow the 
kinetics of the spinodal decomposition. Spinodal decomposition was found 'to 
be accelerated by the addition of up to 3.5% Cu and by reduction of the Ni 
and A1 content. Finally, the addition of up to 4 or 5% Ti helps offset the 
deleterious effects of cobalt; while it lowers B,, the increase it brings to .N, is 
enough to increase (BN) ,,,. 

The first Alnico alloys developed (Alnicos 1-4) were random polycrystalline 
alloys which therefore showed an equal distribution of elongated particles 
along the three <loo> directions as in Figure 13.7b. Later Alnicos (5-9) made 
use of field annealing to establish a preferred direction of rod orientation (Fig. 
1 3 . 7 ~ )  and hence show anisotropic magnetic properties (i.e., much larger values 
of remanence and (BM),,, along the rod direction). 

Anisotropic A ~ ~ ~ c o s  A thermomagnetic treatment for the development of 
anisotropic alnicos (those designated as Alnicos 5-9) was discovered in 1938. 
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Figure 13.9 Variation of remanence, coercivity, and maximum energy product with 
cobalt substitution for iron in Fe,Co, -,NiAl [after McCurrie (1982)l. 

The idea is to establish an energetic preference for particle elongation along the 
(100) direction closest to an applied field (Fig. 13.7~). The internal magnetic 
field near an a-a' interface is proportional to the surface magnetic charge 
density resulting from a difference in perpendicular magnetization across the 
interface, Hi cc AM = Ma - Mar. The two phases are characterized by magnet- 
ization-thickness products Mata and Ma, tap. The magnetostatic contribution to 
the surface energy then goes as om z (p0/2)AM<M)(ta + taj)cos28, where 
(M) = (Ma tat t)/(ta + tat) is the thickness-averaged magnetization. Here 8 is the 
angle between the magnetization direction and the normal to the interface, 
which is assumed here to be planar. For the interface energy averaged over a 
magnetized particle, the factor cos28 is replaced by an effective demagnetiz- 
ation factor. For poAM z po(M, - M,) z 0.1 T, at the initial stages of spin- 
odal decomposition, the surface energy can be estimated to be om < 0.4 mJ/m2 
(0.4 erg/cm2) for 0.1 pm particles characterized by a demagnetization factor 
N z 0.1. This magnetic contribution is significant compared to typical chemi- 
cal interface energies (which are of order 1 mJ/m2). 

Interfaces that are parallel to the magnetization direction (0 = 90") have 
zero magnetostatic energy (Fig. 13.10~). If the a-a' interface is diffuse, the 
interfacial charge is spread out (Fig. 13.10~) and the magnetostatic energy is 
less than that for a sharp interface. 

Whereas the nonmagnetic interface energy yA tends to favor spherical 
particles ( A  is the surface area of the particle), the magnetostatic energy f,,V 
is the driving force for particle elongation (V is the particle volume); 
f,,V z ,U~M:ANV is a measure of the extensive magnetostatic energy saved by 
elongation. The energy reduction is proportional to the change in demagnet- 
ization factor AN during growth. If the particle grows elongated in its direction 
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I 

A E = O  AE Reduced 

Figure 13-10 Schematic representation of the effects of magnetization on interfacial 
energy. (a) magnetization parallel to an interface produces no surface magnetic charge; 
(b) perpendicular magnetization discontinuity across an interface results in a charged 
surface and generates magnetostatic fields that raise the energy; (c)  a diffuse interface 
distributes the magnetic charge and reduces the magnetostatic energy. 

of magnetization, then its magnetostatic energy is reduced from that of a sphere 
to a smaller value characteristic of its elongated shape. The rate of elongation 
is therefore proportional to 

Larger particles (smaller surface:volume ratio) are more strongly driven to 
large aspect ratios. To develop long particles while they are still small enough 
to display single-domain behavior, it is helpful to maximize fms by using as 
much cobalt as possible; this increases T, and AM. 

The anisotropic processing described here for alnico permanent magnets, as 
well as other magnetic processing effects, are discussed more generally in 
Chapter 14. 

Figure 13.1 1 shows that the application of a field is indeed effective in bringing 
about a preferred orientation to the (BOO) elongated particles. The preference for 
orientation is greatest for higher Co content alnicos where AM is greater. 

Optimal parameters for Alnico 5 are (BIT),,, = 10.8 kJ/m3 (1.35 MG . Oe) 
perpendicular to the texture and 13.4 kJ/m3 (1.8 MG - Oe) parallel to the 
texture. Increasing cobalt content has stronger benefits for anisotropic Alnicos; 
for 23% Co (BM),,, = 41.6 kJ/m3 (5.4 MG - Oe) can be achieved. 

Even though a particular direction for a elongation is established by the 
field applied during decomposition and tempering, there remains in polycrys- 
talline samples a dispersion in the orientation of <10O) directions and hence 
the texture is not optimized. It was found that the properties of anisotropic 
Alnicos could be enhanced by increasing texture in the microstructure. This 
could be accomplished by chilling the end faces of the casting mold to promote 
directional solidification (Fig. 13.12). 

Figure 13.13 shows the second quadrant B-H curves for anisotropic Alnicos 
5-9 (a directed-growth variation of Alnico 8), as well as for single-crystal 
Alnico 5 (dotted). Table 13.1 summarizes the compositions and properties of 
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Figure 13.11 Microstructures of Alnico 8 after isothermal heat treatment in a magnetic 
field for 9 h at 800°C: (a) view perpendicular to the direction of applied field; (b) view 
along direction of applied field showing microstructure with /Z = 32 nm (De Vos 1966). 

the data in Figure 13.13. Note the dramatic improvement in magnetic proper- 
ties, particularly (BH),,,, that comes with grain alignment by directional 
growth (DG) and development of single-crystal Alnico 5 (dotted line). Alnico 
9 achieves its higher coercivity with greater cobalt content and, despite a lower 
remanence, has in DG form an energy product comparable to that of 
single-crystal Alnico 5. 

Figure 13.12 Grain structure in a directionally solidified Alnico 9 before spinodal 
decomposition [After Gould 1964).] 
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Figure 13.13 Second-quadrant B-H curves for selected anisotropic Alnicos; maximum 
BH products can be determined from the dashed BH-constant hyperbolas (McCurrie 
1982). 

With the development of highly textured a-a' phase separation in the 
Alnicos (Fig. 13.12), it is possible to attempt to describe the magnetic behavior 
in terms of the Stoner-Wohlfarth model for single-domain, anisotropic par- 
ticles (Chapter 9). 

Typical a-FeCo particles in Alnico 5 measure 1500 A long by 400 A in 
diameter. The shape anisotropy of such particles is related to Eq. (2.25): 

The magnetostatic energy is the energy of the average magnetization ( M )  in 
the field from the magnetization discontinuity at the interface, AM. For 
simplicity, choose Ma = 3Ma, = 2.1 T/po so that <M> x AMs = 1.4 TIP,. 
AN = N ,  - N , ,  can be calculated from Eqs. (2.18) and (2.17) for prolate 
spheroids with m x 4. These numbers give K ,  x 1.1 x lo5 J/m3 and thus 
Ha = 1.8 x lo5 A/m (2240 Oe). Nesbitt and Williams (1955) used torque mag- 
netometry to determine the strength of the uniaxial anisotropy of Alnico 5 to 
be 10' J/m3. 

Figures 13.14a, and 13.b compare the measured orientation dependence of 
H, (McCurrie and Jackson 1980) with the calculations of Shtrikman and 
Treves (1959) using the curling form of the SW model. The rough similarity 
in the shape of the experimental and calculated curves for large S values 



TABLE 13.1 Compositions and Magnetic Properties of Anisotropic, Thermomagnetically Treated Alnicos 5 and 8 
as Well as Single-Crystal Alnico 5 

Composition (wt%) (balance Fe) 

Alnico Character Ni A1 Co C LI 

5 Random grain 12-15 7.8-8.5 23-35 2-4 

DG" 5 Directed grain 5 13-15 7.8-8.5 24-25 2-4 
5 xtl Single crystal 14 8 25 3 
8 Random grain 14-15 7-8 37-40 3 
DG 8(9) Directed grain 8 14-16 7-8 32-36 4 

Magnetic Properties 

B r 

Other (TI 

0-0.5 Ti 1.2-1.3 
0-1 Nb 
0-1 Nb 1.3-1.4 

1.4 
7-8 Ti 0.74-0.78 
0.3s 1.0-1.1 

"Directional growth. 

So~~rce: After McCurrie (1982). 
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Figure 13.14 (a) Dependence of the coercivity on the angle 0 between the preferred 
axis and the measurement direction measured after saturation H,  and from remanence 
H,  for anisotropic (columnar) Alnico 9 (A) and for single-crystal Alnico 9 (T) 
(McCurrie and Jackson 1980); (b) reduced coercivity versus 0 calculated for single- 
domain particles of various effective radii S (Shtrikman and Treves 1959). 

suggests that many particles exceed the single-domain size for this composition: 
S = r/r, >> 1 with r, = (47~A/,u,)~/~/M~. (Compare with Chapter 9.) 

13.2.2 Fe-Cr-Co 

BCC Fe-Cr-Co alloys develop hard magnetic characteristics by spinodal 
decomposition as do the Alnicos (Kaneko et al. 1971). However, the product 
phases in Fe-Cr-Co are relatively ductile Fe-rich (a) and Cr-rich (a') phases 
compared to FeCo and NiA1. Magnetic properties of Fe-Cr-Co magnets can be 
enhanced by field-annealing to introduce an elongated morphology (small Mo 
additions help here) and low temperature tempering to enhance the a-a' phase 
separation. Coercivities of 65 kA/m and energy products approaching 80 kJ/m3 
have been achieved. 

Ductility is a major reason for the interest in Fe-Cr-Co magnets; it allows 
a certain amount of machining on parts, and it has been exploited by using 
uniaxial deformation to enhance alignment and thus increase H ,  and the 
energy product (Kaneko et al. 1976). The low cobalt content of this family of 
magnets is also of commercial interest. 

One would expect the properties of Fe-Cr-Co to be optimized when Ma- Ma, 
is maximized (nonmagnetic Cr-rich phase). However, Lorentz electron micro- 
scopy results suggest that some high-coercivity Fe-Cr-Co alloys are composed 
of two magnetic phases, so domain wall pinning may play a role in the 
coercivity mechanism. 

Two permanent magnets based on FCC spinodal decomposition are known 
to exist: Cu-Ni-Fe (Cunife) and Cu-Ni-Co (Cunico). In both cases the Cu-poor 
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phase (y) is strongly magnetic while the Cu-rich phase (y') is nonmagnetic. The 
very good ductility of these alloys allows strong texture to be developed by 
uniaxial deformation (Kikuchi and Ito 1972). 

13.3 HEXAGONAL FERRITE% AND OTHER OXIDE MAGNETS 

Hard ferrites constitute the major fraction of world tonnage in permanent 
magnets. They are used where energy per unit weight and cost are important 
considerations. 

The hexagonal ferrites based on Ba0.6 [Fe203] have the magnetoplumbite 
structure (Kojima 1982), which is given the notation BaM and includes PbM 
and SrM. There are several compounds between BaO and Fe20,, but the 1 : 6 
ratio is the most important for magnetic purposes. The hexagonal ferrites have 
a strong uniaxial anisotropy, K,  = 3 x lo5 J/m3, with the preferred axis of 
magnetization along the hexagonal c axis. Because their saturation magnetiz- 
ation is small, 47cMs z 4-5 kG, their c-axis anisotropy is sufficient to overcome 
the magnetostatic energy, 2 n ~ 2  z 8 x lo4 J/m3, and give perpendicular mag- 
netization in either the flat hexagonal platelets that can be grown from solution 
(Fig. 13.15) or in (0001) textured thin films. Consequently, the hexagonal 
ferrites have received some attention also as potential perpendicular recording 
media. The smooth surface, nonmetallic electrical properties, superior cor- 
rosion resistance, and high volume density of magnetic material achievable in 
thin films give them some advantages over tape-cast media for high-density 
recording. The small saturation magnetization of BaM or SrM is a disadvan- 
tage in many applications. 

The phase diagram of the BaO-Fe,03 system in air (pO2)  = 0.2 atm) is 
shown in Figure 13.16 (Goto and Takada 1960); there is still a difference of 

Figure 13.15 Micrograph showing the hexagonal platelet morphology of BaM grown 
from a solution of 88% Fe,O, and 12% BaO. The hexagonal c axis is perpendicular to 
the plates (courtesy of J. Adair). 
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Figure 13.16 Phase diagram of the BaO-Fe,O, system. In the solid-phase regions the 
oxygen partial pressure is 0.2 atm, and in the liquid phase region it is 1 atm [After Goto 
and Takada (1960). Reprinted with permission of The American Ceramic Society, P.O. 
Box 6136, Westerville, Ohio 43086-6136. Copyright (1960) by The American Ceramic 
Society. All rights reserved.] 

opinion on solubility limits of some phases. Note the narrow range of solubility 
of BaM. It is often formed with an admixture of the 1: 1 phase or of Fe203. 
The SrO-Fe203 and PbO-Fe203 phase diagrams are similar to that of BaO- 
Fe20,. 

The crystal structure of the magnetoplumbites is shown in perspective in 
Figure 13.17. There are two formula units per unit cell. The oxygen ions (open 
circles, A, B, and C layers) form an HCP lattice with stacking sequence 
ABAB.. . or ACAC.. . . One of the oxygen ions in every five layers is replaced 
by the divalent cation Ba2+, Sr2+, or Pb2+ (solid circle). The iron ions occupy 
octahedral, tetrahedral and trigonal interstitial sites as described in detail by 
Kojirna (1982). 

The magnetic moments of the iron ions (ideally Fe3+ has a moment of 
5 pB/ion) lie along the c axis and are coupled to each other by a superexchange 
interaction. As with the spinel ferrites, the Fe-0-Fe bonds that are closer to 
180" are more strongly antiferromagnetic; some of the weaker antiferromag- 
netic couplings are forced to be parallel. The unit cell has 24 Fe3+ ions, 16 
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Figure 13.17 The hexagonal crystal structure of BaO-6Fe,03. [Adapted from Kojima 
(1982).] 

having one orientation and 8 having the other. Thus the magnetic moment can 
be estimated to be 20 pB/formula unit or 40 pB per unit cell, corresponding to 
a saturation induction at 0 K of poMs = 0.66 T (4nMs = 6.6 kG). The satura- 
tion induction at room temperature is quoted as 0.475 T. 

The magnetic properties of BaM, SrM, and PbM differ little from each other 
(Table 13.2). The magnetization-temperature curves for BaM and SrM are 
nearly linear as a result of the ferrimagnetic ordering (Fig. 13.18). 

The anisotropy field for hard-axis magnetization, Ha = 1.2 x lo6 A/m 
(15 kOe), suggests an anisotropy energy density of 2.5 x 10' J/m3. The tem- 
perature dependence of the measured magnetic anisotropy is also shown in 
Figure 13.18 as a dashed line. The temperature-dependent behaviors shown for 

TABLE 13.2 Some Fundamental Physical Properties of Ba, Sr, and Pb Hexaferrites 

Lattice Constants (nm) 
Mass Density PO MART) T, 

a c (g/cm3) (TI (K) 

BaM 0.589 2.32 5.3 
SrM 0.587 2.3 1 5.11 
PbM 0.588 2.30 5.68 
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Temperature ( K 1 

Figure 13.18 Specific magnetization versus temperature for BaO-6F20,(1) and SrO- 
6Fe20,(2); the dashed line shows the temperature dependence of K,, which is similar 
for BaM and SrM (Shirk and Buessem 1969). 

M, and K ,  do not correlate in the straightforward way predicted by Callen and 
Callen (1966) for ferromagnetic materials, K(T)/K(O) = [M(T)/M(0)]K"11)12, 
where 1 = 2 for a uniaxial structure. The hexagonal magnetostriction coeffi- 
cients of BaM range from 11 to 15 x 

The anisotropy of hexagonal ferrites has its origin in the crystal structure. 
The coercivity of the magnetoplumbites is limited by nucleation; once a 
domain wall exists in a particle, it moves with ease through the particle under 
an applied field. However, wall motion does not appear to propagate from 
grain to grain. Thus, the coercivity of hexagonal ferrites can be described by 
the mechanism of single-domain particle magnetization with the anisotropy 
provided not by particle shape as in the Alnicos but purely by magnetocrys- 
talline anisotropy. In fact, the particle shape detracts from the effectiveness of 
the crystal anisotropy, yielding, for a random distribution of particles 

This is essentially an angle-averaged form of the Stoner-Wohlfarth result, Eq. 
(9.16), with magnetocrystalline anisotropy replacing shape anisotropy. Because 
the intrinsic coercivities observed usually fall below this value, various modes 
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of incoherent rotation are believed to play a role. Such effects are clearly inore 
significant in larger particles. 

Figure 13.19 shows the domain pattern of a thin plate of barium ferrite 
grown on a single-crystal substrate. The field of view is 90 x 75 pm on the basal 
plane. The demagnetized state (Fig. 13.19~) is characterized by an interpenet- 
rating maze pattern consisting of equal areas of magnetization parallel and 
antiparallel to [OOOl]. At a field of 3.6 kOe parallel to the c axis (Fig. 13.19b), 
the pattern is dominated by magnetization in one direction. Increasing the field 
to 3.9 kOe (Fig. 13.19~) causes the magnetization to break up into an array of 
magnetic bubbles (-na> in a matrix of positive magnetization. 

Figure 13.20 shows the demagnetization curves of two anisotropic (1 and 2) 
and one isotropic (3) grades of commercial barium ferrite. The dashed lines 
show the Stoner-Wohlfarth (SW) model curves for isotropic and oriented 
materials using representative material parameters. The fact that the oriented 
ferrites show lower remanence than the oriented SW calculation reflects the 

Figure 13.19 Magnetic domain pattern on the basal plane of hexagonal barium ferrite 
particle taken by Faraday rotation technique: (a)  Demagnetized state; (b) H = 3600 Oe; 
(c )  H = 3900 Oe (Kojima and Goto 1965). 
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Figure 13.20 Demagnetization curves for two anisotropic (1,2) and one isotropic 
commercial grade of hard ferrite. The dashed lines are the predictions of the Stoner- 
Wohlfarth (SW) model for isotropic and fully oriented materials using p,M, = 0.47 T 
and K ,  = 3.46 x lo5 J/m3 [After Stablein (1982).] 

residual dispersion in c-axis orientation of the real material. The shortfall of 
the intrinsic coercivity in both isotropic and anisotropic cases relative to the 
SW model indicates the presence of mechanisms other than coherent rotation. 

Table 13.3 summarizes typical values of important parameters for isotropic 
and anisotropic hexagonal ferrites. The two columns after ,H ,  give the 
fractional change in magnetization and intrinsic coercivity with temperature. 
These parameters are important for many applications. 

The manufacture of hexagonal ferrites, detailed by Stablein (1982), is typical 
of ceramic materials. The starting materials (generally oxides and carbonates 
such as BaCO,, SrCO,, PbO, and a-Fe,O,) are mixed and reacted in the solid 
state in air at temperatures between 1000 and 1300°C (this process is called 
calcination). The resulting hexaferrite is recrushed and pulverized to a particle 
size suitable for the next steps, which depend on the grade of magnet desired. 
These steps are either (1) field alignment of fine single-domain particles in an 
aqueous suspension as the slurry is cast and pressed prior to sintering, (2) dry 
compression in a magnetic field prior to sintering if optimal particle alignment 
is not essential, or (3) compaction of the unaligned particles for bonding or 
sintering. Fine particle size (optimally t 1.0 pm) ensures more single-domain 

TABLE 13.3 Magnetic Properties of Isotropic and Anisotropic BaM 

Mass 
(BH),,, B, sHC iHc AM,/M,AT AiH,IiHJT Density 

Grade ( k ~ / m ~ )  (TI (kA/m) (kA/m) (%/K) ( d m 3 )  

Isotropic 6.5-9 0.19-0.22 125-145 210-270 - 0.2 0.2-0.5 4.6-5.0 
Anisotropic 20-30 0.32-0.4 125-250 130-340 

Source: After Stablein (1982). 



RARE EARTH-TRANSITION METAL INTERMETALLICS 491 

particles (and hence higher H,; in addition, fine particle size enhances sintering 
which is driven by surface energy reduction). The addition of 0.5% SiO, aids 
sintering and results in greater products of B, times iH,. 

Hexagonal ferrites remain stable in air to temperatures well over 1400°C. At 
reduced oxygen pressure the stable temperature range decreases. Because the 
ions in hexagonal ferrites are in their highest states of oxidation, these materials 
have a significant advantage in terms of chemical stability over metallic 
magnets. 

13.4 RARE EARTH-TRANSITION METAL INTERMETALLICS 

Hard magnets based on SmCo, boast the highest uniaxial anisotropies of any 
class of magnet, K ,  FZ lo7 J/m3. On the other hand, phases based on Sm,Co,, 
exhibit higher flux density and Curie temperature. The more recently develop- 
ed magnets based on Fe,,Nd,B exhibit the highest energy products achieved 
so far in permanent magnets. Before discussing these materials, four important 
aspects of magnetism in rare-earth metals, alloys, and intermetallic compounds 
are reviewed because they will be needed in Sections 13.4.1 and 13.4.2. 

1. The variation across the lanthanide series of the quantum numbers, the 
calculated effective moments gpB JJ(J + I), saturation moments, p, = gpBrnj, 
and of the observed moments are shown in Table 13.4. Except for Gd, the R 
species are characterized by L 2 S. Hund's third rule states that L and S 
combine subtractively in the first half of the 4f series. For light R species the 
net moment is reduced and is antiparallel to L (because the negative electronic 
charge makes pB < 0). L and S combine additively in the second half of the 
series, so there the net moment is enhanced and is antiparallel to both L and 
S. The effective magnetic moments of the heavy R species reach a higher 
maximum value than do those of the light R species. The ordering tempera- 
tures are low or negative for the light R elements; these materials show spiral 
or canted spin structures rather than ferromagnetism. Figure 13.21 shows the 
variation of the measured effective moment and the magnetic ordering tem- 
peratures across the rare-earth metal series. The variation of the rare-earth 
moments across the series is fairly well described by the quantum numbers in 
Table 13.4. The variation of the magnetic ordering temperatures is systematic 
in the heavy R metals, as will be described below. 

2. The Curie temperatures of the rare-earth metals and of various rare-earth 
alloys vary in a systematic way with the de Gennes factor, G = 

(g - l),J(J + 1) as shown in Figure 13.22 (Chikazumi 1997). The de Gennes 
factor has its basis in the molecular field expression for the Curie temperature 
[Eq. (4.21)], proportional to S(S + 1); the term (g - in the de Gennes 
factor singles out the spin (g = 2) part of the moment from J(J $- 1). Thus the 
Curie or N6el temperatures scale with the spin part of ths magnetic moment, 
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TABLE 13-4 Eliectroaaic Structure as well as the Calculated amd Expeuiraemtal Values 
off the EEec~ve and Saturation Magnetic Maamewt in Bohu Magmetoas fog. Rare-Earth 
HODS and Metals 

Effective Moment (p,) 
Saturation Moment 

Electronic State ( + 3  Ion) Observed ( P B )  

Theory 
Element n,f S L J  (Hund)" + 3 Ion Metal gJ  Observed 

Y 
La 
Ce 
Br 
Nd 
Pm 
Srn 
Eu 
Gd 
Tb 
DY 
Ho 
Er 
Tm 
Yb 
Lu 

"Hund's rule moment is g  J J ( J  + 1). 
Source: Data taken from Chikazumi (1997). 

as well as the square of the total angular momentum. The variation of the 
Curie temperature with R species for the Co,R, Co,,R2, Fe,,R,B, and R2Fe,, 
intermetallic series are shown in Figure 13.23. The variation of T, with R 
species in the two iron-based series is well described by the effective spin or de 
Gennes factor, G = (g - 1)'J(J + I), which decreases on either side of Gd in 
the series. Another remarkable feature of this figure is the general decrease in 
T, as Fe concentration in the compounds increases. The opposite is true in the 
analogous CoR compounds. In simplest terms, this trend is consistent with a 
Bethe-Slater curve (Fig. 5.3) interpretation that suggests a stronger tendency 
for antiferromagnetic Fe-Fe exchange at Fe-Fe distances smaller than about 
2.5 A. This is consistent with the observation that pressure generally causes T, 
to decrease in iron-based compounds. 

3. For rare earth-transition metal (R-TM) intermetallics, it is important to 
understand the nature of the coupling between the rare-earth moment 
(pR = gpBm,) and that of the transition metal species (p,, = gp,m,). The 
magnetic moments of transition metals are observed to couple ferromagneti- 
cally with light rare-earth moments (J.s > 0) and antiferromagnetically with 
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Number of 4f Electrons 

Figure 13.21 Above, variation of the Hund effective moment and the moments 
observed for + 3  ions and metals of the rare-earth (R) series; below, variation of 
magnetic ordering temperatures for R metals. [After Chikazumi (1997).] 

heavy rare-earth moments ( J - s  < 0). Recall that in the first half of a shell, 
J = L - S (total moment and spin moment are antiparallel) and in the second 
half, J = L + S.  Thus the spin-spin coupling between R and TM species is 
always antiferromagnetic (Fig. 13.24, left). It has been suggested that R-TM 
coupling is due to the antiferromagnetic conduction-electron-mediated 
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Figure 13.22 Dependence of magnetic transition temperatures of R metals and R-R 
alloys on the de Gennes factor, g = (g - l)'J(J + 1) [after Chikazumi 1997).] 

La I Pr I Prn 1 Eu I Tb  I Ho I T m  1 Lu I 
Ce Nd Srn Gd Dy Er Yb Y 

Figure 13.23 Variation of the Curie temperature with R species in four series of R-TM 
intermetallics of importance as permanent magnets [after Strnat (1988).] 
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Transition Rare Earth 
Transition Metal 

Light R Heavy R Antiferromagnetic Coupling 

Figure 13.24 Simplified schematic representation of spin and angular momentum 
coupling at rare-earth site and antiferromagnetic exchange coupling between R and TM 
spins. Right, schematic band structure that accounts for antiferromagnetic R-TM spin 
coupling. 

exchange as described by the RKKY model. However, the applicability of the 
RKKY model to this problem is questionable because variations in R-TM 
separation do not change the sign of the coupling. Alternatively, Campbell 
(1972) focuses on the 5d2 conduction electrons of the rare-earth (whose spin is 
always parallel to that of the 4f electrons) and their interaction with the 

Figure 13.25 Variation of saturation magnetization with R species in the R-TM 
intermetallic series of Figure 13.23 (Strnat 1988). 
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symmetry-compatible 3d" electrons of the transition metal. Exchange between 
these two sets of d states is invariably antiferromagnetic with respect to the d 
electrons involved; the mechanism is analogous to the electron hopping 
mechanisms in superexchange. There are only majority-spin electrons in the R 
5d orbitals; there are only minority-spin boles in the TM 3d orbitals, and spin 
is conserved in the strongest hopping process (Fig. 83.24, right). Because the 
4f-5d exchange at the R site is ferromagnetic, the antiferromagnetic 5d-3d 
interaction explains the ferromagnetic coupling of light R to TM moments and 
vice versa for heavy R species. The net result of R-TM exchange coupling is 
generally larger magnetic moments for intermetallics of light rare earths and 
transition metals. The 4nMs data in Figure 63.25 for four R-TM intermetallics 
of importance as permanent magnets bear this out. In the first half of each 
series the relatively small R moments couple ferromagnetically with the TM 
moments. In the second half of the series larger R moments couple antifer- 
romagnetically to the TM moments. The net moment of each compound of 
course depends on the magnetic moment of each species, on the concentration 
of each species in a given alloy, and on TIT,. 

4. Finally, for permanent magnet applications, it is important that the 
crystal system be uniaxial rather than cubic and that the anisotropy give rise 
to an easy axis ( K ,  > 0) as opposed to an easy plane ( K ,  < 0) (see Chapter 6). 
The latter leads to easy demagnetization and low coercivity because the sample 
can demagnetize without M rotating to a hard direction. The rare-earth metals 
show complex spiral spin structures in many cases as well as easy-axis 
magnetization (Gd from 240 to 293 K), and easy plane magnetization (Gd from 
170 to 220 M or Tb and Dy up to 222 and 83 K, respectively) (Chikazumi 6997, 
p. 186). Thus it is not surprising that their intermetallic alloys also show a rich 
variety of spin structures. This important effect limits the range of alloy 
substitutions available in designing new R-TM permanent magnets. For most 
of the RCo, intermetallics with light R species (R = Y, La, Ce, Pr, Nd, Sm), 
K ,  > 0 (easy axis). The situation is more complex in the R,Co,, and in the 
Fe,,R,B magnets, as will be seen. 

13.4.1 CobaBURare-Ea@h Magnets 

CoR magnets are based mainly on the two phases RCo, and R,Co,,. 
Although the first structure is more widely known, most CoR magnets are, in 
fact, multiphase composites of these two structures and sometimes other 
phases. The Co-Srn phase diagram is shown in Figure 13.26. Co,Sm is stable 
only above 805°C. Thus, its use is limited to temperatures below which kinetics 
preclude transformation to the more stable Sm,Co,, Sm,Co,,, and Co phases. 
The hexagonal CaCu, structure of SmCo, is shown in Figure 13.27. The R 
species form hexagonal nets with a smaller Co hexagon in the same plane and 
similar hexagonal Co layers (rotated by + 30") are stacked between the R nets. 
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This uniaxial structure together with the orbital angular moment of the R 
species is the source of the magnetocrystalline anisotropy of the RCo5 system. 
SmCo, exhibits a magnetocrystalline anisotropy of lo7 J/m3. Figure 13.28 
shows the easy- and hard-axis magnetization curves for the two principal 
Co-Sm magnets an Fe,,Nd2B. Single-phase SmCo, can exhibit room tempera- 
ture intrinsic coercivities, iH,, of 3.2 MA/m (40 kOe) and maximum energy 
products of over 200 kJ/m3 (24 MG. Oe). This, combined with their relatively 
high Curie point (T, = 685"C), makes them suitable for a wide range of 
applications. Iron substitutions for cobalt lead to a change from easy axis 
magnetization to easy plane magnetization in RCo,. 

Because of the large magnetic anisotropy of SmCo,, a 180" Bloch wall in 
this material should have a width of only 3.1 nm. Further, the domain wall 
energy density is 40 mJ/m2 (40 erg/cm2), 100 times that of a soft material. It is 
not surprising, therefore, that the magnetization process in single-phase RCo, 
intermetallics is limited by reversal domain nucleation (Livingston 1973). Once 

At. O/O Sm 

Figure 13.26 Equilibrium phase diagram for SmCo near the cobalt-rich limit [After 
den Broder and Buschow, 1977).] 
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Figure 13.27 Hexagonal CaCu,-type crystal structure of SmCo, (Barrett and Mass- 
alski 1980). 

nucleation occurs, domain walls move relatively easily until they reach a grain 
boundary, as in Ba ferrites. Hence, initial efforts to produce cobaltlrare-earth 
magnets focused on the fabrication of single-domain SmCo, particles. It was 
discovered by Nesbitt et al. (1968) that small substitutions of Cu for Co would 
lead to the precipitation of a nonmagnetic phase which increased the coercivity. 
They showed that heat treatment of R(CoCu), magnets results in precipitation 
of a dispersion of fine (d = 10 nm) second-phase, Cu-rich particles in a R,Co,, 
matrix having a grain size of order 10 ,urn (Fig. 13.29). The coercivity mechan- 
ism becomes domain wall pinning on the small nonmagnetic SmCu, particles. 

External Field, H (kOe)  

Figure 13.28 Easy-axis and hard-axis magnetization curves for RCo 1-5 and 2-17 
compounds. [After Strnat 1988).] 
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Figure 13.29 Precipitation microstructures of 1-5-type RE-Co magnets, bulk- 
hardened with copper: SmCo,~,Cu,,,Fe,~, homogenized at 110OoC/3 h, quenched and 
aged at 525°C. The fine (10-nm) dark precipitates are platelets of Cu-rich, 
Sm(CuCo, Fe),. [After Strnat (1988)l. 

Tawara and Strnat (1976) showed that magnetic hardening by Cu precipi- 
tates could be extended in Sm(CoCu), from x = 5 to x z 7.2. Further exten- 
sion to x FZ 8.5 by inclusion of other transition elements led to the first 
practical R,TM,, magnets (Nagel 1976). 

The rhombohedral Th2Ni17-type crystal structure of R2Co17 is shown in 
Figure 13.30. A similar hexagonal Th2Zn17-type also exists. These structures 
have the same cobalt hexagonal nets that occur in the RCo, compounds but 
fewer R atoms in the adjacent layers. Whereas R atoms are located at the 
centers of alternate hexagonal Co rings of the 1-5 compound (Fig. 13.27), a 
TM atom occupies an axial site in the midplanes between certain of these 
hexagonal rings (Fig. 13.30). The magnetocrystalline anisotropies of R,Col, 
phases (3-4 x 106 J/m3) are generally less than those of the corresponding 1-5 
phases (11-20 x 106 J/m3), but the 2-17 saturation magnetizations and Curie 
temperatures are generally greater (cf. Fig. 13.28). See Table 13.5. 

The rhombohedral crystal structure of the 2-17 compounds allows incor- 
poration of greater Fe content than does the 1-5 hexagonal structure. 
Coercivities of order 800kA/m (10kOe) and energy products of order 
240 kJ/m3 (30 MG.  Oe) have been reported in single-phase Sm,(CoFe),,- 
based alloys. Because the rhombohedral 2-17 phase has a lower anisotropy 
than the 1-5 phase, heat treatment and inclusion of nonmagnetic atoms such 
as Cu ( ~ 7  at%) and Zr ( ~ 2  at%) to promote optimal phase segregation are 
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Figure 13.30 Rhombohedral, Th,Zn,,-type crystal structure on which R,Col, mag- 
nets are based. [After Strnat (1988)l. 

generally used to achieve higher coercivities. The Curie point and saturation 
flux density are substantially improved by partial Fe, Zr, and Cu substitu- 
tions for Co. These substitutions also promote formation of a cellular micro- 
structure based on a 2-17 rhombohedra1 phase, a 1-5 intergranular phase, 
and a Zr-rich platelet phase (Fig. 13.31). This cellular microstructure pro- 
vides the pinning sites needed to obstruct domain wall motion in 2-17 
magnets. In contrast, high coercivity in the 1-5 magnets is a result of inhibited 
nucleation. 

The cellular microstructure of 2-17 magnets is generally sensitive to heat 
treatments; the maximum use temperature is limited to about 300°C. However, 
2-17 permanent magnets of the modified composition Sm,(CoFeZrCu),, 

TABLE 13.5 Comparison of Some Magnetic Properties for SmCo5, Sm,(CoFe),,, 
and Fe,,Nd,B Permanent Magnets at 25°C 

i H c  ( B H )  ma, 
ow@ (MG - Oe) 

PO Ms Tc K" 
(T) ("C) (MJ/m3) Isotropic Aligned 2D 3D 

SmCo, 1.0 685-700 10 0.8-1 2.9 14-16 18-24 
Sm,(CoFe),, 1.2-1.5 810-970 3.3 1-1.3 2.4 16-20 24-30 
Fel,Nd,B 1.6 3 12 5 - 1.2-1.6 34-45 
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Figure 13.31 Precipitation microstructure of bulk-hardened 2-17 magnets of the 
high-H, type: Sm(Co,,,,Feo~,,Cuo,08Zr0,02)8835 fully heat treated to ,H, = 23 kOe. The 
section shown contains the c axis as indicated; rhomboid cells of the twinned 2-17 
matrix are seen. The boundary phase surrounding the cells is of 1-5 type, and thin 
bands of " z  phase" are visible in the basal plane, crossing many cells and walls 
(Courtesy A. E. Ray.) 

are attractive for high-temperature applications because of their high values 
of the ferromagnetic Curie point (T, = 810°C), saturation magnetization 
(poMo = 1.5 T), and, at 25"C, (BH),,, = 24-30 MG. Oe. A further advantage 
of this two-phase, 2-17 system when it incorporates a significant fraction of 
iron is reduced cost relative to Sm,Co,,. 

Single-phase TbCu7-type thin film magnets of Sm(CoFeCuZr), composi- 
tions can be sputter deposited to exhibit either high intrinsic coercivities or, as 
aligned films, to exhibit enhanced energy products. Coercivity in excess of 
16 kOe at room temperature has been observed in fields of + 18 kOe in 
single-phase TbCu7-type films crystallized from amorphous deposits. Relative- 
ly thick sputtered films exhibit strong in-plane c-axis alignment for a wide 
range of film thicknesses up to 120 pm. An important feature of these in-plane 
c-axis TbCu7-type films is that their magnetic properties appear to be insensi- 
tive to thermal treatments up to nearly 500°C (Cadieu 1995). 

Table 13.5 compares some room temperature properties of Co,Sm and 
Co2Sm17 magnets with those of the Fe,,Nd,B class. 

Figure 13.32 describes the change in preferred magnetization direction from 
easy axis to easy plane as various transition metals are substituted for Co in 
R,Co17 magnets (Ray and Strnat 1972). 
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Figure 13.32 Influence of transition metal substitutions on the anisotropy (magnetic 
symmetry) of R2Col,-based intermetallics of composition R2(Co,_,MJl,. [After 
Strnat, (1988) and Ray and Strnat (1972).] 

The 2-17 magnets are used in multiphase form to enhance coercivity by 
domain wall pinning. Without domain wall pinning, the coercivity would be 
relatively small. On the other hand, the stronger anisotropy of RCo, magnets 
makes nucleation-limited coercivity viable. Nucleation-limited coercivity 
would not be strong enough in a single-phase 2- 17 magnet because of its larger 
magnetization and smaller anisotropy relative to SmCo,. 

Due to the large concentration of Co in even the two-phase Co-R magnets, 
their cost per kilogauss of saturation flux density remains very high. This 
provided the impetus for development of less expensive high-energy magnets 
based on iron. 
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13.5 RARE-EARTH INTEWMETALLICS BASED ON Fel,Nd,Bl 

Fe-Nd-B magnets represent an important class of rare-earth intermetallic 
compounds that advance the technology of permanent magnets beyond that of 
the Co-R magnets. Their development came as a result of the cost and limited 
world supply of cobalt. 

The Fe-based rare-earth intermetallics were studied independently by Das 
and Koon (1981) while exploring rare earth additions to amorphous FeB- 
based alloys (FeLaB), by Croat et al. (1981) and Hadjipanayis et al. (1983). 
Commercial FeNdB magnets based on sintering (Sagawa et al. 1984) and melt 
spinning (Croat et al. 1984) were rapidly developed. 

The attractive permanent-magnet properties of Fe14Nd2Bl magnets arise 
from several factors: 

1. The large uniaxial magnetic anisotropy ( K ,  = + 5  x lo6 J/m3) of this 
tetragonal phase. 

2. The large magnetization (B, = 1.6 T) owing to the ferromagnetic coup- 
ling between the Fe and Nd moments. 

3. The stability of the 14-2-1 phase, which allows development of a 
composite microstructure characterized by 14-2-1 grains separated by 
nonmagnetic B-rich and Nd-rich phases, which tend to decouple the 
magnetic grains. 

The tetragonal Fel,Nd,Bl structure (Fig. 13.33) contains four formula units 
and has unit cell dimension of a = 0.88 nm and c = 1.22 nm. There are six 
distinct Fe sites, two distinct Nd sites, and one B site. The unit cell consists of 
eight layers vertically stacked. All the Nd and B sites are found in layers at 
z = 0 and i. Most of the Fe atoms reside in puckered hexagonal nets between 
the Nd- and B-rich layers. The Fe net puckering is associated with an attractive 
Fe-B bonding that places the B at the center of a trigonal prism of Fe(e) and 
Fe(k) atoms. The tetragonal structure of Fe14R2Bl phases is related to the 
hexagonal CaCu, structure of SmCo, (Fig. 13.27) via the hexagonal nets 
(Givord et al. 1984). Also, the Fe(j) sites above and below the hexagonal 
groups of Fe are very similar to the TM(c) sites in R,TMl, compounds (Fig. 
13.30). The Fe(j) sites are the most highly coordinated by transition metal 
atoms and, not surprisingly, show the largest magnetic moments (Herbst et al. 
1985). Details of the structure and local atomic environments are found in the 
review by Herbst (1991). 

The 14-2-1 unit cell shows the usual lanthanide contraction when Nd is 
replaced by other R species. 

The saturation magnetization versus temperature of the Fe14R2B series 
(Hirosawa et al. 1986) is shown in Figure 13.34. The data are separated into 
two groups, the light rare-earth and the heavy rare-earth species. The M s ( T )  
behavior in the former appears to have the normal shape of a Brillouin 
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Figure 13.33 Tetragonal unit cell of Nd,Fe,,B, the prototypical structure of the 
R,Fe,,B compounds; the cla ratio in the figure is exaggerated to emphasize the 
puckering of the hexagonal iron nets (Herbst et al. 1984). 

function. In contrast, the Ms(T)  behavior of the late R species resembles the 
M ( T )  form characteristic of ferrimagnets for which the magnetization of the 
higher ;6, sublattice (Fe in this case) is greater than that of the lower T, 
sublattice (R). Thus, there are no compensation temperatures in the Fe,,R,B, 
series (see Figs. 4.9 and 4.11). To interpret these data, recall first that the 
magnetic moments of the six iron sites (averaging 2.1 ,uB/Fe) are ferromagneti- 
cally coupled to each other. Figure 13.34 then suggests a ferromagnetic 
coupling of the net TM moment to the R moment in the first half-series and 
an antiferromagnetic coupling in the second half series. The same was found 
to be true of CoR intermetallics and it is generally the case for other rare-earth 
transition metal intermetallics. 

The experimentally determined moments at the R sites in Fe,,R,B com- 
pounds correlate very well with the theoretical saturation moments, gpBrn, 
(Herbst 1991). The Curie temperatures of Fe,,R,B compounds shown in 
Figure 13.25 vary systematically with the number of 4f electrons on the R 
species. Here the T, data for the Fe,,R,B series are compared with that for 
several other TM-R intermetallics. 

Fuerst et al. (1986) have shown that a molecular field analysis describes very 
well the temperature dependence of the net iron sublattice moment, 14 p,,, and 
the net Nd sublattice moment, 2p,,, and their ferromagnetic sum, the 
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Figure 13.34 Saturation magnetization M, versus temperature T for R,Fe,,B com- 
pounds: (a )  light rare earths (R and Fe magnetic moments ferromagnetically coupled); 
(b) heavy rare earths (antiferromagnetic RFe coupling) [Adapted from Hirosawa, et al. 
(1986).] 

measured Ms(T) .  The molecular fields seen at the Nd(R) and Fe(F) sites can 
be represented as in Eq. (4.27): 

The proportionality constant is N,p,p/A, where N ,  is Avogadro's number, 
pB is the Bohr magneton, p is the mass density, and A is the weight per formula 
unit. The temperature dependences of p, and pR  are assumed to follow their 
respective Brillouin functions. The dimensionless molecular field coefficients, 
A,,, were found by Fuerst et al. (1986) to be A,, = 5.9 x lo3, A,, = 2.2 x lo3, 



and A,, = 0.33 x BOY. This hierarchy off rns~ecalar field coefficient strengths is 
typical of most R-TM ilntermetallics. 

The strong magnetic anisotropy of the FeI4R,B compounds is a function of 
the low symmetry of the structure as well as the orbital angular momentum of 
the R ions and their low-symmetry atomic environments. However, it is 
noteworthy that in those members of the series that have no magnetic moment 
at the R site (viz., R = La, Lu, Ce, Y, Th), the anisotropy is still very strong: 
K, is of order 1Q6 9/m3 ( H ,  is of order 25 kOe). This value should be compared 
with the anisotropy of a-Fe, K, = 5 x lo4 J/m3 or Ha of order 500 Oe (Fig. 
6.1). This difference points to the fact that magnetic anisstropy s f  the Fe 
sublattice depends on crystal field symmetry at the Fe sites (low in the iron 
hexagonal nets) as well as on the orbital angular momentum of the magnetic 
species (weak here). Herbst (1991) also points out that the uniaxial anisotropy 
in this subset of Fe,,W,B compounds is positive; that is, an easy c-axis 
direction is preferred by the 3d moment (perpendicular to the mean plane of 
the hexagonal units). 

Of the other members of the series, those for which R = Pr, Cd, Tb, Dy 
show easy axis magnetization and R = Sm shows easy basal plane magnetiz- 
ation, over the entire temperature range below Tc. The compounds based on 
R = Nd, Ho, Er, Tm, Yb transform from easy plane (or canted moments for 
the first two ions) to easy-axis magnetization at a spin-reorientation tempera- 
ture below T,. 

This behavior can be understood in terms of the Stevens factor a, introduc- 
ed in Chapter 6 [Eq. (6.1211. In Chapter 6, it was shown that the crystal field 
splitting parameter D of R ions oscillates from positive to negative values (a, 
oscillates from negative to positive values) with'increasing atomic number 
across each half of the R series (Fig. 6.17). Positive and negative values of a, 
imply prolate and oblate 4f charge distributions, respectively. Easy-axis 
magnetization is generally associated with oblate, a, < 0 ( D  > 1) 4f orbitals. 
Thus the a, values of the 4f ions suggest a mechanism by which the Fe 
anisotropy couples to the 4f orbital shapes: the 4f magnetization prefers to lie 
perpendicular to the plane of neighboring, oblate 4f orbitals. 

The spin reorientation transition in Fe,,Nd,B at 135 K (indicated by 
a small kink in the data shown in Figure 13.34) was described in Chapter 6, 
Figure 6.11. Similar phenomena occur in the R = Mo, Er, Tm, Yb members of 
the series. 

Processing of 14-2-1 sintered magnets is similar to that for Co,Sm but 
cannot be done in air: cast, crush, mill to 10 pm or less, magnetically align, 
press, sinter at 1100°C and rapidly cool. Starting compositions are generally 
slightly enriched in Nd and B to provide a liquid grain boundary phase at the 
solidification temperature of the 14-2-1 phase. This enhances density and 
prevents the magnetic particles from exchange coupling to each other. The final 
microstructure then consists of 10-20-pm grains of the 2-14-1 phase with a 
Nd-rich grain boundary phase and Fe4Nd,.,B4 inclusions usually at the grain 
boundary junctions in the sintered microstructure (Fig. 13.35). The efficacy of 
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Figure 13.35 X-ray composition micrograph of a sintered Ndo~,,Fe,~,,Bo~o, magnet; 
TI, T,, and Nd denote Nd,Fe,,B, Nd,+,Fe,B,, and a Nd-rich phase, respectively 
(Sagawa et al. 1987). 

these precipitates in pinning domain walls is suggested quantitatively by Paul's 
model, described in Chapter 9. 

Magnetization reversal in sintered 14-2-1 magnets occurs by nucleation 
and growth of reversal domains. Kronmiiller et al. (1988) present a micromag- 
netic model for misoriented grains (no exchange), that leads to a coercivity of 
the form 

Here a,  describes the micromagnetic effects of anisotropy, wall width, and 
inhomogeneity size; a,,, describes the effects of grain misalignment. These two 
factors differ depending on whether wall motion is limited by pinning or 
nucleation. The authors find excellent agreement between measured values of 
,H, and the nucleation form of their model for temperatures up to about 450 K. 
Note the similarity of Eq. (13.4) (mks) with Eq. (13.6) (cgs-emu) except for the 
added generality due to the anisotropy and grain orientation factors in the 
latter. 

Melt spinning is also used to prepare Fe-Nd-B magnets. While amorphous 
Fe-Nd-B ribbons can be made, they do not show hard magnetic properties; 
they are essentially homogeneous and isotropic. A fine microstructure and 
preferred grain orientation are required for optimal permanent magnet charac- 
teristics. Melt-spun Fe-Nd-B can be quenched at a slower rate than required 
to produce amorphous ribbons, producing a nanocrystalline microstructure 



optimal for most effective wall pinning on grains (Fig. 9.18). This process 
produces an isotropic magnet with low remanence. Alternatively, melt-spun 
Fe-Wd-B can be slightly overquenched relative to the peak in Figure 9.18. This 
allows the magnetic hardness and grain alignment to be developed during 
subsequent heat treatment, hot pressing, or die upsetting. Grain size is of 
order 100 nm in melt-spun Fe-Nd-B, considerably finer than that of sintered 
Fe-Nd-B or Go-Sm. Crushed, melt-spun ribbons can be formed to bulk 
magnets by one of three methods, (1) epoxy bonding, (2) hot isostatic pressing, 
or (3) die upsetting (uniaxial hot compression) at about 700°C. Magnetic 
properties of melt-spun magnets improve from case (I) to case (3) because of 
increased density (1-3) and crystallographic alignment (2-3) (Fig. 13.36). The 
microstructure of the die upset product is characterized by platelike grains 
typically 60nm thick and 300 nm in diameter with the c-axes (normal to the 
plate) strongly aligned in the compression direction. (Here the alignment of 
magnetic easy axes is a consequence of the crystallographic alignment induced 
by hot pressing. In sintered magnets, an applied magnetic field tends to line up 
the moments, and thus the c axes, of the particles before fixing the grain 
orientation by sintering.) Die upsetting results in a 50% increase in remanence 

Figure 13-36 Room temperature demagnetization curves and optical micrographs of 
bonded, hot-pressed, and die-upset NdFeB magnets prepared from melt-spun ribbons 
[after Werbst (199P)l. 
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(B ,  z 1.2 T) relative to hot-pressed, melt-spun material (B, = 0.8 T). Compared 
to sintered Fe-Nd-B magnets, melt-spun Fe-Nd-B magnets generally contain 
less Nd-rich grain boundary phase because the rapid solidification process 
precludes significant phase separation. This improves their corrosion resis- 
tance. The origin of H ,  in melt-spun Fe-Nd-B magnets is more complicated 
and somewhat less well understood than in sintered Fe-Nd-B. 

High-energy ball milling has also been shown to be effective in producing 
permanent magnets having properties comparable to those of melt-spun 
ribbons (Schultz et al. 1989). 

At room temperature Fe,,Nd,B magnets exhibit the best energy products 
of any practical permanent magnets. However, the Curie temperature of 
Fe,,Nd,B, (315°C) is too low for some applications. Replacement of 50% of 
the Fe by Co gives a Curie temperature of 627°C but much lower anisotropy 
(and coercivity) at room temperature (Fig. 13.37). This reduced anisotropy is 
due to several factors. The rare-earth transition metal exchange coupling is 
weaker for Co-Nd than for Fe-Nd which leads to a smaller Nd moment at 
room temperature (hence smaller net magnetization). The smaller net magnet- 
ization leads to reduced anisotropy energy and coercivity. Additionally, the 
transition-metal anisotropy changes from positive for Fe to negative for Co 
(Herbst 1991). This is clear from Figure 13.38, where the magnetic ordering 
versus temperature is displayed for Fe,,R,B and Co,,R,B phases. Additions 
of up to 3% Al, Ga, and/or Mg minimize the loss of anisotropy and coercivity. 
Replacing some Nd with Dy (which has a greater anisotropy) leads to a 
significant enhancement in coercivity at a cost in saturation induction (rno- 
ments of late R species such as Dy couple antiferromagnetically to the 
transition metal moment). 

The magnetic properties of Fe,,Nd,B can be improved at elevated 
temperature by partial substitution of both the rare earth and transition 
metals. Partial replacement of Fe by Co gives a higher Curie temperature 
without incurring negative transition metal sublattice anisotropy or sig- 
nificantly lower transition metal sublattice magnetization. Partial replacement 
of Nd by Tb leads to a larger uniaxial anisotropy at elevated temperatures. 
This occurs because Tb, like Nd, favors easy-axis magnetization in 2-14-1 
phases, it has a larger anisotropy energy density, and it has a stronger 
exchange coupling than Nd to maintain the favorable anisotropy up 
to temperatures as high as 300°C. An undesirable feature of Tb is the 
decrease in compound magnetization due to the antiferromagnetic coupling 
with the transition metal sublattice. However, as indicated by the data 
in Figure 13.34 (Hirosawa et al. 1986), the magnetization penalty is 
not severe at temperatures near T,. 

Development of other high-energy product magnets based on, or related to 
the 2-14-1 structure has been active (Buschow 1988, 1991, Herbst 1991). It 
has been suggested that allowing for an intergranular layer of soft iron in a 
fine-grained Fe-Nd-B magnet may afford an increase in magnetization, re- 
manence, and energy product (Kneller and Hawig, 1991). Initial results suggest 



5 % @ BdARD MAGNETIC IVIATERUALS 

70 
Q) 

0 
Y 60 - 
0 
I 

50 

40 

0 7 14 
Cobalt Concentration, x 

Figure 13.37 Magnetic characteristics of Nd,Fe,,-,Co,B pseudoternary compounds 
as functions of cobalt concentration x: (a) Curie temperature T, and (b) saturation 
magnetic moment at 295 K (Fuerst et al. 1986); (c) room temperature anisotropy field. 
[After Grossinger et al. (1988). 

some promise in this regard (Withanawasam et al. 1994). These magnets are 
variously referred to as exchange-coupled magnets or spring magnets. 

Recently, Coey and Sun (1990) reported the development of higher T, and 
sustained energy product in Fe,,Sm,N, compounds ( E  is a variable quantity). 
Stability may be an issue with these important materials (Li and Coey 1991). 
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Figure 13.38 Temperature dependence of magnetic order in R,Fe,,B and R,Co,,B 
compounds. Results from Coey (1986) and De Mooj and Buschow (1988), respectively. 

13.6 OTHER PERMANENT MAGNETS 

Copt Copt has a saturation induction of order 0.2-OAT, a coercivity 
typically near 340 kA/m (4.3 kOe), and a Curie temperature of 550°C. It is a 
face-centered cubic ferromagnet above 820°C and below that temperature 
orders to a CuAu structure (Fig. 13.39) for compositions from 35 to 65% Co. 

This atomic ordering results in a tetragonal distortion of the material. The 
ordered phase has a uniaxial anisotropy energy density of order 5 x lo6 J/m3, 
and coercivities in excess of 6 kOe have been achieved. The coercivity, however, 
is not greatest in the fully ordered phase; rather, H ,  peaks when there is a 
fine-grained mixture of ordered and disordered phases. Gaunt (1966) believes 
that domain walls are pinned at the grain boundaries. Because grain-boundary 
pinning means no domain walls in the grains, this is equivalent to the existence 
of single-domain behavior. Copt typically has (BH) ,,, = 70 to 95 kJ/m3 
(8.5-12 MG. Oe) and exhibits very good corrosion resistance relative to most 
other metallic hard magnetic materials. It plays a role in many of the thin-film 
magnetic recording media used in hard disks (Chapter 17). 

FePt and FePd alloys also go through similar order-disorder transform- 
ations to the CuAu structure. Even though these materials are tetragonal in 
their ordered states (uniaxial along [OOl] axes), the high strain associated with 
ordering results in twinning to three variants that pack togethcr to give an 



Figure 13.39 Ordered structure of GoPt (CuAu structure) below 820°C. 

isotropic or unaligned permanent magnet and relatively Bow remanence. The 
remanence and energy product can be increased by field annealing or by 
plastically deforming the material to align the [OQl] directions. 

MnAlC Magnets The ordered FCT, CuAu phase of MnAl(z) is ferromag- 
netic and metastable, forming by a martensitic transformation from the 
high-temperature FCC phase (Kojima et al. 1974). It has a uniaxial magnetic 
anisotropy of order 106 J/m3 and thus is of interest as a permanent magnet. 
The addition of carbon leads to greater stability of the z phase and the ability 
to induce [08I] directional order by extrusion up to 700°C. Coercivities of 2 
to 3 kOe and energy products of order (BN),,, = 64 kJ/m3 (8 MG- Oe) are 
achieved in this largely single-phase magnet. 

Spinel Oxides Spinel cobalt ferrite, CoO~Fe,O, (see Chapter 4) shows a 
trigonal distortion and hence strong magnetocrystalline anisotropy relative to 
the undistorted spinels. High coercivity (up to 320 kA/m) has been speculated 
to be associated with pinning of domain walls on stacking faults. Pinning on 
stacking faults (planar defects typically I nrn in thickness) would require an 
extremely strong anisotropy in the defect to gin a domain wall that would be 
about PO times thicker. While not used commercially, cobalt ferrite appears to 
play the role of a compass in certain magnetotactic bacteria. 

13.7 ANALYSIS AND SUMMARY 

Figure 13.4 shows how the maximum energy product has increased with time 
as new classes of materials have been discovered, developed, and optimized. 
Energy product is not the only important design criterion. Energy product per 
dollar and energy product per weight are also important design criteria. 

Magnetization reversal takes place by various processes in different perma- 
nent magnets (Zijlstra 1980). See Table 13.6. For fine-particle magnets (particle 
size < single-domain particle size) coherent rotation dominates. As particle size 
increases, curling, buckling, or other incoherent modes of reversal become 
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TABLE 13.6 Summary of Factors Limiting Csercivity in Various Classes s f  
Permanent Magnets 

Magnet Coercivity-Limiting 
Microstructure Process Examples Source of Coercivity 

Single-domain Coherent rotation ESDsa, melt-spun Shape, 
particle: FeNdB magnetocrystalline 

' < rsd anisotropy 
r zz rsd Incoherent rotation Alnico Shape, 
r > rSd Nucleation Single-phase SmCo, magnetocrystalline 

hexagonal ferrites, anisotropy 
and sintered 

Fe14Nd2B1 
> rsd Pinning Two-phase Sm,Co,,, Magnetocrystalline 

melt-spun Fe,,Nd,B, anisotropy, pinning 
Alnicos sites (precipitates, 

defects) 

"Elongated, single-domain particles. 

possible. In still larger particles that remain magnetically isolated, domain 
walls must be nucleated in each grain for magnetization reversal to occur. If 
the average grain volume is less than the average volume per defect (of those 
defects capable of nucleating reversal domains), then the coercivity remains 
large. If reversal domain nucleation occurs, then the only way to maintain high 
coercivity is to have strong wall pinning sites. The term reversal domain 
nucleation should be understood to include the release from grain boundaries 
of residual domains not fully removed by a strong applied field. Reversal 
domain nucleation generally occurs on large defects having either reduced 
anisotropy or a combination of shape and magnetization relative to the matrix 
that provides large local magnetostatic energy. 

The difference between nucleation-limited and pinning-limited behavior in 
permanent magnets composed of grains larger than single-domain particles is 
determined experimentally by noting the initial magnetization curve from a 
thermally demagnetized state (Kronmuller, Durst, and Sagawa 1988). (Thermal 
demagnetization is the most reliable way to introduce domain walls into the 
grains of a permanent magnet). If the coercivity is controlled by pinning, the 
domain wall will not move significantly with application of a field until H z H,  
and the initial magnetization curve will be flat. If the coercivity is limited by 
nucleation but wall motion is easy, the initial magnetization curve will be steep. 
On this basis, sintered Fe-Nd-B magnets appear to be nucleation limited 
because domain walls introduced by thermal demagnetization move quite 
easily. This simple concept is born out by measurements on R,Co,, (Fig. 13.31). 

From the model of domain wall pinning described in Chapter 9, it is clear 
that the defects that are most effective in pinning domain walls are those whose 
magnetic properties differ most from those of the matrix and whose dimensions 
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are comparable to the domain wall width, 6 = ag/(A/K,)'/". While domain 
wall thicknesses in soft materials were found to vary from about 50 nm to a 
few thousand nanometers, those in hard magnetic materials can range from a 
few nm to about 10 nm. Clearly, then, point defects and grain boundaries play 
a much bigger role in wall pinning in permanent magnets than in soft magnets 
where Bong-range strain fields and larger precipitates are more effective. Large 
defects in permanent magnets provide the opportunity for nucleation of 
reversal domains. 

The properties of Alnico alloys are dominated by the high aspect ratio of 
the fine a-phase particles and hence are often described in terms of single- 
domain particle behavior where the anisotropy is provided by shape 
QH, < A N N  = +Ads). However, quantitative comparison of properties with 
model prediction is complicated by particle interactions: a' may not be 
nonmagnetic, a-phase particles are often multiply connected; domain walls are 
observed in Bitter pattern studies. (Domains are also seen in ESD magnets and 
here, as well as in the Alnicos, they may separate interaction domains in which 
particles align by their magnetostatic interactions.) 

PROBLEMS 

13.1 (a) Calculate for a spherical particle the critical radius below which the 
particle is a single-domain particle, that is, it cannot be demagnet- 
ized since it cannot support a domain wall [Hint: Balance the wall 
energy against the magnetostatic energy of the particle without a 
wall, +lUS~, = :nAd:]. 

(b) What is the critical radius for Nd,Fe,,B where A = lop6 erg/cm, 
= 8274 G, and PC = 5 x 607 erg/cm3? 
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CHAPTER 14 

MAGNETIC ANNEALING 
AND DIRECTIONAL ORDER 

14.1 INTRODUCTION 

The objective in magnetic annealing, rolling, or other magnetic processing 
technique, is generally to tailor the shape of the B-H loop for a particular 
application. These processes are effective because they alter the anisotropy of 
the sample by some mechanism. If constant permeability is needed for a wide 
range of applied fields, a sheared loop is sought (Fig. 14.1, left). Such a loop 
can result when the dominant magnetic anisotropy is transverse to the 
direction of the applied field. A sheared loop can be achieved by heat treatment 
in a magnetic field that is oriented transverse (T) to the direction of the field 
to be used during operation. A sheared loop can also be produced in some 
cases by rolling. If a large flux change at low applied field is needed, as in many 
magnetic switching and power applications, a square B-H loop as shown in 
Figure 14.1, right, is desirable. Such a loop can be achieved by heat treating in 
a longitudinal (L) field or by rolling. These effects often involve a small change 
in the angular distribution of certain atomic-pair bonds in the material. 

From the calculations of idealized M-H loops in Chapter 9, it is possible to 
identify the simplest magnetic domain structure responsible for the loops in 
Figure 14.1 as those shown in Figure 14.2. The domain pattern of a T-annealed 
sample shows magnetization lying largely transverse to the sample axis; each 
domain is separated by a 180" domain wall and the net magnetization is zero 
in the demagnetized state. The domain pattern of an L-annealed sample shows 
the magnetization lying along the sample axis, again with 180" domain walls 
separating the domains magnetized in opposite directions such that the net 
magnetization is zero in the demagnetized state. The domain structures of 
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Figure 14.1 Schematic of the two extremes of field-induced anisotropy: transverse (T) 
and longitudinal (L) with loops taken in a longitudinal field. 

field-annealed amorphous alloys, where there is no strong crystalline aniso- 
tropy, were shown in Figure 11.4. 

The B-H curve for completely T-annealed material is linear in H and 
reaches saturation at a field H, that is proportional to the strength of the 
induced anisotropy energy density K,. The permeability is low and the 
remanence, coercivity, and hysteresis loss, ideally, are zero. This sheared-over 
loop suggests that the magnetization process occurs by rotation of the domain 
magnetization into the field direction. The magnetostriction and magnetoresis- 
tance (Chapter 15) of this state are close to their maximum values for the 
composition. 

The B-H loop of completely L-annealed material is square with a re- 
manence ratio close to one (depending on sample shape). The square B-H 
loop of an L-annealed sample suggests that the magnetization process is 
dominated by 180" domain wall motion. This loop indicates a high maximum 
permeability and a hysteresis loss that depends on the strength of the 
coercivity. ( H ,  is governed by the ease of wall motion which is a function of 
frequency and material properties; see Chapter 9). The magnetostriction and 
magnetoresistance are reduced well below their peak values for the composi- 
tion. Field annealing has little effect on the fundamental properties of a 
magnetic material (M,, Tc). 

The use of magnetic fields in heat-treating ferromagnetic materials to induce 
magnetic anisotropy is commonplace. A variety of soft magnetic materials 

Figure 14.2 Schematic of domain structures typical of transverse (T) and longi- 
tudinally (L) field annealed samples. These domain patterns, exposed to fields along the 
sample length, give rise to M-H loops like those in Figure 14.1 T and L, respectively. 
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Figure 14.3 B-H loop of an Fe-Ni-Co perminvar alloy after annealing in a longitudi- 
nal field (left) and in zero magnetic field at 90OoC (right) [After Bozorth, copyright 
IEEE Press, 19941. 

respond to some form of magnetic field processing to meet certain performance 
specifications. These include magnetic oxides (Slonczewski 1963, Slick 1986), 
commercial magnetic alloys such as 50% Ni permalloy [Chapter 10, here; Chin 
and Wernick (1981)], Co-Cr or Fe-Ni films for magnetic recording media or 
thin-film heads, respectively (Chapter 17), and finally, amorphous magnetic 
alloys [Chapter 11, here; Fujimori 1983).] The development of orientation in 
permanent magnets is not always a matter of field annealing. Permanent 
magnets sintered from powders (e.g., rare earth-transition metal intermetallics) 
get their oriented characteristics by physically aligning the particles with a 
magnetic field before sintering, or by die upsetting or extrusion of compacted 
powders. Alnico magnets develop a uniaxial, textured microstructure by 
spinodal decomposition in a magnetic field (Chapter 13). 

Before proceeding to a discussion of the mechanisms that cause field- 
induced anisotropy, three important observations related to field annealing are 
worth mentioning: (1) pure elements do not respond to heat treatment whereas 
many alloys do, at least to some degree; (2) for field annealing to be effective, 
the field must be applied below the Curie temperature of the material and, for 
some effects, must be sufficient to saturate the material; and (3) ternary 
Fe-Co-Ni alloys, known generally as perminvar alloys (based on 
Ni,,Fe,,Co,,), for reasons that will become clear later, respond strongly to 
field annealing. When perminvars are heat-treated without a magnetic field, a 
very unusual loop shape results (Fig. 14.3): the waist of the loop near M = 0 
is constricted (this is often referred to as a wasp-waisted loop). This effect, due 
to the stabilization of domain walls, was illustrated in Figure 11.24. 

The explanation of magnetic annealing to be developed should be able to 
describe these effects as well as those depicted in Figures 14.1-14.3. 

14.2 MECHANISMS OF FIELD ANNEALING 

The easy direction of magnetization in a material is governed mainly by the 
magnetic anisotropy, due to its shape, its crystal structure, and its state of 
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stress. 16. is also a function of the crrystallographic texture and microstmacture 
of the sample, which depend on the method of fabrication or postfabrication 
processing. Finally, magnetic anisotropy (strength and axis orientation) can 
also be a f~~nction of annealing in the presence of an applied magnetic field or 
stress. How does magnetic field annealing induce an easy axis? First, it is the 
direction of magnetization in the sample during the heat treatment and not 
simply the direction of the applied field that is responsible for field-induced 
magnetic anisotropy. Magnetic annealing leaves a preferred direction of 
magnetization in the sample generally by rearranging atoms on a local scale in 
such a way as to favor magnetization in a given direction. At an annealing 
temperature T, sufficiently high for atomic mobility, yet not so high that the 
material is no longer magnetic (T, < T,), some atom pairs orient themselves 
relative to the direction of magnetization so that their magnetic anisotropy 
energy is minimized. Once the temperature is reduced to a level at which 
significant diffusion can no longer occur, if the field is removed, the frozen-in 
atomic pair directional ordering may be sufficient to override other aniso- 
tropies and hold the magnetization in the direction it had during annealing. 

It was initially postulated that the improved permeability and loop square- 
ness associated with field annealing could be due to the relief of stress between 
grains in polycrystalline materials. The origin of this intergranular stress is as 
follows. Adjacent grains which have their easy axes (and hence their magnet- 
ization directions) canted with respect to each other are magnetostrictively 
strained in such a way that they no longer fit together. The stress exerted by 
one grain on the other induces a magnetoelastic anisotropy and hence makes 
it more difficult to magnetize the sample. However, it is now known that this 
effect is small relative to the magnetocrystalline anisotropy for most 3d metals 
and alloys, as was shown in Chapter 7. It is a significant effect in many 
rare-earth alloys. Further, it is possible to induce anisotropy by field-annealing 
zero-magnetostriction alloys and single-crystal alloys. Hence, the effects of 
magnetic annealing cannot be acco~anted for by stress relief alone. Nevertheless, 
field annealing does have implications for rnagnetostrictive behavior. 

The domain patterns characterizing the k and T limits have special 
implications for the extent to which magnetostriction is a factor during the 
magnetization process. Figure 14.2(T) depicts an idealized domain structure in 
which the sample width is increased and its length is decreased by magneto- 
striction (if A, > 0). Figure 14.2(L) illustrates a sample elongated along the 
ribbon axis and contracted across it (if 2, > 0). (These strains would be 
opposite if A, < 0). Given these idealized domain patterns, it is evident that 
magnetizing the sample in Figure 14.2(T) to saturation along its length rotates 
the direction of magnetization and changes the magnetostrictive strain of the 
sample. During the magnetization process in Figure 14.1(T) the sample strains 
by ($)A,. Conversely, going from the L domain pattern in Figure 14.2(L) to 
saturation along the sample length does not change the magnitude of the 
sample strain (domains both parallel and antiparallel to the ribbon axis in 
Figure 14.2(T) have the same strain along the ribbon axis). The longitudinal 
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magnetization process in Figure 14.1(L) does not alter the state of strain of the 
sample regardless of the value of the saturation magnetostriction constant of 
the material, that is, from Eq. (7.1), A1/1 = 0. 

The microscopic effects accompanying magnetic field heat treatment on materials 
may vary widely. At temperatures for which short-range atomic diffusion is possible, 
the presence of a magnetic field can have some of the following consequences: 

1. The direction of bonds between similar or dissimilar atomic species may 
take on an asymmetric distribution (directional pair ordering), even in 
single-phase materials. Typical examples are the field annealing of poly- 
crystalline iron-nickel alloys or a variety of amorphous alloys. 

2. If interaction 1 is strong enough and time and temperature are adequate, 
atoms of a mobile, minority species may coalesce into fault planes to lower the 
free energy. This appears to be the mechanism responsible for annealing in 
many Co-Ni-containing crystalline alloys such as perminvar or permalloy 
and has recently been suggested to apply to certain cobalt-rich amorphous 
alloys. 

3. The application of a magnetic field to any material that is magnetic or 
which has components with magnetic properties affects the energy of the 
system. Hence magnetic fields can have orienting effects on microstruc- 
tural features that exhibit anisotropy in their ferromagnetic, paramag- 
netic, or diamagnetic response. 

4. In two-phase alloys, a textured or anisotropic microstructure may evolve 
during annealing. The foremost example is the growth of oriented 
columns of Ni,A1 in an Fe-rich matrix during phase separation in the 
fabrication of Alnico permanent magnets (Chapter 13). 

The first effect, directional pair ordering, is the most subtle and it is the 
mechanism behind much of the field annealing that is practiced. Atomic pair 
ordering, first suggested by NCel, is the mechanism to be considered first. 
Mechanisms 2-4 will be described later in this chapter. 

14.3 DIRECTED-PAIR ANlSOTROPY 

14.3.1 Pair Interaction Energies: Isotropic and Anisotropic 

Different species interact chemically with each other in different ways. In a 
binary alloy A,-,B,, the affinity of species A and B may be expressed as a 
negative value for their interaction energy, EAB. If the A-B affinity is greater 
than the affinity of either A for A or B for B, annealing will tend to increase 
A-B coordination: EAB < (EAA or EBB) < 0. This rearrangement of species on 
a crystal lattice is called chemical ordering. In contrast, a preference for A-A 
or B-B coordination (EAA, EBB < EAB < 0) is called segregation. A nonmag- 
netic system will arrange its bond coordination, subject to packing constraints, 
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so as lo minimize the energy: 

Here, NAB is the coordination of species A by B; ATAA + NAB gives the total 
coordination of species A. [The appendix to this chapter reviews the concepts 
and formalism of chemical order-disorder phenomena, arising from Eq. (14.1), 
in parallel with magnetic order-disorder phenomena.] In a magnetic material, 
the strength of this chemical bond interaction can depend on the orientation 
of the A-A, B-B, and A-B bonds relative to the magnetization direction. To 
quantify this magnetization dependence, the bond energies can be expanded in 
polynomials of the angle between the bond direction and the magnetization 
direction as in Eq. (6.7): 

Mere, lAB is the strength of the uniaxial part of the anisotropic pair interaction. 
Only the dipole term need be retained. 

It is important to consider some microscopic aspect of directional bonding. 
An isolated substitutional atom has the symmetry of the crystal lattice on which 
it sits. However, an interstitial atom or a unique pak of atoms on the crystal 
lattice can have a symmetry lower than that s f  the crystal because they define 
a particular direction in the crystal. Chikazumi (1950) first referred to this as 
"directional order," and Slonczewski (1963) distinguished the two cases as 
"monatomic directional ordering" (interstitial atom) and "diatomic directional 
ordering" (unlike atom pairs, A-B, one or both of which may be impurities). 
If these directional bond interactions depend on the direction of magnetization, 
as suggested above, a change in the direction of magnetization can alter the 
energy of the system. Hence, the direction of the magnetization during an 
annealing process may influence the bond orientational order by changing the 
number distribution of the bonds in various directions. Once this directional 
order is frozen in after annealing, the bond orientational order imposes a 
preferred axis of magnetization on the sample. 

The microscopic mechanism behind the phenomenological parameters lAB 
may be the same as that for magnetocrystalline anisotropy itself; the electrons 
involved in bonding, the 3d electrons, are also responsible for the magnetic 
moment. Spin-orbit coupling is the mechanism that links the magnetization 
direction, related to S, to the bond direction, related to L, as was described in 
Chapter 6. In the present context of directed-pair anisotropy, attention is 
focused on either interstitial atoms, impurities (interstitial or substitutional), or 
mobile atom pairs. In all cases, the ability to induce anisotropy depends on the 
mobility of these unique, local atomic arrangements. The spin-orbit interaction 
(or similar microscopic anisotropy mechanisms) can influence bond directional 
order in two ways: 
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1. First, just as there is a macroscopic magnetic coupling between the 
direction of M and the crystallography, (KlaTa;. . .), so there is also a 
microscopic coupling between the direction of M = Ms(al ,  a,, a,), and the 
direction of the local atomic bonds. The first-order expansion of this local 
interaction, in the spirit of Eq. (14.2), can be written as follows: 

Here, the sum is over the i nearest-neighbor directions and Ni is the number of 
bonds in the ith direction. The sum of the Ni values gives the total number of 
impurity atom bonds or ordered pairs. When the crystal field coefficient D is 
positive (as is usually the case), this interaction favors bonds ordered in the 
plane perpendicular to the local direction of magnetization (Fig. 14.4). 

2. Next, there is a coupling between the lattice strain (due to magnetoelastic 
or other stress) and the bond orientational order: 

When the local magnetoelastic parameter E is negative (as is usually the case), 
this interaction favors atoms in sites that are opened up by the strain (i.e., bond 
order is parallel to M for A, > 0) (see Fig. 14.5). For magnetostrictive strains, 
e j jcc  A,cos20, where 8 is the angle between M and the strain, Eq. (14.4) 
becomes 

z 

Following Neel's analysis [see Slonczewski (1963) or Chikazumi and 
Graham 1969)], the internal energy of the magnetic system now depends on 
thc number of bonds in each of the i nearest-neighbor directions: 

Figure 14.4 Interstitial impurity bonds or those of atom pairs, A-B, align perpendic~a- 
lar to the magnetization direction for D > 0 under the interaction in Eq. (14.3). 
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Figure 14.5 Impurity bonds or A-B atom pair bonds favor alignment with the 
magnetization direction for E < 0 and A, > O according to Eq. (14.5). 

Here, li (which is a function of temperature) is the strength of this uniaxial part 
of the interaction [(e.g., interactions (14.3) or (14.5)]. The sum is taken over 
the Z nearest-neighbor directions, i = 1,2.. . , Z, about the interstitial or the Z 
possible directions for an A-B bond, and cPi is the angle between the ith bond 
direction and the magnetization direction. The term cos g5i can be written as 
alpli + a2Pzi + a,P3i where the a terms are the direction cosines of the 
magnetization and the Pi terms are the direction cosines of the bonds. 

The energy in Eq. (14.4) can be used to calculate the equilibrium number of 
atoms in directed sites at the annealing temperature T,  using the Boltzmann 
statistical form of the concentrations (see Chapter 4): 

The qZi terms indicate the direction of M relative to the bond direction at the 
annealing temperature T,. Defining 1, = l(Ta) << k,'T; Ni can be expressed at T,, 
to first order in the interaction energy, Eai = la(cosZqZi - $1 as 

That is, the deviation of the number of bonds in a given direction from N/Z is 
proportional to the deviation of the energy in that direction from the mean 
energy per neighbor. Using Eq. (14.6), Eq. (14.8) can be written as follows: 
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This equation gives the equilibrium bond ordering for a given direction of 
magnetization during annealing. Thus, if a site has nearest neighbors distrib- 
uted over six directions (an octahedral site), the number of bonds at T, along 
any one direction will deviate slightly from N/6 by an amount that depends on 
the strength and sign of the magnetic interaction l,, the relative orientation of 
M(Ta), and the annealing temperature T,. 

After establishing the bond distribution given by Eq. (14.9), the sample is 
returned to the temperature 7: At T < T,, the energy is given by Eq. (14.6) with 
cpi being the angle between the induced anisotropy direction and M at the 
observation temperature. Substitution of Eq. (14.9) into (14.6) gives 

- N 1al~os2cpa i~~~2cpi  
Eindanis - - - C $- constant (14.10) z i = 1  k B T ,  

The field-induced anisotropy energy is a function of the magnetization 
orientation at the annealing temperature as well as its orientation at the 
measurement temperature. Slonczewski (1963) shows that the form of the free 
energy in Eq. (14.10) can be deduced on the basis of symmetry. First, 
application of time reversal invariance to the magnetization at both T and Ta 
requires that angular functions show up quadratically; second, invariance of 
the energy to all cubic symmetry operations on M at both temperatures leads 
to the general form of Eq. (14.10). Chikazumi and Graham (1969) tabulate the 
numerical coefficient resulting from the sum in Eq. (14.10) over different 
structures. 

Equation (14.10) says that the induced anisotropy varies inversely with 
annealing temperature and has an angular dependence that is uniaxial in the 
measuring direction about the induced easy axis. Further, its strength depends 
on two factors: (1) the number of interacting pairs and (2) the product of the 
strengths of their pair interactions at the measurement temperature and at the 
annealing temperature. Because each of these interactions is dipolar in form, it 
can be assumed that their strengths are approximately quadratic in the 
magnetization at the respective temperatures: 

It is expected that the part of Eq. (14.10) that is independent of y i  and y,,, 
namely, the strength of the field-induced anisotropy in a binary alloy A,B,-,, 
should vary as 

Thus, if the anisotropy is due to an interaction between major constituents, the 
strength of induced anisotropy varies as x2(1 - x)'. However, for dilute alloys 
A, -,B, with x << 1, the compositional dependence is proportional to x2. 

The angular part of Eq. (14.10) can be written as C O S ~ ( ~  - cp,), where cp is 
the direction of M at observation and (pa is the direction of the field-induced 
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easy axis. Hence Eq. (14.10) may be written simply as 

where K ,  is the strength of the field-induced anisotropy from Eq. (14.11); cp, 
may not coincide with the direction of M during annealing in a single crystal 
(Chikazumi 1956). 

Figure 14 .6~  shows the dependence of the strength of the field-induced 
anisotropy on annealing temperature in crystalline Ni, -,Fe, alloys (Ferguson 
1958). The annealing temperature enters the field-induced anisotropy through 
la z M2(Ta) as well as appearing explicitly in the denominator of Eq. (14.11). 
The strength of the anisotropic pair ordering depends on the strength of the 
magnetization at the annealing temperature [MS(Ta)l2 and not the strength of 
the field. Clearly there can be no field-induced anisotropy in a sample 
quenched from an annealing temperature above Tc. The results in Figure 14 .6~  
follow the predicted dependence, but the data in panel (b), for an amorphous 
alloy, fall below the theoretical prediction for temperatures below about 280°C. 
This weakening of the induced anisotropy for lower annealing temperatures is 
a kinetic effect associated with the short-range diffusion that is involved. At 
lower temperatures the equilibrium pair distribution is not achieved in the 
times allowed for annealing. 

The fact that induced anisotropy is predicted to vanish for T, 2 Tc presents 
a challenge in explaining anisotropy induced by a field present during film 
deposition. Conventional wisdom would say that M = 0 during condensation 
of the film, so no anisotropy should be induced during that process. Further, 

Annealing Temperature Ta (K ) 
(b) 

Figure 14.6 Dependence of strength of field-induced anisotropy in (a) Fe,Ni, -, alloys 
(Ferguson 1958), where the curves are labeled by Fe content; and (b) amorphous 
CoFeBSi (Fujimori et al., 1978) on annealing temperature. The solid lines follow 
MZ(Ta)/T, as suggested by Eq. (14.11). 
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Figure 14.7 Temperature dependence of strength of field-induced anisotropy in 
Ni,,Co,,. The solid line varies as M 2 ( T )  (Yamamoto et al. 1961). 
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even if the Curie temperature is high enough that some diffusion can occur at 
that temperature, the film has so little mass that it should cool quickly through 
the ferromagnetic temperature range below Tc, again making it unlikely that 
significant pair ordering could be established. Hence, it is difficult to under- 
stand the presence of anisotropy induced during film deposition unless the 
substrate is held at a sufficiently high temperature. 

The dependence of K ,  on measurement temperature is shown in Figure 14.7. 
As predicted by Eq. (14.11), K ,  cc M ~ ( T ) .  

Evidence of the composition dependence of K ,  represented in Eq. (14.11) is 
shown in Figure 14.8 for crystalline Fe, -,Nix. The anisotropy in NiFe follows 
the compositional dependence x2(1 - x2) of Eq. (14.11) reasonably well. The 
departure of the NiFe from the nii-nz,  curve is due to variations in Curie 
temperature and magnetization with composition. To take these into account, 
all the composition-dependent terms in Eq. (14.11) should be grouped on the 

I I I I 

- 

-\ 

I I 

Figure 14.8 Variation of strength of field-induced anisotropy with composition; on left, 
K ,  in Fe,-,Nix varies as the concentration squared of each component (solid line) 
(Chikazumi and Oomura 1955). 
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left side of the equation. ILuborsky and Walter (19479) have done this sort of 
analysis for amorphous (Fe, -,Ni,),,B,, alloys (see Fig. %4.B4b7 below). 

Example 14.11 The interstitial concentration parallel and perpendicular to the 
magnetization can be estimated for annealing at 425°C. From Eq. (14.9), 
Ni/N = +[I - l(cos2da - +)/k,T,J and the departure from equilibrium concen- 
tration goes as 1 - C/T,. It will be shown later that I = 5 x 10-l6 erg, which 
then gives 

Thus, for annealing at 425"C, the equilibrium deviations from an isotropic 
interstitial distribution are measured in tenths of a percent. More interstitial 
bonds are found in the plane perpendicular to M than in the direction of M 
for la > 0. 

Slonczewski (8963) summarizes the experimental results and theoretical 
interpretation with regard to the strong induced anisotropy in coballt-sub- 
stituted magnetite, Co,Fe, -,a,. The mechanism for the induced anisotropy is 
spin-orbit interaction for the monatomic directional ordering of the Co2+ 
ions. The ground state of the Co2 + ion in an octahedral (B) site is orbitally 
degenerate. The trigonal arrangement of next-nearest-neighbor atoms (see 
Figure 6.17) lowers the symmetry and lifts the degeneracy when the angular 
momentum L and hence the spin S are parallel to the trigonal, < 11 1 >, axis. 

14.4 MAGNETIC AFTEREFFECTS 

Although kinetic factors can limit the effectiveness of field annealing at lower 
temperatures, there are some impurities that are so small that they are mobile 
even at room temperature. For example, carbon and nitrogen interstitials are 
sufficiently mobile in a-Fe to be able to hop to adjacent interstitial sites at 
room temperature. When such impurities are present, the same pair ordering 
as described above can occur at room temperature. This pair ordering can give 
rise to time-dependent effects in the magnetic properties as the direction of 
magnetization is changed. These so-called magnetic aftereffects are now de- 
scribed. 

In 1887 Lord Rayleigh observed that application of a stress to low-carbon 
steel has two effects on different timescales: (1) an instantaneous elastic strain 
and (2) an additional time-dependent strain (Fig. 14.9). The time constant of 
this additional strain, or aftereffect, depends strongly on temperature. This 
time-dependent response is a manifestation of what is called anelasticity. 
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5 Time 

Figure 14.9 Schematic illustration of an elastic strain aftereffect (below) when a 
material is subjected to the stress shown above. Similarly aftereffects occur in magnet- 
ization or in magnetostriction. 

Snoek (1941) explained this phenomenon using an atomic model of carbon 
interstitials in the BCC iron lattice. Carbon atoms can occupy X, Y, or Z 
octahedral interstices in the BCC lattice of iron (Fig. 14.10). For low concen- 
trations of carbon and in the absence of strain or magnetization, the X, Y, and 
Z sites are equally populated by carbon to a concentration C,. (The carbon 
can represent any mobile interstitial species.) 

The application of a strain, along the x axis, for example, favors occupation 
of the X interstices because of the slightly larger volume those sites take on in 
the strained state. For carbon to jump from Y or Z sites to the X sites requires 
thermal energy represented b y  an activation energy Q; the jump process is a 
funcion of time and temperature. Figure 14.11 shows a schematic representa- 
tion of the potential seen by an interstitial on the top surface of the BCC 
structure shown at upper right. The potential maxima correspond to the corner 
and body-centered atom positions. The one-dimensional potential energy 
diagram at lower right shows how the minima, of equal depth in the absence 
of magnetization or stress, can take on different values in the presence of an 
applied stress. The characteristic time for this jump is given by 

r = r ,  exp (- 6) 

Figure 14.10 Octahedral interstices preferred by carbon, nitrogen, or boron atoms in 
body centered cubic structure. Hopping of interstitials between sites is responsible for 
the typical Snoek efect and for magnetic aftereffects. 
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Figure 14.11 Left, representation of potential in the x-y plane (arbitrary units) seen 
by an interstitial on the top surface of BCC structure shown at upper right. Below, right: 
double-well potential involved in the thermally activated process shown above. The X 
site is favored by the tensile stress along the x direction. 

With adequate time and temperature there will be a small excess carbon 
concentration C, at the X sites. This interstitial mobility is responsible for the 
time-dependent strain depicted in Figure 14.9. On removal of the stress, there 
is an instantaneous elastic contraction along x, followed by a gradual anelastic 
contraction as the carbon interstitials return to an isotropic distribution. This 
elastic aftereffect is called the Snoek efect in recognition of the explanation 
given for it by Snoek in 1948. 

The magnitude of the time-dependent, anelastic strain due to impurity 
redistribution can be determined by considering the free energy density with 
pure elastic, impurity elastic [Eq. (84.411, and entropy terms as follows (Snoek 
1941): 

where cij are elastic constants; E is the energy caused by the strain on 
occupation of X, Y, or Z sites at concentrations Ci (i = X, Y ,  or Z )  in excess 
of Go; and 3C, is the total atomic concentration of interstitials and C Ci = 0. 
The last term in Eq. (14.14) describes the effect of entropy; it is a minimum for 
isotropic distribution (Ci = 0). V is the molar volume of iron, 7.1 x 1QP6 m-3, 
and R = N,k, = 8.31 J/(mol.deg) is the gas constant, while N ,  is Avogadro's 
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number. The energy E is found to be -9.9 and -9.2 x 10'' J/m3 for carbon 
and nitrogen impurities, respectively, in BCC Fe. The elastic constants of iron 
are given in the second appendix to Chapter 7. Minimization of f,,,,,,, with 
respect to the e,, and Ci determines the equilibrium strains and concentration 
anisotropies for a given C, and temperature. The fact that E < 0 implies that 
the energy is lowered if an excess X occupation (C, > 0) is accompanied by a 
positive strain ex, > 0. Thus, the mechanical aftereffect (time-dependent strain) 
is always in the direction of the stress. (If the carbon concentration were 
sufficient that the dipole strain field of one interstitial, say, X, biased nearby 
carbons to occupy X sites also, then, in that region, the iron might undergo a 
tetragonal distortion and locally move toward a new, body-centered tetragonal 
structure similar to the intermetallic compound cementite, Fe3C.) 

As implied by Figure 14.9, there are also aftereffects associated with certain 
magnetic processes. Consider, for example, BCC Fe with a small carbon 
concentration; the easy axes are the <loo) directions. Annealing in the 
presence of a field sufficiently strong to align the magnetization causes a 
redistribution of the carbon interstitials to accommodate the field direction. If 
the sample is rotated quickly to another easy direction orthogonal to the first, 
the carbon interstitials redistribute and cause an observable time rate of change 
in the anisotropy in the new direction. Ratheneau and de Vries (1969) 
conducted this experiment and measured the anisotropy aftereffect by monitor- 
ing the oscillation period of the sample in a torque magnetometer (Chapter 6). 
The results for this anisotropy aftereffect are shown in Figure 14.12a for 
Fe-0.015 wt% C. The induced anisotropy axis changes from the original 
direction to the new direction of the field as interstitials move to accommodate 
the new direction of magnetization. The increase in induced magnetic anisot- 
ropy with time results in increased torque and, therefore, decreased oscillation 
period. 

An aftereffect can also appear in the magnetostrictive strain accompanying 
the magnetization process; Figure 14.12b shows the magnetostrictive aftereffect 
observed in Fe-0.008 wt.% C. With initial application of a field, the normal 
magnetostrictive strain appears immediately. With time, this strain decreases as 
interstitials redistribute themselves to minimize their energy; that is, the 
magnetostrictive aftereffect is negative (opposite the effect observed for mech- 
anically induced strain). Thus interstitials do not move into the sites opened 
up by the magnetostriction [which would be consistent with Snoek's mechan- 
ism given by E in Eq. (14.14)]. Insted, they move to reduce the instantaneous 
strain in the direction of M. Attempting to describe the observed magnetostric- 
tive aftereffects of Figure 14.12 with Eq. (14.14), gives the wrong sign, and the 
calculated effect is too small. The magnetostrictive aftereffect demands a new 
microscopic mechanism. 

It turns out that the energy of an interstitial in certain directed sites depends 
also on the local direction of magnetization as described in Eq. (14.3) (N6e1, 
1952). The converse, namely, that the direction of magnetization depends on 
the energy of directed pairs, is at the root of magnetic anisotropy. To describe 
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(a) Time, min. 

Figure 14.12 (a) Measurement of the induced anisotropy aftereffect for Fe-O.OlS%C 
using torque magnetometer oscillation period with a field along an easy axis at 90° to 
the induced anisotropy direction: (a) time-dependent change in hard-axis magnetiz- 
ation; (b) time-dependent change in magnetostrictive strain [After Ratheneau and de 
Vries (1969).] 

this and other magnetic aftereffects, magnetic terms must be added to the 
elastic terms in Eq. (14.14) as follows: 
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The pure magnetic anisotropy and magnetoelastic terms (in Ki and B,) are 
familiar (Chapters 6 and 7): K ,  =4.2 x 104, K, = 1.5 x lo4, B ,  = - 3.3 x lo6, 
B2 = 7.3 x lo6 J/m3 for Fe. The terms proportional to D describe the magnetic 
anisotropy energy difference for impurity site imbalances given by the C,. 
Experiments show that D is of order +7.1 x lo6 J/m3 for carbon impurities 
and f4.5 x 106 J/m3 for nitrogen impurities in Fe. 

A positive value for D means that the direction of magnetization has fewer 
impurity bonds (i.e., ai z 1, a j  = a, = 0 implies Ci < 0, Cj,, > 0) (see Fig. 14.4). 
Conversely, any excess concentration, Ci > 0, is preferably located along a 
direction of small magnetization component, ai = 0. The important point is 
that the direction of magnetization during annealing results in different 
energies for different local atomic arrangements or, conversely, different local 
atomic arrangements can alter the preferred direction of magnetization. 

It is possible to use the free energy in Eq. (14.15) to calculate the anisotropy 
induced by a given impurity concentration C, after annealing at a temperature 
T,. This calculation also requires the equilibrium strain due to the impurities, 
so the magnetoelastic problem must be solved first. Minimization of the free 
energy (de Vries et al. 1959) with respect to strain ex, and impurity concentra- 
tion C, gives, respectively: 

(which, without impurities e:,, reduces to the magnetostrictive strain cal- 
culated in Chapter 7) and 

where the definition A = RT/VCo has been made. Eliminating the concentra- 
tion and solving for the strain 

gives for the magnetostrictive aftereffect 

where a small term has been omitted. If I&B,/(c,, - c12)l > IDI, then the 
magnetostrictive aftereffect is always positive. If ID1 > IsB,/(c,, - c12)l, then 
the magnetostrictive aftereffect depends on the sign of --&D/B,. In a-Fe, the 
magnetostrictive aftereffect is negative (Fig. 14.12b), consistent with the 
independently determined parameters, B,  < 0, as s < 0 and D > 0. For 
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y-Fe-Ni(C), the magnetostrictive aftereBect is positive for A,,, (Masters and 
Wuttig 6974) and can be interpreted consistently within the Gamework of this 
model. 

For the impurity-induced magnetic anisotropy, the direction cosines that 
give the orientation of M during and after the anneal, a,, and p, respectively, 
must be distinguished. When this is done, Eqs. (14.17) and (14.18) can be used 
in Eq. (14.15) to give the impurity-induced anisotropy: 

Figure 14.12~~ shows this magnetic anisotropy aftereffect at 239K for 
0.015 wt% C in oc-Fe as measured by oscillation period (Ratheneau and de 
Vries 1969). The magnetization aftereffect vanishes for the magnetization in the 
easy direction. Note that the anisotropy aftereffect cannot be used to determine 
the signs of E and D because their difference is squared. This is not the case for 
the magnetostrictive aftereffect. Only with the addition of NCel's anisotropy 
term D could the negative magnetostrictive aftereffect in Fe-C be explained (B, 
is negative for Fe-C). 

The log of the decay time of induced anisotropy can be plotted as a function 
of inverse temperature (Arrhenius plot) to determine the activation energy Q of 
the atomic jumps involved. Figure 14.13 shows the anisotropy activation energy 
for boron mobility in amorphous Co56Fe,,B,5Si2 alloys to be of order 1 eV. 

Any two dissimilar atoms, at least one of which is magnetic, can show the 
same form of anisotropy energy due to their orientation relative to the 
direction of magnetization. These interactions are particularly strong if both 
atoms are magnetic. The mechanisms involved in magnetic aftereffects are the 
same as those described in Section 14.3 for field-induced anisotropy. The 
principal difference between magnetic afteregects and field-induced anisotropy 
is the temperature range over which atomic mobility occurs. Because of the 
lower mobility of Fe in Ni (or vice versa) compared to C or N in Fe, the 
field-induced anisotropy due to pair ordering of the former species must be 
induced at elevated temperatures. 

While carbon and nitrogen interstitials in a-Fe show comparable impurity- 
elastic coefficients, E M - 10" J/m3, their impurity anisotropy coefficients, 
D = 7.1 and 4.5 x 106 S/m3, respectively, differ significantly. Levy (1965) has 
proposed a local crystal field model of the interstitial in the tetragonal field of 
its positively charged Fe neighbors. The formalism is similar to that used to 
describe magnetocrystalline anisotropy in insulators (Chapter 6). The crystal 
field potential in which the impurity resides is expanded in spherical har- 
monics. The isotropic term in the potential describes the bonding or heat of 
solution of the impurity in the site and is proportional to the impurity radius. 
The dipolar term describes the local uniaxial interaction of impurity p orbitals 
with the distorted crystal field. Both of these terms may be weakly perturbed 
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Figure 14.13 Arrhenius plots of the relaxation time of the magnetic anisotropy 
aftereffect in an amorphous metallic alloy measured from the anisotropy aftereffect (K, ) ,  
effective AC permeability (p,), and hysteresis loss (We). Activation energies (in eV) and 
frequency prefactors (in lo9  s-I) were determined as follows: from K, ,  1.4, 1.9; from pe, 
0.75, 1.1; from We, 1.2, 1.3 [After Fujimori, 1983)l. 

by changes in the direction of magnetization on the surrounding Fe atoms. The 
coupling of the isotropic term to the direction of the iron moment is 
responsible for the impurity-elastic interaction given by E. The coupling of the 
dipole potential term to the direction of magnetization of the surrounding Fe 
atoms gives rise to the impurity-magnetic term, D. 

Levy's model leads to the following predictions: 

1. Interstitials in pO, p3, and p6 orbital configurations should have D = 0. In 
these cases, any magnetic aftereffects will arise from E alone and will, 
therefore, be positive. This suggests that C and N interstitials may be in 
2p1 and 2p2 configurations, perhaps due to their bonding with the 
surrounding Fe atoms. 

2. The relative strength of the impurity elastic effects for N and C in Fe, 
E ~ / E ~  = 0.93, goes as the ratio of the ionic radii of the impurities: 
rN/rc  = 0.93). The relative strength of the magnetic coupling to the 
dipolar potential term (giving rise to D) is 2: 1 for p1 (C) and p2 (N) 
configurations. This may explain the stronger impurity magnetic effect of 
C relative to N. 
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The theory of magnetic akereifects is reviewed by Ksowm~ller (1968) and 
specifically for amorphous magnetic alloys (KronmiiPler 1983). 

14.5 STRESS ANNEALING 

Many materials respond to annealing under stress, and in some cases the stress 
is not intentionally applied but is a consequence of the environment of the 
material during heat treating. When a material is annealed under stress, three 
effects are in operation: (I) the material may experience an elastic strain due 
to the stress, (2) it may also experience an irreversible strain called creep during 
annealing, and (3) the stress-induced anisotropy Il,a at the annealing tempera- 
ture may align the magnetization and so give rise to a field-induced anisotropy. 
It is important to know which of these effects dominate and how the direction 
of the net induced anisotropy relates to the applied stress. 

First, find the concentration [Eq. (14.17),] that minimizes the energy in Eq. 
(141.15) for a plastic flow given by e,, = e, > 0. On the basis of known 
experimental values of D = 1Q6-107 J/m3 and E = - 10'' J/m3, the result for 
e, > 1W3 is due largely to the impurity elastic term: 

For a 1% elongation, a directed-pair concentration of 3C0 z 20%, a value for 
R/V = 1.2 x 106 J/m3 K, and T = 388°C = 553 K, the concentrations are 
C, = 1W3 and thus, C, = C, = -8.5 x PO-3. 

The magnitude of various anisotropic terms in Eq. (14.15) are now com- 
pared. The .dieii terms are of order 106 9/m3 but give no magnetic anisotropy; 
DU?C, is of order I O ~ U , ~  J/m3 and, l3,a,2e:Fic is of order 1o2a; J/m3 (because it 
is defined for elastic strains). For the Ci given above, the strongest terms from 
Eq. (14.15) are f = 1.5 x 10-3D cos26' + K,a;aj2 + - - .  constant. For Fe, 
D = 7 x BQ6 J/m3, and K, = 4.5 x 104 J/m3. Thus, aside from the magnetoc- 
rystalline anisotropy, which may average to a much smaller value in a 
polycrystalline sample, magnetization is favored at 90" to the plastic flow 
direction, and Ha is of order Ha FZ 105/Ms = 100 Oe. 

Plastic flow is the most important effect in stress annealing, it enters the 
magnetic anisotropy through Nkel's D term giving an easy axis or plane 
orthogonal to the elongation direction. 

14.6 MORE ON MECHANISM OF ANISOTROPY 

The directional ordering of transition metal pairs after field or stress annealing, 
believed to constitute a redirection of approximately one bond per thousand, 
cannot be seen directly by X-ray or electron diffraction or other direct 
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structural probes. What has been found is that annealing in FCC alloys 
containing Co and/or Ni (e.g., permalloys, perminvars), is dependent on the 
presence of oxygen. Beginning with work by Heidenreich et al. (1959), it was 
found that field annealing of high-purity FCC alloys in reducing atmospheres 
induces little anisotropy. However, when oxygen is present in excess of 10 ppm, 
field-induced anisotropy can be significant. How does oxygen play a critical 
role in field annealing? 

The mechanism appears to be associated with the directional interaction 
between cobalt (or Ni) and oxygen. Transmission electron microscopy evidence 
suggests that initially, oxygen atoms coalesce between (111) planes, forming an 
oxygen fault. These local concentrations of one species are called Guinier- 
Preston (GP) zones. They show up as streaks in electron diffraction patterns 
and can be directly imaged as lines or bands perpendicular to the (111) 
directions. With increasing time and temperature, the oxygen concentration 
profile across fault planes becomes more sharply defined. 

The atomic arrangement about the oxygen plane is similar to that about 
(111) oxygen planes in antiferromagnetic COO or NiO of rocksalt structure. It 
is also similar to that in the ferrimagnetic spinel (Co-Ni-Fe),O,. The favored 
direction of magnetization is perpendicular to the fault plane. The stacking 
fault energy in FCC is lowest for (111) planes. Thus, when the field is applied 
in a direction that favors impurity faults in (1 11) planes (i.e., the field direction 
is perpendicular to the (1 11) planes), the strongest anisotropy will be induced. 
Experiment bears this out: The strength of field-induced anisotropy decreases 
for field directions ( I l l ) ,  (110), and (100) (Nesbitt et al., 1959). 

The mechanism by which anisotropy is induced in BCC iron-rich alloys 
(e.g., 3 %  Si-Fe) is assumed to be directional ordering of Si-Fe pairs. However, 
there is no detailed structural evidence here comparable to that for FCC alloys. 

14.7 FIELD-INDUCED ANISOTROPY 1N AMORPHOUS ALLOYS 

It has been assumed that in amorphous alloys, bond orientational order is 
responsible for field-induced anisotropy. The usual model can be summed up 
by the schematic shown in Figure 11.15. It is interesting to consider a statement 
made by Berry in describing the first field annealing of an amorphous alloy 
(Berry and Pritchett 1975): 

It is well known that the structure-sensitive ferromagnetic properties of certain 
crystalline solid-solution alloys can be significantly modified and made uniaxially 
anisotropic by annealing in a magnetic field. This behavior has been successfully 
explained in terms of a directionality induced in the state of short-range order of 
the alloy by the magnetization M, a process which necessitates local atom motion 
below the Curie point, T,. Although developed to explain the behavior of 
crystalline alloys, this mechanism is actually of wide generality and should also 
apply to amorphous alloys, since only short-range directional order is involved. 
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There is now some s t ru~ t~ raP  evidence that the mechanism of field-induced 
anisotropy in cobalt-rich amorphous alloys is similar to the faulting mechan- 
ism in crystalline FCC alloys (Kim and B'Mandley 1996). TEM studies show 
that in cobalt-rich amorphous alloys, heat treatment allows metalloids (no- 
tably boron and silicon) to segregate to the surface, driven by their high heat 
of oxide formation. Thin superficial oxide layers (B20,, SiO,) or patches result 
for temperatures and times of order 300°C, 30 min. The underlying amorphous 
material is depleted of glass-stabilizing metalloids so its crystallization tem- 
perature drops. Small (typically 300-A) FCC crystallites form by primary 
crystallization. These crystallites are marked by a high density of (111) faults 
similar to those associated with field annealing of crystalline perminvars. The 
faults are expected to form on those (111) planes most nearly normal to the 
direction of the magnetization during annealing. There is yet no experimental 
evidence of preferred orientation of these faults. 

The field annealing mechanism in Fe-rich alloys remains to be understood 
in such detail. By default, a simple directional ordering is assumed. There is 
indirect evidence supporting this assumption. 

Because of the dependence of induced anisotropy on the number of pairs 
in an A,B, -, alloy, the strength of induced anisotropy varies as [x(l - x)I2. 
The composition dependence of induced anisotropy for amorphous 
(Fe,-,[Ni, Co],),,B2, shown in Figure 14.14a, however, differs from that for 
crystalline NiFe (Fig. 14.8) (Fujimori 1983). Note that while K ,  is greater near 
x = 0.5 as expected, it does not vanish quadratically near x = 0 or 1. It is 
believed that this is due to contributions to the directed-pair energy by 
transition metal-metalloid pairs. This weaker Fe-B or Ni-B pair energy is 
expected to be less stable because of the greater mobility of the small I% atoms 
in the amorphous matrix compared to that of Ni or Fe. There is some evidence 
for this. 

Euborsky and Walter (1977) have analyzed the induced anisotropy data for 
amorphous (Fe, -,Ni,),,B,, alloys (Fig. 14.15b). (Because of the role of B in 
the field-induced anisotropy, the value of K,  measured for Fe,,B,, has been 
subtracted from the field-induced anisotropy for the rest of the compositions.) 
All composition-dependent terms in Eq. (14.11) have been taken to the 
left-hand side (LHS) of the equation. It is clear that the data presented in this 
way fall well above the solid curve nc,nii (normalized to the value at x = 0.5), 
varying more like x(l - x). This may be due to chemical ordering of Fe and 
Ni within the amorphous structure. 

Iwata (1961) has modified the Niel theory to account for the effects of 
chemical ordering or segregation on the induced anisotropy. The dashed line 
in Figure 14.14b is Iwata's theory for the effect of the normalized Fe-Ni 
interaction 2V/kBT on K,. The parameter V represents the effective nonmag- 
netic interaction energy between like pairs of atoms: 
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Figure 14.14 (a) concentratyon dependence of induced anisotropy in various metallic 
glasses (Fujimori 1983); (b) in amorphous FeNi-based alloys a similar dependence is 
observed but account must be taken of the chemical interactions, given by between 
Fe and Ni (Luborsky and Walter 1977). 

A value of 2V/k,T = -1.67 (implying segregation, i.e., species A and B 
separating) fits the data well. The solid line is the bare Ntel form xZ(l - x ) ~  
for an ideal solid solution, V = 0. The strong tendency toward segregation 
evidenced in Figure 14.14b is interpreted to mean that Fe-Ni pairs are less 
available for directed pair induced anisotropy than if V = 0 or V > 0 (favoring 
Ni-Fe pairs). 

14.8 MICROSTRUCTURAL EFFECTS 

In conventional field-induced anisotropy, four steps have been identified: (1) 
the applied field orients the magnetization; (2) the direction of magnetization 
establishes a thermodynamically preferred orientation for certain local atomic 
arrangements; (3) given sufficient time and temperature, the kinetic process of 
establishing this preferred orientation occurs; and finally, (4) once a degree of 
local directional ordering is frozen in by cooling to lower operating tempera- 
tures, this ordering determines a preferred direction for the magnetization. The 
local atomic arrangements involved here require only small atomic displace- 
ments and constitute a small volume fraction of the material. Hence, they are 
not readily detected by direct structural observations. 

However, in some cases field-induced anisotropy may be due to directly 
observable microstructural effects brought about by field annealing. One case 
already seen is the development of an oriented, two-phase structure in alnico 
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magnets (Figs. 13.7, 83.1%). The spinodal decomposition r~csponsible for the 
periodic phase separation in Alnico, as well as in certain ductile Fe-Co-Cr 
magnets, has been analyzed by Cahn (1962, 1963, 1968) (Section 13.2.1). The 
elongated two-phase microstructure provides a shape anisotropy to the ma- 
terial. Similarly striking is the field-induced reorientation of Fe,,N, platelets 
in certain Fe-N alloys (Sauthoff and Pitsch 1987). In this system, the a"-Fe,,N, 
phase forms as an array of platelets with their normals distributed at random 
among the three (100) axes of the a-Fe matrix (Fig. 14.15~). This orientation 
is favored because of elastic energy as well as the fact that the high-magnetic- 
anisotropy platelets (K, = 8 x 105 J/m3) prefer to be magnetized along their 
normal, c-axis direction and the platelet magnetization tends to coincide with 
the magnetization direction of the a-Fe matrix, which has (100) easy axes. 
When a magnetic field is applied, one of these <100) directions (the direction 
that has the greatest projection along the field) is energetically favored. If the 
field is applied at a temperature for which there exists sufficient atomic mobility 
for microstructural change (about 180°C in this case), then the platelets tend 

Figure 14.15 Optical metallography of the temporal evolution of the microstructure 
of a"-Fe,,N, plate-like precipitates in a-Fe matrix on field annealing at T = 190°C 
(H = 1.71 MA/m, parallel to scale marker in panel (d)). The four panels indicate the 
degree of texture after aging times of (a)  1, (b) 5, (c) 10, and (d) 70 hs. The plates coarsen 
so as to be oriented with their normals, which are the easy axes, parallel to the applied 
field direction [After Sauthoff and Pitsch (1987).] 
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to form with their normals along that proximal (100) direction (Fig. 14.156). 
The Fe(N) system is technically important because of the very large magnetic 
moment (nearly 3 p,/Fe) observed for the Fe,,N2 phase (Kim and Talcahashi 
1972). 

This section analyzes some of the anisotropic microstructural effects asso- 
ciated with processing materials in a magnetic field. Also included is an 
explanation of the isotropic stabilization of certain phases because of their 
magnetic energy. The latter plays no role in magnetic anisotropy. 

14.8.1 Relevant Energies 

The possible effects of a magnetic field on phase stability, microstructure and 
texture development in materials processing, can be categorized by the nature 
of the magnetic material and the form of the magnetic contribution to the 
energy. In ferromagnets, it is possible to favor the formation of a magnetic 
phase by virtue of the Zeeman term, -poM. H, in the free energy density. The 
Zeeman energy alone does not select a particular shape or crystallographic 
direction for the microstructure because it is isotropic with respect to the phase 
boundaries and crystal axes of the phase formed. Anisotropic microstructure 
development can arise from the magnetostatic energy or from the magneto- 
crystalline anisotropy energy. The magnetostatic energy associated with certain 
microstructural shapes takes the form  AM: cos20, where A M  cos 6, is the 
change in the perpendicular component of magnetization across a phase 
boundary and 6 is the angle between the magnetization and the surface normal. 
For phases having different magnetizations, this energy favors boundaries that 
are parallel to H. The magnetocrystalline anisotropy energy density, K,  sin2+ 
(where 6 is the angle between the magnetization and the uniaxial easy axis), 
favors development of certain crystallographic orientations relative to the field 
direction. 

Analogous but weaker effects are possible in paramagnets and diamagnets 
(including superconductors). Isotropic effects can occur as a result of Zeeman 
terms -poXH2 in the free energy. Anisotropic effects can arise from anisotropy 
in the susceptibility, such as po(xII - xL)H2, or simply as a result of magneto- 
static effects associated with the shape of microstructural features. 

In order for these magnetic energies to bring about a change in structure, 
there must be atomic mobility (which is a matter of sufficient thermal energy 
for the requisite motions in reasonable times). Further, the magnitude of the 
magnetic energy must be significant compared to the other energies involved. 
Of particular concern are the free energies of the phases present as well as the 
surface and interface energies which play an important role in microstructural 
changes. 

It is helpful to refer to Figure 14.16 in understanding the thermodynamics 
and kinetics of magnetic effects in materials processing. This figure compares 
the magnitudes of some of the important surface and volume energies import- 
ant for microstructural growth. 
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SURFACE ENERGY DENSITIES VOLUME ENERGY DENSlTiES 

(a) p , H  (TESLA 1 (b) p, H ( TESLA 1 

Figure 14.16 Comparison of surface energy densities (a) and volume energy densities 
(b) relevant to magnetic field processing of materials. The left and right scales are 
aligned only for samples of thickness, to  = 1 monolayer (ML). For samples of some 
larger thickness t normal to the dominant surface, the left-hand scale should be shifted 
down relative to the right in proportion to the thickness ratio tit,. 

The right-hand scales indicate volume energy densities (in units of J/m3 and 
eV/atorn). Bulk magnetocrystalline anisotropy energies K ,  are shown for Fe, 
Ni, Nd,Fe,,B, and Fe,,N2. Magnetostatic energies are shown for Fe and Ni. 
The straight lines show the magnitude of the Zeeman energy densities: 
- -p ,M.H for ferromagnetic Fe and Ni samples in H fields given by the 
horizontal axis. The lines are solid up to the steady field value of 
32 T = 320 000 G (available at high-magnetic-field facilities), and they are 
dotted up to the pulse field value 60T (available at such facilities). Also 
included is a line showing the Zeemara energy density for a material with 
susceptibility x = Note that this energy increases quadratically with the 
applied field. 

The left-hand scale shows surface and interface energy densities (in units of 
mJ/m2) for some typical metallic systems as well as the range of magnetic 
surface anisotropies measured for thin-film magnetic materials. The dashed 
lines indicating Zeeman surface energies have been aligned with the right-hand 
scale (volume energy densities) assuming a thickness of 0.2 nm (approximately 
one monolayer). The rationale for this scaling is as follows. 
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Consider a position-dependent volume energy density y(z), composed of a 
uniform contribution y" plus a contribution which is sharply localized near the 
surface ys(z). These energy densities have units of energy per unit volume. The 
Dirac delta function may be used to approximate the surface region as a sheet 
of zero thickness at z = 0: yS(z) --+ o6(z), where o has dimensions of energylarea 
and the Dirac delta function has units of inverse length. The contribution of 
the surface energy to the volume energy averaged over a thickness t, normal 
to the surface of a thin sample, then becomes 

1 0- 
(f) = yU + 1 G ~ ( Z ) ~ Z  = yo + - 

t 

Thus, volume energy densities are related to surface energy densities by the 
material thickness normal to the surface of interest. (In three dimensions, the 
scale factor between surface and volume energy densities is not t-l, but rather 
the surface-to-volume ratio of the particle.) The left and right scales of Figure 
14.16 have been aligned assuming t = 0.2 nm z 1 monolayer (ML). The dashed 
Zeeman energies at left apply only for sheets of 1 ML thickness. Surface and 
volume energies can be compared for samples of other thicknesses by sliding 
the left half of the figure down or the right half up by the value of the 
appropriate sample thickness relative to 1 ML. 

An example of how Figure 14.16 can be used in estimating magnetic field 
processing effects on microstructure is now given. Consider the formation in the 
solid state of a new phase B in A where B has lower free energy at a temperature 
7; Ag = g, - g, < 0. The interface energy of the A-B boundary is o. It is 
assumed that a magnetic field can make a difference in the magnitude of o 
and/or Ag. In order for B to grow, a cluster of atoms must acquire enough 
energy to overcome a nucleation barrier, G* = 6403/(3Ag2), and the cluster size 
must exceed a critical radius, r* = 2olAg (below which the surface energy cost is 
greater than the volume energy saved). In metallic solids, interface energies are 
on the order of 10mJ/m2 and free energy differences between phases are of 
order lo7 J/m3 (14.4 cal/mol) close to the transformation temperature. Thus, 
r* = 1 nm. In ferromagnets, ,u,M.H is on the order of 106 J/m3 for ,u,H = 1 T 
(fields in excess of 30 T are available at high-magnetic-field facilities). This 
magnetic energy is small but not insignificant relative to Ag. From Eq. (14.21), it 
can be seen that the magnetic field energy density (= lo6 J/m3) exceeds the 
volume-averaged surface energy (10-'/t J/m3) only for samples of thickness 
greater than 10 nm. This thickness is greater than the critical size for a typical 
nucleation process (r* z 1 nm). Hence fields of order 1 T are not expected to 
have significant effects on nucleation in metallic solids. Stronger magnetic fields, 
such as the 30T available at special facilities, could influence nucleation 
processes for which r* = I nm. The magnetic exchange energy (= 10'' J/m3) 
could influence nucleation at dimensions under 1 nm. Generally, magnetic fields 
of order 1 T are unlikely to have a significant effect on solid-state nucleation. 
There must be other processes that respond to magnetic fields of order 1 T. 
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The rnicrostructural eEects shown in Figure 84.15 are manifestations of 
coarsening (or Ostwald ripening). Coarsening is the process by which a system 
of two or more phases change after removal of the supersaturation conditions 
that existed during growth. During coarsening, larger particles s f  one phase 
grow at the expense of smaller ones such that there is no net change in the 
relative fraction of the two phases. Coarsening is driven by differences in 
surface energy or capillarity (the energy associated with the radius of curvature 
of a surface) and the concentration gradient that it creates. Surfaces having 
high convex curvature are composed of atoms with fewer bonds to their native 
phase and hence a greater probability of being thermally activated into the 
adjacent phase (with concave surface curvature and hence more bonds per 
surface atom). The energy difference AG between two idealized spherical 
particles due to their surface tension y can be expressed 

where Q is the atomic volume and r is the radius of curvature of the spherical 
particle. These energy differences are small for two particles of similar size (dr 
approaches zero). For r = 20 nm and dr = 1.0 nm the difference in energy is of 
order eV/atom (3 x 106 J/m3). This is comparable to the magnetostatic 
or anisotropy energy differences between ferromagnetic particles (Fig. 14.17). 
Thus, while nucleation in solids appears to be beyond the range of conven- 
tional magnetic field energies, the coarsening process is not. 

The field-induced reorientation of Fe,,N2 platelets mentioned above (Fig. 
14.15 and related text) is an example of such coarsening. The relevant 
interfacial energy, cr,(Fe(N)/Fe,,N,) z 5 mJ/m2, becomes comparable to the 
volume magnetic anisotropy energy, Kl(Fe,,N2) = 0.8 MJ/m3, for platelets 
6 nrn thick or more. The platelets in Figure 14.15 approach 1 pm in thickness. 

The energy considerations for magnetic-field-induced coarsening in high- 
aspect-ratio particles are outlined in Figure 14.17. Here, a competition exists 
between shape anisotropy and a uniaxial crystal anisotropy of the form 
K sin20(K > 0 implies easy axis normal to the platelet). 

The magnetic energy densities for platelets 1 and 2 are 

E , =  ("OF -- K,) cos28 - poMsH cos B 

E,= (Po: -- K,) sinzd - p,M,H cos 4 

O and 4 are defined in Figure 14.17. The first two terms in Eq. (14.23) reflect 
the competition between shape anisotropy (magnetostatic energy) and the 
perpendicular magnetocrystalline anisotropy. [If the medium outside the plate 
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Figure 14.17 Schematic representation of magnetic particles having uniaxial shape and 
intrinsic anisotropy in an applied magnetic field H. 

is also ferromagnetic, then MS in the first term of Eq. (14.23) should be the 
diference in magnetization between the two media, and the standard boundary 
conditions - Eqs. (2.6) and (2.9) -would have to apply across the interface. 
Also, if the platelet is not infinitesimally thin, a demagnetization factor N < 1 
must be applied to the first term.] The last term is the Zeeman energy. In the 
high-anisotropy limit, 8 = 0 and 4 = n/2, so Eqs. (14.23) give 

and configuration (a) in Figure 14.17 is preferred. This is the case for Fel,N, 
illustrated in Figure 14.15. In the high-field limit where 6 = 4 = 0, the 
difference in energy between the two plate orientations is 

For K > 0 either platelet orientation in Figure 14.17 can be stabilized depend- 
ing on which term, / 1 , ~ , 2 / 2  or K,, is stronger. If the magnitude of the shape 
anisotropy exceeds that of the crystal anisotropy, AE > 0 and E ,  is the lower 
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energy state. If> on t h e  other hand, the crystal anisotropy exceeds t h e  shape 
aanisotropy, AE < 0 and El is more stable. If the particles have shape and 
crystal anisotropy that reinforce each other [K,  < 0 in Eq. (14.2511, one 
orientation of M is always favored. 

Paramagnets and diamagnets can also respond to fields applied during 
processing as described below. 

Isotropic Efects. In these cases there is no spontaneous moment but only one 
induced by the external field M = xW; x is typically of order lop6 but can 
be much larger in certain paramagnets such as Pd or in diamagnets with 
spatially delocalized electron states -a notable example is superconductors. 
Because of the small magnitude of p , ~ N 2 ,  these effects require very strong 
fields. 

Anisotropic Efects. Many molecules or microstructures with strong shape 
anisotropy also exhibit strong anisotropy in their magnetic susceptibility X .  
Application of a field will bias the particle toward an orientation which 
minimizes the magnetic energy density - - , u , N ~ ( ~ , ,  - x ~ ) .  Thus, for paramag- 
netic systems (X > 0) the high-susceptibility direction aligned parallel to the 
field is favored, and for diamagnetic systems ( X  < 0) the high susceptibility 
direction antiparallel to the field is favored. The high-susceptibility direction 
is not necessarily the long shape axis; in fact, for diamagnets, it is often the 
short axis if the electron states are sufficiently delocalized because the 
greatest contribution to the susceptibility comes from the largest orbital 
area [see Eq. (3.431. 

14.9 SUMMARY 

In this chapter, examples have been given to show how local atomic order can 
influence magnetic properties, in particular magnetic anisotropy. The direc- 
tional ordering of even a small fraction of interacting magnetic atomic pairs 
can cause a significant induced magnetic anisotropy. Further, if some of the 
atoms in the solid are mobile at room temperature, they can respond to 
changes in applied magnetic field or stress by seeking local configurations that 
minimize their energy with respect to the direction of magnetization and the 
sense of the strain. Snoek's mechanism based on magnetostriction, E X  eiiCi, 
E < 0, puts the interstitials on sites parallel to the strain; Neel's magnetic 
interaction, D C a ? ~ , ,  D > 0, puts interstitials on a plane perpendicular to the 
magnetization. 

Figure 14.18 summarizes schematically what has been described about field 
annealing. Assume that an initially random distribution of atom pairs exists at 
room temperature, even in the presence of a saturating field. At elevated 
temperatures, provided that the material is still magnetic (i.e., T, < T,), the 
pairs redistribute so that more pair directions are perpendicular to the 
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Figure 14.18 Illustration of concept of directional pair ordering (left) and consequent 
effect on M-H loop (right) for starting material (top), during field heat treatment 
(center), and after heat treatment (below). 

magnetization in each domain [if D > 0 in Eq. (14.15)]. This requires short- 
range diffusion and therefore takes time. After the material is cooled to room 
temperature in the field, removal of the field leaves a frozen-in, anisotropic 
distribution of interacting atom pairs. The main effect of this distribution on 
magnetization is a larger remanent magnetization in the field direction than 
before the anneal. The energy of the directed pairs is now working against the 
tendency of the material to demagnetize itself. The induced anisotropy energy 
density is ( $ ) M ~ [ H ~  - Ha] ,  where H i  is the anisotropy field after annealing. 

APPENDIX: ORDER-DISORDER TRANSFORMATIONS 

The chemical interactions between species in an alloy can lead to ordering or 
segregation depending on whether the interaction favors unlike or like pairs, 
respectively. In certain compounds this interaction can lead to a first-order 
transformation between an ordered state and a disordered one, stable below 
and above an ordering temperature. The ordered state is generally of lower 
symmetry than the disordered state. 

In magnetic systems, order-disorder transformations can lead to important 
differences in magnetic as well as other properties. Two typical examples are 
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Ni,Fe and FeCo. Ordering is also important for the development of magnetic 
hardness in Copt (Chapter 14, Section 13.4). It was seen in Chapter s 6 and 7 
that the ordered Ni,Fe phase is characterized by a more positive value of K, 
and that the magnetostriction constants are similarly, but less sharply, affected. 
In this material, heat treatment can be used to bring the zero anisotropy 
condition closer to the zero magnetostriction condition. In the FeCo system, 
the disordered alloy (obtained by quenching from above the ordering tempera- 
ture) is characterized by lower magnetocrystalline anisotropy, and it is more 
readily rolled compared to the ordered phase. Here, the formalism used to 
describe order-disorder transformations is described. 

Consider the Ni,Fe intermetallic phase, which is known to exist in either a 
disordered or an ordered structure as illustrated in Figure 14A.1. 

In the disordered structure, the average occupancy of any given site is 75% 
Wi and 25% Fe. Since every site is equivalently occupied, the Bravais lattice is 
FCC. But in the ordered structure, the basis unit is Fe at (0,0,0) and Ni at 
(0, i, $), ($, 0, $) and ($, 4,O) and this unit is arranged on the lattice of a simple 
cubic structure. 

The structure factors in the two cases are written as follows: 

Disordered (FCC) Ordered (SC) 

= fav[l  + 
+ k) + eni(h + 1) + p i ( k  + 1) ] F,,, = f,,e" + fNi [en'(b + k, + e*i(h + ' 1  + e + ,)I 

F,,, = 4f,, = f,, + 3fNi h, k ,  1 unmixed F ,,', = f,, + 3 fNi h, k, I unmixed 

F,,, = 0 h, k, 1 mixed F,,, = f,, - fNi h, k, I mixed 

The scattering intensity goes as IF,,,12 plus other factors, including X-ray 
polarization and multiplicity of the family of planes. Thus, of all the possible 

statistical Disorder Local Disoder Ordered Mi3Fe 

Figure 14A.1 Makeup of unit cell in disordered (left and center panels) and ordered 
Ni,Fe (right panel) illustrating the change in Bravais lattice type from FCC for the 
disordered phase to simple cubic for the ordered phase. The Ni atoms on cube faces 
that are out of the line of sight are shown as lightly shaded. 
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diffraction peak positions on the basis of Bragg's law, only those satisfying the 
selection rules above appear in the disordered phase. In the disordered phase, 
the intensities of the superlattice lines (h, k, 1 mixed) are lost because they 
depend on the difference in the atomic scattering factors of the two species (Fig. 
14A.2). 

Note that the disordered structure exhibits a diffraction pattern identical to 
that of an FCC structure with an atomic scattering factor that is the weighted 
average of those for the Ni and Fe present. The diffraction pattern of the 
ordered structure is more complex. The lines corresponding to the FCC 
structure still appear; they are fundamental to both phases. In addition, the 
ordered structure shows lines at positions allowed in the simple cubic structure, 
but their intensity is weak because their atomic scattering factor is fF, - fNi. 
These are referred to as superlattice lines. 

Structures that exhibit order-disorder phenomena may exist in intermediate 
states where the degree of ordering is partial. The structural order parameter 
S is defined as 

where x, is the fraction of species A in the alloy A,,B,, and PA is the 
probability of finding species A on the correct site. S = 1 for perfect ordering 
and S = 0 for complete disorder. For partial order, 0 < S c 1, the intensity of 
the superlattice lines is less than it is for S = 1. Hence, the structure factors of 
Ni,Fe can be written in general as 

Ff = fF, + 3 fNi unmixed (14A.2a) 

F, = S( fF, - fNi) mixed (14A.2b) 

Figure 14A.2 Positions of diffracted lines for disordered (left) and ordered (right) 
Ni,Fe showing the extinctions in the disordered fcc structure and the appearance of 
weak superlattice lines (s) at the positions of SC diffraction lines in the ordered state. 
The lines common to both structures are designated as fundamental (f). 
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These expressions determine the relative intensities of fundamental and super- 
lattice lines. 

Because measurements at elevated temperatures are difficult, the high- 
temperature structure may be studied by quenching a sample after annealing 
at an elevated temperature. In this way, the degree of order appropriate to the 
elevated temperature may be measured at room temperature. On the basis of 
Eqs. (14A.2), the order parameter S (see Fig. 14A.3) may be determined 
experimentally from the ratio of a superlattice peak intensity I, to that of a 
nearby fundamental line If: 

Here m is the multiplicity and LP the Lorentz polarization factor of the 
reflection of interest. 

Structural and Magnetic Order-Disorder Transitions Important paral- 
lels exist between structural and magnetic order-disorder transitions. Figure 
14A.4 illustrates long-range order (above) and short-range order (below) in a 
structural sense (left) and in a magnetic sense (right). 

In disorder, at elevated temperatures, entropy -TS dominates the free 
energy and causes the disordered state to be favored over the ordered one (Fig. 
14A.5). The local internal energy diagram for these two systems can be 
represented as shown in Figure 14A.6. An alternative energy representation of 
the systems is displayed in Figure 14A.7. 

The order parameters for the two systems can be defined as the occupation of 
the low-energy state (ordered) minus that of the high-energy state (disordered) 
normalized to the total number of particles in the system (where # = number): 

# right - # wrong 
Order = S = , M =  

total # 
#' - #' (14A.4) 
total # 

Figure 14A.3 Temperature dependence of order parameter S for Ni,Fe and CuZn 
systems. 
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Figure 14A.4 Illustration of long-range order in crystal, above left, and magnetic 
system, above right. Below, the corresponding representation of order on a local scale 
in these two systems that is lost beyond a range defined by the two ellipses. 

The relative occupations of right and wrong states can be described by 
means of their Boltzmann factors as was done for the quantum paramagnet in 
Chapter 3: 

These identical functions are simply hyperbolic tangent functions: 

E 0 M or S =  tanh- 
kT 

(14A.6) 

The dependences of the order parameters on T and on E,  are sketched in 
Figure 14A.8. 

These graphical forms make sense; as temperature increases, entropy makes 
it increasingly more difficult to maintain the order that is preferred at lower 
temperatures (Fig. 14A.8, left). However, as the tendency to structural or 

Figure 144.5 Illustration of disorder in crystal, left, and magnetic system, right. 



Adjacent Spins 

Figure 14A.6 Representation of the energy difference between ordered and disordered 
states as a double-well potential for Ni,Fe structure, left, and spin system, right. 

magnetic ordering (which is expressed by the magnitude of the internal energy 
E,) increases, the order at a given temperature is greater (Fig. 14A.8, right). 

But E ,  is not really a constant. As either of these systems proceeds to 
disorder, it becomes easier for further disorder to occur. Thus the model has 
to be modified to account for the dependence of E,  on the degree of order. 

Structure Magnetism 

When Ni moves to an Fe site, Putting a second spin in the 
strain makes it easier for other Ni excited state ($) costs less energy 
atoms to move; thus E,  = E(S) than the first spin because now 

there are two J. parallel to 
each other 

S = tanh- E(M)  M = tanh - 
k T  kT 

STRUCTURE 

Consider equiatomic N i Fe : 

MAGNETISM 

Energy of spin M in exchange 
field, is -M-Hench 

Figure 148.7 Energy-level diagrams for structural and exchange systems shown in 
Figure 14A.6. 
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Figure 14A.8 Temperature and ordering energy dependence of the order parameters 
S or M. 

where the assumption of linear dependence is made: 

The form chosen above for the energy, E = E, S  or E  = E, . M), is such that 
the energy barrier to disorder decreases as disordering proceeds. Thus, the 
disordering process cascades precipitously on approaching the critical tem- 
perature Tc. 

Equations (14A.7) are transcendental equations: S (or M) appears on both 
sides. They can be solved graphically as was done for the quantum paramagnet 
in Chapter 3. We define x = E - ( S  or M)/kBT and plot each side of Eq. (14A.7) 
versus x. In Figure 14A.9, M or S  = tanhx versus x is plotted at left and 
M = xkaT/(p,,Hexch), or S  = xkBT/Vo versus x at right. 

Combining the two plots above to get their common solutions, M or 
S  = tanh x, (Fig. 14A.10 left) gives a modified plot of the order parameter 
versus temperature (Fig. 14A.10 right) that now includes the cooperative effect 
of the dependence of the ordering energy on the order parameter itself. 

The temperature dependence of the chemical order parameter resembles 
that of the Brillouin function calculated in Chapter 3. There, the energy 
dependence was built in by representing the energy of the magnetic system by 
the Zeeman energy of the average magnetization. The appearance of the order 
parameter on both sides of the equation, in either the chemical or magnetic 
case, indicates that the entities, atoms, or spins, act cooperatively. It is the 
cooperative nature of these phase transitions that makes the order parameter 
vanish so abruptly when approaching Tc from below. 

The critical temperature can be expressed in terms of the energy by setting 
the slope of the straight line, aM/ax = kBT/(poHexch) (Fig. 14A.10, left), equal 
to the slope of the tanh function at small x,d(tanhx)/ax = sech2x = 
(1 - ~ ~ 1 2 ) ~  = 1 - x2. Hence T,  is proportional to Vo/kB or HeXch/k,. These 
forms for the critical temperature can be substituted into the small-x solution 
of 8M/ax = a(tanh x)/dx, giving 
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s6&-',_ 
$ M o r S  = tanh x 
H 
0 
0 1 x 0 1 x =  E/kT 

Figure 14A.9 Dependence of the order parameter on the normalized variable x 
according to the transcendental equation for the cooperative system, Eq. (14A.9). 

Thus, the squares of the order parameters vanish linearly with temperature on 
approaching the critical temperature. More detailed relations were derived in 
Chapter 3 [Eq. (3.54)] for the behavior of the magnetization near the critical 
temperature. They are consistent with Eq. (14A.8). The behavior of the 
chemical order parameter is expressed more explicitly by the Bragg-Williams 
theory (Barrett and Massalski 1980). The critical temperature in that case is 
given by 

Near the critical temperature, Bragg-Williams theory indicates 

The important lessons here are the parallels between these two superficially 
different ordering phenomena and the manner in which the cooperative nature 
of the orderings are introduced by making the ordering energy depend linearly 
on the order parameter itself. 

Figure 14A.10 Left, graphical solution of Eq. (14A.9); right, temperature dependence 
of the order parameters for cooperative systems. 
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PROBLEMS 

14.11 Carry out the steps to derive Eqs. (14.16) and (14.17). 

14.2 Verify Eqs. (14A.9) and (14A.10). 

Chikazumi, S. Physics of Ferromagnetism (Oxford Univ. Press, Oxford, 1997) p. 299 
et seq. 
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CHAPTER 15 

ELECTRONIC TRANSPORT IN 
MAGNETIC MATERIALS 

15.1 INTRODUCTION 

Electrical transport properties reflect the character of the valence electronic 
states in a material. The electrons in metals that support conduction typically 
consist of states with s or p character, while f states participate hardly at all 
in conduction because they are highly localized atomic states. However, d 
states are somewhere in between; they can participate in conduction to some 
extent. While oxides are generally not metallic conductors (the early transition 
metal oxides, such as TiO, are the notable exceptions), their transport proper- 
ties are often governed by thermally activated electrons from s-d or p-d bonds. 

In transition metals, it is the d states that connect magnetism with electrical 
transport properties. Electrical transport in metals can be affected by magnet- 
ism in many ways. Hybridization of s and d states brings a degree of orbital 
angular momentum to the conduction process. Empty d states can be occupied 
temporarily by conduction electrons, providing a spin-dependent and orbital- 
angular-momentum-dependent scattering process. 

In rare-earth metals and alloys, the conduction process is carried by the 5d 
and 6s electrons while magnetism resides mainly in the atom-like 4f states. 
However, the conduction electrons are significantly polarized by exchange with 
f states, and in this way, magnetism affects transport in these metals. 

In oxides, the conduction process is generally thermally activated and the 
spin of the valence states, as well as the energy gap for thermal activation, are 
intimately connected with magnetism by exchange and crystal field interactions. 

Magnetic transport phenomena are not only valuable probes of magnetism 
in materials; they have a long history and a bright future in many important 
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applications. This chapter treats some of the basic observations and important 
concepts connecting magnetism with electrical transport processes. 

Three important observations serve well to introduce some of the effects of 
magnetism on electronic transport properties. 

15.1.1 Observations 

Temperature Dependence of Resistivity in Metab Nonmagnetic metals 
show a linear increase in electrical resistivity above the Debye temperature: 
p(T) = p, + aT The temperature dependence of electrical resistivity of a 
ferromagnet can show an anomaly near a magnetic transition (Fig. 15.1). 
Approaching the Curie temperature from below, the resistivity shows an 
anomalous increase. Above Tc, the resistivity increases more gradually and is 
almost linear in temperature but extrapolates to a low-temperature value 
indicative of an anomalously high residual resistivity. The electronic structure 
of Pd is similar to that of Ni but it is paramagnetic at all temperatures. The 
difference in the temperature dependence of the resistivities of these two metals 
suggests that when spins are disordered (Ni above T, and Pd at all tempera- 
tures), an electron is more likely to scatter than if it moved in a medium of 
uniform magnetization. Thus, the high electrical resistivity of the paramagnetic 
state is attributed to electron scattering from the disorder in the spin system in 
addition to that from lattice vibrations. Spin-disorder scattering increases as 
the magnetic long-range order vanishes at and above the Curie temperature. 

Temperature Dependence of Resistivity in Oxides For insulators, elec- 
trical transport is a thermally activated process: conductivity generally in- 
creases exponentially with increasing temperature: o cc o, exp[ - 2E,/k, TI, 

Figure 15.1 Resistivities of Ni and Pd normalized to their values at Tc of Ni, 631 K, 
versus temperature. [After Gerritsen (1956).] 
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where E, is the energy gap between the occupied valence states and the empty 
(at 0 K) conduction states. 

Epitaxial thin films of the doped perovskite compound La,-,Ca,MnO, 
have shown very large changes in their electrical resistivity with an applied field 
[Fig. 15.2, after Jin et al. (1994)l. Note that the system goes through a metal- 
semiconductor transition at a temperature where a weak magnetic moment still 
exists. (The low-temperature metallic phase shows a resistivity that increases 
with increasing temperature. The opposite is true when the Fermi energy lies 
in a gap as in a semiconductor or insulator). The resistivity peaks at this 
metal-insulator transition but the field-induced resistance change, AR/R(H), 
peaks about 25 degrees below this transition. The resistance change here is 
orders of magnitude greater than that observed in magnetic metals which are 
presently used in a variety of field sensors. 

Interesting questions arise concerning the possible connection between 
magnetism and the metal-insulator transition, and whether this is the mech- 
anism for the strong field dependence of the resistivity in certain oxides. 

Resistivity Due to Dilute Magnetic Impurities The addition of transition 
metal impurities to noble metal hosts typically causes the electrical resistivity 
to increase linearly with the impurity concentration x: 

where p(0) is the resistivity of the pure noble metal host. 

0 1 00 200 300 
Temperature ( K )  

Figure 15.2 Variation of MRR, resistivity, and magnetization in laser-deposited 
(La,,,Ca,,,)MnO, films. [After Jin et al. (1994).] 



Figure 115.3 is a plot of the slope dpldx for transition metal impurities in Cn 
as a function of impurity type (or valence). The slope d p l d x  shows peaks near 
two separate va l~es  of the valence electron concentration of the magnetic 
impurity. This suggests that there is a splitting in energy of the impurity 3df 
and 3d1 states. When the 3df or 3dGmpurity states coincide with the 
conduction band Fermi level, there is enhanced scattering of charge carriers 
into these states. Increased scattering of conduction electrons increases the 
resistivity. The inserted state densities in Figure 15.3 show schematically the 
dominant features of the band structure for various impurities. The impurity 
state densities are exaggerated relative to those of Cu; 4s states are not shown. 
Conduction electron scattering with localized d states depends on (1) the 
relative spin of the two electronic states involved and (2) the relative number 
of initial and final states for scattering, specifically, the density of 3d spin up 
and down states. 

The data of Figures. 15.1 and 15.3 indicate that spin disorder and the density 
of magnetic states at E,, respectively, are both important factors in the 
resistivity of ferromagnetic metals. These magnetic effects are superimposed on 
the ordinary phenomena associated with electrical resistivity, namely, electron 
scattering from impurities and lattice vibrations (phonons). The data of Figure 
15.2, as will be shown below, result from a more complex interplay of 
magnetism and electronic structure. 

In order to understand these strong and provocative phenomena, the role 
of magnetism in electronic transport will be described. Particular attention will 
be given to conceptualizing the scattering processes in magnetic metals. 

Figure 15.4 compares the values of low-temperature electrical resistivity and 
the shape of the density of states in various metals. Alkali metals ( a )  with a 
valence electron configuration sl, and noble metals (b), dl's1, have quite low 
values of resistivity, and their valence electronic structures near E, are 

f Cu host 

Figure 15.3 Variation with impurity type for the slope dp/dx of Cm with transition 
metal impurities in Cu: Cu,-,X,. [Adapted from Kittel (1963).] 
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(a) (b) (c) (4 
Alkali metals Noble metals Nonferromagnetic Ferromagnetic transition metals 
Na 2.54 Cu 1.98 V 25.6 Fe 15.0 
Cs 2.58 Ag 1.23 Zr 41.8 Ni 10.7 

E E E E 

Figure 15.4 Examples of electrical resistivity at thc Debye temperature (p in pC2.cm) for four 
classes of metals (below, schcmatic statc dcnsitics for each class: (a)  alkali mctals; (b) noble mctals; 
(c) nonferromagnetic transition metals; (4 ferromagnetic transition metals. 

characterized by free-electron-like bands. In the latter case, a filled d band 
exists not far below the Fermi energy. Nonmagnetic transition metals (c),  with 
valence configuration close to dnsl, have much higher resistivities and both 
have d states as well as s states at the Fermi level. Magnetic transition metals 
(d), dnTdnlsl, have both d and s states at the Fermi level and the densities of 
spin-up and spin-down d states at E, are not necessarily equal. 

The general trends in Figure 15.4 can be understood by starting with the 
simple Drude model for free electrons. In the Drude model, the electrical 
resistivity is expressed as 

where n is the volume concentration of free carriers, e is the electronic charge, 
7 is the relaxation time, and m* is the effective mass of the charge carriers 
(inversely proportional to band curvature, m* cc (a2E(k)/dk2)-I. Equation 
(15.1) is applicable to s-electron metals and it does not hold when d bands 
intersect the Fermi surface. However, it can be used to infer the effect of d states 
at E, on conductivity suggested in Figure 15.4. How does the presence of 
d-states near E, affect charge transport properties? 

1. The overlapping of s and d states at E, leads to hybridization of these 
states so that the free electrons become partially localized (n decreases) 
and the d electrons become slightly delocalized (n increases). The net 
effect on free electron concentration is small. 

2. When s and d states hybridize, the parabolic s states [E(k) cc k2] acquire 
characteristics of the flatter d states and the effective mass of the 
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conduction electrons increases. This reduces the 血obility， μ eτ/m弋 of

the carriers in a transition metal compared to a more free-electron-like 
metal. 

3. Most importantly, the overlap of the s and d states allows otherwise free 
electrons to get scattered into more localized d states of the same energy. 
A large density of these d states at the Fermi energy enhances the 
probability of such scattering. This enhanced scattering into more local
ized states decreases the relaxation time, and the mobility is further 
suppressed. This s-d scattering was first described by Mott (1936, 
1964). These s-d and other scattering effects may be expressed in terms 
of the strength of the scattering potential which controls the relaxation 
ti訂閱， τ.

τ-1 = l V,catI2N(EF) (15.2) 

Here, N(E F) is the density of scattering states at EF. The strong decrease in the 
ratio τ/m* when d bands intersect the Fermi level (Figs. 15 .4c and d) resu1ts in 
the large increase in resistivity evidenced in the data shown with Figure 15.4. 

It is interesting to note that in single crystals, the electrical resistivity can be 
anisotropic. This is most pronounced in cobalt where ι= 10.3μn.cm and 
ρab = 5.5μn. cm at room temperature. Thus, the degree of texture in polycrys
tals can affect the measured receptivity. 

15.2.1 Two-Current 酬。del for Transition 間etals

In order to understand the differences between ferromagnetic and nonferro
magnetic transition metals (Figs. 15 .4c and 15.4d), Mott recognized that at 
temperatures well below 丸， the spin direction of the charge carriers is 
conserved during most scattering events. This is because spin waves, which mix 
spin-up and spin-down states, are not strongly excited at low temperature. 
Thus, the charge carriers having spin up and spin down can be represented 
as two parallel paths along which conduction can take place. (This assump
tion breaks down near and above Tc .) The two-current model may be 
represented simply by a paral1el circuit with the resistivity of the two types 
of carrier represented by pi and 抖 (Fig. 15.5, left). In a single-element 
conductor, the resistivity in one channel is the sum of the phonon, impurity, 
s-d, and other scattering contributions. Further， ρi is not necessarily equal to 
pL because of the difference in the density of spin喇up and spin-down states at 
EF • If s-d scattering is negligible in one ofthese subbands, that subband carries 
more of the current and the total resistance decreases toward its nonmagnetic 
value. This is evidently the case in Ni, where the majority d band is full and 
hence does not trap conduction electrons. Conduction in the majority可spin
band of Ni tends to be favored and to short-circuit the higher-resistivity, 
minority-band process. The resistivity of a metal in the two-current model (low 



ELECTRICAL RESISTIVITY 563 

Figure 15.5 Equivalent circuits for the two-current model of resistivity in pure 
transition metals, left, and dilute transition metals alloys, right. The two populations of 
spin scatter independent of each other, that is, in parallel. When impurities or alloying 
elements are added, the new scattering events still contribute independently to each 
subband. 

temperature) 

pTpL 
Plow T = (low T )  pT + pl' 

is always less than or equal to the resistivity of either path alone. Each 
resistivity in Eq. (15.3) is described by Eqs. (15.1) and (15.2) with different 
values of n, m*, z, and N(E,) for each subband. It is common to define the 
parameter a as the ratio of spin-down to spin-up resistivities: 

For Ni and Co as well as many strongly magnetic alloys, u << 1 because the 
localized d states appear at E, only in the minority-spin band. 

15.2.2 Impurities 

If impurity or alloying elements B are added to the metal, such as A, -,B,, the 
independence of the two currents is maintained provided there is little spin-flip 
scattering. The new scattering process due to the presence of the B species, p k ,  
may be spin-dependent and occur independently in each current path as 
represented in Figure 15.5, right. In this case the resistivity is given by 

If spin mixing occurs (e.g., as above T, or when spin-flip scattering can occur), 
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the behavior is represented by closing the switch in this circuit (Fig. 15.5, right), 
effectively reducing the total resistivity to the following value: 

In this case, the carriers always have a choice between the two parallel paths 
and can take the path of least resistance. The resistivity in this case is always 
lower than the two-current case without spin mixing, Eq. (15.5). 

This two-current model describes a change in resistance that is opposite in 
sign and independent of the spin disorder scattering responsible for the 
behavior of p ( T )  in Figure 15.1. 

Equations (15.5) and (15.6) account well for the large positive deviations 
from Matthiessen's rule, p = (1 - x)p, + xp,, observed in ferromagnetic 
alloys. The resistivity of a two-current, ferromagnetic alloy, Eq. (15.5), is 
greater than that of the same alloy with ferromagnetism turned off, Eq. (15.6). 
Dorleijn (1976) gives a good review of the two-current model as applied to 
impurities in transition metals and shows that it is possible to determine 
consistent values of p' and pl for various impurities in specific transition metal 
hosts. Essentially, when either of the f or 5 d states of the impurity coincide 
with the Fermi energy, the f or J. resistivity is enhanced. This is exactly the 
effect illustrated in Figure 15.3 for various impurities in a Cu matrix. 

Data similar to those in Figure 15.3 are shown in Figure 15.6 for 3d 
impurities in Ni. These data can be interpreted within the two-current model 
to reveal the resistivities of the two spin-subbands of the impurities. The data 
show pl to be relatively insensitive to the energy of the 3dl impurity states 
because pL is dominated by the large density of Ni 3dl states at E,. The density 
of states curve in Figure 15.6 shows the energy of the majority-spin 3d impurity 

Figure 15.6 Left, resistivities determined for the spin-up and spin-down impurity 
bands determined from measurements on Ni host (Campbell and Fert 1982). Illustra- 
tion at right shows a schematic of the band structure of the Ni host with the centroid 
of the majority-spin d-states of the impurities indicated. 
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states relative to the Ni Fermi level. When the impurity 3dT states reside at E,, 
pT increases as can be seen for Cr in Ni. 

Further, Cr impurities in Ni strongly suppress the Ni magnetic moment 
because p,, is antiferromagnetically coupled to pNi. This coupling is a result of 
exchange of the Cr majority-spin electrons (Cr has no minority-spin electrons) 
with the empty 3d minority spin states of the Ni host. Thus the host spin-up 
electrons see a strong repulsive potential at the Cr sites. It is this repulsive 
potential [see Eq. (15.2)] that shortens the host majority-spin relaxation time. 

15.2.3 Temperature Dependence 

Figure 15.1 shows that the resistivity of a ferromagnet increases on approach- 
ing Tc and shows a greater value in the paramagnetic state than in the 
ferromagnetic state. There can be two effects contributing here: (1) conduction 
electron spin scattering from disorder in M that is no longer saturated at 
elevated temperatures and (2) magnon creation or annihilation at elevated 
temperatures, which flip the spin direction. These are described briefly. 

1. Spin-disorder scattering implies that there is a term in the resistivity of a 
paramagnet or disordered ferromagnet governed by the exchange interac- 
tion between the spin of the charge carrier s and the local, paramagnetic 
moment, proportional to J J ( J  + 1). Well above Tc, it can be shown that this 
interaction contributes a temperature-independent, paramagnetic resistivity 
(Campbell and Fert 1982) 

where k,  is the Fermi wavevector, Z is the atomic number, elm is the charge:mass 
ratio of the carriers, and $ is the appropriate exchange interaction. At and 
below the Curie temperature this contribution is frozen out as the moments 
align, giving 

The spin disorder resistivity is illustrated in Figure 15.7, and must be added to 
the impurity, phonon, and other scattering contributions. 

2. The increased concentration of spin waves as T approaches Tc from 
below causes mixing of the spin-up and spin-down channels. A spin-up 
conduction electron can be scattered to a spin-down state by the annihilation 
of a rnagnon and vice versa. Mixing of the two spin channels tends to equalize 
the resistivities; thus, a approaches unity. This necessarily increases the net 
resistivity because scattering in the lower-resistivity channel increases. (This is 
different from the two component system depleted in Fig. 15.5, right.) When 
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Figure 15.7 Above, temperature dependence of reduced magnetization squared. Cen- 
ter, temperature dependence of spin disorder scattering that goes as 1-m2(T). Below, 
addition of spin disorder resistivity to the residual and phonon contributions to 
electrical resistivity. 

spin mixing occurs, the low-temperature form of p, Eq. (15.3), becomes (Fert 
and Campbell 1972): 

were ptl is the spin mixing resistivity. Resistivity phi,, is always greater than 
plow [(Eq. 15.311 when pf # pL (a  # 1). At low temperatures where there is no 
spin mixing, ptl = 0 and Eq. (15.8) reverts to Eq. (15.3). At very high 
temperatures where mixing dominates, ptl >> pT or pl, the resistivity becomes 
simply 

Campbell and Fert (1982) give a more thorough review of the various 
scattering processes contributing to the resistivity a t  different temperatures. 
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15.3 GALVANOMAGNFEBIC EFFECTS 

We will now consider the effects of a magnetic field on transport properties in 
normal and ferromagnetic materials. 

15.3.1 Nonmagnetic Materials: Ordinary Hall Effect 
and Magnetoresistance 

Ordinary Hall Effect Electronic transport properties involving magnetic 
fields are called galvanomagnetic effects. The ordinary Hall effect (Chien and 
Westgate 1980) is a familiar phenomenon in which a transverse electric field 
E, appears across a sample when an applied magnetic field H has a component 
perpendicular to the current density J:  

Figure 15.8 depicts the most common geometry for measurement of the Hall 
effect-the applied field is normal to a sample in which E, is measured 
transverse to the current direction. The ordinary Hall effect comes from the 
Lorentz force, F = poq(v x H ) ,  acting on the charge carrier. This mechanism 
is depicted at the right in Figure 15.8 for different charge carriers. Note how 
the sign of the Hall voltage changes with the nature of the charge carriers 
(electrons or holes). 

The Hall coefficient describes the strength of the effect. From the expression 
for the Lorentz force and J ,  = ne(v,) (free charge carriers), it can be shown 
by comparison with Eq. (15.9) that 

(a) (b) 

Figure 15.8 (a)  Sample geometry for observation of Hall effect - Hall field E, appears 
at right angles to current density J and magnetic field N; (b, c)  mechanism for 
appearance of positive Hall voltage when current carriers are positively charged (holes) 
(b) or negative Hall voltage for electrons (c) .  
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where n is the carrier density. The material in which the Hall effect is observed 
need not be magnetic. Note that the sign of the Hall field reverses if the sign 
of the factor (JHle) reverses; it is of odd symmetry in the applied field, the 
current direction and the sign of the charge of the carriers. The Hall effect is 
often described by the Hall resistivity, pH = E,/J, = RHp,H. 

The "ordinary" Hall effect is most noticeable in semiconductors where the 
carrier mobility is high but the conductivity is low. In metals the high 
conductivity essentially short-circuits the Hall voltage; a metal does not easily 
support a potential difference. 

M a g n e t o r e s i s t  The presence of an external field also causes a change 
in resistance of the material because the Wall effect deflects charge carriers from 
the current direction. Once a charge carrier begins to orbit around the 
magnetic field, it does not contribute to the current density (<v,) = 0 over a 
complete cyclotron orbit) until it is scattered. After scattering, it begins its next 
cyclotron orbit with an initial velocity biased toward the applied field. Thus, 
the longer the relaxation time (lower resistivity), the larger can be the effect of 
the field on the resistance. ICohler discovered this fact analytically and 
expressed it as Ap/p = f(N/p). This description of magnetoresistance as 
functionally scaling with H/p is known as Kohler's rule. Because a deflection 
of a charge carrier in either direction away from 9, increases p, the change in 
resistance must be an even power of H, thus the magnetoresistance ratio to 
lowest order obeys. 

(The Hall resistivity pH = EH/J is linearly proportional to N). Kohler's rule, 
Eq. (15.11), is general and applies also to ferromagnetic materials with the 
substitution H+B. 

A simple derivation of Kohler's rule can be made by considering that in the 
absence of a magnetic field, p(0) = mv/ne2/2(0), where A(0) is the zero-field 
mean-free path. On application of a field, the electron trajectory can be 
approximated as circular, tracing out an arc of length A(0) before scattering 
(Fig. 15.9). The radius of curvature of the orbit is simply r = rnv/eB, and 
A(0) = r8 where 8 is the angle subtended by the path of the electron. But this 
path has a projection along the field direction of A(H) = r sin[;l(O)/r], or, in the 
weak-field approximation, l ( H )  = /2(0)[1- /2(0)2/6r2 . . -1 = /2(0)[1- U[H/~(O)],~ 
where a = pi/(6n2e2). Taking [p(H) - p(O)l/p(O) gives Aplp = a[N/p(0)];2to 
second order in H, which is Kohler's rule. 

Table 15.1 lists some representative room temperature values of R, and 
Ap/p for various ferromagnetic materials. While hexagonal cobalt exhibits an 
appreciable anisotropy in its electrical resistivity, there is no significant 
corresponding effect for Fe and Ni. The electrical resistivity of amorphous 
metallic alloys is very large because of the lack of long-range crystalline order 
(Chapter 11). This is also the reason for the negligible anisotropic magneto- 
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H f O  

A(H)=  r s i n 8  
NO) = r  sin 

-- -. --- 

Figure 15.9 Classical depiction of magnetoresistance mechanism for justification of 
Kohler's rule. Mean free path is represented in zero field, left, and nonzero field right. 
While the relaxation time is the same in both cases, the component of the mean free 
path along the direction of the applied voltage is smaller for H # 0. 

resistance in these materials. The sign of the ordinary Hall coefficients of Fe, 
Ni, and Co are difficult to interpret in terms of Eq. (15.10). Note the very large 
values of the spontaneous Hall coefficient for amorphous materials. This is 
explained below to be due to their large resistivities. 

15.3.2 Galvanomagnetic Effects in Ferromagnetic Materials 

It has been shown that in nonmagnetic materials, the application of a magnetic 
field perpendicular to the current can alter the longitudinal resistance Aplp 
and can also induce a Hall voltage in a direction orthogonal to both the 
current and magnetic field. These effects can be understood as consequences of 
the classical Lorentz force on, and cyclotron orbits of, the current carriers. In 
nonmagnetic materials the galvanomagnetic effects are called "ordinary" to 
distinguish them from the stronger effects observed in ferromagnets. 

TABLE 15.1 Electrical and Galvanomagnetic Properties of Some Magnetic Materials 

Ni 10.7 + 2.5 - 0.6 - 0.6 
Fe 15 + 0.8 + 0.23 2.8, 7.2 
Co 10.3 (c  axis) + 3.0 - 0.84 + 0.6 

5.5 (basal plane) - - - 
Gd - - - 500 
Amorphous 

Fe80B,o 120 ~0 + 2 + 1  500 



In ferromagnetic materials the ""ordinary" armisotropic transport effects are 
present but are accompanied by stronger phenomena having similar geometri- 
cal dependences and symmetries. The galvanomagnetic effects unique to 
ferromagnets are called "extraordinary," "spontaneous" or 'knomalous" be- 
cause of their greater strength relative to the "ordinary" effects. The extraordi- 
nary galvanornagnetic effects derive their strength from the fact that the role of 
the external field is replaced by an internal field proportional to the magnetiz- 
ation, which is generally much stronger than an applied field. The mechanism 
by which the microscopic internal field associated with M couples to the 
current density in ferromagnets is the spin-orbit interaction between the 
electron trajectory (orbit) and the magnetization (spin). Thus, while the 
ordinary effects are classical, the spontaneous effects are quantum mechanical 
in their origin. 

In brief, the ordinary galvanomagnetic effect arise from the macroscopic 
part of the flux density pOH while the extraordinary effects come from the 
microsco~ic magnetic part of the flux density poM. The appropriate express- 
ions for the spontaneous Hall effect and magnetoresistance observed in 
ferromagnetic materials are obtained by replacing B = p,H with poM in the 
relations derived so far for the corresponding ordinary effects. 

The challenge of a diversity of units in the magnetics literature is com- 
pounded in the case of galvanomagnetic effects by diEerent usages for the field 
responsible for galvanomagnetic effects. Many references use B in nonfer- 
romagnetic materials, meaning poll. It seems more appropriate to use the latter 
notation in nonmagnetic materials and reserve the flux density, B, for systems 
in which there appear both ordinary effects, which are functions of H, and 
ferromagnetic effects, which are functions of M. 

Anomaious Ha88 EHect In ferromagnetic materials the Hall resistivity must 
be written 

= po(RoH + R,M)  (mks) (15.12) 

pH = RoH + 4nR,M (cgs) 

where the first term is the ordinary Hall resistivity proportional to the 
external field and the second term is the spontaneous effect, proportional 
to the magnetization. These two contributions to pH can be written as a sum 
because the symmetry of the two Hall effects is the same. The vector sym- 
metry of the spin-orbit interaction, k . s ,  responsible for the spontaneous 
Hall effect, is simply related to the radial component of the Eorentz force 
P + ( V  x B), which governs the ordinary effects [Eq. (15.911, as follows: L - s  = 

(P x p ) - s  oc v .@ x bf) oc P.($x IWP). Thus the microscopic picture for the sponta- 
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neous Hall effect is similar to that shown in Figure 15.8 but with H replaced 
by M or S. 

Figure 15.10 shows the dependence of pH in Ni on A1 impurity content (and 
hence on resistivity). The spontaneous Hall resistivity is the value of the 
high-field Hall resistivity extrapolated to zero field. The ordinary Hall effect is 
responsible for the high-field slope in the data. Both the ordinary and the 
extraordinary effects are negative here. 

Note first that the ordinary Hall coefficient (high-field slope of pH) is 
unaffected by the A1 impurities (R, < 0 implies conduction by electrons, not 
holes). However, the spontaneous Hall contribution is very small in Ni (low 
resistivity) and increases dramatically as dilute A1 additions increase the 
electrical resistivity. The explanation for this effect is found in a microscopic 
model for the spontaneous Hall effect. 

The spontaneous Hall resistivity is found to vary with overall resistivity as 
p, = ap, + bp:. This is more often expressed in terms of the spontaneous 
Hall angle: 

A physical interpretation of these two terms (the first two terms in an 
expansion of the Hall angle in the resistivity of the material) can be given based 
on the ideas of Smit (1958) and Berger (1970, 1972). The first term can be 
considered to be a skew scattering angle that describes the average deflection 
of the trajectory of a charge carrier in a scattering event (Fig. 15.11~). The 
second term in E@ (15.13), ascribed to a side jump mechanism, displaces the 
trajectory from its original path through the scattering center (see Fig. 15.11b). 
The Hall angle due to the side jump will be inversely proportional to the mean 
free path Ax/,& and thus proportional to the resistivity. The side jump 

Figure 15.10 Hall resistivity of Ni with dilute A1 additions. The high field slope is the 
ordinary Hall coefficient (Dorleijn 1976). 
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1 

Skew Scattering Side J u m p  
(a)  (b) 

Figure 15.11 Deposition of skew scattering and side jump processes based on concepts 
of Berger (1970, 1972). 

mechanism suggests that the angular momentum of the carrier (or its classical 
impact parameter) has been changed during the scattering event. 

Another interpretation is that the skew scattering is a result of carrier 
scattering from the host d states and thus independent of the concentration of 
a dilute impurity. The second term in Eq. (15.13) is the result of scattering from 
impurity sites and thus is proportional to impurity concentration, which goes 
as p,. 

Thus, the reason for the dramatic increase in p,, shown in Figure 85.10 on 
addition of small amounts of A1 to Ni, is the side jump mechanism. The 
nonmagnetic impurities shorten the mean free path and allow the side jumps 
to accumulate more rapidly than if they occurred separated by longer mean 
free paths. 

Another consequence of the relation in Eq. (15.13) is that the spontaneous 
Hall resistivity becomes very small at absolute zero. Also, at elevated tempera- 
tures where p is large, the side jump mechanism often dominates the skew 
scattering mechanism. Further, since the spontaneous Hall effect must vanish 
above T,, the Hall resistivity is expected to peak at some temperature below 
T,. In fact, the temperature dependence of R, is observed to be nearly quadratic 
in temperature (because p is nearly linear in T) before plunging to zero at the 
Curie temperature (Fig. 15.12). 

The quadratic dependence of the p,, on p ,  leads to very large spontaneous 
Hall effects in amorphous ferromagnetic alloys (O'Handley 1978). However, in 
amorphous alloys, the resistivity is only weakly dependent on temperature (it 
generally remains in the range 100-140 pQ-cm), so p,, is nearly constant 
down to cryogenic temperatures. 

It is interesting to note the case of ferrimagnetic rare-earth-transition metal 
intermetallics such as GdCo. This system shows a compensation temperature 
below (above) which the rare-earth (transition metal) moments dominate the 
magnetization (cf. Figs. 4.9, 4.11). At the compensation temperature the 
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Figure 15.12 Temperature dependence of the spontaneous Hall resistivity per unit 
magnetization and the spontaneous Hall conductivity per unit magnetization for Fe 
(Jan 1958). 

antiferromagnetically coupled moments of the two sublattices switch orienta- 
tions if an applied field is present. Figure 15.13 shows how the Hall resistivity 
R,M, changes sign through the compensation temperature in amorphous 
Gd,,Co,, (Shirakawa 1976). For the same reason, a sign change is seen at 
fixed temperature as the composition is varied through T,,,, in ferrimagnetic 
alloys (Stobieki 1978). 

Anisotropic Magnetoresistance Just as the Hall resistivity in ferromagnets 
has the form of Eq. (15.12) with both ordinary and spontaneous terms (linearly 
dependent on H and M, respectively), so too the magnetoresistance in a 

Q) Resistivity 

Mognetization 

-2 

0 100 200 300 
Temperature ( K) 

Figure 15.13 Temperature dependence of the magnetization and spontaneous Hall 
resistivity in Gd, ,Co,, (Shirakawa st al. 1976). 
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ferromagnet is expected to have a spontaneous contribution that depends on 
the orientation of magnetization. It is referred to as the anisotropic magneto- 
resistance. Thus, Kohler's rule can be generalized to read for a ferromagnet: 

The first term describes the ordinary magnetoresistance and the second, the 
spontaneous or anisotropic magnetoresistance. 

Figure 15.14a shows the field dependence of resistance in a Ni-Co alloy. The 
rapid decrease in resistance for a field applied perpendicular to the current 
direction is the ferromagnetic part of Aplp. The anisotropy field for this alloy 
is of order 4 kOe. Above that field the magnetization is saturated and the 
ferromagnetic contribution to the MR is saturated. The value of the aniso- 
tropic magnetoresistance (AMR) may be determined by extrapolation of high 
field MR data to H = 0. Above Ha, all that remains is the ordinary MR which 
goes as H2. The negative slope of the high-field resistance (superimposed on 
the low-field ferromagnetic effect) is due to the increase in magnetization order 
or spin order through the high-field susceptibility and the applied field (cf. Fig. 
15.7). This high-field susceptibility effect overcomes the ordinary magnetoresis- 
tance due to the Lorentz force, which is positive. At cryogenic temperatures, 
the high-field susceptibility is much smaller and the positive Lorentz-force 
magnetoresistance dominates at high fields. At cryogenic temperatures the 
average resistance of the NiCo alloy also decreases, Ap decreases, and the 
anisotropic MR ratio remains about the same (McGuire 1975). 

Figure 15.14b shows the anisotropic magnetoresistance of cobalt thin films 
in relatively weak fields. Here the even symmetry in H is evident. Also, the 
presence of hysteresis (which correlates with the hysteresis the M-H loop) 

Figure 15.14 (a) Resistivity of Nio~gg,,Co,~o,,, at room temperature versus applied 
field (McGuire, 1975); (b) low-field magnetoresistance for cobalt thin film showing even 
field symmetry and hysteresis. [After Parkin (1994).] 
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confirms the origin of AMR in the state of magnetization rather than the 
applied field. 

The anisotropic MR effect is observed in many systems to vary as 

-- 
Pav Pav 

where 8 is the angle between J and M. Note that Eq. 15.15 is even in the 
magnetization orientation, cos 8, as observed and predicted by Kohler's rule. 
The detailed consequences of this form were considered in Chapter 7 (see 
Fig. 7.5). 

Because the state of magnetization of a demagnetized multidomain sample 
is not unique, the magnetoresistance in zero field, p(0) is not well defined. Thus 
pa, is not necessarily equal to p(O), and p(0) can have different values depending 
on the domain structure in H = 0. This is shown in Figure 15.15. If the 
demagnetized state has a preferred direction of magnetization, then the 
measured anisotropic magnetoresistance in that direction is unaffected by 
application of a field. On the other hand, the resistivity measured in a field 
perpendicular to an "easy axis" is quadratic in the field. Thus the anisotropic 
MR effect is a measure of sample anisotropy or domain magnetization 
distribution. Compare this figure with the corresponding one for magnetostric- 
tion (Fig. 7.5). 

Figure 15.15 Field dependence of resistivity in fields parallel and perpendicular to J 
reveals the extraordinary or anisotropic magnetoresistance effect Ap = p l l  - pl at low 
fields superimposed on the ordinary effects (quadratic in H) at higher fields. Note that 
in zero field, the resistance may be larger or smaller than pa, depending on the 
equilibrium domain structure. (Compare with Fig. 7.5 for magnetostriction.) 
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Comparison with Figure 15.15 suggests that for the data of Figure 15.14, the 
current was applied in a direction parallel to the zero-field domain orientation 
(as in Fig. 15.15, right). Hence the resistivity is large at point A. At point B 
most of the magnetization has been rotated away from the current direction 
by a perpendicular field. 

The low-field dependence of the anisotropic magnetoresistance [Eq. (15.15)] 
resembles that of the magnetostriction [Eq. (7.1)]. Both effects are quadratic in 
a hard-axis applied field below the anisotropy field, Ha, and both show the 
same zero field dependence on domain distribution. Thus, the same domain 
configuration that gives a large MR effect, specifically, magnetization by a 90" 
rotation process as opposed to a wall motion process, also results in the largest 
possible magnetostrictive strains. When determining magnetoresistance, care 
must be taken to measure the resistivity in fields of both orientations relative 
to J unless the quiescent domain configuration is known. 

Because of the technical importance of an anisotropic magnetoresistance 
(see Chapter 18), some additional data on this phenomenon are included. 

Figure 15.16 shows the composition dependence of the magnetoresistance 
ratio (MRR) in Fe-Ni and Ni-Co alloys. Note that the MRR in FeNi alloys 
peaks at 90% Ni, not far from the permalloy composition where A, and K ,  are 
close to zero. This is advantageous because at the permalloy composition the 
magnetization is easily rotated by an external field, i.e., Ha is small. 

There may be more than chance to the compositional proximity of peak MR 
ratios and vanishing K ,  and A,. These features-anisotropy, magnetoresis- 
tance, and magnetostriction (as well as spontaneous Hall effect)-have their 

Frgction Ni Fraction Ni 

Figure 15.16 Composition dependence of anisotropic magnetoresistance at room 
temperature. Left, NixFel-, [after Bozorth (1946)l. Right, NixCol-,, [after Smit 
(1951) and van Elst (1959);. 
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origin in the spin-orbit interaction. Their composition dependence can be 
explained to some extent in terms of the split-band model outlined in Chapter 
7 ((L,) = 0 at the minimum in the split-band density of states). When E, for 
the composition coincides with a gap or minimum in the density of states, it is 
clear that L . s  should vanish. Thus, while anisotropy and magnetostriction 
might vanish at nearly the same composition, it is not immediately clear why 
the anisotropic MR ratio should reach a maximum near the same composition, 
and appear to track the K = 0 or II  = 0 lines in ternary compounds. 

Another important pattern in the compositional dependence of the MR 
ratio results from combining the data in Figure 15.16 with those for other alloy 
systems and plotting Ap/p against magneton number as shown in Figure 15.17. 
While the MR ratio appears to peak for alloys with a magnetic moment per 
atom slightly less than one, the single-element data for Ni, Co, and Fe as well 
as for the ordered compound Ni,Fe, show noticeable departures from the 
trend. Their smaller MR ratios reflect the diminished scattering in these pure 
materials. This effect is initially counterintuitive because it might be expected 
that the reduced resistivity in these pure materials would result in an increase 
in Aplp. 

Figure 15.18 shows the composition dependence of the electrical resistivity 
in the crystalline FeNi, CoNi, and CuNi alloy systems. Note that the resistivity 
is relatively flat in the vicinity of the MR peaks for FeNi and CoNi systems. 
This indicates that near 90% Ni in Figure 15.16, it is the anisotropic change in 
resistance Ap that peaks rather than the resistivity presenting a minimum. 

These ordinary and spontaneous galvanomagnetic effects can be sum- 
marized with a phenomenological model that expresses their common symme- 
try. Ohm's law can be written in a general form that expresses the symmetry 
of the Hall and magnetoresistance effects. The electric field inside an isotropic 

Figure 15.17 Anisotropic magnetoresistance ratio versus average Bohr magneton 
number for various metals and alloys. [After Smit (1951).] 
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Ni Concentration, x 

Figure 15.18 Resistivity of the binary alloy systems NixFe, -,, NixCol -,, and 
Ni,Cul -,. [After Bozorth (1946).] 

material is related to the current density by Ohm's law (McGuire and Potter 
1975): 

In general, p is a tensor given by 

for H in the z direction. Here pI(pII) is the resistivity in a direction perpen- 
dicular (parallel) to the H field (which, in the case of a ferromagnet, is replaced 
by the magnetization) and pH is the Hall resistivity in the geometry of Figure 
15.8. All of the components of the resistivity tensor can depend on the 
magnitude of H. Ohm's law [Eq. (15.16)] can then be written as follows: 

where h is a unit vector in the direction of the applied field or, for a 
ferromagnet, the magnetization. Because magnetoresistance is quadratic in H, 
it is generally a smaller effect than the Hall effect. 
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In the geometry of Figure 15.8, the current density can be written as d = (0 ,  
J,, 0), so Eqs. (15.16) and (15.17) give 

Thus the voltage measured in the x direction is the Hall voltage and that 
measured in the y direction samples the resistivity perpendicular to h. To 
measure the magnetoresistance anisotropy, the direction of the magnetization 
would have to be rotated into the y direction so that E, = p l , J ,  could be 
measured. Then the difference in E, for the two magnetization direct~ons would 
give the magnetoresistance: A p  = AE,/J,. 

From Eq. (15.18), the spontaneous magnetoresistivity is a function of the 
relative direction of M and J. Because the resistivity is measured in the 
direction of current, p can be written 

which leads to 

where 0 is the angle between M and J. Equation (15.19) may be written 

Subtracting pa, = [ p l l  + 2p1]/3  from both sides and dividing both sides by 
pa, gives Eq. (15.15) using the definitions ( p I l  - p,) = A p  and A p ( H )  = 

P ( H )  - Pa,. 
Equation (15.15) or (15.19) describes the anisotropic magnetoresistance that 

is observed in materials. The anisotropic MR effect has been used in mag- 
netic recording read heads for hard disk drives since the early 1990s (see 
Chapter 17). 

15.3.3 Mechanism of AMW 

It is tempting to try to understand the anisotropic ferromagnetic magnetoresis- 
tance from the classical picture for the ordinary MR effect in which a 
conduction electron trapped in a cyclotron orbit does not contribute to the 
current until it is scattered. It might be suggested by the generalization of 
Kohler's rule [Eq. (15.14)] that the internal field associated with M can cause 
a charge carrier to become localized. However, this mechanism suggests that 
when the current density is orthogonal to the magnetization in a ferromagnet, 
the electrons could become localized in cyclotron orbits about M and the 
resistance should increase. Just the opposite is generally the case for the 
anisotropic magnetoresistance; the resistivity is smaller when J and M are 



osthogonall (Fig. 115.84). So while the generalization of Roh%er's rule may be 
valid, the sign of b in Eq. (15.84) is negative and the mechanism is not simple. 

A satisfactory microscopic model of the anisotropic magnetoresistance 
effects has not been given. Here, an attempt is made to give a physical picture 
of the ingredients that are central to the more successful models. 

The interaction of the conduction electrons with the lattice potential and 
impurities can be described by various contributions: the Coulomb attraction 
to the ion core, the spin-orbit and exchange interactions: 

The Coulomb interaction, -Ze2 /r ,  is the strongest of the three terms. The 
spin-orbit interaction (SOI) is the scattering mechanism that governs aniso- 
tropic MR, just as it controls the spontaneous Hall effect (Smit 1975, McGuire 
and Potter 1975). The exchange contribution is ignored here. The Coulomb 
potential and the spin-orbit scattering potential, CL. S9 are depicted in Figure 
15.19. 

The role of SOP in anisotropic magnetoresistance is suggested by the data 
for dilute rare-earth impurities (Fert et al. 1977). The asymmetric (i.e., (L) # 0) 
4f charge distribution of an impurity presents different scattering cross sections 
to an incident conduction electron of momentum, k, depending on the 
orientation of & relative to the 4f moment, g,u,m,, which is largely collinear 
with L and S. Thus, the resistance acquires an anisotropy that is a function of 
the direction of the current relative to that of the magnetization. Hn this model, 
Bll ' P I .  

For 3d transition metals, Molt's two-current model must be used. While the 
operative scattering mechanism is recognized to be the S01, this interaction is 
also known to be much weaker in 3d metals because the d states are strongly 

"so 
"cou I 

e- 
/ 

Figure 15.119 Simplified view of Coulomb scattering, left, and spin-orbit plus Coulomb 
scattering, right. The spin-orbit interaction alters the Coulomb scattering potential, 
center, for relative orientations of the magnetization and current that satisfy L .s # 0. 
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perturbed by the crystal field which quenches their orbital angular momentum. 
It is best to consider first the strong ferromagnetic alloys based on Ni, for 

which there are no 3df holes. This being the case, there is negligible s-d 
scattering in the majority spin channel and a - pL/pT is very large. Alloys 
having large values of a generally show large, positive MR ratios (Fig. 15.21). 
Smit (1951) points out that in such cases with negligible majority-spin s -+ d 
scattering, a small increase in pad could have a significant impact on the net 
resistivity. The SO1 provides a way to mix spin-up and spin-down states so 
that sf electrons can be scattered into empty d states. The quantum mechanical 
reason for this mixing is outlined briefly below. 

The operator in the SO1 [Eq. (3.31)] can be represented as 

by defining L' = L, f iLy. Orbital, spin, or total angular momentum compo- 
nents perpendicular to the quantization direction can be represented as such 
A' operators. These complex operators are important because of what they do 
to the wavefunctions they operate on. L' has the effect on the wavefunctions 
for angular momentum of raising or lowering (L+ or L-, respectively) the m, 
value of the state described by the initial wavefunction 

(See Problem 15.3). 
The effect of operators of the form L+S- + L-S+ is to first lower or raise 

(S- or S + )  the spin quantum number of a state [e.g., s-x(+$) = X(-i), but 
sPX(--$) +- 01, then raise or lower its angular momentum component along z. 
The spin-flip operator, (15.21), therefore takes 3df(m,) states into 3dl(m1 f 1) 
states or 3dl(m,) states into 3df(m, - 1) states. Thus L - S  mixes spinup and 
spindown channels. 

A simple picture is given in Figure 15.20 to illustrate how the SO1 opens up 
new paths for s-d scattering that then contribute a resistivity anisotropy. When 
the spin-orbit interaction is inoperative (left), there is no s-d scattering in the 
majority-spin channel. In this case, the resistivity can be written 

When the SO1 is turned on, sT electrons can scatter to the 3di hole states, 
adding to the total resistivity. The SO1 also allows dT -+ sL transitions that open 
3dT hole states, providing further channels for s-d scattering by sf (no spin flip) 
or sL (spin flip) electrons. However, s electrons can only scatter into the 3d hole 
states if the conduction electron momentum I& is in the plane of the classical 
orbit of the empty d state. This is depicted in Figure 15.20 where, for clarity, 
only some of the five 3d wavefunctions are shown. The 3d hole states 
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(or dwJ1) 

Figure 15.20 Upper left, 3d density of states for strong ferromagnet and equivalent 
circuit showing absence of sf-d scattering. Upper right, when SO1 is active, spin-flip s-d 
processes are allowed, increasing the resistivity in the majority spin channel. (Holes are 
also created in 3df by df-dl processes; these processes are not shown.) Below, selected 
unperturbed 3d wavefunctions are sketched to illustrate that when J 1 1  M, the vacant d 
states have a component of L orthogonal to M and therefore have classical orbits 
(k: + k:) compatible with the conduction electron momentum k,. When J I M  the 
likelihood of hole states having JIIL, and therefore incompatible with k,, is increased. 
Thus Jll M favors s-d transitions. 

necessarily have different values of <L,) than the 3d states that are occupied. 
Thus, L for a 3d f  hole state is, in general, not parallel to L of the occupied 3dT 
states, which accounts for the magnetic moment. The figure illustrates that the 
new s-d scattering channels are more likely when JII M, which places a greater 
fraction of the empty 3d states in the plane of the current. 

The important consequence here of the L+S- + L-S+ mixing term is to 
allow for spin mixing (when JIIM), which always increases p in the two-current 
model. Hence, this model gives Ap/p > 0 as is generally observed for Ni-based 
alloys. 
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The orientation dependence of the sT-di scattering depicted in Figure 15.20 
is such that p3d is nonzero when JIIM. If the angle between J and M is defined 
as 0, and the relative st-di scattering strength is defined as 6 = 11/,,,/V,/',,,,12, the 
new SO1 scattering processes can be represented as 

(The angular dependence must be at least quadratic because the effect works 
whether J and M are parallel or antiparallel). Thus, the resistivity from the 
circuit in Figure 15.20, right, can be expressed as 

Using the definition for p,  in Eq. (15.23), Eq. (15.25) gives to lowest order: 

which is consistent with Eq. (15.15) or (15.19) to within an additive constant. 
The fact that the anisotropic MR effect appears in second-order perturba- 

tion theory, specifically, A p / p  cc 11&,,12, can be appreciated conceptually by 
considering that the SO1 must operate twice for this mechanism to work. First, 
spin mixing must be turned by the SO1 (creating some 3dT holes) and second, 
the new s-d scattering is governed by the SO1 as indicated by the symmetry 
of the effect. 

Essential to a proper understanding of anisotropic MR are the following 
concepts: 

1. The two-current model 

2. pT # p' 
3. The SO1 results in spin mixing, creating 3df holes 
4. sT electrons make use of new paths for s-d scattering via the SOI. 

The reader can find more thorough and more quantitative treatments in 
Smit (1951), Campbell and Fert (1982), Potter (1974), and McGuire and Potter 
(1975). 

One of the consequences of Smit's treatment is that A p / p  is predicted to vary 
as a - 1 where a = pi/pT (Fert and Campbell, 1972). That is, the larger the 
disparity between the s-d scattering in the two bands, the more a slight 
increase in p7 can have a significant effect on the total resistivity. The collection 
of AMR ratios versus a in Figure 15.21 supports this result for Ni-based alloys. 
Alloys having large values of a = pl/pT generally show larger, positive 1vIR 
ratios. Small values of u lead to small or even negative MR ratios. 
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Figure 15.21 Anisotropic magnetoresistance in Ni-based alloys at 4.2 K as a function 
of a = 0.01(a - 1) (Jaoul et al. 1977). 

The more complicated case of Fe-based alloys (Dorleijn and Miedema 1976) 
is not described here. 

15.4 GIANT MAGNETORESISTANCE 

In 1988, Baibich et al. reported an MR ratio of order 50% at 4.2K in FeCr 
multilayers that exhibit the oscillatory exchange described in Chapter 12. This 
magnetoresistance was approximately an order of magnitude greater than the 
highest values known to that time. 

The Fe layers in these experiments were typically 30-60A thick and 
separated by Cr layers from 9 to 60A. Figure 15.22, left shows the relative 
orientation of the current density, the applied fields, and the crystal axes in the 
iron layers. The iron layers are antiferromagnetically coupled through the Cr 
layers and hence are difficult to saturate (Fig. 15.22, right). 

The field needed to saturate the magnetoresistance is of order 20 kOe in this 
system (Fig. 15.23~). It is also clear from Figure 15.23~ that the strength of the 
antiferromagnetic coupling varies with the Cr layer thickness. When the layers 
are coupled antiferromagnetically, the resistivity is observed to be larger than 
when an applied field brings the moments into alignment (Fig. 15.23b). The 
strength of this dependence of p on alignment of MI and M, is greatest when 
the antiferromagnetic coupling is strongest (0.9 nm Cr, Fig. 15.23), that is, when 
the moments of adjacent layers in zero field are almost completely antiparallel. 
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Figure 15.22 Left, relative orientation of iron easy axes, current and field for FeCr 
multilayers [after Baibich et al. (1988)l; right, schematic of magnetization process in the 
multilayers with increasing field strength. Magnetocrystalline anisotropy has been 
ignored. 

There are two conventions for definition of the giant magnetoresistance 
(GMR) ratio. One refers the change in resistance AR to its high-field value; the 
other, to its low-field value. These two conventions lead to increasingly 
different results as AR becomes greater. For example, for the 9 A Cu multilayer 
in Figure 15.20, right AR/R,=, = -46% and ARIR,,,, = + 85%. Referring AR 

Figure 15.23 (a) Hysteresis loops for samples for three different FeCr multilayers at 
4.2K; (b)  relative change in resistance with field parallel to current at 4.2K. The 
numbers labeling the curves are the thicknesses (in angstroms) of the Cr layer in each 
case. [After Baibich et al. (1988).] 
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to the resistance of the a n t i f e r r o m a n t  or high-resistivity state limits the 
GMR ratios to values less than 100% but &as the disadvantage that the H = 0 
state is not always one of complete antiferromagnetic coupling or M = 0. This 
convention is more common with experimental data. The other convention is to 
refer AR to the resistance of the ferromagnetic state R,, which is well defined. 
This convention, AR/R = (R,, - R,)/R, is more often used in calculations. 

Parkin et al. (1990) observed that the MR ratio in Fe/Cr multilayers 
oscillate with the exchange coupling as shown in Figure 15.24. As the thickness 
of the Gr layer is increased, the oscillations in magnitude of the field needed to 
saturate the magnetization (Fig. 12.12) and in the magnitude of the MR ratio 
are observed to be in phase. The magnetoresistance maxima occur at Cr layer 
thicknesses for which the magnetic layers are coupled antferromagnetically. The 
first two maxima in AF coupling and hence also in GMR ratio occur at spacer 
thicknesses of 9 and 24 for the Fe/Cr system. For Co/Gu multilayers (Parkin 
et al. 19911, the first two maxima of magnetoresistance occur at 8 and 19 A. At 
least four oscillations in magnetoresistance are observable throughout the 
range of temperatures from 1 to 400 K. GMR ratios of 80% at 4.2 K and 65% 
at 300K were observed in S~/F~(~OA)/[CO(~.~A)/C~(~.~A)I,,. 

The MR ratio in these multilayer systems is not a function of the angle 
between J and M as it is for AMR, but rather depends on the relative 
orientation of M in adjacent layers. Thus the mechanism for MR in these 
multilayers is different from that responsible for the anisotropic MR effect 
described in Sections 15.3.2 and 15.3.3. Because of the Barge magnitude of this 
new rnagnetoresistance, it has become known as giant magnetoresistance 
(GMR). GMR has been observed (Dieny et al. P99Pa, 199bb) to obey the 

0 I0 20 30 4: 50 
Ca Thickness ( A )  

Figorre 15-24 Transverse saturation magnetoresistance at 4.2 K versus layer thickness. 
Films deposited at 40°C, N = 30 (closed squares) and at 125OC, N = 20 (open squares). 
These oscillations in GMR strength are to be compared to those in the strength of the 
antiferromagnetic exchange coupling of this system, shown in Figure 12.12. [After 
Parkin et al. (1990).] 
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equation 

P GMR 

where $ is the angle between the magnetizations in the two sets of layers. For 
the scissor-action process illustrated in Figure 15.22, right, the angle between 
either magnetization and the applied field, 0 = $12, is important because it 
indicates the component of magnetization parallel to the field. Because 
1 - cos(20) = 2 sin2(0), Eq. (15.27) can be written 

A P ( ~ )  
- = (9) sin20 

P GMR 

For hard axis magnetization, to a first approximation, M/M, = cos 0 = HIH,; 
thus Eq. (15.27) gives for the field dependence of the MR ratio 

This is the approximate form of the field dependence sometimes observed for 
GMR in antiferromagnetically coupled multilayers when the field is applied 
along the hard axis. It is consistent with the data in Figure 15.23b. Any 
nonlinearity of M with H would complicate the dependence of GMR on H. 
The field dependence of GMR is much more complicated than implied by this 
simple illustration. 

A controversy exists concerning whether the scattering is occurring within 
the layers or predominantly at the interfaces. In an attempt to answer this 
question, Parkin (1992) studied Ni,,Fe,,/Cu superlattices where the permal- 
loy/Cu interface was systematically decorated with various thicknesses of 
cobalt. He found that increasing the Co thickness at the interface from 0 to 
4.44 caused the GMR effect to increase from about 1% to nearly 20% at room 
temperature (Fig. 15.25). It was found also that if there are at least 4 angstroms 
of cobalt at the interfaces, the magnitude of the magnetoresistance is insensitive 
to the nature of the interior magnetic layer, i.e., [Co/NiFe/Co/Cu] shows the 
same GMR ratio as [Co/Cu]. This is true at room temperature or at 4.2K 
(Fig. 15.25). Further, the permalloy/cobalt/copper superlattices show a fourfold 
decrease in the field required to saturate the GMR effect (to 15 Oe) compared 
to that for Co/Cu. These experiments suggest that interfacial scattering is 
important in GMR. 

The interfacial nature of GMR is illustrated further in Figure 15.26, which 
compares the magnetic layer thickness dependence of the strength of GMR in 
various spin valve structures (see Section 15.5) with that for AMR in permal- 
loy. Anisotropic MR decreases monotonically with decreasing film thickness 
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Figure 15.25 Top six panels, G M R  ratio versus field for various thicknesses of an 
interfacial layer of cobalt in FeNi multilayers at room temperature and at 4.2 K. Lower 
two panels, G M R  versus field for [Co/Cu] multilayers. [Adapted from Parkin (1992).] 

and saturates at a bulk value for large NiFe thickness. GMR, on the other 
hand, shows a peak at small thicknesses and vanishes at larger magnetic layer 
thicknesses. 

While the exchange coupling, which can play a role in GMR, is only weakly 
dependent on temperature, the GMR ratio at low temperatures is typically 
about four times that observed at room temperature. 

15.4.1 Mechanism of GMR 

The important observations that characterize GMR are summarized. GMR 
does not show the dependence on current direction relative to M that 
characterizes anisotropic magnetoresistance. Instead, GMR does depend on 
the relative orientation of the magnetization in adjacent magnetic layers. The 
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Thickness ( A )  

Figure 15.26 Left, variation of GMR with magnetic layer thickness in various GMR 
spin valve structures (Section 15.5.1) [after Dieny et al. (1991b)l; right, AMR versus 
NiFe thickness [after Daughton et al. (1992)l. 

- 2 -  

GMR effect vanishes if the spacer layer thicknesses are much greater than the 
mean free path of the electrons (of order 10 nm); carriers of a given spin must 
be able to sample the spin-dependent scattering mechanisms in adjacent 
magnetic layers. This indicates that the important scattering events are those 
that depend on the relative spin of the carrier and the scattering site; spin-orbit 
scattering (which involves only one spin) is less important for GMR. A simple 
example of spin-spin scattering is exchange scattering, proportional to $s. S, 
where s and S are the spins of the charge carrier and the scattering site, 
respectively. 

Although a complete understanding of giant magnetoresistance is not yet 
available, the effect may be understood by considering the preceding observa- 
tions in the context of the two-current model introduced earlier. Assume that 
spin-dependent scattering is more likely when a carrier of one spin encounters 
a scattering site of opposite spin. (Recall that in spin-orbit scattering, it is the 
spin of the conduction electron, not that of the scattering site, that is involved). 
In simple terms for antiferromagnetically coupled multilayers (Mathon 1991, 
White 1992), conduction electrons of either spin having sufficiently long mean 
free paths will thermally sample a series of strong and weak scattering layers 
as they drift about the electric field direction from one magnetic layer to 
another. Thus carriers of either spin direction have comparable mean free paths 
and resistivities (Fig. 15.27~). However, when the layers are ferromagnetically 
coupled, carriers of the same spin direction as that of the magnetic layers will 
sample a series of weakly scattering, parallel-spin layers. Hence, their mean free 
path is longer and their resistivity smaller compared to those of carriers having 
spin opposite that of the magnetic layers (Fig. 15.27b). 

This situation can be represented by the parallel resistance circuit shown in 
Figure 15.28. The nonmagnetic part of the resistivity is omitted for clarity; it is 
included in this discussion. The resistances R, and R, represent scattering of 

I I I 

- 
s - 
a 

Theory 
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Figure 15.27 Schematic representation of magnetic multilayers with AF (a) and F (b) 
coupling. Charge carriers of majority and minority spin are shown as well as hypotheti- 
cal trajectories with different scattering lengths. In the F case, the charge carriers with 
spin parallel to the direction of magnetization have a longer mean free path. 

carriers of one spin in layers of the same spin (longer mean free path, smaller 
resistivity) and opposite spin, respectively. 

Assuming that the carrier mean free path is greater than the separation 
between magnetic layers in the superlattice, carriers of a given spin experience 
a series of resistivities due to the nonmagnetic, R, = pnln/A,, and magnetic, 
R; = pzlm/Am, layers they traverse. The index i (= f or 1) designates the 
spin-up or spin-down channel and o (open arrows in Figure 15.28) designate 
the spin in the magnetic layers relative to that of the carriers in that channel. 
Two nonmagnetic and two magnetic layers are assumed to be sampled for each 
channel. If the magnetic layers are coupled ferromagnetically (Fig. 15.27, left), 

Figure 15.28 Equivalent circuits for multilayers depicted in Figure 15.27. In each 
circuit, the upper path represents the resistance due to spin-dependent scattering of 
upward-spin electrons, the lower path that of downward-spin electrons. The shaded 
regions indicate the magnetic layers with their direction of magnetization indicated by 
the open arrow. R,  is for like-spin scattering events and R, for unlike-spin scattering. 
The spin-independent' scattering in the spacer layers is omitted for simplicity. 
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the resistance in one channel is R: = 2pnl,/A,, + 2p:l,JA,,, where li is the path 
length in the n or m layer and o is up for one value of i and down for the other. 
In this case, the two parallel spin channels add to give 

where the definitions a = (pi/pn), and P = (p:lpn) have been made. If the 
magnetic layers are coupled antiferuomagnetically, the resistance in each of the 
two channels is the same, R: = 2pnln/An + (pk + pi)'l,/~,: 

The resistance in the ferromagnetic case is always lower than that in the 
antiferromagnetic case as long as p: # pi ,  because the low resistance channel 
tends to short out the high resistance channel. The GMR ratio can then be 
shown to be given by 

Thus, the GMR ratio referred to the antiferromagnetic, zero-field state, 
indicates a decrease in resistance limited in magnitude to 100%. This ratio 
depends quadratically on the difference between the scattering of current 
carriers from sites of like and unlike spin. Further, the GMR effect vanishes in 
the limit that the nonmagnetic layers are much thicker than the magnetic 
layers. This expression differs from that derived by Mathon (1991), who 
referred the GMR ratio to the ferromagnetic state. 

It is possible to extend this phenomenological model to include microscopic 
interactions. Consider that the scattering of conduction electrons is due 
principally to the Coulomb interaction with the lattice. A small exchage 
interaction between the electron spin s and the local spin S of the scattering 
center, is added to the Coulomb scattering cross section: 

The angle $ is measured between the direction of s and S. Depending on the 
sign of S . s ,  the exchange strengthens or weakens the Coulomb scattering 
potential (Fig. 15.29). Substitution of the forms for pT and p1 from Figure 15.29 
in Eq. (15.30) indicates that the GMR ratio is quadric in 6 = $sS/Vc',,,,. 

Wang and Xiao (1994) discuss a more detailed physical model of the 
exchange scattering resistivity. They find that the resistivity ratio should be 
quadratic in the exchange interaction and also vary as (M/M,)2 : 
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Figure 15.29 Simple model of exchange scattering exhibiting the symmetry observed 
for GMR. An electron of a given spin is modeled as scattering from an ion of like spin, 
top, and unlike spin, bottom. 

where y = yS/Vc.',,,,. In this equation, p, is the nonmagnetic part of the 
thin-film resistivity and p, is the bulk classical resistivity [Eq. (15.1)]. Wang 
and Xiao (1994) calculate Ap/p versus y as shown in Figure 15.30. Their 
theoretical limit of GMR, Ap/p = 1.0, has not yet been reached. It would 
presumably be achieved in materials for which y = 1 and p,/p, is zero. So far 
cobalt gives the strongest GMR effect. 

These observations are for the current in-plane (CIP) geometry (Fig. 15.31), 
in which the spin-bearing charge carriers sample different magnetic layers by 
their thermal drift. Experiments have also been done in the current perpendicu- 

Figure 15.30 Variation of GMR ratio in granular films with parameter y = JS/Vc,,,. 
[After Wang and Xiao (1994).] 
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C I  P High Resistance C P P  Low Resistance 

Figure 15.31 Schematic illustrations of CIP and CPP GMR geometries. In both cases 
the film's thickness is vertical and its lateral extent is truncated in the drawing. 

lar to the plane (CPP) geometry (Pratt et al. 1993). The advantage of the CPP 
geometry is that electrons are forced to traverse many interfaces whereas in the 
CIP geometry, it is only the thermal motion of the electrons that causes them 
to move transverse to the drift direction dictated by the applied electric field. 
The disadvantage of the CPP geometry is that the electrical resistance of the 
film is extremely small normal to its plane, making measurements difficult. In 
CPP experiments, the magnetic field is still applied in-plane and the MRR 
saturates in a relatively weak field, 200 Oe. A very large GMR effect is observed 
in CPP. 

GMR can also be observed in systems with three small dimensions to the 
magnetic component, namely, the granular magnetic films introduced in 
Chapter 12. [When two immiscible species are codeposited, the result is often 
a composite of fine (d < 10nm) magnetic particles in a nonmagnetic matrix.] 
Chien et al. (1993) studied the magnetic properties of granular films based on 
the immiscible systems FCC FexCul -, and FCC Cox Cu, -,. The interesting 
composition range, x = 20 to 30 at%, straddles the percolation threshold at 
which particle connectivity sets in. 

Giant magnetoresistive effects have been studied in such granular media. At 
5 K, Chien et al. (1993) measure a magnetoresistance of 9% in Co1,Cu,, and 
13% in Co,,Cu,,. At 300K, an MR ratio of 25% has been observed in 
Co,,Cu,,. Alloys that are homogeneous (e.g., Co,,Cu,,) show no MR. In the 
Co,,Ag,, system, a GMR ratio of 20% is found at room temperature 
(Berkowitz et al. 1992). 

The characteristics of magnetoresistance observed in these granular systems 
are similar in some ways to those observed in the layered materials. In both 
cases, the maximum resistance occurs when H is equal to H,, at which field the 
net magnetization is zero. In layered films, this occurs when adjacent layers are 
aligned antiferromagnetically. In granular systems at M = 0, the moments of 
the magnetic particles are randomly dispersed. However, the resistivity in these 
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Figure 15.32 Variation of GMR at 8 T, (Aplp), , ,  with volume fraction of magnetic 
components in several granular systems (Wang 1994). 

granular systems often continues to decrease with increasing fields above 
saturation. 

GMR in multilayers is maximized for thin layers (below which thickness p 
becomes very large and thus Ap/p diminishes; see Fig. 15.26). In granular 
systems, GMR shows an optimum concentration for a variety of alloy systems 
(Fig. 15.32). For x too small, conduction electrons cannot communicate spin 
information by drifting from one grain to the next without scattering. For 
excessively large x (above the percolation threshold), the disorder in the 
particle moments decreases as they become ferromagnetically exchange- 
coupled. 

15.5 APPLICATIONS 

15.5.1 Spin Valves 

A spin valve is a simple embodiment of the GMR effect in which there are only 
two magnetic layers separated by a nonmagnetic conductor. The magnetic 
layers are uncoupled or weakly coupled in contrast to the generally strong AF 
exchange operating in Fe-Cr-like multilayer systems. Thus the magnetoresis- 
tance can be made to change in fields of a few tens of Oersteds rather than tens 
of kiloersteds. One of the layers is magnetically soft and the other is magneti- 
cally hard or pinned. Thus, a modest field can cause a change in the angle 
between the moments of these two magnetic layers. 
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Figure 15.33 Typical composite film structure for spin valve effect. Permalloy layer (1) 
is exchange-coupled to the FeMn layer. Permalloy layer (2) is weakly coupled to layer 
(1). The magnetization of layer (2), M,, can be arbitrarily oriented by an external field 
that is too weak to significantly perturb the orientation of M I .  

Such devices have been termed "spin valves" (Dieny et al. 1991a). In the case 
illustrated in Figure 15.33, the multilayer is Si/(NiFe I~oA)/(cu 2 6 A ) / ( ~ i ~ e  
150 A ) / ( F ~ M ~  100 A) / (A~ 20 A). The antiferromagnetic FeMn layer is ex- 
change coupled to the adjacent soft permalloy layer. This tends to pin the 
direction of magnetization of this layer, NiFe(1). The second permalloy layer 
is weakly coupled to NiFe(1) across the 26-A Cu spacer layer. 

In an illustrative demonstration of the operation of the spin valve, the 
applied field is directed parallel to the exchange field and cycled in magnitude. 
The resulting M-H loops are shown schematically in Figure 15.34. The sharp 
magnetization reversal near H = 2 Oe is the switching of NiFe layer 2 in the 
presence of its weak coupling to layer 1. The more rounded magnetization 
reversal near lOOOe is the switching of layer 1, overcoming its exchange 
coupling to the FeMn layer. The relative orientations of layers 1 and 2 are 
indicated by the pairs of arrows in each region of the M-H curve. Note that 
by cycling the field, M I  and M ,  can be made to lie antiparallel or parallel to 
each other, just as adjacent layers in a GMR multilayer can be aligned by 
applying external field to break the strong AF coupling. In the lower panel, the 
change in resistance during the same magnetization cycling is shown. The 
resistance is larger for antiparallel alignment of the two magnetic layers, 
whereas the classic AMR of permalloy shows p,,  > p,. 

It should be emphasized here that a spin valve makes use of two different 
exchange couplings. The first is the strong exchange coupling of the pinned 
layer to the antiferromagnetic FeMn layer. This exchange coupling is a 
function of the uniaxial anisotropy K,  of the antiferrornagnet and the inter- 
facial coupling energy y,-,, as described in Chapter 12. The second coupling 
is the weaker coupling between the two ferromagnetic layers, fF-, .  This 
ferromagnetic coupling is generally balanced by the antiparallel dipole coup- 
ling between the two layers. 
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Figure 15.34 Room temperature magnetization and relative change in resistance for 
Si/(NiFe 150 A)/(cu 26 A)/(N~F~ 150 A ) / ( F ~ M ~  100 A)/(A~ 20 A). Current is perpen- 
dicular to the easy axis determined by the FeMn film, which is exchange-coupled to the 
adjacent permalloy layer. [After Dieny et al. (1991).] 
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An elegant set of experiments on this effect reveals the sharp con- 
trast between conventional AMR and GMR as realized in a spin valve. 
A composite magnetic film like that shown in Figure 15.33 was fabricated 
[Si/(Ni, ,Fe, , 60 A)/(cu 26 A)/(N~, , Fe,, 30 A ) / ( F ~ M ~  60 A) / (A~ 20 A)]. The ex- 
change-coupled reference layer (1) ( ~ i ~ e - 3 0 A )  has an exchange coupled 
switching field of order 170 Oe. In this case, the NiFe layer (2) ( 6 0 4  has a net 
weak parallel coupling to the NiFe-FeMn exchange-coupled layers in H = 0. 
The permalloy layer (2) can be rotated to any in-plane orientation, \CI by an 
applied field of order 10 Oe, leaving the coupled moment (1) pinned at \CI = 0. 
The GMR ratio, AR/R, is observed to vary as cos \CI when H is rotated in plane 
as shown in Figure 15.35 (Speriosu et al. 1991). The exact form of the angular 
dependence is that given in Eq. (15.27). 

Also shown is the conventional AMR (Aplp proportional to cos20), yhich 
was subtracted from the total magnetoresistance measured. Whereas the 
conventional AMR peaks at \CI = 90" (M, parallel to J), the GMR peaks for 
J/ = 180" (M2 antiparallel to M,). 

When spin valves are used as field sensors, there is a choice of directions for 
the pinned layer (1) relative to the field to be sensed. The quiescent state of the 
free layer (2) can also be designed (by sample shape or field-induced aniso- 
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- 
- - 
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Figure 15.35 Variation of spin valve (SV) resistance and anisotropic magneto- 
resistance (AMR) with the cosine of the angle between MI and M,. (Dieny et al. 1991). 

tropy) to have different orientations. Figure 15.36 shows two cases: left, 
M ,  11 H ,  and M ,  I M ,  in H,  = 0 and right, M ,  I H,  and M ,  11 M ,  in H ,  = 0. 
In the first case, the M ,  magnetization process is described by MIM, = 
cos t,b = HIH,. The field dependence for a spin valve with easy axis for M ,  
perpendicular to the reference magnetization is then given by 

Thus, the MRR for a spin valve in this configuration is linear in the applied 
field (Fig. 15.36a, lower panel). 

In the other case, the M ,  magnetization process is M / M ,  = sin t,b = HIH, 
and the magnetoresistance is quadratic in the field (Fig. 15.36b, lower panel): 

These magnetization processes account for only half of the change in magne- 
tization in a 180" rotation, hence the factor $. 

Even though the two magnetic layers in a spin valve are described as 
uncoupled, these devices actually can show a weak oscillatory coupling as Cu 
thickness is varied (Lottis et al. 1993). These authors also showed that if the 
reference layer is inadequately pinned, it can respond to the external field 
reducing t,b and hence reducing the GMR ratio. 

Spin valves have been shown to be effective when used as a baselike control 
element in a spin valve transistor (Monsma et al. 1995). 
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"I ( 
Easy axis 

Figure 15.36 (a)  Hard-axis magnetization process and MR for easy axis perpendicular 
to the reference magnetization direction (open arrow) in a spin valve structure; (b) 
hard-axis magnetization process and MR for spin valve with easy axis parallel to the 
reference magnetization direction. 

15.5.2 Spin Switches 

A spin switch is a magnetic thin film device that is configured very much like 
a spin valve: two thin magnetic layers sandwiching a nonmagnetic metal layer. 
However, the current in a spin switch passes through the thin direction of the 
sandwich. The terminology used to describe the functioning of the spin switch 
is quite different from that for a spin valve, largely for historical reasons. The 
development of the spin switch began in 1985, when Johnson and Silsbee 
(6988) began studying spin injection from ferromagnetic to paramagnetic thin 
films. The concept of spin injection is illustrated in Figure 15.37 for a 
ferromagnetic-paramagnetic bilayer. The ferromagnetic layer F, is chosen to 
be a strong ferromagnet so that electrical current is of predominantly one spin 
type. The effect of driving electrons of mostly one spin into the paramagnetic 
material is illustrated at the right. Charge neutrality in P is maintained by a 
net efflux of electrons. When a steady state is established, the paramagnet P 
gains a small nonequilibrium magnetic moment M ,  at the expense of the 
ferromagnet; thus, the Fermi energies of the two subbands in the paramagnet 
now differ, whereas before the circuit was closed, they were the same. M ,  
relaxes with a characteristic time that appears to be the transverse spin 
relaxation time T$, from magnetic resonance. The establishment of a steady- 
state, nonequilibrdum magnetization in P implies an impedance to further 
charge and spin transport from F, to P. 
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Figure 15.37 Schematic of a spin injection bilayer and state density representations 
that explain its operation. At left, the circuit is open; at right, closed. For open circuit, 
the Fermi levels of the two metals are equal, and only the ferromagnetic material 
exhibits a moment. For a closed circuit with the polarity shown, Fermi energy electrons 
from the ferromagnet (minority spin) are injected into the paramagnetic metal, which 
then acquires a moment at the expense of the ferromagnetic film. 

A spin switch adds a second ferromagnetic layer, F,, to the bilayer in Figure 
15.37. F, should also be a strong ferromagnet. F, and F, are not exchange- 
coupled through the intermediate paramagnetic layer. The P layer thickness d 
must be less than the average distance 6, that an electron could travel without 
loss of its original spin direction: 6 ,  = (2D,T2)112, where D, is the spin diffusion 
constant. There are different ways of calculating a,, but in all cases the spin 
diffusion length, as it is called, exceeds the mean free path of charge transport 
by a few orders of magnitude. This is because spin-altering collisions occur 
much less frequently than do momentum-altering collisions. 

The flow of magnetic moment into P is proportional to the charge current 
I scaled by (p,/e) to account for spin transport rather than charge transport. 
It also contains a current polarization factor r]  = (Jf - JL)/(Jf + JL) to de- 
scribe the extent to which the current density J is dominated by one spin type 
or the other. Thus the magnetic moment current is 

The nonequilibrium magnetization buildup in P, M,, is given by the magnetic 
moment current into P, I,, times T, divided by the volume of 19: 

I M  Tz M p = -  (15.36) 
Ad 
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The buiklup of spin in P impedes Bharther flow of current across the F,-P 
interface. This is represented by the F,-P interface spin resistance 8,. 

To make a device out of this bilayer, it is helpful to consider how the spin-up 
electrons that make up M ,  can be drained from P or trapped there. This can 
be accomplished by placing a second ferromagnetic layer F, in contact with P 
(see Fig. 15.38, below). For M ,  parallel MI, spin-up states exist in F, at E,, 
which can accept spin-up carriers from P. In this case a charge current and a 
magnetic current flow across P to F,, and EL in F, increases. For M ,  
antiparallel to MI, no such path exists and the impedance of the device is 
increased; E, in F, decreases. The Fermi Bevel shifts that occur in F,, 
depending on the sign of M,/M,, are on the order of 10-'V. Essentially the 
impedance of the device is a function of the relative orientation of MI and M,. 
Thus, these devices give weak measurable voltages and/or resistance changes 
that depend on the relative orientation of the magnetizations in the two 
magnetic layers. 

Figure 15.39 shows results for a permalloy/gold/permalPoy spin switch. The 
compositions and thicknesses of the permalloy layer are chosen to give them 
different coercivities. Thus, the difference in the M-H loops of F,, the emitter 
(e), and F,, the collector (c), leaves a narrow field range over which the 
magnetizations of the two layers are antiparallel to each other as indicated by 
the inset representations of the spin switch structure. Below this is shown the 

P F2 
Parallel A n t -  parallel 

Figure 15.38 Above left, schematic of three-layer sandwich of spin switch, right, 
perspective view. Below left, configuration of ferromagnetic and paramagnetic layers 
showing dynamic process of spin transfer from the F, minority-spin band to the B band 
of same spin direction. Below right, schematic state densities for the F, parallel and 
antiparallel to F, and voltage difference between these two configurations referenced to 
paramagnetic Fermi level. 
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Figure 15.39 M-H loops of the emitter (e) and collector (c) and configuration of their 
magnetizations at different points relative to the loops. Below, the impedance versus 
field, H ,  measured by Johnson for such a device. [Adapted from Johnson (1993).] 

change in resistance of the device, measured as a function of field. The 
impedance varies as cos $, where $ is the angle between the two magnetiz- 
ations, just as for a spin valve. In terms of magnetoresistance, ARIR is 100% 
and the resistance change occurs over a field range of only a few oersteds. 
However, because of its geometry, the spin switch is a very low-impedance 
device and signal detection is difficult. 

Johnson (1991) draws the useful analogy between the spin switch and a 
semiconductor device. Semiconductors derive their utility from the fact that 
two distinct carrier populations, electrons (N) and holes (P), exist and have 
Fermi energies that can differ by about an electronvolt. When a P-N junction 
is formed, there is a net flow of carriers across the interface until this energy 
difference is neutralized and the Fermi energies come to a common value. This 
shift in band structure across a P-N junction is the basis for many semicon- 
ductor devices including diodes, transistors, and photovoltaic cells. In fer- 
romagnetic materials, the two carrier populations are obviously the spin-up 
and spin-down carriers, also with differences in their Fermi energies of order 
1 eV. It has been shown that these two populations of carriers are often 
independent of each other. They form the basis for a number of devices, 
including the spin switch. Unlike semiconductor devices, the performance of 
spin switches improves as their thickness decreases because the spin diffusion 
lengths are considerably shorter than electron or hole diffusion lengths. 
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Spin tennnePing junctions have some similarities to spin valves and spin switches 
in their structure and field dependence. However, in a tunnel junction, the 
nonmagnetic spacer layer is an insulator. In order to understand the phenom- 
ena and devices associated with spin tunneling, it is helpful to begin with a 
review of the concepts of superconducting tunneling. An excellent review is 
given by Merservey and Tedrow (1994). 

A tunnel junction is conveniently formed from a crossed pair of metal film 
stripes. The first deposited stripe, for example, aluminum, may be oxidized 
partially to form a barrier before deposition of the second electrode (Fig. 
15.40). Alternatively, the metal and oxide layers can be deposited and patterned 
independently. A voltage applied across such a junction can result in a current 
if there are occupied states in one electrode at the same energy as unoccupied 
states in the other plus or minus k ,  ?: Hence varying the voltage slides the state 
densities of the two junctions over each other. The I (V)  tunneling behavior is 
therefore a convolution of the densities of states D(E) of the two electrodes, the 
differences in their Fermi functions f (E), and a tunneling probability function 
(related to the barrier characteristics) (Wolf 1985): 

The appearance of the difference Fermi function in this equation reflects the 
fact that electrons in states above E, (or holes in states below E,) cannot 
tunnel across the barrier unless they are already at the rnetal/insulator 
interface. If they are more than a mean free path from the interface, they have 
no means of transport to the interface unless they are within k,Tof E,. When 
one of the electrodes is a normal metal (with a relatively flat density of states 

Figore 15.40 Schematic o f  a patterned tunnel junction. Electrode 2, E2, is either 
oxidized or coated with an  oxide. Electrode one, E l ,  is deposited over the oxide o n  E2. 
A current is driven from El t o  E2 by a voltage. 
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near E,), Eq. (15.37) becomes 

Here Di(E)  for i = n or s is the density of states for the normal and 
superconducting electrodes, respectively. The voltage derivative of Eq. (15.38) 
gives the conductance 

where f '(E) is the derivative of the Fermi distribution. 
Figure 15 .41~ shows how the characteristic energy gap, E, = 2A, of the 

superconducting density of states is reproduced by a measurement of dI/dV 
versus voltage (measured from the Fermi energy) in a superconducting-normal 
(S-N) tunnel junction. Very little current flows when IVI < A because then at 
any given energy, either the density of empty or filled states is negligible. 

When a magnetic field is applied parallel to the films in an S-N junction, a 
Zeeman splitting occurs in the energies of the electrons forming the Cooper 
pairs: E(k) k 2 pH,  where p is the magnetic moment of the electron. This gives 
rise to a splitting of the peaks in the density of states of the superconductor. 
Thus the tunneling conductance splits as depicted in Figure 15.41b. When 
pH < A, the Zeeman splitting of the Bardeen-Cooper-Schreiffer (BCS) den- 
sity of states provides a basis for spin-polarized tunneling because predomi- 
nantly the spin-up (spin-down) superconducting states are found in the energy 
range between 5 (A and A - p H ) .  Both spin-up and spin-down states are 
available for JEl > [ A  + +HI. Thus, when the junction voltage brings the 
metallic f l ( E )  into the energy ranges + (A and A - pH) ,  only the spin-up or 
spin-down metal states, respectively, contribute to the current. 

F@rr~8nagn@ti~-Sup@r~ond~Cting Tunneling If the normal electrode of 
the S-N junction is ferromagnetic, tunneling measurements provide a reliable 
measure of electron spin polarization. 

Figure 15.41~ provides an initial basis for understanding tunneling in 
ferromagnetic-insulating-superconducting (F-I-S) junctions. Just as in the 
two-current model of ferromagnetic conduction, it is assumed here that 
electron spin is conserved during the tunneling process. Hence the Fermi 
function derivative for spin-up electrons is convoluted only with the quasipar- 
ticle density of spin-up states, and the Fermi function derivative for spin-down 
F states is convoluted with the density of spin-down S states. The conductances 
for both spin channels add in parallel. In a positive magnetic field, a positive 
voltage brings the 3dT Fermi derivative function into coincidence with the 
spin-up quasiparticle density of states and tunneling occurs. For higher 



Figure 15.41 Three panels (a), (b), and (c), show the following: top, the superconducting density of states; middle, 
the metal electrode density of states, and lower, the convolution of these two densities of states for (a) superconduc- 
tor-normal metal junctions, (b) superconductor-normal metal in an applied field, (c) superconductor-ferromagnetic 
junction. [After Meservey and Tedrow (1996).] 
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voltages, both 3dr and 3di electrons can tunnel because states of both spin 
directions are available in the superconducting electrode. Thus the four peaks 
in Figure 15.41~ correspond roughly to a ,  = 3dT and 3d1, a, z 33dL, a, z 3dT, 
a, z 3dT, and 3di. 

Figure 15.42 shows the tunneling data for Al-AI,O,-Ni junctions. The fact 
that spin-up electrons predominate in the experimental data (a, > a,) whereas 
Dr(E,) < DL(E,) for Ni, indicates that tunneling is not a measure of polariz- 
ation only at E,. It is believed that mainly itinerant 3d states contribute to the 
tunnel current. There is also some evidence that the polarization measured is 
more representative of the surface than the bulk of the ferromagnet. 

The results of tunneling experiments on several ferromagnetic materials are 
summarized in Table 15.2. In addition to the experimentally determined 
tunneling spin polarization, the table shows the polarization of the 3d and 4f 
electrons as determined by magnetic moment measurements, the polarization 
of the Gd 5d6s collduction electrons, and the band structure analysis of Stearns 
(1977). The 3d magnetic moment polarizations in Table 15.2 are based on 7.05, 
8.1, and 9.4 3d electrons per atom for Fe, Co, and Ni, respectively. 

A model by Stearns (1977) indicated that the large positive tunneling 
polarization was due mainly to the s-d-hybridized electrons. [Stearns had also 
suggested that these itinerant electrons could account for the ferromagnetism 
of iron in an RKKY context (Chapter 5, Section 5.6). The tunneling probability 

Figure 15.42 Measured conductance versus voltage for a n  Al-AI,O,-Ni tunnel 
junction for several values of applied field (in k8e )  (Messervy and Tedrow 1996). 
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TABLE 15.2 Gpim Polaaizadm Measured by IF-1-F Tgnminlmelimg [After Wleservey amd 
Tedrow (B994)l Compared with Polarizatio~s Ca~cauBsated im Digereat Ways 

Spin-Polarized nT - n1 Band Structure (%) 
Tunneling '3d = 7 

n  + n l  '4f '5d6s 

("/.I (Stearns) 

of electrons is believed to be proportional to their k vector, giving 

In the case of Fe, the mobile s-d hybridized states dominate the band structure 
near E, (see Fig. 5.15). Stearns found that kf values averaged over the three 
crystallographic directions, [IOO], [110], and [Ill], from a calculated band 
structure (Callaway and Wang 1977) give P = 40% from Eq. (15.40). This 
model underestimates the tunneling polarization observed for Ni and gives a 
reasonable value for Co. 

The tunneling polarization for the rare-earth metals cannot be due to the 
4 f electrons (100% polarized in Gd) because they are highly localized. It must 
come from the polarization of the 5d and 6s electrons. The conduction electron 
polarization of Gd has been indicated by other experiments and calculations 
(Freeman) to be of order 3-5%. A logical extension of these measurements is 
to investigate tunneling in F-%-IF junctions. 

Ferromagnetic-Ferromagnetic TunneBing YuPliere (1975) studied tunnel- 
ing in Fe-Ge-Co junctions and analyzed the results in terms of a two current 
model (i.e., no spin flip during the tunneling process). He assumed the 
tunneling conductance for each spin to be proportional to the product of the 
spin-resolved densities of states in each electrode. (There is no gap in the state 
densities here as there is when one of the electrodes is a superconductor. Hence, 
a junction bias voltage need not be applied to bring the two same-spin state 
densities into energy coincidence. A voltage is still needed for tunneling across 
the barrier.) Thus, as is the case for GMR, the current should be larger when 
the moments of the two magnetic layers are aligned parallel (IF) rather than 
antiparallel (A) to each other. The result of the experiment then is a magneto- 
conductance ratio, AG/G, where AG = G,  - G ,  is analogous to the MR ratio, 
(pi, - pI)/pav. Julliere showed that 
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where PI and P, are the polarizations of the two ferromagnetic electrodes. He 
measured AG/G = 14% at 4.2K for an Fe-Ge-Co junction. This value seems 
low in light of Eq. (15.41) and the measured polarizations in Table 15.2. It is 
consistent with the 3d moment polarizations in that table. 

A more recent theory by Slonczewski (1989) considered charge and spin 
tunneling through a rectangular barrier. In this model the spin polarization 
was found to be influenced by the barrier height, a feature consistent with the 
small values of AGIG found in early work. MacLaren (1977) discusses the 
assumptions and regimes of validity of Eq. (15.41) and Slonczewski's result. 

This early work on F-I-F tunnel junctions has taken a new direction in 
the experiments of Moodera et al. (1996). They have shown that by using thin 
magnetic films of different coercivities, the F-I-F tunnel junction can be a 
sensitive magnetic field sensor. Figure 15.43 shows the fractional resistance 
change (AR normalized to the high-field value of resistance) in FeCo-Al,O,- 
Co junctions reported by Moodera et al. (1996). Also shown is the anisotropic 
magnetoresistance measured in each individual electrode (cf. Fig. 15.14). These 
AMR measurements show that the small value of the AMR effect contributes 
little to the tunneling MR effect, and they also clearly indicate the coercivities 
of the two uncoupled ferromagnetic layers. The tunneling MR ratio then 

Figure 15.43 Above, anisotropic magnetoresistance in each individual CoFe and Co 
electrode; below, junction magnetoresistance in CoFe-Al,O,-Co spin tunnel junction 
versus applied field. Measurements done at room temperature and arrows indicate the 
relative directions of magnetization in the two magnetic layers. [After Moodera et al. 
(1996).] 
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appears much Bike that of a spin valve or a spin switch with higher resistance 
when the two ferromagnetic electrodes are magnetized antiparallel to each other. 

The angular dependence of the junction magnetoresistance was shown by 
Moodera and Kinder (1994) to closely follow that of spin valve [Eq. (15.2711, 
which is also consistent with Slonczewski's theory. 

Just as for spin valves, the highest tunneling MR ratios, about 20% and 27% 
at room temperature and at 77K, respectively (Moodera et al. 1998), are 
obtained when one of the electrodes is Co. [The 27% spin polarization value 
at 77K is close to what Eq. (15.35) predicts using the polarizations in Table 
15.2). The Barge spin-dependent effect with a cobalt electrode can be under- 
stood to be a result of its large magnetic moment and the fact that it is a strong 
ferromagnet, that is, holes in the minority-spin band only. 

Tunneling magnetoresistance was found to be independent of bias voltage 
over a range of a few millivolts and to decrease with increasing bias field, 
dropping to about half its zero-bias value for fields of about 0.3-0.4V. 

The junction magnetoresistance (JMR) decreases with increasing tempera- 
ture. Moodera et al. (1998) and Shang et al. (1998) have shown that this 
temperature dependence is due primarily to the decrease in surface magnetiz- 
ation of the electrodes with increasing temperature. This temperature depend- 
ence of surface magnetization is probably due to the generation of spin waves 
[Eq. (3.47)l: Msurf(T) = ~ y ' ( 1  - The spin waves break down the 
independence of the two spin conduction channels, thus increasing the total 
conductance and reducing the JMR effect [see Eq. (15.48)1. The junction 
resistance is typically of order IO4Q and increases with decreasing temperature 
(see Fig. 15.44). 

The measured junction resistance is less than the true junction resistance 
when Rjct d ReI,c,o,e. The reason for this is that for small junction resistance 
relative to electrode resistance, the current does not flow uniformly across the 
junction area from one electrode to the other. Instead, the current tends to take 
the shortest path between the two crossed electrodes, concentrating itself at the 
inside corner of the junction. This effect has been confirmed by finite element 
modeling (van de Veerdonk et al. 1997). When the current distribution is 
nonuniform, the apparent junction resistance is smaller than that for uniform 
current flow, and the JMR appears to be larger. 

Junction resistance can be affected also by the quality of the junction oxide. 
Moodera et al. (1996) found that in poor quality junctions, where poxide was 
presumably low, the JMR was artificially enhanced. This is due to the 
geometrical effect mentioned above. 

On the other hand, in microfabricated tunnel junctions, Rj,t/R,lect,,de 
increases as junction dimensions are reduced simply by the scaling of the 
dimensions. Kamugai et al. (1997) observed consistently smaller JMR values 
in microfabricated junctions due to this geometric effect. Nevertheless, spin- 
tunnel junctions show promise as elements in magnetic random access memo- 
ries (MRAMs) (see Chapter 17). 



Figure 15.44 Above, temperature dependence of junction resistance for three Co/ 
Al,O,/soft magnetic layer tunnel junctions; below, temperature dependence of junction 
magnetoresistance (Shang et al. 1998). 

15.7 MAGNETIC OXIDES AND PHASE TRANSFORMATIONS: 
"COLOSSAL" MR 

The dramatic changes in resistivity that accompany the metal-insulator 
transition in doped LaMnO, (Fig. 15.2) were presented as motivation in the 
introduction to this chapter. Intense interest in this phenomenon was stirred 
by the observation that application of a field could capture a large fraction of 
this resistivity change. This gave rise to the term "colossal magnetoresistance" 
for this effect. Similar very large MR ratios have been observed in a number of 
naturally occurring layered compounds. These materials include the perov- 
skites NdPbMnO (Kusters et al. 1989), LaBaMnO (von Helmholt et al. 1993), 
(La,-,Ca,)MnO, (Chahara et al. 1993, Jin et al. 1994), and (La, -,Sr,)MnO, 
as well as the intermetallic compound SmMnGe (vanDover, 1993). Many of 
these systems have been the object of ongoing research for other reasons, and 
only recently have their electrical properties been examined in the context of 
magnetoresistance. 
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In the doped perovskite, lanthanum-strontium manganate, (La,-,Sr,)- 
MnO,, it was known since at least 1950 (Jonker and van Santen 1950) that a 
change in electrical resistivity of six orders of magnitude (Fig. 15.45) occurs at 
the insulator-metal transition. Wollan and Koehler (1955) found ferromagnetic 
ordering in the ab planes (MnO layers) and antiferromagnetic ordering along 
the c axis where the MnO layers are separated by La(X)O layers, where X is 
a divalent alkaline-earth ion (Tokura et al. 1994). 

The strong dependence of resistivity at T = 100 K on Sr doping level shown 
in Figure 15.45 can be understood in light of the phase diagram in Figure 15.46 
to be associated with changes in the nature of the magnetic ordering in these 
materials. For Sr substitutions in lanthanum manganate, the stable phase for 
x < 17% is a tetragonal insulator and, below loOK, it is either a canted spin 
(CS) antiferromagnet (x < 7%) or a ferromagnet (7% < x < 17%). Above this 
Sr range, the material transforms to a cubic, ferromagnetic metal below T, and 
a paramagnetic insulator or metal above Tc (Urushibara et al. 1995). Thus, 
with increasing Sr doping at T = loOK, it can be seen that the material 
transforms from an insulating state to a metallic state near 17%Sr. This 
accounts for the six orders of magnitude drop in resistivity observed by Jonker 
and Van Santen (1950) (Fig. 15.45). The range of interest for magnetic-field- 
induced resistivity changes is between 17% and approximately 26% Sr where 
a metal insulator transition occurs near the Curie temperature, which is in the 
vicinity of room temperature. 

The interest in hole-doped lanthanum manganate parallels a similar redis- 
covery of lanthanum cuprates, La, -,X,CuO,, in 1987. The doped lanthanum 
cuprates, long known for their interesting electrical and magnetic properties 
and strong Jahn-Teller effects, were investigated by Bednorz and Muller in 
1986 who discovered high-temperature superconductivity in them. 

Figure 15.45 Log resistivity versus Sr concentration at 100 K in lanthanum-strontium 
manganate (Jonker and Van Santen 1950). The six orders of magnitude drop in 
resistivity near x = 0.1 corresponds to the insulator-to-metal transition. 
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Figure 15.46 Magnetic phase diagram of La,-,Sr,MnO, [after Urushibara et al. 
(1995)l. PM is paramagnetic and FM is ferromagnetic. The drop in resistivity near 
x = 0.1 in Figure 15.45 corresponds here to the transition from a canted spin (CS) 
insulator to a ferromagnetic metal at 100K. 

The perovskite structure of these doped lanthanum manganates is illus- 
trated in Figure 15.47. 

The existence of local Mn moments in undoped lanthanum manganate 
below 100 K indicates that the intraatomic (Hund) exchange energy is greater 
than the Coulomb crystal field splitting of the t,, and e, valence orbitals. The 
four valence electrons of the Mn3+ ions in LaMnO, are in a t2,e; configur- 
ation having S = 2. The three t,, electrons, of lower energy than the e, states 

Transition metal 
(cation) 

Oxygen (anion) 

Lanthanide 
element 

Figure 15.47 Model of the perovskite structure common to many heavy-metal] 
transition metal oxides such as SrTiO,. 
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in the octahedral site, may be considered to be completely localized with a spin 
S = $. It is the lone e, electron that plays a role in bonding and in the 
insulator-metal transformation. The e, orbitals have the appropriate sym- 
metry (Fig. 15.48) to bond with the oxygen p orbitals. The Mn spins are 
coupled antiferromagnetically by superexchange (Chapter 4) to their nearest 
neighbor Mn ions along the <100> directions. This leaves ferromagnetic 
coupling within a given (111) plane. In lanthanum manganate, the e, electron 
is highly correlated (atom-like) and the material is an insulator. Substituting 
divalent alkali earth ions (Sr2+, Ca2+, Ba2+, etc.) for trivalent La, as represen- 
ted by the formula L~;+,X:+M~O,, drives the Mn3+ to a Mn4+ valence 
state. This leads to holes in the e, band, which are responsible for the onset of 
metallic behavior. 

The conducting e, states experience competing tendencies between fer- 
romagnetic coupling with the localized t,, states and a tendency toward 
antiferromagnetism due to their hopping from site to site (Tokura et al. 1994). 
The double-exchange theory (Zener 1951, de Gennes, 1960) indicates that 
electron or hole transfer from site to site depends on the relative angle of the 
spins at the two sites, Oij-hopping goes as cos(AOij) and is most likely for 
parallel spins. Thus, the spin structure shown in Figure 15.47 becomes 
ferromagnetic at appropriate doping levels and temperatures. The colossal MR 
effect then comes from the applied field reducing the spin misalignment, thus 
decreasing the resistivity. The parallels of this field dependence of conductivity 
with that of F-I-F tunneling, spin valves, and spin switches is noteworthy. 

The perovskite compounds studied by Jin et al. (1994) and whose properties 
are shown in Figure 15.2, were grown epitaxially on LaA10, to a thickness of 
100-200 nm by laser deposition. The structure is composed of metallic MnO 

Spin up down - 
7 = g  

d 

'\ 

'29 

Octahedral Site 

Figure 15.48 Left, crystal field splittings for transition metal ions d-levels in sites of 
octahedral symmetry. Occupied states are indicated with dots. The energy of the 
crystal-field-split d orbitals is determined by the octahedral symmetry of the negative 
oxygen ions coordinating the cation. Right, topology of the triplet, t,, and the doublet, 
e, orbitals. 
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layers with a lattice constant of 0.39nm, separated by (LaCa)O insulating 
layers, a = 0.38nm. The MnO layers show a spontaneous magnetization 
oriented in their planes with antiferromagnetic coupling between nearest planes 
in La,-,Ca,MnO,. 

The field dependence of the MRR is such that almost all of the resistivity 
change occurs over a range from 0-20 kG. Jin et al. argue that their data show 
this MR effect to be of an origin different from that observed in GMR. In GMR 
the MRR peaks at M = 0; here, it peaks near a transition in the electronic 
nature of the compound. With increasing field near the ferromagnetic-antifer- 
romagnetic transition, ferromagnetism is favored over antiferromagnetism and 
consequently hopping conductivity increases (ARIR is negative in Fig. 15.2). 

The phase diagram for La,-,Ca,MnO, (Ramirez et al. 1997) is similar to 
that for Sr doping in Figure 15.46. The data of Jin in Figure 15.2 occurs in a 
region where the metal-insulator transition coincides with the ferromagnetic- 
paramagnetic transition. The resistivity increases with increasing temperature 
in the metallic magnetic phase; the metal-insulator transformation for 33% Ca 
is near 250°C. Application of a field expands the ferromagnetic phase, displac- 
ing to higher temperatures the M-I transition and hence displacing the sharp 
increase in metallic resistivity. Thus the MR ratio is proportional to the 
temperature derivative of the R(T) curve times the field derivative of the 
metal-insulator transition by a derivative chain rule: 

In other words, the sharper the resistivity transition and the stronger the field 
dependence of that transition, the greater will be the CMR ratio. 

CMR is a different physical effect than GMR but has a similar formal 
dependence on magnetization orientation; aligning the moments on adjacent 
cation sites (AF to F) causes the resistance to decrease. This is due to the 
increase in hopping conductivity of the cation e, electrons for parallel spins. 
Fields of tens of kGauss are needed to saturate the effect because they are 
working against thermal energy, which is breaking down the ferromagnetic 
exchange at the Curie temperature. The field dependence of the CMR effect is 
not a function of the M-H curve; many of these compounds show appreciable 
magnetization in fields of order 100 Oe, but the CMR effect still requires tens 
of kilogauss. 

Because the electrical and magnetic properties of these materials depend 
strongly on the degree of overlap between oxygen-p orbitals and transition 
metal d orbitals, these properties are sensitive functions of the size of the alkali 
earth metal dopant. Hwang et al. (1995) examined a series of samples for which 
the dopant size r ,  was varied while the dopant concentration was fixed at 30% 
(Mn3+:Mn2+ ratio at 7: 3). They found that for decreasing ( r , ) ,  T, decreases 
and the MR ratio increases dramatically. This was attributed to a departure 



from the ideal 880" Win--0-Mxn bond angle as (r ,)  decreases (oxygen edge 
sites in Figure 15.47 are pushed outward from the body center for ions larger 
than La). 

Large magnetoresistance due to phase change is not limited to oxides. The 
compound FeRh shows a transformation from a Pow-temperature, high-resis- 
tivity, AF phase to a lower-resistivity F phase near room temperature (Lom- 
mel, 6996; Vinokurova et al. 1988; Ohtani and Hatakeyama 1993). AR/R 
or order 100% occurs near TN. This transformation can also be driven by an 
applied field: dT,/dM z - K/G, not particularly attractive for devices. 

15.8 SUMMARY 

This chapter may be well reviewed by returning to Figure 15.4, which gives an 
overview of the major types of electrical conduction in metals from simple 
models of their density of states. The resistivity associated with the scattering 
of itinerant electrons into localized d states is seen in panels (c) and (4. The 
spontaneous Hall effect arises from the spin-orbit interaction, which has the 
same symmetry as the classical Eorentz force. The explanation for anisotropic 
resistance in ferrornagnets is more subtle, involving the breakdown of the 
two-current model due to spin-orbit interaction causing band mixing. 

Figure 15.49 is a summary comparison of the characteristics of the four 
spin-spin device-related phenomena described in this chapter. Giant mag- 
netoresistance, as manifest in spin valves and the spin switch, can be described 
in terms of spin-spin exchange scattering. Spin-polarized tunneling between 
ferromagnetic films depends on a convolution of same-spin state densities. The 
spin-spin devices based on these effects show low resistivity when the moments 
of the two magnetic layers are parallel. For colossal magnetoresistance in 
doped lanthanum manganates, the hopping conductivity increases for ferro- 
magnetic coupling between adjacent MnO Payers. In all these cases, lower 
electrical resistivity occurs between parallel-spin elements. 

This chapter has only scratched the surface of the rich variety of phenom- 
enon associated with transport effects in magnetic materials. The promise of 
new technology appears to be driving the increased research activity in this 
field, and new science should follow. 

PROBLEMS 

15.1 (a) Write out the three equations for the electric field components in Eq. 
(15.12), in terms of the tensor elements in Eq. (15.13) using the 
coordinates in Figure 15.8. 

(b) Verify Eq. (15.14) by expressing its field components. 

15.2 Show that for empty d states of only one spin direction (e.g., Ni), the 
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Figrare 15.49 Summary diagram comparing the structure, current directions, and magnetizations (pinned 
layers indicated by open arrows), above, as well as galvanomagnetic characteristics of spin valves, spin 
switches, and spin tunnel junctions, middle. Below, the essence of the mechanism of colossal magnetoresis- 
tance is represented with the spin directions of hopping sites indicated. 
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form of the magnetoresistance derived is similar lo that in Eq. (B5.19), 
that is, second-order in d and decreasing for 8 approaching 42. (Hn this 
case pT is unaffected and only pJ experiences spin-orbit scattering.) 

15.3 Prove Eq. (15.22) using the commutation relations for the angular 
momentum components. 
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CHAPTER 16 

SUaFACE AND THIN-FlbM MAGNETISM 

The atoms near a surface of a crystal show a different lattice constant normal 
to the surface, usually smaller. There is some evidence that magnetic atoms 
near a surface or interface show moments that are different from their bulk 
values. There is abundant evidence that the magnetization near a surface or 
in a very thin film can have an easy axis that is different from that in the 
bulk. This chapter is about these and other surface phenomena in magnetic 
materials. 

Interest in surface and thin film magnetism is driven both by scientific 
curiosity and technical applications. Fundamental magnetic properties depend 
on the local environment: the symmetry, number, type, and distance of an atom's 
neighbors. The symmetry at the surface is radically altered relative to the bulk 
because of the missing neighbors. Also, the number of nearest-neighbor atoms 
changes relative to the bulk. If the material is an alloy or a compound, the ratio 
of the different types of neighbor about an atom near the surface may be 
different from that about an atom in the interior. Finally, the lattice parameter 
contraction perpendicular to the surface, further lowers the symmetry. So it is 
not surprising that the magnetic moment, the Curie temperature, the magnetic 
anisotropy, and the magnetoelastic coupling may all be different at a surface 
or in a thin film compared to their bulk values. 

In technical terms, the vast magnetic information technology industry adds 
a practical focus to research in surface magnetism (see Chapter 17 on magnetic 
recording). As the areal density at which information is stored increases, data 
reside in an increasingly thin layer of the recording medium (because all 
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dimensions of the recording process must be scaled down as bit size decreases). 
Bit lengths in magnetic recording are presently a few hundreds of nanometers, 
and the information depth is about one-tenth of the bit length. The magnetic 
layers in the sensors that read magnetically recorded information can be as thin 
as 10 nm (MR heads), and newer sensors (spin valves) having magnetic layers 
3-4 nm thick are under development. The transport phenomenon responsible 
for the operation of spin valves, namely, giant magnetoresistance, was described 
in Chapter 15. Surface and thin-film phenomena have also been covered in 
Chapter 62 (exchange coupling, superparamagnetism, and single-domain be- 
havior). Although intrinsic surface effects (based on electronic interactions) 
vanish a few monolayers beneath the surface of a metal because of the short 
screening length, it will be seen that magnetic exchange coupling may cause 
surface anisotropy to affect processes several nanometers into the material. 

16.1 ELECTRON56 STRUCTURE AT SURFACES 

At a surface, reduced coordination and reduced bonding lead to significant 
changes in electronic structure that explain some of the unusual magnetic 
properties observed there. One early surface electronic structure calculation 
(Tersoff and Falicov 1982) provides excellent insight into the physical prin- 
ciples that govern surface magnetism. Electronic structure was calculated for 
eight rnonolayers (MI,) of Ni (001) on a copper (004) substrate. Magnetic 
properties and electronic structure were distinguished at each layer. 

Figure 16.1 illustrates the structure of the computer-generated sample and 
shows the variation of calculated magnetic moment from layer to layer. 

Figure 116.11 Variation of magnetic moment calculated by layer in an 8 ME Ni/Cu 
(001) film. The calculated bulk and surface moments are 0.56 ,u,/Ni and 0.74 ,u,/Ni, 
respectively. These are to be compared with a measured bulk moment of 0.6 ,u,/Ni. 
[After Tersoff and Falicov, (1982).] 
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Interaction of the Ni and Cu atoms near the Ni/Cu interface decreases the Ni 
moment by mixing Cu itinerant electron character with the Ni d bands. The 
central Ni layers are bulklike and show a moment of 0.56 ,u,/Ni atom, close to 
the bulk value of 0.6 ,u,/Ni atom. The surface layers show an enhanced moment 
of 0.73 p,/Ni. 

The variation in Ni moment shown in Figure 16.1 can be explained in terms 
of the differences in the density of valence electron states for the interior, 
bulklike layers (numbered 3-6) and the surface layers (numbered 7-8). Figure 
16.2 shows that the calculated density of states is higher (d band narrower in 
energy) for the surface layers (bold line, right) than for the bulk layers (fine 
line, left and dashed, right). This reflects the lower, 8-fold Ni bond coordination 
for surface atoms, compared to the 12-fold coordination of Ni in the bulklike 
layers. The lower coordination leaves the surface d states more localized, more 
atomlike. Thus intraatomic exchange is more effective at the surface. As a 
result, the exchange splitting, and hence the magnetic moment, can be larger 
near a surface. 

Ni atoms at (111) and (100) surfaces have 9 and 8 nearest neighbors, 
respectively, in contrast to nickel atoms in the bulk which have 12 neighbors. 

Energy  ( eV )  9 Energy ( e V )  f 

Figure 16.2 Spin-resolved density of states for 8 ML Ni (001) film on  Cu. At left is the 
state density for Ni atoms in the interior, bulklike layers (layers 3-6 from Cu). At right 
is the state density for the surfacelike layers (7 and 8 from Cu). For  comparison, the 
bulklike density of states is shown by the dashed line. [After Tersoff and Falicov 
(1952).] 
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Consequently the (111) and (100) surfaces show diEerent state densities and 
magnetic moments relative to each other as well as to the bulk; the d band at 
a (I 1 I) surface is not as narrow as is that at a Bower-coordination (100) surface. 

Similar moment enhancement at Fe (001) surfaces has been calculated by 
Onishi et al. (1985) using a full-potential, linearized augmented plane-wave 
method (FLABW) on a seven-layer iron structure. The magnetic moment per 
iron atom decreased from 2.98 p, at the surface to 2.25 p, in the central layer. 

These differences in electronic structure and wavefunctions imply changes in 
charge distribution at a surface. The calculated electronic charge density at the 
surface of BCC Fe and FCC Ni are shown in Figure 16.3 (Freeman et al. 1991). 
Note the extension of the charge density into the vacuum; it is particularly 
strong in iron. The surface charge that extends into the vacuum is mostly of s 
and p character; the d electrons of surface atoms become slightly more localized 
about their atomic sites (consistent with the narrower surface d states caP- 
culated in Fig. 16.2). This spatial separation of d and s-p electrons has several 
consequences. First, there is reduced s-d hybridization in the surface layer; this 
further enhances d-band localization and increases surface moments. Second, 
the increased atomic character of surface d states enhances the orbital angular 
momentum there, making stronger anisotropy possible. [To the extent that the 
more-atomic-like surface d states feel the low-symmetry crystal field there, 
angular momentum normal to the surface (k in-plane) is favored.] Third, the 
decreased s electronic charge density at surface sites plays a role in the surface 
lattice constant relaxation described below. 

CHARGE DENSITY Fe (001) 

1 " " " ' i  

Figure 116.3 Electronic charge density at surface of seven-layer Fe (001) and Ni (001) 
films [Fe from Onishi et al. (1983) and Ni from Wimmer et al. (1984)l. Units are 

e/(atomic unit)3; each contour line differs by  a factor 4 2 .  
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The spin density calculated for the same model structures is depicted in 
Figure 16.4. Note that in the case of iron, the majority-spin density is predicted 
to extend well beyond the surface whereas in the case of Ni, the calculated 
electronic structure suggests that the surface acquires a thin layer of minority- 
spin density. These total electron polarizations are consistent with the fact that 
for Fe, the density of states at E, is mostly of majority spin whereas for Ni it 
is mostly of minority spin. There is some evidence for this spin dipole layer 
from electron capture spectroscopy experiments (Rau et al. 1986). Nevertheless, 
experimental confirmation of such highly localized effects presents a challenge 
both in terms of film preparation and characterization. 

The enhanced localization of the surface d states strengthens the conditions 
for moment formation there. This can be understood in terms of the Stoner 
criterion, Eq. (5.1). A number of electronic structure calculations have pre- 
dicted enhanced surface moments in Fe, Co, and Ni as well as possible surface 
moment formation in nonmagnetic metals such as V, Ru, and Rh. See, for 
example, Freeman and Wu (1991), Bliigel (1994), or Gay and Richter (1986, 
1994). The experimental difficulty of measuring surface magnetic moment 
differences relative to the bulk have left this issue largely unresolved. There is 

Figure 16.4 Spin density in units 10-4e/(a~1)3 at surface of seven layer Fe (001) and 
Ni (001) films; dotted lines represent negative spin densities (Freeman et al. 1991). 



some evidence that the Curie temperature s f  a surface layer can be lower than 
that of the underlying layers. The enhanced surface density of states would tend 
to increase Tc while the reduced coordination [Eq. 4.28)] would decrease Tco 

162 SURFACE LAnICE CONSTANT RELAXATION 

Atomic planes near a surface generally show a spacing normal to the surface 
that is significantly smaller than that in the interior. The surface relaxation 
strain can amount to several percent. Figure 16.5 displays some surface strain 
data expressed as the change in lattice constant between the first two layers 
(1-2), normalized to the number of nearest-neighbor atoms on that surface, 
Qd(1-2)INN. These values are plotted against the equilibrium lattice spacing 
d,, also normalized to the number of nearest neighbors on the surface in study. 
Most surfaces show negative (inward) relaxation. Note that the relaxation is 
greater for lower-atom-density faces (which are missing more bonds as a result 
of creation of the surface). The vertical lines draw attention to the fact that the 
equilibrium interplanar spacings are strongly correlated with the number of 
nearest neighbors in a given plane, especially for dense atomic planes. The key 
to understanding this surface lattice relaxation is in the opposing roles played 

fcc bcc Be 
(iilo) (aoo) 

Figure 16.5 Variation of interplanar spacing between the first two surface layers, 
d(1-2), as a function of bulk layer spacing: Ad(1-2) lNN is d(1-2) - d,, the equilibrium 
spacing, normalized to the number of nearest neighbors for each surface; sloped lines 
indicate trend of data (Davis et al. 1992). 
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by 3d and 4s charge densities in bonding of transition metals, described by 
Figure 5.21. 

The major electronic structure change near a surface is the redistribution of d 
and s electronic charge described above. At the surface, the compression of the s 
electrons is relieved because of the missing neighbors. Conduction electrons 
tends to leak into the vacuum (because of their high kinetic energy and 
associated high internal pressure), decreasing s charge density p, at the atomic 
sites in the outer atomic plane(s). Because of the reduced p, in the outer atomic 
planes, the d electrons of surface atoms are screened less effectively from the 
nuclear potential, and, if they change at all, they become slightly more localized. 
Thus, the outermost atomic layer has an increased ratio of 3d: 4s charge and just 
outside that layer, conduction electron density is increased. As a result, atoms in 
the surface layer experience increased attraction and diminished repulsion with 
their remaining neighbors (Fig. 5.21). The surface atoms thus assume a smaller 
equilibrium atomic volume than bulk atoms. They cannot accommodate this by 
relaxation parallel to the surface plane without breaking bonds with other 
surface atoms. Thus they relax inward, drawing closer to the subsurface atomic 
layers. Figure 16.6 summarizes these changes in electronic structure and 
consequent relaxation. The upper part of the structure shown in two dimensions 
represents the bulk material. Above the structure, the periodic bulk s and d 
charge densities are depicted. The lower part of the structure represents a surface 
and shows the inward relaxation of the outer atomic layer(s) without change in 
the lattice constants in the plane of the surface. Below this structure, the s and d 
charge densities are depicted as changing near the surface (solid lines) relative to 
their bulk values (dotted) in the manner just described. 

It is important to note that the electronic effects associated with a surface 
in a metal are negligible at three or four atomic layers into the material. It will 
be seen later than exchange coupling can carry magnetic surface effects much 
farther into the interior. 

16.3 STRAIN IN MAGNETIC THlN FBLMS 

In the previous section, it was pointed out that the perpendicular lattice 
constant near the surface of a metal generally relaxes toward smaller values. In 
addition to this surface relaxation, thin films can show large biaxial, in-plane 
strains (Koch 1994). Differences in thermal expansion between a film and its 
substrate, a,. - a,, may give rise to film strain, e = (af - as)A?: associated with 
a temperature change AT after deposition or during use of the film. Also, if a 
film grows epitaxially on a substrate from grain to grain, or especially if it is a 
single-crystal epitaxial film, very large lattice mismatch strains may be experi- 
enced by the film. The misfit strain in the surface plane also gives rise to a 
perpendicular Poisson strain. 

It is possible for highly stressed films to cause the substrate on which they 
are grown to bend in response to the stress at the film-substrate interface. This 
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Bulk 

rface - 
Bulk 

Figure 14.6 Schematic representation of bulk material (top half of structure) above 
which are depicted the 4s and 3d charge densities varying periodically along a line 
through the solid. The bottom half of the structure represents a surface with the 
outermost layer of atoms (shaded) relaxed. Below, the charge density near the surface 
(solid line), altered relative to that of the bulk (dotted), is responsible for the relaxation. 

bending can be appreciable and can be used to measure the film stress. 
However, the bending does not result in a significant reduction of film stress 
or strain unless the substrate is very compliant relative to the film. This 
problem is analyzed in Appendix 16.A. 

If a thin-film material and its substrate have a lattice mismatch r ]  = 

(a ,  - a f ) /a ,  (af and a, are the film and substrate in-plane lattice constants, 
respectively), the layer with smaller product of (thickness x stiffness), usually 
the film, will absorb most of the strain to retain atomic coherency at the 
interface. (It is important to realize that the lattice constants of a free- 
standing thin film may differ appreciably from the bulk lattice constant of 
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the same material because of the surface relaxation effects described in 
Section 16.2). 

When a film grows coherently on a substrate with which there is a lattice 
misfit q, the elastic energy per unit area, proportional to q2d/2, increases as the 
film thickness d increases. At a critical thickness d,, the strain energy exceeds the 
energy cost for formation of dislocations which relieve stress. Beyond this 
critical thickness, the formation of misfit dislocations (MDs) is thermodynami- 
cally favored. Thermodynamic theory (Hirth and Lijthe 1982, Fitzgerald 1991) 
indicates that the critical thickness varies inversely with the misfit strain. As film 
thickness increases beyond d,, the equilibrium dislocation density increases 
(Fig. 16.7, left) and the average film strain is predicted to decrease approximate- 
ly as l/d (Fig. 16.7, right). Above the critical thickness for misfit dislocation 
formation, the strain is calculated (Tsao 1993) to vary with film thickness as 

The bi terms are the Burgers vectors of the dislocations, v is Poisson's ratio, 
and the a in the log term is a scale factor that depends on the energy of the 
core of the dislocation (a z 4 for semiconductors and is near unity for metals). 
The strain is often assumed to decrease as d-' (i.e., the log dependence is 
neglected), but this is rarely, if ever, observed (Matthews and Blakeslee 1974, 
1975). Approximation of the log term leads to a strain dependence close to 
dd2I3, and this has been observed in Cu/Ni/Cu sandwich films (Ha et al. 1999). 

Figure 16.8 shows the variation of the lattice constants versus Ni thickness 
in a series of epitaxial Ni (001) films sandwiched by Cu. The in-plane and 
film-normal lattice constants were determined by grazing incidence and Bragg 
diffraction, respectively, using synchrotron X rays of wavelength 0.1 15 nm (Ha 
et al. 1999). The data show first that the critical thickness for the Cu/Ni/Cu 
system is 2.7 nm. The calculated value for a single Cu/Ni interface is 1.8 nm; 

Figure 16.7 Schematic variation of dislocation density per unit length (inverse of 
dislocation line spacing S)  and average film strain, both versus film thickness d for 
thermodynamic equilibrium. 
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Figure 16.8 Strain versus Ni thickness in Cu/Ni/Cu sandwiches determined by 
synchrotron X-ray scattering. Above, strain in the in-plane lattice constant determined 
by grazing incidence diffraction. Below, strain in perpendicular lattice constant deter- 
mined by Bragg diffraction. The two sets of data are related by the Poisson ratio of bulk 
Ni, and the in-plane data are well fit by <e(d)> = r(d,/d)2/3, where q = 0.026 is the misfit 
strain and d, = 2.7nm is the critical thickness above which misfit dislocations are 
thermodynamically stable (Ha et al. 1999). 

adding a Cu capping layer to a film that is already dislocated would increase 
the thermodynamic critical thickness to 2.7 nm, but kinetics could inhibit the 
film from returning completely to the equilibrium state, a process that would 
require many misfit dislocations to be removed. The data also show that the 
in-plane and perpendicular lattice constants are related, as -expected, by 
Poisson's ratio. Finally, the strains are reasonably well fit over the Ni thickness 
range 3-15 nm by the function <e(4) = 0.026(dc/d)2/3 as indicated by the solid 
lines over the data. 

Thus, in an epitaxial thin film at thicknesses above d,, the average magneto- 
elastic anisotropy can be a strong function of film thickness because of its 
dependence on <e), which varies approximately as v(dc/d)2/3. 

16.4 METASTABLE PHASES 

Thin films are generally in a state of constrained equilibrium by virtue of their 
bonding to a substrate that often has a different lattice constant than the film. 
Further, even the surface of a pure metal (epitaxially joined to its bulk phase) 
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has a different electronic structure because of its reduced symmetry and charge 
redistribution. As indicated above, the surface of a transition metal generally 
relaxes by reducing its perpendicular lattice constant. Thus a cubic phase 
suffers a symmetry reduction to tetragonal at its surface and a thin epitaxial 
film, lattice mismatched relative to its substrate, also undergoes a tetragonal 
distortion to maintain coherence with its substrate. 

Our interest here is in possible stabilization of metastable phases in thin 
films [see Prinz (1985, 1991a, b)] as a result of epitaxial strains. 

Figure 16.9 shows the pressure-atomic number-temperature (P-Z-T) phase 
diagrams for Fe, Co, and Ni. The stable phase of iron at standard temperature 
and pressure is BCC. This normally high-temperature phase is stabilized at room 
temperature by the magnetism of Fe. Close-packed phases of iron appear at high 
pressure and temperature. Ni is very stable in the FCC phase, and no other 
phases are shown until it is alloyed strongly with cobalt. Cobalt shows a 
transformation to a BCC phase at room temperature and negative pressure. 

The FCC phase of iron can be accessed at room temperature by deposition 
of iron on single-crystal copper substrates. The moment and Curie temperature 
of FCC iron are reduced relative to their BCC iron values. On the other hand, 
FCC cobalt is relatively easy to produce on a variety of substrates and in 
widely different preparation conditions. Even bulk FCC cobalt is readily made 
because the marginal stability of the HCP phase (0.036 eV) is easily upset by 
small impurity content, stress, or other constraints). 

Perhaps more unexpected is the metastable magnetic BCC phase of cobalt; 
it occurs on 6% lattice expansion of the HCP phase (Fig. 16.10 insert). BCC 

Figure 16.9 P-Z-T phase diagram (2 = atomic number) for iron, cobalt, and niclcel 
showing fields of stability for various structures. BCC cobalt is stable at negative 
pressure. [After Prinz (1991b).] 
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Figure 16.10 Total energy calculated for cobalt at different atomic volumes. Insert 
shows the lattice constants of BCC FeCo alloys (Prinz 1991a). 

cobalt is calculated to lie 0.03 eV above the HCP phase and at a lattice 
constant of 2.819 A (Fig. 16.10). Despite the lattice expansion, BCC cobalt has 
a reduced moment (1.53 pB/Co) relative to close-packed cobalt (1.7 pB/Co). 
Note that even though the lattice is expanded and the atomic volume 
(Wigner-Seitz radius) is increased, the nearest-neighbor distance along [I 111 
is smaller than that in HCP cobalt. Also BCC cobalt shows a negative 
anisotropy K ,  % - lo5 J/m3 ((111) easy axes), with magnitude twice that of 
BCC iron. Clearly, many exciting opportunities exist in this new field; the 
number of potential new materials that can be created by different deposition 
conditions and different combinations of film and substrate (including insula- 
tors as well as metals and semiconductors) is quite large. 

16.5 SECONDARY ELECTRON SPIN POLARIZATION 

Electrons can be ejected from the surface of a material by photoemission, field 
emission, or the Auger process. Analysis of the energy, temperature, and angle 
dependence of the spin polarization of electrons ejected from magnetic ma- 
terials represents a powerful technique for studying surface magnetism. Knowl- 
edge of the spin polarization is useful both in an average way (electrons ejected 
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from an area representative of one or more domains) and, with focused 
primary beams, as a local probe (electrons ejected from an area much smaller 
than a domain). In the latter case the local polarizations can be combined to 
generate a magnetic domain image of a surface. One example of this is scanning 
electron microscopy with spin polarization analysis (Section 16.7.1). The use of 
polarized primary electron beams is less common and will not be described 
here. Here we present selected results of spin-polarized electron studies on 
magnetic materials. 

When an energetic primary electron or photon enters a ferromagnetic 
material, electrons can be excited from their ground state by an Auger process 
or by a photoemission process. The electrons excited may come from the core 
levels or the valence states of the material depending mainly on the energy of 
the probe. Once an electron is freed from an atom, it must reach the surface to 
escape from the material. As the excited or hot electron passes through the 
material, a cascade of collisions may result, producing more and more 
secondary electrons at progressively lower energies. These abundant low- 
energy, cascade electrons come primarily from the valence band. 

Inside the material the valence electrons are characterized by a polariza- 
tion P': 

where nT and n1 are the numbers of spin-up and spin-down valence electrons 
per atom, n, is the magneton number, and n, is the number of valence electrons 
per atom. The polarization takes on values from 0 to 1. A certain fraction of 
the "hot" electrons created by the probe will be emitted from the solid 
depending on their energy, momentum, and starting depth and the scattering 
center density. It is generally a safe approximation to assume that electron spin 
is conserved during scattering and emission. This is because pure Coulomb 
scattering does not flip spins, exchange and spin-orbit scattering events can 
flip spins, and the energies of the latter are generally small relative to Coulomb 
energies (see Chapter 15). 

Once the hot electron is transmitted through the surface barrier it is called 
a secondary electron. The electrons emitted from a ferromagnet may be 
characterized by a polarization, P = ( N T  - N1)/(N + N1), where NT and N 1  
represent the number of spin-up and spin-down electrons in the emitted beam. 
The polarization of emitted cascade electrons can be taken as an indication of 
valence electron polarization: P K P' (Unguris et al. 1982). However, the 
polarization P of secondary electrons is a strong function of their kinetic 
energy, so it is generally not true that the cascade electrons emerge from the 
material with a polarization P equal to their polarization inside the material 
P'. The reason for this is that as the hot nT and n1 electrons are moving toward 
the surface, they have different scattering probabilities along the way [Eq. 
(15.2)]. Those hot electrons whose spin and energy corresponds to the band 
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with the greater density sf eano~~eapied states (that is, minority spin eRectrons) 
are more likely to be scattered and thus have a reduced probability s f  reaching 
the surface. Hence, the cascade polarization is enhanced in proportion to the 
distance traveled from excitation to the surface: P > B'. This filtering process 
can be accounted for quantitatively (Siegmann, 1994) to make cascade electron 
magnetometry more reliable. 

The spin polarization of the secondary electrons can be measured by doing 
a scattering experiment with them. This experiment makes use of spin-depend- 
ent scattering based on exchange or spin-orbit interactions; the latter is more 
commonly used (Kirschner 1985). These spin-dependent scattering processes 
are the same ones that, in a ferromagnetic solid, account for anisotropic 
magnetoresistance (spin-orbit) and giant magnetoresistance (exchange scatter- 
ing) (see Chapter 15). In spin-polarization analysis, the conditions for those 
atomic scattering processes are created in the vacuum chamber. Spin-depend- 
ent scattering events are generally a small fraction of the total number of 
scattering events. One way to enhance asymmetric spin-orbit scattering is to 
direct the secondary electrons toward a heavy metal, such as gold or tungsten, 
that exhibits a strong spin-orbit interaction. One could also scatter the 
secondary electrons from a ferromagnet to make use of the strong exchange 
interaction in measuring secondary electron polarization. 

The principles of spin polarization analysis of secondary electrons are briefly 
described. The secondary electrons from the surface of interest may be 
accelerated in ultrahigh vacuum to either 100 keV (Mott scattering from Au 
foil), 35 keV (Mott scattering in a "mini-Mott" polarimeter), 15QeV (diffuse 
scattering from the core potential in a polycrystalline gold film), or to a few 
tens of volts (LEED scattering from W single crystal). As a result of the 
asymmetry in the scattering process, more electrons of one spin will be 
scattered to the left or right of the plane containing the k vector and the spin 
quantization axis of the secondary electrons. For the spin detector represented 
in Figure 16.11, more or fewer electrons will be detected in quadrant 4 than 
quadrant 2 of a detector array. The scattering potential can be represented by 
Eq. (15.20). 

The scattering asymmetry A measured at the four-quadrant detector, 
A = (I, - I,)/(I, + I,), is weak, departing from unity by only a few percent 
because t<k.%) << Vc/,,,,. This makes these detectors inherently inefficient. 
Their spin analyzing efficiency, represented by the Sherman function S ,  can be 
calibrated according to 

Thus, S is the asymmetry produced for a given incident beam polarization; 
typically 0.1 < S < 0.2. The quantities A and P are functions of scattering angle 
and so, generally, is S. Once a polarimeter is calibrated, that is, its Sherman 
function is known, then the secondary electron spin polarization P can be 
calculated from the measured scattering asymmetry A, using Eq. (16.3). 
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Figure 16.11 Above, incoming spin-up electron is scattered from positive core poten- 
tial in a process that includes spin-orbit interaction (<L.S) > 0, solid line). The dotted 
line shows spin-up scattering with (L.S) < 0. The total scattering potentials [Eq. 
(15.20)] for left and right scattering therefore differ between the two cases by 2<((L .S>). 
Below, from the same perspective, the major components of a secondary-electron 
polarization experiment. Unpolarized primary electrons (PE) impinge on the surface of 
a sample, causing it to emit secondary electrons (SE) having a net spin indicative of the 
sample polarization. These SEs are scattered from a diffuse scattering, thin gold film 
(Au) spin polarimeter. The scattering asymmetry from the gold film is detected as a 
difference signal in quadrants 2 and 4 of the four-quadrant, channel plate (CP) detector. 
Spins polarized in the x direction produce a 1-3 asymmetry. 

The spin polarization of the cascade electrons has been used as a surface- 
sensitive probe of magnetism because these electrons come from the outermost 
5 A or so of the material. When the incident electron beam has a diameter of 
order one millimeter, the surface magnetization represented by the secondary 
electrons is averaged over several domains. Secondary electron spin polariz- 
ation has been used to probe the temperature dependence and critical expo- 
nents of magnetization in thin films (Pierce et al. 1982), to study exchange 
coupling phenomena (Donath et al. 1991), and to explore the variation of 
magnetization with distance from the surface (Mauri et al. 1985). 

A number of experiments have measured the spin polarization of field- 
emitted (Landolt 1977, 1978), photoemitted (Kisker 19851, and Auger electrons 
(Landolt and Mauri 1982). Some of these results are described briefly to 
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illustrate the power and utiBity oh these techniques for magnetic surface analysis 
as well as to draw a comparison between these methods and spin-polarization 
measurements made by tunneling (Chapter 15). Photoemitted electrons come 
from localized (high density of states) bands in contrast to tunneling electrons, 
which come from itinerant states near E,. The different results of these various 
probes, although not thoroughly understood, point to important aspects of 
magnetism in materials. 

Landolt et al. (1977, 1978) measured the polarization of field-emitted 
electrons from Ni and Fe crystals as summarized in Table 16.1. Their results are 
consistent with expectations based on calculated band structures (cf. Fig. 86.4). 

Some representative results for polarization of electrons from photoemission 
experiments include the following. 

Single crystals: Fe, + 54%; Co, +21%; and Ni, 15% (Busch et al. 1971). 

Polycrystalline Ni, + 15.5% (Banninger et ali. 1970); 

Gd, + 5.5% (Busch et al. 1969). 

The positive spin polarization measured for Ni was particularly provoking 
because Ni is a strong ferromagnet with only minority states at E,. In 
photoemission, electrons are emitted from states within an energy hv - W of 
the Fermi energy. Here hv is the energy of the incident radiation, and W is the 
work function of the material being probed. Eib and Alvarado (1976) reasoned 
that by lowering the energy of the incident radiation, they could sample the 
polarization closer to E, and should see P < 0 for Ni. In fact, they observed 
P < 0 for electron energies only within 0.3 eV of the F e m i  energy. This value 
is smaller than the expected "Stoner gap9' (about 0.8 eV) between the top of the 
Ni majority-spin band and E,. It is now understood that the more positive 
polarization measured for Ni (and also for Co) is a result of the spin filtering 
effect referred to above. Minority spin electrons see a greater scattering 
probability during transport to the surface because of the large number of 
empty minority-spin 3d states in the material. Hence, majority spin hot 
electrons have a greater probability of escape and P is more positive than P' 
(Seigmann 1994). 

TABLE 16.1 Spin Polariza~om of Field-Emitted 
Ellectrons from DiEeremt Suakces of Fe and Ni Crystals 

Surface 
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The spin polarization of the low energy, cascade electrons from clean 
transition metal surfaces has been found always to be positive (Unguris et al. 
1982). Further, its magnitude is enhanced at very low energies and at larger 
energies approaches a value close to the average valence band polarization for 
Fe, Co, or Ni. The cascade (threshold) polarizations are Fe, Co, and Ni are 
44% It 296, + 34 , 2%, and 24 + 3%, respectively. These authors pointed out 
that with a scanning primary beam, it should be possible to use the cascade 
electron polarization to create high-resolution, surface magnetic domain im- 
ages. This technique is briefly described in Section 16.7.1. 

16.6 SURFACE MAGNETIC ANISOTROPY 

N6el (1954) pointed out that the reduced symmetry at the surface of a cubic 
solid changes the usual form of the anisotropy that has lowest-order terms of 
fourth order in the direction cosines: K,(afa; + aza; + aza;). At a surface, 
uniaxial terms of second and higher order apply. Hence the surface anisotropy 
energy per unit area may be written (see Chapter 6 Appendix 1): 

In other words, in the plane of the surface there remains a fourfold anisotropy, 
K,,a:a; = K,, sin48 sin2q5 cos2q5, which can also be written as K,, sin224 when 
8 = n/2 (Gradmann 1986). It is now supplemented by uniaxial surface terms, 
K,, cos20 + K,, cos40.. . which to first order favor magnetization perpendicu- 
lar to the surface if K,, < 0 and favor magnetization in the plane of the surface 
if K,, > 0. The first term in Eq. (16.4) is often written as K%in20, in which case 
Ks > 0 implies perpendicular magnetization. The absence of terms of the form 
~ , ( a f  + a;) or K,(a; + a;)a; is the subject of Problem 16.2. The NCel model 
does not fully specify a microscopic mechanism; it assumes the surface energy 
to be a function of magnetization orientation relative to bond directions. 

The frequent occurrence of perpendicular magnetization in a variety of thin- 
film systems [e.g., Fe/Ag (OOl), Ni/Cu (001), and Co/Pd] can be understood 
qualitatively in terms of the difference between electronic structure in the bulk 
and at the surface. The d electrons in the bulk may have components of 
momentum in any direction, although certain directions may be more likely on 
the basis of orbital topology; this gives rise to the bulk magnetic anisotropy 
based on the spin-orbit interaction (r x p) . S. However, at the surface, electron 
momentum components perpendicular to the surface must be significantly 
reduced because the d electrons have a reduced probability of being found 
outside the surface. Velocity in the plane of the surface is associated with 
angular momentum perpendicular to the surface plane. Thus near a surface, 
the ratio L:/(L-~ + L;) must increase. If the spin-orbit interaction is significant, 
then the z component of spin perpendicular to the surface will also be increased 
and perpendicular magnetization may be favored. 
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Gay and Richter calculated the surface anisotropy for unsupported monolayers 
of iron and nickel (1986) and found a strong tendency for perpendicular 
magnetization at an iron surface: KS = 0.77 erg/cm2 (0.2 meV/atom). This value 
for the Fe monolayer is two orders of magnitude stronger than the bulk cubic 
anisotropy of iron, K ,  zz 1.3 x 10-' erg/cm2 per ML (monolayer) (4 pV/atom). 
More recently, Freeman et al. (1991) have calculated the anisotropy of an 
unsupported Fe monolayer and found it to favor in-plane magnetization. Their 
calculations for one MIL of Fe on Au, Bt, and Ag show perpendicular 
anisotropy. These calculations were motivated in part by numerous observa- 
tions of perpendicular magnetization in iron thin films. Here, one particularly 
instructive experiment will be described. 

Stampanoni et al. (6987) grew BCC Fe films on Ag (001) at room 
temperature in ultrahigh vacuum (UMV). (There are often improvements in 
film quality with advances in preparation conditions and deposition technique. 
These films may not have grown layer by Payer below 3 or 4 MIL. Nevertheless, 
the results are instructive.) In order to determine the anisotropy of the films at 
different thicknesses, the spin polarization of photoemitted electrons was 
measured at T = 30 K. A strong field could be applied perpendicular to the 
films for the measurements. Figure 16.12, above represents the experiment, and 
Figure 16.12, below summarizes the results. For iron thicknesses up to 6.5 ME, 
the polarization indicates that the magnetization is hard to saturate perpen- 
dicular to the film and the remanence is zero. This indicates no spontaneous 
magnetization perpendicular to the film. In fact, the shape of the M-H curves 
at these thicknesses resembles a Eangevin function suggestive of paramag- 
netism with some short-range rather than long-range ferromagnetic order. 
(Measurements would have to be done in a parallel field to determine whether 
there is any long-range magnetic order at all.) However, for 3.5 and 5 ME a 
relatively square M-H loop is observed, and, in the former case, an appreciable 
perpendicular polarization remains after removal of the field. As film thickness 
increases further (10 ML), the magnetostatic energy of the films increases and 
the magnetization reverts to its in-plane orientation. This result suggests that 
for these Fe/Ag (001) films, a perpendicular surface anisotropy exists that is 
able to produce a spontaneous perpendicular moment, provided the magneto- 
static energy is not too large (i.e., if the film is not too thick). 

If there is an anisotropy Ks  localized at the surface that differs from that of 
the bulk, the effective anisotropy energy density measured for a film of 
thickness d, may be described as 

Keff = J (K" + Ksd(z))dz 
0 

where K" is the bulk anisotropy energy density operating uniformly through- 
out the film and Ks  is an energy per unit area localized at the surface (z  = 0) 
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Figure 16.12 Above, schematic of experiment measuring the spin polarization of 
photoemitted electrons as a function of film growth. Below, results of valence electron 
spin polarization in BCC Fe films on Ag (001) substrates. Fe shows perpendicular 
magnetization over a narrow thickness range. [After Stampanoni et al. (1987).] 

by the Dirac delta function d(z). Thus the effective anisotropy energy density 
is expressed by carrying out the integration, giving 

The volume anisotropy term contains the magnetocrystalline anisotropy, a 
magnetostatic term, and magnetoelastic terms arising from strains that are 
uniform throughout the film. The surface anisotropy term in Eq. (16.6) may 
arise from Nee1 spin-orbit contributions or from strains that are localized at 
the surface. Restoring the angular dependence, it is possible to write the 
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anisotropic free energy density fo'6pip a film under biaxial strain, as 

where 

Here, uniaxial magnetocrystalline anisotropy, magnetoelastic anisotropy [cf. 
Eq. (7.811, and magnetostatic anisotropy (271.~; in cgs units) have been 
included as bulk contributions, along with the surface anisotropy term, Ks/d. 
Bulk cubic anisotropy has been neglected because it neither favors nor hinders 
perpendicular magnetization. (In the case of Fe or Ni, K ,  is approximately two 
orders of magnitude smaller than the magnetostatic energy.) If two surfaces are 
present (e.g., in a thin film), a factor of 2 should appear before Ks in Eqs. (16.6) 
and (16.7). When KeFf > 0, perpendicular magnetization is favored. A uniform 
magnetization, uniaxial model such as this does not allow for the existence of 
canted spin states having 0 < 6 < 71.12. 

The inverse dependence of the surface anisotropy on film thickness is a 
natural consequence of the Ntel model [see Chuang et al. (1994)l. As was seen 
in Chapters 6 and 7, magnetic anisotropy can be justified on the basis of the 
anisotropic atom-pair interaction [Eq. (6293. The anisotropic interaction 
energy wij can be summed over neighboring atoms to model the macroscopic 
anisotropy of a material. For a bulk material the result is wij summed over 
nearest neighbors and multiplied by the ratio of the number of such identical 
nearest-neighbor sites to the volume of the material, Nb/V = 1/Q, where R is 
the atomic volume (Fig. 16.63): 

p ~ b u l k  bulk 1 bulk 

C w i j ( ~ ,  $1 = - c wij(r, ~) (16.8) 
I/ N N  N N  

When the nearest-neighbor environment has missing atoms, as at a surface, 
the sum must be taken over the atoms actually present about a surface atom 
or, equivalently, the anisotropy energy of the atoms missing from the local 
environment of a surface site must be subtracted from the energy in Eq. (16.8). 
The result must then be multiplied by the ratio of the number of such surface 
sites to the volume of the material, Ns/V = 2/ad, where a is the area per surface 
atom and d is the sample thickness (Fig. 16.13). The factor of 2 reflects the fact 
that there are two surface sites in this volume ad: 

 surf surf missing 

( ) - 2 wij(r, ~ ) )  (16.9) 
N N  N N  

The quantity in parentheses divided by a is the surface anisotropy energy per 
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Figure 16.13 Cross section of a thin film showing that the volume per surface atom is 
a much larger quantity than the atomic volume when film thickness d is large. 
Normalization of the surface energy to the volume per surface atom thus gives surface 
anisotropy an inverse dependence on film thickness. 

unit area, Ks. Thus Eqs. (16.8) and (16.9) combine to give Eq. (16.6). Surface 
terms become less significant relative to volume contributions as film thickness 
increases. 

The value of the surface anisotropy coefficient can be determined to first 
order from the film thickness at which the perpendicular (Keff > 0) to in-plane 
(Keff < 0) magnetization transition occurs, Keff = 0. Thus, from Eq. (16.7), we 
obtain 

In the case of the Fe/Ag (001) data cited above, the surface anisotropy can 
be estimated by noting that the perpendicular to in-plane transition occurs 
near 1 nm of iron. Assuming the saturation magnetization to be suppressed 
from its bulk value poMs = 2.2 T (M, = 1750 G) to approximately 1.8 T gives 
p,M,2/2 = 1.2 x 106 J/m3 (271~: z 1.2 x lo7 erg/cm3). Because the strain was 
not measured on these films, it is assumed to be given by the lattice mismatch 
between BCC Fe (a = 2.866A) and FCC Ag ( a  = 4.09 A), which is 0.9% (Fe 
[OlO] grows parallel to Ag [100]). From Table 7.1, B, = -2.9 x 106N/mZ 
for Fe. Thus, the magnetoelastic energy density, of order 104J/m3, can be 
neglected relative to the magnetostatic energy. Equation (16.10) then indicates 
a surface anisotropy energy density of pOM:d/2 z f 0.9mJ/m2, which is 
consistent with other measurements. A more careful analysis is required when 
the magnetoelastic energy is significant (see Section 16.6.3, below). Gay and 
Richter calculated 0.77 rnJ/m2 for a freestanding iron film. (Note that such 



surface anisotropies are comparable in magnitude to the surface energy of a 
typical domain wall, described in Chapter 8.) 

16.6.2 Cobalt Films 

Another striking manifestation of perpendicular magnetic anisotropy arising 
from an interface effect is the data of den Broeder et al. (1988) on CoAu 
multilayers having a period of approximately 10 A. Multilayered films prepared 
by ion-beam sputtering showed rather diffuse interfaces at which there ap- 
peared significant intermixing of Co and Au species. VSM measurements in 
fields applied either parallel or perpendicular to the film plane gave the loops 
shown in Figure 16.14, upper right. These loops indicate a clear preference for 
in-plane magnetization. When these multilayers are annealed at 275"C, the 
immiscible Co and Au atoms tend to segregate, markedly sharpening the 
composition profile. The preferred direction of magnetization is now observed 
from VSM measurements to be directed out of the plane of the multilayers 

Ion-Beam Sputtered [CO/AU] Multiloyers 
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Figure 16.14 Structure and magnetization of ion-beam sputtered Co/Au multilayers 
concentration profiles and M-H loops of the as-deposited films are shown above, and 
the effects of annealing on the definition of the Co/Au interfaces and M-H loops are 
depicted below (den Broeder et al. 1988). 
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(Fig. 16.14, lower right). This result may be taken to be indicative of the 
anisotropy of a Co/Au film; the multilayer merely increases the number of 
surfaces measured. It is also possible that the state of strain is altered by the 
annealing process. 

In the previous section, the surface anisotropy of Fe films was estimated 
from the thickness of the reorientation transition (Keff = 0) using Eq. (16.7) 
and making the assumptions (valid there) that magnetocrystalline (KII and 
magnetoelastic 12Blel energy densities are much less than the magnetostatic 
energy density, 27-c~:. These assumptions are not valid in cobalt films. 

Effective anisotropy data for the Co/Pd system (taken from VSM, SQUID, 
and torque magnetometry) are plotted for three different crystallographic 
orientations as well as for polycrystalline multilayers of FCC [Co/Pd], in 
Figure 16.15 (Engle et al. 1991). These superlattices were grown by seeded-layer 
epitaxy on GaAs substrates (Lee et al. 1989, 1990) in an MBE chamber. 

The [11 l] superlattices were grown on Pd (50 nm)/Co (0.6 nm)/GaAs (1 10). 

The [100] films were grown on Ag (50 nm)/Co (0.6-1.0 nm)/GaAs (001). 

The (110) superlattices were grown on Pd (20 nm)/Ag (40 nm)/GaAs (001). 

All depositions were done at room temperature at rates of 0.1 to 0.25 A/s. 
The notation in Engle et al. used to analyze this data is different from that 

used in Eq. (16.7): ~ n ~ l e  - K,C" x t = - 27cM:)t + 2~~ with Keff = Kmc + 
Kme; here - Keff x d = (K"' + 2~ ,e - 27cM:)d + 2Ks. These equations predict 
a linear dependence of Keff x t on t, and that is observed for all four series of 

Figure 16.15 Effective anisotropy times Co thickness versus cobalt thickness for 
[Co/Pd] superlattices. Epitaxial structures having different orientations were grown on 
GaAs and the polycrystalline multilayers were grown on Si. [After Engle et al. 1991).] 
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superlattices in Figare 16.15. The data surprisingly indicate the same Co/Pd 
interface anisotropy regardless of crystal structure: K" = + 0.65 + 0.05 mJ/rn2, 
consistent with other measurements (Lee et al. 1989). The differences in slope 
for the different orientations must be due to differences in the volume 
anisotropy terms associated with crystal structure Kmc and strain Kme = 2B1e. 
The strongest perpendicular anisotropy is observed for the (111) superlattices 
for which a slope of Kmc + 2B,e - 2 n ~ , 2  = -5.4 x lo5 J/m3 is observed. 
Given the magnetostatic energy of cobalt as 1.27 x 106 J/m3, Eq. (16.7) 
suggests Kmc + 2B,e z 0.75 x lo5 J/m3. It is not possible to carry the analysis 
further without more information on the cobalt layer structure and strain. It is 
possible that stacking faults are present gutting the films in a structure that 
may be a mixture of FCC and HCP characteristics. These structures have very 
different values for K ,  and B,  (Table 7.2). It is instructive to seek a simpler 
material system in which it might be possible to carry out a more complete 
quantitative analysis of the magnetic behavior. The Cu/Ni/Glu system, treated 
next, moves in this direction. 

16.6.3 Nickel Films 

Ballentine et al. (1989) found results in thin epitaxial Wi/Cu (001) films that 
were similar to those of Stampanoni et al. for epitaxial Fe/Ag (001) in some 
respects. In the Ni/Cu case, the film magnetization was measured at 100 K by 
the magnetooptic Kerr effect. Because the Kerr effect is more sensitive to 
perpendicular magnetization (Bader and Erskine 1994), the MOKE signal 
from a film magnetized at 45" to the normal is enhanced in a perpendicular 
field relative to that in a parallel field. Figure 16.16 summarizes the results on 
Ni/Cu (006). For Ni thicknesses below about 4 ML, the remanent state shows 
a preference for in plane, not perpendicular magnetization. At 4.7 ME, the 
remanent state shows that a significant component of the magnetization 
remains perpendicular to the plane of the film. This work did not determine 
the orientation of magnetization in films thicker than 10 ML. A similar result 
had been obtained earlier by Gradmann (1966) and has been confirmed more 
recently by Huang et al. (1994) and Schulz and Baberschke (6994). These data 
alone seem to suggest a negative surface anisotropy for Ni because Keff < 0 at 
small d [Eq. (16.713. 

Room temperature measurements on similar epitaxial Ni/Cu (001) films 
were continued to much larger Ni thiclcnesses by Bochi et al. (1995a). They 
also used MOKE to measure the films in situ, applying fields either perpen- 
dicular or parallel to the film. In those measurements perpendicular magneti- 
zation was observed for nickel thicknesses up to approximately 6 nm. Above 
that thickness, magnetostatic energy drives the magnetization back in plane. 
Using the method of analysis applied above to the iron magnetostatic reorien- 
tation transition, Eq. (16.7) suggests a net surface anisotrogy of order 0.8 
mJ/m2, neglecting the magnetocrystalline and the magnetoelastic contributions 
(it will be seen later that neglecting 2B1e is a bad assumption for Ni). 
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Figure 16.16 Magnetooptic Kerr effect measurements of magnetization in uitrathin 
Ni/Cu (001). The results for fields applied either perpendicular or parallel to the film 
plane indicate that above about 4 ML, Ni films prefer to be magnetized normal to their 
plane. [Adapted from Ballentine et al. (1990).] 

Cu-capped Ni/Cu (001) epitaxial films (two Cu-Ni interfaces) have been 
studied by Jungblut and O'Handley (1994) using in situ MOKE, Bochi et al. 
(1995a) using ex situ VSM, and Ha and O'Handley (1999) using ex situ torque 
magnetometry. One advantage of capping with Cu is that the two Ni interfaces 
are now identical, in principle. Also, the Cu-capped films can be removed from 
vacuum for more extensive testing, with no significant change in magnetic 
properties at least over a year. From the MOKE and magnetometer measure- 
ments, the energy needed to saturate the films in perpendicular and parallel 
fields were subtracted to give a quantitative determination of the effective 
anisotropy K e f f .  (The energy needed to saturate is calculated from an anhys- 
teretic loop.) The torque measurements give a direct measure of the uniaxial 
as well as higher-order components of Kefr.  The results of these three sets of 
measurements are shown in Figure 16.17 in terms of Eq. (16.7) plotted as Kef'd 
versus d. The first important conclusion from this data is that the range of 
perpendicular magnetization is now observed to extend to about 13.0nm, 
roughly double the range for Ni/Cu. This suggests that a major source of the 



644 SURFACE AND THIN-FILM MAGNETISM 

- -A- - Bochi et. al. 

Nickel Film Thickness [A] 

Figure 16.17 Variation of effective anisotropy times Ni thickness (Keff x d )  versus Ni 
thickness in Cu/Ni/Cu (001) sandwiches after Jungblut et al. (1994), Bochi et al. (1995a), 
and Ha and O'Handley (1999), using in situ MOKE, ex situ VSM, and ex situ torque 
magnetometry, respectively, to determine the effective anisotropy. Keff x d > 0 implies 
perpendicular magnetization in the uniaxial approximation. 

perpendicular anisotropy in this system is the Cu/Ni interface [i.e., Ks(Cu/ 
Ni) > O)] because in the capped films the number of Cu/Ni interfaces has 
doubled relative to that in the uncapped films. The Ni strain in the last set of 
films has been found to vary as 0.026(2.7/d)213 (Fig. 16.8). Using this form for 
the strain, neglecting the small magnetocrystalline anisotropy of Ni, and using 
B,  = 6.2 x lo6 N/m2 for Ni, Eq. (16.7) predicts a nearly linear dependence of 
K e f f d  versus d and no reversion to in-plane magnetization. [If the strain were 
found to vary as d-' for d > d ,  z 2.8 nm, it is clear from Eq. (16.7) that the 
magnitude of the slope would change from 2B,e, - 2 7 ~ ~ :  below d,  to - 2 7 ~ ~ :  
above d, (Chappert and Bruno 1988)l. The changes in magnetization with film 
thickness are small and are included in the model fit. Clearly, the model is 
missing some important energy contributions for these films. The next section 
indicates what that contribution is. 

16.6.4 Magnetoelastic Coupling in Thin Films 

Caution should be exercised in applying the bulk values of the magneto- 
elastic coupling coefficients in Table 7.1 to thin films. There is growing evidence 
that magnetoelastic coupling constants can deviate from bulk values near a 
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surface (Sun and O'Handley 1991). This should not be surprising because 
it is well established that lattice constants, electronic structure, symmetry, 
spin-orbit interactions, and the fundamental magnetic properties derived 
therefrom, can take on unique values at a surface. The same is true for thin 
films. 

In a thin film bonded to a substrate, it is not appropriate to speak of 
magnetostriction in terms of the strains produced as M is rotated because there 
is no free anisotropic strain in a constrained sample. A film cannot even show 
a true magnetostrictive strain normal to its plane because magnetostrictive 
strains conserve volume to first order and the film cannot strain in the other 
two directions to conserve volume. The magnetostrictive stress Bi associated 
with a change in the direction of M, can be measured through its tendency to 
cause the film-substrate couple to bend, expressing a small fraction of the 
magnetostrictive strain. 

It has recently been reported that the magnetoelastic coupling coefficient of 
a thin film can also depart sharply from the value observed in thicker films and 
in bulk. Figure 16.18 shows the measured values for the ME coupling coeffi- 
cient of a polycrystalline permalloy film (slightly iron rich, Ni,,Fe2,) plotted 
to show that the data follow the Ntel form, Beff ( t )  = BbUlk f Bsurf/(t - to), with 
BbUlk = -0.78 x lo5 N/m2, Bsurf = 1.4 x N/m, and to =0.7 nm. The accep- 
ted bulk value for this composition is IBbu"'l < 1.0 x lo5 N/m2 which corre- 
sponds to a magnetostriction coefficient of +0.3 x lop6.  Similar results have 

Figure 16.18 Solid data points: effective ME coupling coefficient measured in situ for 
polycrystalline NiFe/Ag/Si versus NiFe thickness. Open data points: Be"(t - 0.7) versus 
t show quality of fit to NCel model. Note that the vertical scale unit, Beff  = 1 x lo5 J/m3, 
corresponds to a magnetostrictive strain of approximately 0.5 x The value of to 
is shown by vertical dotted line (Song and O'Handley 1994). 



646 SURFACE AND THIN-F3L.M MAGNETISM 

been observed in various other permaloy compositions (Gurney 189'7) as vvel% 
as in rare-earth iaatermetallics (del Moral et al. 11998). 

The trend in the effective ME coupling shown in Figure 16.18 is probably 
not all due to an intrinsic Ntel, surface effect. It is likely that changes in the 
structure, chemistry, and state of stress of the film with thickness are also 
affecting the data. Koch et al. (6996) have shown that the effective ME coupling 
coefficient of thick, epitaxial Fe/W also changes sign as a function of the state 
of stress in the film. This supports the notion that such changes can be 
second-order magnetoelastic interactions. 

Extension of the Ntel model to include second-order strain, as well as other 
interactions, indicates that in addition to the terms in Eq. (16.71, new terms 
should be considered. These new contributions to the effective anisotropy 
include terms of the form (Ha and O'Handley 1999): 

BS 2 DS IIe2a;, --emi, and - e2a? 
d d 

The first term is a second-order, bulk magnetoelastic interaction. The second 
and third are surface magnetoelastic terms (analogous to KS) of first order and 
second order in strain. The NkeB model relates the magnitude of these new 
coefficients to K,, B,, B,, and so on, which in turn can be described in terms 
of the magnetic dipole interaction strength I and its spatial derivatives Z', Z", 
and so forth. This pair interaction model indicates that the bulk second-order 
term, De2a?, is more important than either of the surface magnetoelastic 
terns for strains greater than a few tenths of a percent. This second-order term 
shows up as a strain dependence in the effective magnetoelastic coefficients 
(O'Handley and Sun 1992): 

a r f f  ~ e f f -  - - (B, + 2De) (16.12) 
de 

Measurements of such interactions in ultrathin films and multilayers are just 
beginning to appear. Koch et al. (1996) find for epitaxial BCC Fe (100)/VV, 
D = - 1.1 x 1010 mJ/m3, Sander et al. (8999) find for BCC Fe (100)/Mg0, 
D = - 1.1 x 10'' mJ/m3. With the inclusion of the second-order ME interac- 
tion in Eq. (16.7), the torque data of Figure 16.17 can be fit to give Ks = 

0.8 m9/m2 and D = - 1.1 x 10'' mJ/m3. The effective ME coupling coefficient, 
Eq. (16.12), should replace B,  in Eq. (7.8) to describe the ME contribution to 
the anisotropy energy density when strain is appreciable. 

The implications of the thickness and/or strain dependence of Beff  are 
important for surface and thin-film magnetism. If a device is to be designed 
with a specified range of magnetoelastic coupling, bulk data may not serve as 
a reliable guide for designing the appropriate alloy. Further, the combination 
of large strains and ME coupling coefficients out of the specified range 
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compounds the problem of property control. Stresses due to interfaces, 
dislocations, and differential thermal expansion could alter the strength of the 
effective coupling. On the positive side, there is potential for using stress to 
control magnetic anisotropy through the ME contribution to anisotropy as 
well as for development of highly sensitive strain sensors, accelerometers and 
other devices based on multiple layers of very thin magnetic films. 

16.7 MAGNETIC DOMAINS IN THIN FBLMS 

Several images of magnetic domain patterns in crystalline (Figs. 1.13, &la, 8.13, 
8.14, 8.25, 12.14) and noncrystalline magnetic materials (Fig. 11.8) have been 
presented and described. In thin films, the energies that determine magnetic 
domain structures may be quite different than in bulk materials because of the 
proximity of the interfaces (cf. Fig. 8.14). In Chapter 8 it was shown that a 180" 
Bloch domain wall generally has a NCel cap (M parallel to the surface) where 
it intersects the surface. Further, in thin films, magnetostatic energy can turn 
the entire Bloch wall into a NCel wall. 

This section treats magnetic domains in thin films for which the anisotropy 
is either in plane or out of plane. Two measurement techniques well-suited to 
these cases are scanning electron microscopy with spin polarization analysis 
and magnetic force microscopy. Each of these powerful tools will be described 
and examples given. 

16.7.1 Scanning Electron Microscopy with Polarization Analysis 
(SEMPA) 

If a primary electron beam is highly focused and scans the surface as in a 
scanning electron microscope, it is possible to analyze the secondary electron 
spin polarization to construct a high-resolution image of the surface magnet- 
ization (Celotta and Pierce 1982). This technique is known as scanning electron 
microscopy with (spin) polarization analysis (SEMPA). The first SEMPA 
images (10-pm resolution) were made by adding a scanning electron gun to a 
100 1tV gold foil Mott detector (Koike and Hayakawa 1984). Higher-resolution 
images (t 1 pm) soon followed [Unguris et al. (1985), Celotta and Pierce 
(1986), Hembree et al. (1987), using a diffuse scattering, gold thin film detector] 
as well as detailed descriptions and analysis of the technique (Unguris et al. 
1986, Celotta and Pierce 1986, Scheinfein et al. 1990). High resolution SEMPA 
has been applied to a variety of problems in surface magnetism, including 
surface domain profile determination [Scheinfein et al. (1989, 1991) and Oepen 
and Kirschner (1989), using a low-energy electron diffraction spin polarimeter] 
and exchange coupling of Fe layers through Cr spacers (Unguris et al. 1991). 

The principles of SEMPA are an extension of the concepts of SEM, but they 
are practiced in ultrahigh vacuum to maintain surface cleanliness and to ensure 
that the mean free path of the secondary electrons is greater than the distance 



648 SURFACE AND THIN-FIILM kVIAGNETISMI 

froran the sample to the gold scattereip. SIElUPA also makes use of electron spin 
polarization analysis, which was outlined above. The implementation of 
SEMPA is not trivial, largely because of the demands placed on the electron 
optics by the need for high-resolution and integrity of the secondary electron 
beam polarization. 

The time z required to accumulate a pixel for an image with resolvable 
contrast relative to an adjacent pixel (Hembree et al. 1987) is given by 

Here, C is a constant describing the electron count needed for detectable 
asymmetry threshold, NIN,  measures the gold backscattering efficiency, T is 
the transmission of the electron optics between the sample and the polarimeter 
(T > 0.5), Y is the secondary electron yield of the sample (P = 0.2), and i,, is 
the current in the primary scanning electron beam (of order A). It is clear 
that many instrumental factors must be simultaneously optimized if the image 
time is to be reasonably short. Depending on resolution requirements, SEMPA 
systems have image times of order 20 min. 

Figure 1.13 is a SEMPA image taken from the surface of a 3% SiFe 
crystal illustrating some of the advantages of this technique. The upper 
panel shows the intensity image collected by summing the signals from 
all four quadrants of the detector I, + I ,  + I, + I, (Fig. 16.11). The intensity 
image reveals surface topography due to polishing roughness. The next two 
panels display the asymmetry in the two orthogonal in-plane directions. 
The images in all three panels were assembled from the same set of data, 
four independent intensities for each pixel, taken during one scan. The 
left panel shows the strongest contrast between domains magnetized to the 
left and right (M,), while the right panel shows the strongest contrast for 
f M y .  The panels differ only in the data combinations represented; for 
instance, P, is proportional to (I, - I,)/(d, + I,) in Figure 16.1 1. There is no 
ambiguity in assignment of vector components of M. Also note that topo- 
graphic features evident in the intensity image are largely normalized out of the 
polarization images by virtue of the definition of polarization, which involves 
division by the total intensity. SEMPA allows high-resolution imaging of 
surface domain structures with minimal sample preparation. Surface roughness 
generally is not a problem because of the favorable depth of field afforded by 
SEM imaging. 

Figure 8.1 is a high-resolution image and line scan of the spin-polarization 
variation across the NCel surface termination of a 180" Bloch wall. This result 
should be compared with those in Figure 8.12 for permalloy and iron whisker 
surfaces. Note that the NCel cap wall is imaged by SEMPA, not the underlying 
Bloch wall. The Niel cap on a Bloch wall may be calculated by adding 
magnetoelastic terms to the usual domain wall energy and thickness calcula- 
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tion (Chapter 8). The thickness of a Nee1 cap is greater than that of the Bloch 
wall that it terminates and the magnetization distribution through it is 
asymmetric. 

As a final example of the elegance and power of SEMPA, refer to the thin 
film structure and the corresponding SEMPA image in Figure 12.16. These 
figures describe the domains in a thin iron film deposited over a tapered Cr 
layer on an iron whisker. The two iron layers are coupled by an exchange 
interaction through the interposed Cr layer. In this one experiment, the 
dependence of iron-iron exchange coupling on chromium layer thickness is 
beautifully and unambiguously revealed. The exchange coupling oscillates from 
ferromagnetic to antiferromagnetic repeatedly as the chromium layer thickness 
increases from zero. Above one lengthwise domain in the iron whisker, the iron 
film shows a periodically varying contrast due to the different orientation of its 
magnetization, reflecting the F-AF-F . . . exchange coupling. When the iron 
depositions on the chromium wedge are made at elevated temperatures and at 
a slower rate, the quality of films and interfaces is much improved. In this case, 
even shorter-period oscillations, which are superimposed on the longer-period 
oscillations, can be resolved by SEMPA (Unguris et al. 1991). 

16.7.2 Magnetic Force Microscopy (MFM) 

The 1983 Nobel Prize in Physics was awarded to Binnig and Rohrer (Binnig 
et al. 1982) for inventing the scanning tunneling microscope (STM). They 
demonstrated the amazing resolution achieved by scanning a metal tip over a 
surface at a height of a few angstroms and measuring surface topography via 
the tunneling of electrons between the tip and sample. The tunneling current 
varies exponentially with tip height above the surface. Thus, very small changes 
in surface elevation can produce strong changes in tunnel current. The 
pioneering demonstration of STM was followed by the development of 
scanning force microscopy (SFM) (Binnig et al. 1986, 1987) and later, magnetic 
force microscopy (MFM) (Martin and Wickramasinghe 1987, Saenz et al. 
1987). The latter provides a powerful means of characterizing magnetic surfaces 
that in many respects complements SEMPA. Figure 8.14 is an example of an 
MFM image of the perpendicular magnetization domain pattern in an epi- 
taxial, 2-nm-thick Ni (001) film capped with Cu. 

An MFM, like an STM, consists of a micrometer-scale tip attached to the 
end of a flexible cantilever (Fig. 16.19). The tip is scanned close to the surface, 
but at a height considerably greater than that used for an STM. The tip is 
magnetic or is coated with a thin film of a hard or soft magnetic material. The 
magnetoelastic interaciion between the tip and the fringe field above the 
sample results in cantilever deflection and/or a change in its resonance 
frequency and phase. If the MFM tip is too close to the sample, it can snap 
into contact in an attractive force field. Cantilever deflection can be measured 
by optical interferometry or other means in the "static" mode of operation. In 
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Figure 16.119 Geometry for description of MFM technique. A tip scans at a height z 
above a thin sample whose surfaces are charged in a pattern determined by the normal 
component of the magnetization distribution, M,(x, y). 

the "dynamic" mode, the cantilever frequency is a measure of the attractive or 
repulsive force on the cantilever due to the fringe field. 

The conventional tiplcantilever is most sensitive to magnetic forces normal 
to the surface. While this mode of MFM is most suitable for imaging domains 
on perpendicularly magnetized surfaces, fringe fields above domain walls in 
longitudinally magnetized materials can also be imaged. An example consider- 
ed below is the quantitative analysis of the domain structure in perpendicular- 
magnetization, epitaxial films of Wi (801) sandwiched by Cu (00%) layers. In 
MFM the tip is usually scanned a few tens of nanometers above the sample 
surface; in AFM the tip is a few tenths of a nanometer above the surface. The 
same tip can be used to measure surface topography, as well as magnetic force. 
Thus, MFM allows a detailed correlation of magnetic and structural features 
near a surface. 

It is not possible, in general, to calculate the perpendicular magnetization 
distribution Mz(x, y) in a sample from the MFM force data F(x, y, z). The 
principal reason for this is that the same stray field pattern can be generated 
from many different magnetization configurations. That is, the mapping from 
field to magnetization is not unique. One case in which the mapping is unique 
is that of completely perpendicular magnetization. In this case it is important 
to have a good signal-to-noise ratio. 

The features in a perpendicular magnetization pattern decay with increasing 
height above the surface like e-kz  where k = 2n//2. Thus, long wavelength 
changes in Mz(x, y) produce stronger forces at a given height, z, than do sharp, 
short wavelength features. In order to do quantitative MFM, it has been found 
useful to Fourier analyze the force field, fringe field and magnetization patterns 
and relate their Fourier components by transfer functions that scale the 
different spatial frequency components (Fourier components) appropriately 
(Hug et al. 1998). The Fourier components of an arbitrary surface magnetiz- 
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ation charge distribution o(r) are given by 

where v = (x, y) and k = (k,, k,). The Fourier coefficients of the z component 
of the fringe field ~ ; ~ ( k )  and that of the charges on the two surfaces of a thin 
film are simply related by a factor called the transfer function: 

The first term in the transfer function, e-kz/2, describes the exponential decay 
of the field with height z above the top surface (at z = 0), while the second 
term, -e-k(z+h)/2, describes the signal from magnetic features at the lower 
surface of the sample (at z = -h) (Fig. 16.19). For an infinitely thick sample, 
the field from the bottom surface is zero. 

The implications of this spatial frequency dependence of signal decay are 
graphically represented in Figure 16.20. Here the field transfer function, 
AG!(k)/A,(k) from Eq. (16.15), is shown for a thin film [solid line, both terms 
in Eq. (16.15) apply] and for a bulk surface (dotted line, second term vanishes), 
over more than four decades in 12 (dimensionless units of 2nl;l). For a single 
surface, long wavelength surface charge features scale with equal strength to 
give the long wavelength field components. At short wavelengths, the field at 
a given height z drops off exponentially. For a perpendicularly magnetized thin 
film (two charged surfaces a distance h apart), the short wavelength magnetiz- 
ation features show up less strongly in the fringe field, as is the case for bulk 
samples. However, at long wavelengths the field also decays because the 
mirror-image charge distribution at the bottom surface tends to cancel the field 
from the top surface charge. 

The lower panel of the figure shows how magnetic thin-film surface charge 
distributions, having three different spatial frequencies but equal amplitudes, 
are scaled to give different fringe fields. The features having ;l = A,,, z 6.6 
(dimensionless units of 2zlk) contribute most strongly to the MFM image 
while longer and shorter wavelength features are attenuated. 

Figure 16.21 shows a commercial pyramid scanning probe tip with an 
electrodeposited needle intentionally grown on its end. This needle is coated 
with a 25-nm-thick Co film to form the high-resolution MFM tip. The images 
described below on Cu/Ni/Cu/Si (001) films were taken using such a tip and 
analyzed using the Fourier transfer function method. 

It is instructive to consider the domain patterns in the series of epitaxial 
Ni/Cu/Si (001) films, capped with 2nm of Cu (Fig. 16.22). These films show 
perpendicular magnetization over a wide thickness range (Fig. 16.17). The 
domain patterns were taken using a magnetic force microscope (MFM) at the 
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Figure 16.20 (a)  Dependence of the field transfer function, A'shpi,(k)/A,(k), Eq. 
(16.15), on magnetization wavenumber and wavelength 1. The transfer function is 
shown for a sample with one charged surface (bulk sample, dotted line) and for two 
charged surfaces (thin film, solid line). (b) Spatial dependence of the z component of the 
fringe field for three different thin-film magnetization patterns of k vectors indicated by 
the three vertical lines in (a). [After Hug et al. (1998).] 

University of Base1 (Bochi et al. 1995a, b). The strong contrast of the MFM 
images shows dramatically that the magnetization is indeed predominantly 
perpendicular to the plane of the films as indicated by the positive effective 
anisotropy in Figure 16.17. Magnetic domains are shown for Ni layer thick- 
nesses from 2 to 12.5 nm in Figures 16.22a-16.22d. The overall length scale D 
of the domains is refined with increasing Ni thickness. However, the length 
scale is not well defined, especially at smaller Ni thicknesses; the dispersion in 
D values is larger there. Further, a change in domain character occurs between 
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Figure 16.21 Scanning electron microscopy image of tip used in MFM imaging. The 
commercial pyramid tip has a nonmagnetic, electron-beam-induced tip deposited 
formed on its surface in vacuum. This tip is made magnetic by deposition of a thin 
magnetic film on one of its long sides. 

8.5 and lOnm Ni thickness. For the thicker Ni films, the larger domains are 
broken up by an increasing proliferation of finer bubble domains. This suggests 
that as the Ni film grows, the domain walls stable at smaller Ni thickness 
cannot move, as Ni thickness increases, in order to give a domain pattern that 
represents an energetic minimum; these are not equilibrium domain patterns. 

It must first be determined whether the force images in Figure 16.22 can be 
interpreted as magnetization images. Figure 16.23~ is a reproduction of Figure 
16.22~ for 10 nm of Ni. The line scan (lower left) through the MFM image gives 
the position dependence of the measured force and field. Using a discrimina- 
tion routine, the fringe field pattern in Figure 16.23~ was used to generate the 
trial magnetization pattern (Fig. 16.23b). From this trial Mz(x,  y) data, the 
force field in panel (c)  was calculated. Not only is the calculated force-field 
image in excellent agreement with the MFM data in panel (a), but also the 
details shown in the calculated line scan below panel (c )  match very well with 
those in panel (a). This analysis (Hug et al. 1998) is evidence that, at least for 
this perpendicular magnetization case, the MFM data are a good representa- 
tion of the magnetization pattern in the film. 

It is striking that the domain walls in Figure 16.22 show no orientational 
correlation with the easy in-plane (110) crystallographic directions in these 
epitaxial Ni films. The domain walls are Bloch walls, not N6el walls, because 
the magnetization rotates from + M, in one domain to - Mz in the adjacent 
domain, by rotating essentially in the plane of the wall. Thus, the wall 
magnetization runs along the wall length with no cost in magnetostatic energy. 
(Ntel walls are preferred only in thin films exhibiting in-plane magnetization.) 
On the basis of the anisotropy measurements for these films (Fig. 16.17), the 
wall width a,, should be of order 30nm for a Ni thickness of 8.5 nm and 
increases for thinner or thicker films (because ol' the thickness dependence of 
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Figure 16-22 Domain structure of epitaxial Cu/tNiNi/Cu (001) films imaged by MFM 
over a 12-pm square: (a) 2 nm Ni, (b) 8.5 nm Ni, (c)  10 nm Ni, (4 12.5 nm Ni (Bochi et 
al. 1996). 

Keff). The energy saved by having the magnetization at the center of the Bloch 
wall follow the in-plane easy crystallographic directions, is small compared 
with the wall energy saved by minimizing ratio of the wall length to domain 
area. Thus, the walls follow more curved paths rather than rectilinear ones 
along < 1 10). 

A simple domain model that explains some aspects of the length scale D of 
these domain patterns is now considered. The energy density for a stripe 
domain structure 
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Figure 16.23 Above (a) MFM force-field image taken from epitaxial Cu/lO nm Ni/Cu 
(001) film of Figure 16.22~; (b)  trial perpendicular magnetization distribution generated 
from (a) by discrimination routine; (c)  field pattern calculated from magnetization 
distribution (b) using Eq. (16.16)); below, measured (left) and calculated (right) force 
and field line scans across panels (a) and (c) above (Hug et al. 1996). 

has been numerically minimized with respect to D, by Paul (Bochi et al. 1995b), 
using the methods of Malek and Kambersky (1958). The energy difference 
between stripe and checker domain patterns is small. 

The equilibrium spacing D of a perpendicular domain pattern periodic in 
one direction is found, to first order, to be given by 

where M, is the magnetization density, d is the thickness of the magnetic layer, 
and o,, is the domain wall energy density. The domain wall energy density is 
thickness-dependent when the effective anisotropy energy is thickness-depend- 
ent [see Eq. (16.7) or Fig. 16.17)]. Figure 16.24 shows schematically the form 
of Eq. (16.17). When the magnetostatic energy per unit film area, 9.17~,2d, is 
much greater than the wall energy density, that is, at very largefilm thicknesses, 
Eq. (16.17) indicates that the length scale of the domain structure should 
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Figure 16.24 Schematic representation of the variation of domain size with magnetic 
film thickness according to Paul's first-order solution, Eq. (16.17) (Bochi et al. 1995b). 

increase linearly with increasing film thickness. At very small film thicknesses, 
D diverges at a critical film thickness d,, given by d, = a,,/9.17~:. For 
o,, z 1.0 erg/cm2 and M, z 800 emu/cm3, d, z 20 A. Below this critical thick- 
ness, a magnetic film should consist of a single domain; that is, the domain 
diameter D should be much greater than the film thickness. Closure domains 
may still exist near the edges of such films where the magnetoelastic fields are 
greater than in the interior of the film. In between these film thickness limits, 
D shows a minimum value, dm,  x 20 nm. 

The exact form of the numerical solution to Eq. (16.17) is graphed in Figure 
16.25 using the experimentally measured effective anisotropy Keff in o,,. The 
inserts show schematically the shape of the energy minima at different film 
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Figure 16.25 Ni-thickness dependence of domain size by numerical minimization of 
the energy in Eq. (16.16) using independently measured effective anisotropy; the energy 
versus D inserts are schematic (Bochi et al. 1995b). 
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thicknesses. These u/D curves explain why the domain structure is character- 
ized by a well-defined length scale at large film thickness but not at small 
thicknesses. For large Ni thickness, the energy minima are deep and define a 
narrow range of D values, consistent with the observations of well-defined 
domain sizes in Figures. 1 6 . 2 2 ~  and 16.22d. At smaller Ni thicknesses ap- 
proaching the critical value, the minima are neither deep nor well defined: the 
energy difference between a wall spacing of 5 and 20 pm is less than k,T At 
small film thickness, a wide range of domain sizes results in almost the same 
total energy for the structure. 

16.8 INHOMOGENEOUS MAGNETIZATION IN FILMS 

It has been shown that when the effective uniaxial anisotropy can be described 
by a first-order, uniaxial, positive term, K e f f  > 0 ,  uniform, perpendicular mag- 
netization is stable. For K e f f  < 0 ,  if the magnetization is assumed to be uniform 
and no higher-order anisotropy terms are present, the stable state is one of 
in-plane magnetization. Higher-order anisotropy terms (e.g., sin48, Baberschke 
1996) can stabilize uniform canted states of magnetization ( 0  < % < 4 2 ) .  In 
addition, for uniaxial K e f f  slightly less than zero, inhomogeneous states of 
magnetization having significant out-of-plane components, are possible. Final- 
ly, in films of thickness greater than the exchange length, the magnetization 
may be inhomogeneous through the film thickness. These cases are reviewed 
briefly. 

16.8.1 Magnetization Variations Normal to the Film Surface 

It is common for a magnetic film having a thickness much less than the domain 
size, to be dominated by magnetostatic energy and thus to be magnetized 
predominantly in plane. However, if the surface is also characterized by a 
strong positive surface anisotropy, the magnetization there may cant out of the 
film plane while remaining more-nearly parallel to the film plane in the interior, 
provided the film is thicker than an exchange length. The mathematical form 
of @(z) for perpendicular surface anisotropy and in-plane bulk anisotropy can 
be described analytically for a semiinfinite medium (Mills 1989, O'Handley and 
Woods 1990). The energy density for a semiinfinite sample with a surface at 
z = 0 (M # 0 for z > O), and with O(z) = 4 2  at z = + co measured from the 
surface normal (see Fig. 16.26a) is 

Here, A is the exchange stiffness, Ku is a miaxial, volume anisotropy (crystal- 
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Figure 16.26 (a)  Coordinate system for the perpendicular anisotropy problem with 
in-plane bulk anisotropy in a semiinfinite medium. The magnetization direction, 8(z), is 
defined relative to the film surface normal. (b) Plot of Eq. (16.22) showing that the 
magnetization remains in plane unless the surface anisotropy exceeds a critical aniso- 
tropy threshold, Kc = 1.22 and 2.5 erg/cm3 for Ni and X, respectively. 

line or magnetoelastic), and the Dirac delta function 6(z) confines the aniso- 
tropy Ks to the surface layer z = 0. 

Applying the variational principle to Eq. (16.18), as was done in Chapter 8 
for the 180" Bloch wall problem, gives two equations. The first is an Euler 
equation identical to Eq. (8.9) but with f, now given by Kv - 2nM?, and the 
second is a boundary condition coming from the integration of the Dirac delta 
function: 

Here 9, is the value of 8(z) at the surface. The solution, 8(z), is similar to Eq. 
(8.14), but shifted on the 9 scale to meet the boundary condition 9 = n/2 
at z = co: 

B(z) = 2 arctan [siih (?)I 
Here, 5 = [~ / (2nM? - K")]112 is the exchange length given in Eq. (12.11b). 
The energy density 2 7 ~ ~ :  - K" provides the torque that drives the surface 
moments in plane as z increases from zero. Equations (16.19) and (16.20) 
combine to give for a,: 

The parameter a,  shifts the domain-wall-like solution along the z axis so that 
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the magnetization at the surface satisfies [from Eqs. (16.20) and (16.21)] 

This equation is plotted in Figure 16.266, where it is clear that the surface 
anisotropy must exceed a threshold Kc before the surface magnetization pops 
out of the film plane. Kc is the energy per unit surface area associated with the 
variation in spin orientation near the surface and is analogous to a domain wall 
energy density o,,, but here, Kc is the energy of a partial wall that is pinned 
at the surface. For surface anisotropy greater than this threshold, that is, for 
K > 1, the form of 0(z) [Eq. (16.20)] is shown in Figure 16.27 for parameters 
characteristic of Ni ( M ,  = 480 emu/cm3, < = 8 nm, Kc = 1.22 erg/cm3) and an 
arbitrary material, X (M, = 1000 emu/cm3, < = 4 nm, Kc = 2.5 erg/cm3). In 
both cases illustrated in Figure 16.27, K" = 0 has been assumed. The magnet- 
ization at the surface takes on an orientation that satisfies Eq. (16.22) and O(z) 
decays (with the form of a Bloch wall) toward n/2 with increasing z. The 
weaker magnetization of Ni allows the surface moments to lie closer to the 
surface normal, 6, = 0. The longer exchange length of Ni allows the surface 
perturbation to stretch deeper into the material. It should be emphasized that 
just beneath the surface, there is no surface anisotropy, only the volume 
anisotropy that favors in-plane magnetization. It is the exchange coupling that 
extends the influence of the surface anisotropy in the material over a range 5 .  

The values of surface anisotropy in Figures 16.26b and 16.27 are large 
compared to the results of most measurements, K% 0.1-0.6erg/cm2. The 

Figure 16.27 Variation of magnetization orientation B(z) with distance from the 
surface in a semiinfinite medium having perpendicular anisotropy according to Eq. 
(16.20). The surface angle is defined by Eq. (16.22). Curves are shown for Ni parameters 
( M ,  = 480 emu/cm3, 5 = 8 nm, Kc = 1.22 erg/cm3) and for material X (M,  = 1000 emu/cm3, 
5 = 4 nm, Kc = 2.5 erg/cm3). K" = 0 has been assumed in both cases. 
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calculations leading to these curves were made for K" = 0. If there is a volume 
anisotropy favoring perpendicular magnetization, K" > 0 (as is the case for 
Cu/Ni/Cu sandwiches because of the positive strain in the Ni layers), the 
exchange length is increased and Kc is decreased. In such cases, less surface 
anisotropy is required to give a perpendicular component of magnetization at 
the surface and the decay to in-plane magnetization is more gradual. 

The field dependence of these solutions is illustrated numerically (O'Hand- 
ley and Woods 1990), and analytic solutions are also available (Aharoni 1993). 

16.8.2 Magnetization Configurations with Two Perpendicular- 
Anisotropy Surfaces 

The preceding analysis is for a semiinfinite material for which 8(z = co) = 7~12. 
It is important to know the form of the solutions, 8(z), for a film where the 
magnetization in the interior may be pulled away from its preferred in-plane 
orientation by exchange coupling to both surfaces. There appears to be no 
simple analytic solution for 8(z) for this case. However, it is possible to derive 
a phase diagram for films with perpendicular surface anisotropy that indicates 
the nature of O(z) in reduced surface anisotropy, rc = KS/K, versus film- 
thickness space (Thiaville and Fert 1992, Hu and Kawazoe 1995, Thomas 1995, 
Bertram and Paul 1997). The phase diagram, shown in Figure 16.28 indicates 
three regimes of behavior: (1) at large film thickness and small reduced surface 
anisotropy, the magnetization is predicted to be uniformly in plane; (2) at small 
film thickness and K greater than a thickness-dependent critical value, the 

Figure 16.28 Phase diagram for magnetization structure in films of thickness d 
normalized to twice the exchange length 9. The vertical axis, K = Ks/K,, is the surface 
anisotropy energy density Ks normalized by the energy per unit area due to the surface 
magnetization structure (AK")lI2. Phase diagram shows three stable, zero-field magnet- 
ization configurations in a thin film with bulk anisotropy in plane (dominated by 
magnetostatic energy) and perpendicular anisotropy at each surface. (After H. Thomas, 
unpublished). The data points are from the effective anisotropy measurements of Ha et 
al. (1999) on epitaxial Cu/Ni/Cu (001) films. 
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magnetization is perpendicular throughout the film; (3) at intermediate thick- 
nesses and surface anisotropies, the magnetization orientation is a function of 
depth in the film, with the magnetization more nearly in plane at the film center 
plane and more nearly perpendicular at its surfaces. The data shown in Figure 
16.28 will be explained below. (The magnetization in the film with 200 nm of 
Ni turns out to be not uniformly in plane; see Section 16.8.3.) 

A simple and insightful stability argument due to Thomas (1995) leads to 
the analytic forms of these phase boundaries. Assume a z-dependent energy 
density in the film similar to that of Eq. (16.18) (independent of coordinates in 
the film plane, a large domain approximation). This energy density is integ- 
rated over half the film thickness (from the origin at the center of the film to 
+d/2). Also, the delta function in Eq. (16.18) must have the argument z - d/2 
to put the surface anisotropy at the film surface. The energy density function 
then takes the form 

Here, a generalized exchange length 5 [Eq. (12.11b)l and surface anisotropy 
length D have been defined: 

2 - A A 
and D = - ' - 1 2 ~ ~ :  - 2B,el Ks  

The volume anisotropy is perpendicular and of magnetoelastic origin. While 
analytic solutions to Eq. (16.23) do not appear to exist, it is still possible to test 
the stability of the out of plane state, 8, = 0 everywhere, by considering 
perturbations of the form 8,(z) = 0 + A8, cos(z/t), and the stability of the 
in-plane state, 0, = n/2 everywhere, by considering perturbations of the form, 
8,(z) = 7112 - AO, cosh(z/r). Substitution of these forms into the energy func- 
tion, Eq. (16.23), leads to conditions for the instability of the perturbation, 
f (8,) > 0, or equivalently, the stability of the unperturbed state. The method 
is outlined in Figure 16.29. 

These stability conditions are plotted as the phase boundaries in Figure 
16.28. They indicate that the fully perpendicular magnetization state is stable 
only in the thin-film, strong-surface-anisotropy regime indicated, and fully 
in-plane magnetization is stable only in the thick-film, weak-surface-anisotropy 
regime indicated. In between these regions, states of inhomogeneous magnet- 
ization having different canting angles at different values of z across the film 
thickness are allowed. 

Torque measurements on CuNiCu (001) epitaxial films (Ha and O'Handley 
1999) give the experimental points in Figure 16.28. As the Ni layer thickness in- 
creases from 1.7 nm, the measured effective anisotropy indicates that the films 
should evolve from being magnetized fully perpendicular (1.7-10 nm), to 
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Stability of M,(8 = 0) Stability of MI,(@ = n/2) 

-n 
Perturbation: B,(z) = 9, cos 4 

5 
e,(~) = - - e, C O S ~  4 

2 5 

Energy 
function: 

Stability 5 d 5 d 
condition: K = - > tan - K = - <  tanh- D 25 D 25 (16.24) 

Figure 116.29 Outline of the method and results for determining thickness-dependent 
magnetization configuration in thin films in the presence of surface anisotropy and 
in-plane bulk anisotropy, but neglecting in-plane variations in magnetization. The form 
of the perturbation to the energy functional is sketched for the two limiting cases, and 
the solutions for the phase boundaries of these regions of stability are given. 

inhomogeneously magnetized (1 1 - 15 nm), and finally to magnetized fully in 
plane. The data plotted on this phase diagram also suggest that for Ni 
thicknesses smaller than 1.7 nm, the magnetization should revert to an in-plane 
orientation, as has been observed by Gradmann (1986) and Ballentine (1989). 
Finally, this phase diagram predicts that the magnetization should be uniform- 
ly oriented in the film plane for Ni thicknesses above about 15 nm, as was 
suggested by bulk magnetometry measurements. However, it will be shown 
below that this model, which assumes uniform magnetization in the film plane, 
still does not explain all the observations on this system; a 200 nm Ni film 
shows a ripple domain pattern (see below). 

16.8.3 Magnetization Variations in the Film Plane: Ripple Domains 

It has been shown that epitaxial Cu/Ni/Cu (001) films exhibit a strong 
perpendicular component of magnetization for Ni layer thickness in the range 
1.7-14 nm. Above this thickness range, magnetometry indicates that most of 
the remanent magnetization lies in the film plane (Keff < 0). However, even up 
to 200nm of Ni, a maze domain pattern with an appreciable perpendicular 
fringe field is observed. Figure 16.30~ shows the domain pattern in epitaxial 
Cu/200 nm Ni/Cu (001) measured by magnetic force microscopy (Section 16.7). 
The width of the domains in this maze pattern is approximately 110 nm. Below 
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the MFM image are in-plane and out-of-plane magnetization loops that clearly 
show this film to prefer in-plane magnetization (Hug et al. 1999). This domain 
pattern has been shown to be due to magnetization ripple (Muller 1961, Spain 
1963, Saito et al. 1964). In such domains, M is largely in the film plane (because 
127c~,21 > K,), but a perpendicular component of the magnetization Mz exists 
which oscillates periodically in x or y. When the magnetization vector ripples 
in and out of the film plane, the secondary tendency for perpendicular 
magnetization can be accommodated (energy decreases like - K ,  sin2@,, where 
0, is the ripple angle measured from the film plane) without paying a price in 
magnetostatic energy as large as ~ Z M : ,  because of the small perpendicular 
component of magnetization and the alternating sign of the magnetostatic field 
on the charged surfaces (see Fig. 2.20). Ripple domains are distinct from the 
magnetization patterns observed in films that are magnetized either fully 
in-plane or perpendicular to the film plane inside the domains (see Section 16.7, 
Fig. 16.22). 

Ripple domain states occur in certain ranges of film thickness and normal- 
ized perpendicular anisotropy as depicted in Figure 16.31 (Hubert and Schafer 

(a) Cu/Ni(200nm)/Cu/Si(OOl) [Hz] 

field [kOe] 

Figure 16.30 (a) Domain pattern as measured by MFM from the fringe field above 
the surface of an epitaxial Cu/200 nm Ni/Cu (001) film. (b) vibrating sample mag- 
netometry M-H loop of the film in (a) showing that the quiescent state of magnetiz- 
ation is predominantly in the film plane despite the strong fringe field observed in (a). 
[After Hug et al. (1999).] 
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Figure 16.31 Phase diagram showing stable regimes of zero-field magnetization 
distributions in a thin film with perpendicular bulk anisotropy (exclusive of magneto- 
static energy). The vertical axis is film thickness normalized to twice the Bloch wall 
width. The horizontal axis is Q = K ' ~ ~ / ( ~ ? E . M : )  + 1. Only the h = HIH, = 0 and h = 0.8 
critical lines are shown. [Adapted from Hubert and Schafer (1998).] 

1998). Here, the vertical axis is film thickness normalized to twice the domain 
wall thickness and the horizontal axis is Q = ~ " ~ ~ / ( 2 n ~ f )  + 1. When Q > 1 
( P f f  > O), the uniform, perpendicular magnetization state is stable regardless 
of the value of d/26,,. When Q < 1 (K"~' < 0), uniform in-plane magnetization 
is stable for normalized film thickness less than a critical value, dl26 < d,,,. 
Above this critical thickness, the ripple domain state is stable. As Q approaches 
unity, there is an increasing thickness range over which a ripple state is stable. 
The phase boundary between the in-plane state and the ripple state is a 
function of applied, in-plane field. The field dependence of this boundary at 
Q w 0 is given by d,,, = 26,,(1 - h)-'I2, where h = H/H, = MsH/2K,. The 
width w of the ripple domains has the field dependence at small Q given by 
w = 26,,(1 + h)-'I2. In the ripple domain state, as in-plane field increases, the 
thickness range over which ripple domains are stable, shrinks, and the width 
of the domains increases. 

The data point in Figure 16.31 represents the 200 nm thick Ni film shown 
in Figure 16.29 (Hug et al. 1999). For this film, the perpendicular anisotropy 
is due mostly to its tensile strain, measured to be +0.355% (Ha et al. 1999): 
K, = 4.6 x lo5 erg/cm3. The magnetostatic energy is 1.5 x 106 erg/cm3, so 
Q = 0.31. The domain wall width, calculated using the total anisotropy, is 
47 nm, so the ratio d/26,, = 2.13. These coordinates place this film well within 
the range predicted for ripple domain formation in zero field. For these values, 
ripple theory predicts a zero-field domain width of 94 nm, which compares well 
with the observed value of 110 nm. Further, the phase diagram predicts that 
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the ripple state of this 200-nm-thick Ni film should be destabilized by an in 
plane field of magnitude H = 0.85H, = 1.7 kOe. The M-H loop in Figure 
16.30 shows the 200 nm Ni film to be saturated by an in-plane field of 2 kOe. 

The ripple state is distinct from the inhomogeneous magnetization state 
shown in the phase diagram in Figure 16.28. Magnetization ripple is stabilized 
by a perpendicular volume anisotropy whereas the inhomogeneous state in 
Figure 16.28 is stabilized by perpendicular surface anisotropy. 

16.9 SUMMARY 

Electronic structure calculations have tended to focus on magnetic moment 
enhancement at surfaces because band structure calculations are reasonably 
good at determining the difference in spin-up and spin-down populations. They 
are not yet accurate enough to determine magnetic anisotropy with as much 
reliability. It is extremely difficult, experimentally, to measure a moment 
enhancement localized in a few atomic layers at a surface. The difficulty comes 
from the measurement accuracy itself, which depends on a knowledge of the 
weight or volume of the material giving the moment. It also comes from the 
difficulty of creating a clean and well-defined surface. Magnetic anisotropy is 
an easier parameter for experiments to determine. Magnetooptic Kerr loops, 
vibrating sample magnetometry, magnetic resonance, magnetic force micro- 
scopy (MFM), and a variety of polarized electron techniques are capable of 
revealing the preferred direction of magnetization in a thin film or at a surface. 
This is revealed in the shape of the M-H (or 6,-H or polarization vs. H) loops 
for different field orientations. 

Despite these difficulties, it is becoming clear that magnetism at a surface or 
in an ultrathin film can be very different from bulk magnetism of the same 
material. This is a result of the altered coordination and symmetry at a surface, 
leading to Nkel surface anisotropy, and in some cases to strong magnetoelastic 
interactions. These effects are most clearly manifest in the appearance of 
perpendicular magnetic anisotropy in many thin film systems. In Fe-based 
thin-film structures, the magnetostatic energy dominates except for thicknesses 
below about 1 nm, where a positive Neel surface anisotropy becomes import- 
ant. In cobalt-based thin films, the bulk magnetocrystalline anisotropy and 
magnetoelastic anisotropy cannot usually be neglected and surface anisotropy 
may be important below about 2.5 nm. In Ni-based thin-film structures, bulk 
magnetocrystalline anisotropy is negligible but not bulk magnetoelastic aniso- 
tropy. A Ntel surface anisotropy (apparently positive for Cu/Ni interfaces) and 
magnetoelastic anisotropy up to at least second order in strain, can dominate 
the magnetostatic energy for Ni thicknesses up to about 13 nm. 

Magnetic domain structures in thin films show many features that dis- 
tinguish them from domains in bulk materials. Scanning electron micro- 
scopy with spin polarization analysis and magnetic force microscopy are 
widely used techniques for imaging surface magnetic domains. Table 16.2 
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TABLE 116.2 Compzrisoa of the CagabiUities and Limita~asms of SEMIPA smd MIFlSW 

SEMPA MFM 

Quantity measured 
Atmosphere 

Surface topography 

Sample conductivity 

Vector components 
imaged 

Present resolution 
Limitations on 

resolution 

Other limitations 

Advantages 

Spin polarization 
Vacuum is essential 

Not an issue 

Metals requireda 

40 nm 
Stray fields, electron optics, 

spin detector efficiency, 
beam diameter and 
current 

Images cannot be collected 
in the presence of 
magnetic fields 

Topography and magnetism 
can be imaged 
independently 

Scanning at different 
magnifications is 
controlled by SEM 
electronics 

Stray field 
Vacuum not necessary but 

does enhance stability and 
sensitivity 

Can be a problem without 
adequate tip feedback 
controls 

Insulators as well as metals 
can be imaged 

Mainly z; governed by tip 
orientation 

40 nm 
Tip size, tip height above 

sample, and instrumental 
sensitivity 

Magnetic tip may interact 
with very soft magnetic 
materials, changing the 
domain pattern during 
imaging 

Topography and magnetism 
can be separated; images 
can be taken in magnetic 
fields; vacuum not 
necessary 

"Domains in insulators can be imaged if samples are coated with a thin magnetic, metallic film. 

compares some of the capabilities, advantages, and disadvantages of SEMPA 
and MFM. 

The magnetization configurations that are stable in thin films having 
volume and/or surface anisotropies that favor out-of plane magnetization can 
be predicted with reasonable accuracy in various approximations. For uniaxial 
anisotropy and homogeneous magnetization, perpendicular magnetization is 
favored for Keff > 0 or Q > 1. When surface anisotropy is present, the surface 
moments are confined to the surface plane of a semiinfinite medium unless Ks 
exceeds a critical value, Kc = A/( where ( is the exchange length. For a thin 
film, as opposed to a semiinfinite medium, perpendicular magnetization states 
can be stable for Ks values less than Kc at small film thickness. In addition, 
states of magnetization inhomogeneous in z can exist. When the constraint of 
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having magnetization uniform in the film plane is relaxed, ripple states can 
exist even for Q < 1. Epitaxial Cu/Ni/Cu sandwiches provide a useful model 
system in which these various magnetization configurations have been ob- 
served. 

APPENDIX: STRESS IN THIN FILMS ON SUBSTRATES 

Thin films are generally in a state of biaxial stress: ox = o, and o, = 0. The 
combined effects of a, and a, can be understood by applying ox first: ex = ox/E 
and e, = -vo,/E. Next, apply o, to the deformed y direction, getting e, = 

o,/E - vox/E. But because ox = a,, the strain for biaxial stress is given by 

When a film on a substrate is in a state of stress, the film-substrate couple 
will respond by bending so that the film stress on the interface is balanced by 
the substrate stress on the interface. This may be expressed as a force balance: 
the force per unit film width (in the y direction, Fig. 16.A.1) between the film 
and substrate is 

or, from Eq. (16A.1) 

Because h, >> hf, most of the strain appears in the film. The substrate 
experiences both tension and compression with an average strain close to zero. 
(These assertions assume comparable stiffnesses for the film and substrate). 

In order to determine how much the film-substrate couple bends under this 
force, it is necessary to consider the bending moments per unit film width, 
M = Fz ,  about the center of the substrate. For the film, the bending moment 
is given by 

Now consider the bending moment in the substrate where the stress is not a 
constant but varies with z (Fig. 16A.1, right). If the substrate curvature is 
assumed to be circular (and it is not, see below), similar triangles indicate that 
the substrate strain, ex = dxlx, is related to the distance, z,  from the center of 
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Figure 16.A.1 Upper left, film that would have larger dimensions were it not bonded 
to the substrate, is in compression when bonded. This exerts a bending moment on the 
substrate, lower left. The bending moments, which are zero on the symmetry plane, are 
shown at right for half of the x-symmetric, film-substrate couple. The strain, ax, 
increases with z, measured from the median plane of the substrate. 

the substrate, by 

or, from Eq. (16A.1), 

Thus, the stress and hence the bending moment is a function of z. The bending 
moment of the substrate is the z integral over the stress in the substrate times 
its moment arm, z:  

The moment on the substrate, Eq. (16A.5), must be equated to the moment on 
the film, Eq. (16A.4), giving 

This is known as the Stoney equation. It is applicable only near the center of a 
curved substrate where the curvature is circular. Equation (16A.6) shows that 
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the stress in a film can be calculated from the radius of curvature, K = llr, 
knowing the elastic properties of the substrate and the film and the substrate 
thicknesses. The Stoney equation is used extensively in a variety of thin film 
measurements. The strain in the film can be determined from the radius of 
curvature and the substrate thickness or from of and Eq. (16A.3). 

A more exact relation between substrate bending and film stress (derived by 
Ha, unpublished), expresses film stress not in terms of a radius of curvature but 
rather in terms of the deflection y at a distance L from the center of symmetry: 

Comparison of this equation with the Stoney equation [Eq. (16A.6)] shows 
that the film stress is actually about 50% greater for a given substrate 
deflection than suggested by the Stoney equation. 

It is important to note that even though stress causes the film to strain and 
bend the substrate, the bending strain in the film is far from sufficient to relieve 
fully the stress in the film. The reason for this is that it remains clamped to the 
much thicker substrate. If the film were not constrained by the substrate, it 
would strain much more. The effect of thin film strain on magnetic properties 
is covered in Chapter 7 text and Appendix 7B. 

PROBLEMS 

16.1 Show that the quantum mechanical polarization is given by P = 

(Nt - N-)/(Nt + N-) by evaluating the expectation value of the Pauli 
spin matrix 0, = (110 01-1) for multi-electron spin state that is a 
weighted sum of spin up a = (110) and spin down 6 = (011) functions: 

16.2 Write the second- and fourth-order terms in ai for the anisotropy energy 
expansion in tetragonal symmetry and show that they all reduce to 
those in Eq. (16.4). 

16.3 (a) Verify that the function in Eq. (16.20) solves the Euler equation (8.9) 
and boundary condition in Eq. (16.19). 

(b) Derive Eq. (16.22) from the two preceding equations. 
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CHAPTER 17 

MAGNETIC RECORDING 

Magnetic recording products include magnetic storage media for tape and hard 
disks, read and write heads, consumer audio and video equipment, floppy 
disks, and credit cards. Although information storage can be accomplished by 
any of several competing technologies (e.g., thermoplastic or phase change 
memories, magnetic bubbles, semiconductor memories, Josephson memories, 
and magnetooptic recording), none has been able to match the combination of 
information areal density and access time of hard disk magnetic storage. 

The density at which information can be stored in high-end magnetic disk 
files has doubled every 2-3 years since the early 1960s (a 30% annual growth 
rate). In 1991, IBM demonstrated a recording system with a storage density of 
1 Gb/in2 (gigabit per square inch): 158 kfci (thousands of flux changes per inch) 
and 7470tpi (tracks per inch) corresponding to a 3.4-pm track pitch. This 
system makes use of advanced thin-film media and new read heads based on 
anisotropic magnetoresistance (MW heads). With the introduction of these new 
MR heads and of higher-density thin-film media, the rate of growth in 
information density has doubled to 60% per year (see Fig. 17.1). In 1997, Tsang 
et al. demonstrated a 5 Gb/in2 hard disk system employing spin-valve read 
head (see below) based on giant magnetoresistance (Chapter 15) and 
Co-Cr-Pt-Ta thin-film media. The bit size was 1400W long (7 bits/pm) on a 
0.7-pm track width. The demonstration achieved a data rate of lo7 bits per 
second. As of this writing, densities of 22 Gb/in2 are available. 

However, past performance is no guarantee of future results. It will be 
shown that increases in recording density are achieved only through a 
reduction of all the critical dimensions involved in the recording process as well 
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Figure 17.1 Areal density history of the hard disk drive. Insert: more detail of the 
upturn in areal density growth in 1991. The present compound growth rate is about 
60%. [After Grachowski and Thompson (1994).] 

as improvements in signal processing, head-media tribology, and track servo- 
control. The ability to control the fidelity and stability of the magnetic 
recording process at still smaller dimensions is limited by our ability to control 
the processing and properties of the materials used in magnetic recording heads 
and media. Ultimately, information storage density will be limited by physical 
factors such as superparamagnetism (zero coercivity implies loss of memory) 
in small storage elements and by magnetic resonance limitations at high read 
and write rates. 

This chapter aims to connect the basic principles of magnetic materials with 
the needs of magnetic recording. It has six parts: 

1. An overview of the principles of magnetic recording (Section 17.2) 
2. A description of particulate recording media (Section 17.3) 
3. A description of thin-film recording media (Section 17.4) 
4. A treatment of magnetic recording heads and materials (Section 17.5) 
5. An overview of magnetic random access memories (MRAMs) (Section 

17.6) 
6. A look forward at developing trends and fundamental limitations (Sec- 

tion 17.7) 

The interested reader is referred to several in-depth texts, reviews, and articles 
found in the list of references at the end of the chapter. Magnetooptic recording 
and materials are not covered here. 
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17.2 MAGNETnG REGORDING OVERVIEW 

The original Ampex wire recording system made use of an iron wire, drawn to 
have a strong fiber texture. This texture produced a uniaxial magnetic 
anisotropy and a coercivity of a few hundred oersteds. The information was 
stored in a magnetization pattern along the wire length whose amplitude and 
frequency replicated the recorded sound. This is analog recording. The magnet- 
ization pattern was written with a small ring head having a gap that provided 
a fringe field to the moving wire. When the written wire passed over the passive 
head gap, a voltage was induced in the windings that could be read acoustically 
by a speaker coil to produce the recorded sound. 

The same principles used then apply to analog audio magnetic recording 
today. However, far more information is stored by digital recording on 
magnetic tapes, floppy disks, and hard disks. The digital recording process is 
outlined in Figure 17.2. The magnetic recording medium (tape or disk) moves 
relative to an electromagnetic transducer, which is essentially a magnetic circuit 
with a gap. When a current passes through windings about the head, the head 
is magnetized and a fringe field appears in the gap. In the write process, the 
fringe field in the gap magnetizes the medium alternately in one direction or 
the other as the drive current changes polarity. Because the head and the 
medium move relative to each other, information can be described in the head 
reference frame in terms of the variable o t  (e.g., e-'"'1 or in the medium 
reference frame by the variable kx  where k = 2nlA. Thus, the full variable is 
kx  - ot and the head and medium have a relative velocity given by v = o lk .  In 
analog recording, the spatial waveform written on the recording medium 

Medium 

IVlagnetic 
Medium 

Figure 14.2 Schematic representation of longitudinal, digital magnetic recording write 
processes. Insert, upper right, sequence of transitions constitute the bits that are read 
as binary information. 
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replicates the temporal waveform put into the medium by the write current. In 
digital recording, the spatial sequence of the magnetized bits replicates the 
temporal sequence of current pulses. The sequence of binary states has 
information significance (Fig. 17.2, inset). A clock sets the system frequency, 
indicating when or where a transition might occur. The presence or absence of 
a transition at expected intervals (called bits) is read as a "one" or a "zero" to 
represent binary coded information. 

When the recorded medium is moved across the gap of a passive magnetic 
circuit, the fringe field above the written bits induces a flux change in the head. 
That flux change corresponds to the spatial magnetization pattern on the 
medium. The flux change in the head induces a proportional voltage in the 
pickup windings of the read head. This voltage is amplified and read with an 
electronic signal processor to make use of the information (sounds or data) 
that has been recorded. 

If one direction of magnetization is written in a longitudinal medium 
immediately adjacent to an oppositely directed domain, the two bits see each 
others' magnetostatic fields. If the coercivity of the medium is small, the bits 
may demagnetize each other, and the information is lost. For stable informa- 
tion storage, even in the absence of external fields, high-coercivity recording 
media are required. It is not enough that the domain walls separating bits be 
stable against demagnetization. For high-frequency analog recording or for 
high-density digital recording, the domain walls should appear as sharp 
transitions to a read head that spans the track width. The domain walls should 
not assume a sawtooth pattern between head-to-head domains (see Problem 
17.5). 

The write head should produce a large flux density in the gap when it is 
activated and none when the write current is zero. That is, ,u >> 1, M ,  large, and 
B, = 0. The read head should have a very large permeability at low fields and 
no coercivity: pi >> 1 and H,  = 0. Figure 17.3 contrasts the ideal, square loop 
of a digital recording medium with that of a recording head where the presence 
of a gap shears the loop over. 

17.2.1 The Write Head 

The current through the N turns enclosing the core of the write head provides 
the magnetic potential or magnetomotive force, Vm = NI (Appendix, Chapter 
2), which generates the field in the gap. The head efficiency r]  is the fraction of 
Vm that appears as field in the gap: 

where the gap length is 2g and the flux path length in the core is I,. From the 
conservation of magnetic current, or flux, about the circuit, the efficiency can 
be expressed in terms of the reluctance and the head parameters (core 
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Medium Head 
Figure 17.3 Schematic M-H loops for ideal magnetic recording medium and head 
material. 

permeability ,u and cross-sectional areas of the core and gap A, and A,): 

The efficiency drops below 100% by the amount of the ratio of the core 
reluctance to the gap reluctance. If the gap length is too small and the 
cross-sectional area there too large, the head field remains in the gap rather 
than fringing out toward the medium. 

The field about the gap of a recording head has the approximate form 

H,(x, y )  = 5 n [arctan r*) - arctan (?)I 
H ( x  + g)2 + y2 H,,(x, y)  = - 4 log 
2n ( x  - g)2 + y2 

where H,  is the field in the gap at x = y = 0. These equations for the head field 
were derived by Karlqvist and are known by his name. He assumed that the 
field in the gap at y = 0 is a constant equal to (4n)M, the magnetization of the 
pole pieces. Actually, this is true only well inside the gap, y < - 2g, as in Figure 
17.4. The true field is weaker than these Karlqvist solutions. Note that these 
fields drop off sharply with distance y from the head and that the field strengths 
at a given height y,  also decrease with decreasing gap length 29 (see Problem 
17.1). 

The Mathematica program to plot the Karlkvist solutions at a distance 
y = 1 from the gap, shown in Figure 17.4, is given next. 

hx = (ArcTan[(x + 1 )/y] - ArcTan[(x - 1 )/y])/Pi 
hy= -(Log[((x+ 1)A2+yA2)/((x-1)A2+yA2)])/(2 Pi) 
y = l  
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Figure 17.4 Schematic cross section of the gap in a magnetic recording head at left 
showing coordinate system for calculation of gap fields. The recording medium moves 
in the x direction at a distance y from the face of the head; x and y are normalized to 
g. At right, the forms of the Karlkvist field solutions normalized to H ,  are shown for 
y = l .  

Plot[{hx,hy), {x, -3,3), AxesLabel+{"x", "Field"}, 
PlotRange-+{ - 0.3, 0.611 

To compare the decay in H ,  with increasing y with an exponential decay and 
with 0 . 6 1 ~  we can follow the first two Mathematica expressions above with the 
following statements: 

x=o 
Plot[{hx, Exp[- y/2], 0.6/y), {y, 0, 5),AxesLabel-+ {"y", "Field"), 
PlotRange-+{O, 1 )I 
The full x and y dependence of H ,  and H,  can be generated by the following 
simple Mathernatica plot commands after defining the fields as above: 

Plot3D[hx, {x, -3, 3), {y, 0, 31, PlotRange-+(O, 1.21, 
AxesLabel + {LL~7 ' ,  "y", "Hx")] 

Plot3D[hy, {x, -3, 31, {y, 0, 31, PlotRange+{ - .8, .8), 
Axes Label -+ {"x", 'Ly'', "Hy")] 

The x component of the gap field drops off exponentially at first and then 
goes as l / y .  The loss of signal at the medium from the write head field [Eq. 
(17.2), Fig. 17.51 is slightly less than exponential; it represents a 45 dB loss at 
y = 1. (See also Fig. 17.6.) 

17.2.2 The Recording Medium 

Magnetic recording media are ideally composed of a regular array of isolated 
single-domain magnetic elements. These elements should be bistable; that is, 
they sho~zld be capable of being magnetized using a reasonable field strength. 
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Figure 17.5 Karlkvist field H ,  at x = 0 normalized to H ,  as a function of distance y 
from the gap, compared with exponential function. For y > 1.8, the field drops off more 
like 0.6/y, which plots almost directly over H,. Coordinates x and y are normalized to g. 

Figure 17.6 Full x and y dependence of the Karlkvist solutions H ,  and H ,  normalized 
to the gap field H,. View is from the head gap centered at y = 0 ,  x = 0 looking toward 
the medium in y > 0 .  
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When the field is removed, the elements should have a large remanent 
magnetization. The simplest embodiment of these criteria is the ferrite ring-core 
memory (Section 17.6). But uniformly sized pieces of magnetic material, large 
enough to assemble, were not able to provide sufficient bit density. For higher 
information storage densities, smaller-sized pieces of magnetic material were 
less regular and harder to arrange periodically. A continuous, two-dimensional 
magnetic medium that met these criteria had to be developed. The path of 
development of continuous magnetic media began with slurries or paints filled 
with magnetic particles. Such a tape-cast recording medium is essentially an 
array of microscopic, independent magnetic dipoles. A single bit consisted of 
hundreds or thousands of particles with a net magnetization in one direction. 
Magnetic independence of the particles is required so that orienting a given 
dipole or cluster of dipoles will not affect the orientation of adjacent regions. 
The small size of the particles and their magnetic isolation from each other 
allows that, on the scale of the head dimensions, the transition between 
domains appears sharp (see Fig. 17.2). 

At higher recording densities, the number of particles per bit decreases 
unless the particle size decreases correspondingly. When there are fewer 
particles per bit, the transition between domains becomes less sharp and 
pickup signal decreases. Why not make each recorded region a single-domain 
particle or grain? This is not possible by simple film deposition alone. The 
difficulty comes from the strict periodicity requirement: the bits must pass the 
head at a regular clock speed so that, at a constant relative velocity between 
the head and recording medium, they must be arranged with strict spatial 
periodicity. It is now possible to create nanoscale patterned media by high- 
resolution lithography (Section 17.7). 

The magnetostatic field due to a sharp, longitudinal, head-to-head transition 
can be derived from magnetic potential theory (White 1985, Bertram 1994). 
Consider a recording medium of thickness 6 in the y direction and a track 
width of w in the z direction. The field along the track, h, for w >> 6, is identical 
to what is derived from Eq. (2.3): 

(4n)M ,. [ arctan ( Y  ------- +x6/2) - arctan (Y ---- ;612)] (I 7.3) 
7C 

Along the midline of the recording medium, specifically , at a height y = 0, Eq. 
(17.3) becomes 

The last approximation applies close to the transition at x = 0. 
Thus, the strength of the field produced by the recorded bits is proportional 

to the product of the bit rernanence and the thickness of the recordecl 
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information, M,6. The fringe field of a single magnetic transition is plotted in 
Figure 17.7 for y = 0 and 0.5 (fine lines). 

In practice, the magnetostatic energy at the transition is minimized by a 
smearing of the transition over a length a along the track direction, x. The form 
of the magnetization through the transition is generally assumed to be that of 
an arctangent function (Fig. 17.7, inset): 

M,(x) = - arctan - 
7t '" (:) 

This change in transition shape decreases the fringe field, Eq. (17.3), which now 
takes the form (White 1985, Bertram 1994): 

- 2 arctan (:)I (17.4) 

The form of the fringe field for a = 0.5 and 6 = 1 is shown in Figure 17.7 at 
y = 0 (center of the medium thickness) and y = 0.5 (the top surface of the 
recording medium). 

This fringe field of a sinusoidal magnetization pattern varies sinusoidally 
with position along the track and drops off exponentially with distance above 

Figure 17.7 Horizontal fringe field h, for a longitudinal transition of zero width 
(a = 0), Eq. (17.3) (fine lines), and for a = 0.5, Eq. (17.4) (bold lines), at y = 0 (solid 
lines) and y = 0.5 (dashed lines). A magnetization of 400emu/cm3 is assumed and 
medium thickness, 6 = 1. 
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the medium. This exponential signal loss, H = where k = 2x12, corre- 
sponds to nearly a 55dB loss for y = 5 specifically, H(l)/H(O) = 1.9 x loW3. 
Here /1 is the wavelength of the recorded bits. Thus, in the coordinates of 
Figure 17.8 with x = 0 at a transition: 

H, cc e-ky sin(kx) and H, cc e-kY cos(kx) (17.5) 

The H, field is shown schematically in Figure 17.8. The origin of the sinusoidal 
H, field is displaced to larger values of y as H, is evaluated at larger values of y. 

More complex magnetization patterns in analog recording, or bit sequences 
in digital recording, must be Fourier-analyzed. Each Fourier component, 
corresponding to a different wavenumber, k, decays like e-ky. Thus, for weak 
signals or larger head-to-medium distance, the higher-frequency information is 
lost first. 

The field loss in the write process [Eq. (17.2)] and in the read process [Eq. 
(17.5)] account for 100 dB or five orders of magnitude loss. Clearly, at higher 
recording density (smaller A) the head-medium spacing must decrease or these 
losses will increase to the detriment of the recording process. 

Because of the experimental loss of signal with distance of the head above 
the medium, or more precisely, above different strata within the medium, it 
turns out that most of the signal to be read comes from a depth of a little more 
than a third of the recorded wavelength. This can be shown by integrating the 
signal from the medium [Eq. (17.5)] to get the normalized voltage Vd from a 
depth, d (Fig. 17.9), and setting it equal to, for example, 90%: 

Figure 17.8 Schematic representation of field above a longitudinal recording medium. 
The sinusoidal field variation is represented at three increasing values of y. 
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Figure 17.9 Coordinates describing integration over recorded medium to obtain field 
strength at read head. 

Thus, the depth dgO from which 90% of the read signal originates, is given by 

17.2.3 The Read Head 

The read function can be accomplished with a write head operated in its 
demagnetized state (i,,, = 0). The fringe field of the transition, Eq. (17.4), is 
seen by the moving head as time dependent, and therefore a voltage is induced 
in the windings. We will see below that advantages come from the use of a 
different, more sensitive read transducer based on the MR effect or the GMR 
effect. This has the added benefit of allowing the write head to be optimized 
for only writing and the read head for reading. 

Tape heads operate in contact with a protective layer over the magnetic 
recording tape medium. In hard disk drives, the head flies on an air cushion at 
a height of about 40nm above the disk surface. The hard disk recording 
medium is protected from head crashes by a thin diamond-like carbon (DLC) 
coating. The air bearing surface of the head may be uncoated but some heads 
also have a thin DLC protective layer. To  understand the importance of 
head-medium separation, it may be useful to consider an analogy. A scanning 
tunnel microscope is extremely sensitive to atomic-scale variations in its 
separation from a sample because the tunneling current varies exponentially 
with the tip height above the surface. Similarly, a read head (and to a lesser 
extent a write head) is extremely sensitive to variations in its height above the 
recording medium. The variation here also is exponential with separation. This 
places severe restrictions on substrate flatness, medium thickness uniformity, 
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head aerodynamics (or tribology for contact reading), and mechanical stability 
of the head-medium physical supports. 

17.2.4 Material Requirements 

Let us summarize some of the requirements placed on magnetic materials used 
in recording heads and media. 

The write head must have adequate magnetic permeability at high frequency 
so that it can be driven to saturation with minimal current. 

The write head must have a sufficiently high saturation magnetization so 
that its fringe field exceeds the coercivity of the medium (500-30000e). 
Ni,,Fe,, (4nMs % 10 kG) is generally used in thin-film write heads but 
higher-induction permalloys, such as Ni,,Fe,,, and iron nitrides based on 
Fe,,N,(p,M, FZ 3 T), are being considered. 

The recording medium should respond to the field of the write head ( H ,  not 
too high) and retain the sense of magnetization in spite of the magnetostatic 
fields of adjacent bits, stray fields and ambient temperature fluctuations (H, not 
too low). The coercivity is typically in the range 500-3000 Oe. These values 
place recording media in the low end of the coercivity range of hard magnetic 
materials. 

(Note: The medium should be composed of small, independent magnetic 
entities (grains or single-domain particles) that can retain their direction of 
magnetization across a sharp transition. A bit ideally should be composed of 
a single-domain, isolated magnetic particle. Because this is generally not 
practical, approximately N = lo3 particles should constitute a bit in order to 
insure a sharp transition.) 

The medium must have adequate remanent magnetization so that the fringe 
field due to the written domain sequence extends above the surface with 
sufficient strength (several Oe) to be detected by a read head. A magnetic 
recording medium requires a saturation magnetization of at least 500G 
(poMs = 0.63 T), and typical values range up to 1000 G. 

The read head must have low coercivity, low noise, and extremely high 
permeability in order to respond with a substantial change in flux to the weak 
fringe field above the medium. Near-zero-magnetostriction permalloy is gen- 
erally used in thin-film read heads. 

The read and write functions can be filled by the same inductive head but 
there are advantages to separating these functions. 

The flying height should be as small as possible but not to the extent that 
head crashes are frequent or friction and wear become problems. 

17.2.5 Longitudinal versus Perpendicular Recording 

Having reviewed the basics of magnetic recording, the reader is in a position 
to distinguish between longitudinal, perpendicular, and isotropic recording 
media. 



A longitudinal medium is one where the easy axis of magnetization lies in the 
plane of the recording layer. This geometry takes advantage of the strength of 
the in-plane component of the write head fringe field [Eq. (17.2) or Fig. 17.43. 
Longitudinal media may be textured so that the easy axis of the grains lies 
predominantly along one direction in the plane. This is advantageous for tape 
media where information is recorded linearly, but it is ineffectual for floppy 
disk media where the tracks are circumferential. As recording density increases 
in a longitudinal medium, the demagnetization factor of the recorded bits, 
proportional to M,t/A, becomes more unfavorable unless the depth of informa- 
tion storage is proportionally reduced. But reduced thickness reduces the read 
signal strength, which is also proportional to M,t. Longitudinal media consti- 
tute the bulk of the tape, floppy, and hard-disk media. They have demonstrated 
linear bit densities in the range of 1Q5 bits per inch (bpi) or A = 0.5 pm. 

Perpendicular media are those for which the preferred direction of magnet- 
ization is perpendicular to the recording layer. For a perpendicular medium, 
higher information density stabilizes the bits against demagnetization (the 
demagnetization factor in this case goes as M,A/t). Thus, recorded information 
can be packed with greater density in a perpendicular medium than in a 
longitudinal medium. This is depicted schematically in Figure 17.10. Densities 
in the range of 100,000-500,000 bpi are achievable in perpendicular media. 
However, at increased densities the fringe field of a perpendicular medium is 
confined closer to the medium [compare Eqs. (16.14) and (17.511. This makes 
inductive reading of perpendicular media more difficult. See Suzuki (41980) for 
the case in favor of perpendicular media and Mallinson (1981) for the case 
against. Perpendicular media for inductive recording systems have long been 
of interest but are not yet in production. Magneto-optic media are preferably 
perpendicular because that geometry optimizes the Merr rotation in normal- 
incidence reading. 

Perpendicular magnetic recording requires a different kind of head than that 
used on longitudinal recording. Figure 17.11 shows one configuration for a 
single-pole tip for perpendicular recording. The medium is backed by a 
high-permeability layer, which creates an image of the pole and focuses its field. 
The single pole is joined to a return pole whose larger cross-sectional area 

Longitudinal Perpendicular  

( a  ( b )  

Figure 17.10 Comparison of recorded bits in longitudinal (a) and perpendicular (b)  
media. 
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CoCr  
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I .  

Figure 17.11 Perpendicular recording using flux closure layer beneath the medium. 

allows the returning flux to pass back through the medium at lower flux 
density, thus not interfering with stored information. 

There has been interest also in media that are neither longitudinal nor 
perpendicular, but rather, isotropic. An isotropic recording medium should 
respond to the fact that the field of an inductive ring head has both 
longitudinal and perpendicular field components in its gap. An isotropic 
recording medium presumably would respond optimally to the entire head 
field rather than just to its longitudinal or perpendicular field component. This 
is referred to as vector magnetic recording. 

17.3 PARTICULATE RECORDING MEDIA 

Particulate media generally consist of single-domain particles because of their 
high coercivity. The magnetization process in single-domain particles is de- 
scribed in Chapter 9. H,  reaches a maximum between the single-domain and 
superparamagnetic limits (Fig. 12.2). It was shown in Chapter 8 that the 
volume of a single-domain particle can be increased if the particle is elongated; 
this reduces the magnetostatic energy that is always the driving force for 
domain formation. Acicular particles are most often used because of their 
strong shape anisotropy. 

The particles are suspended in a polymer matrix (including binders, plas- 
ticizers, solvents, and wetting agents) that allows the medium to be painted on 
a substrate then cured to a flexible magnetic layer. Thus, particulate media are 
more suitable than metal films when soft substrates such as mylar tape or 
polyester floppy disks are used. 

The process of coating a particulate recording medium on a substrate tends 
to align acicular particles along the application direction. As the solvents are 
baked off, a field can be applied to enhance alignment of the particles. This is 
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desirable if the medium is to be magnetized in the alignment direction because it 
squares up the hysteresis Boop. Unidirectional texturing is used in magnetic tape. 

A square M-H Boop implies that the material is bistable, that is, that either 
direction of magnetization is stable up to fields of PI,. Further, the material 
should be bistable on a submicron scale. A quantitative measure of loop 
squareness that is widely used outside the recording media community is the 
remanence ratio 

This parameter is an indicator mainly of the strength of the read signal, 
proportional to M,, in either of the two bistable states. Ht says nothing about 
stability, which is related to H,. Another measure of squareness that includes 
the field needed to switch the magnetization is the ratio of M,/Hc. This 
parameter measures the average susceptibility in the second quadrant. Because 
a magnetic medium is generally near a state of net demagnetization, a more 
appropriate susceptibility is X, = [dM/aPIlHC at M = 0. It is usually the case 
that X, > M,/Nc so local squareness is proportional to the magnitude of the 
ratio x,/(M,/E%,). To express this ratio as a squareness parameter that varies 
from 0 (not square) to 1 (most square), the coercivity squareness parameter S* 
is defined as: 

These squareness parameters are illustrated in Figure 17.12. A value of S or S* 
approaching unity indicates an M-N loop with a sharp second quadrant 
change in magnetization with changing field. More importantly, with applied 
field varying in time over a moving medium, a large value of S* implies that a 
spatially sharp magnetization transition can be written and sustained in the 

Figure 1'7.12 Part of M-H loop showing various measures of loop squareness. 
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medium. The spatial sharpness or acuity of the transition is enhanced if the 
medium consists of a large number of small magnetizable units, grains, or 
particles. These units should be as weakly interacting magnetically as possible 
in order to allow a spatially abrupt transition. At different points across the 
track width the transition fluctuates in position by about half the particle 
dimension along the track length. A read head averaging the transition across 
the track width will see more noise and less signal as the spatial fluctuations 
in the transition position approaches the bit length. 

The switching field distribution (SFD) is defined (with reference to Fig. 
17.12) as 

AH 
SFD = - 

Hc 

where AH is the full width at half maximum of the differential susceptibility, 
x = d M / d H ,  near H,. The SFD is a measure of the transition fluctuations. High 
SFD requires a narrow particle size distribution. 

A particulate magnetic recording medium should be composed of rod- 
shaped (acicular) particles. While a favorable shape factor may contribute to a 
bistable loop, a strong uniaxial magnetic anisotropy in the particles also 
enhances loop squareness, provided the easy axes are well aligned. If the 
magnetic easy axes do not show a strong texture but instead are spatially 
dispersed, then the magnetostatic energy at the transition is reduced and the 
transition width may be narrow. However, in this case, the signal is also 
reduced because M ,  is reduced. On the other hand, if the grains show a strong 
texture (high squareness) the magnetostatic energy at the transition is large and 
acuity may be degraded by a zig-zag transition (especially in thin film media). 
In this case the signal from the transition may be noisier. The best media lie 
between these extremes. 

The magnetization density of particulate media is reduced relative to that 
of thin-film media because of the presence of binders and plasticizers in the 
former. The magnetic particle loading in particulate media is typically 20-50% 
by volume. Tape media (low density) typically have a magnetic coating 
thickness of order 10 pm, while floppy disks (higher density) are coated only 
to a few microns. Particles are used in media for recording systems in which 
the bit length is typically greater than one micron. 

17.3.1 Gamma iron Oxide 

The composition Fe203 is chemically stable because the iron ions are in the 
fully oxidized state, Fe3+. At room temperature the stable phase of this 
composition is the hexagonal corundum phase, a-Fe20, or hematite, which is 
antiferromagnetic and therefore not suitable as a recording medium. A meta- 
stable phase, gamma ferric oxide or maghemite, y-Fe,O,, has a spinel structure 
similar to that shown in Figure 4.6, but with the divalent iron ions missing and 
the two trivalent irons unequally distributed over the A and B sites making it 



Figure 17.13 Magnetic particles used in recording: (a)  iron oxide particles with 
surface-deposited cobalt of coercivity 700-750 Oe; (b) iron oxide with Co-treated 
surface having coercivity of order 900 Oe; (c) iron metal particles with coercivity of 
1500 Oe; (d) barium ferrite particles (note different scale) (Sharrock 1990). 

a ferrimagnet. The room temperature saturation magnetization of y-Fe20, is 
approximately 400 6, but only about 350 G in fine particles. Acicular particles 
of y-Fe203 with roughly a 10: 1 aspect ratio (typically 100 nm long and 10 nm 
in diameter), have been the most widely used recording medium since the late 
1940s. Thus the bit length is of order ten particle lengths. Because K ,  of 
y-Fe203 is of order only lQ4erg/cm3, the particle shape dominates the 
anisotropy and controls the coercivity. From Eqs. (2.17) and (2.18), the 
demagnetization factor of a prolate ellipsoidal particle is AN m - 1/m2, 
where m = a/b z 10, so H, is given by 2nMs m 2200 0e.  Thus the shape 
anisotropy is of order K ,  m M,N,/2 = nM; % 4 x lo5 erg/cm for y-Fe203. 
Acicular y-Fe,O, particles exhibit a coercivity of order 350 Oe, much reduced 
from the limiting value, H,. The first hard disks (those in IBMs Winchester 
drives) were coated with an iron-oxide particulate medium. 
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The fabrication of acicular y-Fe20, is described in detail by Bate in 
Wohlfarth (1980). Two paths can be followed from a starting iron salt solution: 
nucleation and growth of FeOOH (which is dehydrated to give a-Fe203), or 
direct precipitation of hematite. Hematite must be reduced to form the spinel, 
magnetite. Oxidation of magnetite gives maghemite, a metastable spinel 
ferrimagnet, a-Fe203. 

Cobalt-modified ferric oxide media (Fig. 17.13, a and b) presently make up the 
most widely used class of particulate recording materials. They were developed 
during the late 1960s to improve on the low coercivity of y-Fe203. The cobalt 
creates a magnetically harder phase that results in a higher coercivity. Co2+ 
ions preferentially occupy the B sites of the spinel structure. The energy-level 
splitting in that octahedral site (see Chapter 6) gives a partially occupied t2,(d,) 
valence configuration. Thus <L,) # 0 and the spin-orbit interaction can give 
rise to magnetic anisotropy. The higher anisotropy enhances H,. Early devel- 
opment of cobalt-treated iron oxide particles, which focused on uniform 
doping, has given way to surface doping which gives more stable magnetic 
properties. 

1. Uniform Co2+ Doping. The increased contribution of magnetocrystalline 
anisotropy to the total anisotropy in Co-doped ferric oxide means that H,  is 
more sensitive to temperature and stress compared to y-Fe203. Also, Co2+ 
ions in the presence of Fez+ ions experience enhanced mobility. Thus, time 
dependence of magnetic properties can be a problem in slightly reduced, 
uniformly doped cobalt-iron oxide. A further disadvantage of uniform doping 
comes about if the Co2+ ions are randomly distributed over different sites in 
a particle. This results in a random crystalline anisotropy which detracts from, 
rather than enhances, the shape anisotropy. 

2. Co2+ Surface Treatment. When the cobalt is confined to a thin surface 
layer on the y-Fe203 particles, the composition there can approach 
CoOFe203, which has no Fez+ ions. This reduces the instability problem 
encountered with uniformly doped y-Fe,03. Also, the anisotropy arising from 
the Co2+ rich surface layer is less random and reinforces the shape anisotropy. 

Chromic oxide is metallic and ferromagnetic, the only known ferromagnetic 
oxide at room temperature. It was developed during the late 1960s specifically 
to improve on the relatively low coercivity of y-Fe203. Its coercivity is in fact 
significantly improved (500-600 Oe) and its magnetization (350 6) is compar- 
able to that of y-Fe203. 
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CrO, is made by a relatively expensive, high-pressure, hydrothermal pro- 
cess. A clear advantage of this process is its simplicity; only one step is 
involved. Sb, Fe, or Te is sometimes added to control the nucleation and 
growth of the needle-shaped particles. Because of their shape uniformity, CrO, 
particles give highly oriented, high-SFD, media. Chromic oxide media compete 
with Co2 -y-Fe203 for market share in the 500-900 Oe media range. 

CrO, particles having coercivities approaching 3000 Oe have been made in 
the laboratory by using Ir as a growth inhibitor. The resulting particles have 
smaller diameters and the magnetization reversal mechanism probably is 
dominated by coherent rotation rather than curling (which appears to be a 
factor in larger particles). 

The low Curie temperature of CrO, (125°C) makes it the material of choice 
in thermomagnetic copying, a process for contact duplication of large amounts 
of high-density information by cooling a CrO, medium from above its Curie 
temperature while in contact with a higher T, master. 

17.3.4 Metal Particles 

Acicular metal particles were developed for magnetic recording in the late 
1970s. The use of pure metal particles instead of oxides results in significant 
increase in magnetization density. The large magnetization and relatively low 
crystal anisotropy of iron ( ~ E M , " / K ,  z 10,) demand that the particles be 
acutely acicular (Fig. 17.13~) to avoid demagnetization. Larger magnetization 
enhances the shape-induced anisotropy (proportional to M:) and hence 
increases the coercivity (as M,). The most widely used metal particle recording 
medium is based on iron. 

Transmission electron microscopy (TEM) studies show oxide layers of 30-40 A 
thickness on iron particles. This accounts for most of the loss in magnetization of 
particulate iron relative to pure iron. The surface oxide is generally inhomogeneous 
and reflects an expected oxygen gradient: outer layers of Fe,03, and underlying 
layers of Fe30,, then sometimes FeO before reaching the Fe core. While pure iron 
has amagnetization density in excess of 1700 G, particles for recording media have 
a high surface to volume ratio and generally exhibit only 50-60% of this value. This 
is still a significant improvement over M,for oxide particles. The tendency ofmetal 
particles to oxidize can be diminished by alloying additives to the pure metal, by the 
polymer binder used in the medium, or by surface passivation with selected oxides. 

Commercial production of iron particles begins much like the production of 
y-Fe,03. The a or y phase of (FeOgBW) is nucleated and grown from an iron 
salt solution. Al, Si, or P additions to the FeOOM are sometimes used to 
control morphology and minimize sintering in subsequent steps. Dehydration 
and reduction then result in the final metal needles. Their shape is similar to 
that of y-Fe203 but they are slightly smaller. 

Iron particles are widely used in 8-mm video cassette and other high-density 
media. The mechanism of magnetization reversal is consistent with the chain- 
of-spheres model (see Chapter 9). In particles that show increasing coercivity 
with decreasing diameter, a curling model seems to apply. 
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17.3.5 Barium Ferrite 

Ba0.6Fe,03, developed in the 1980s, is unique among magnetic particles 
inasmuch as its anisotropy is not dominated by shape. Rather, these hexagonal 
platelets (approximately 10 nm thick and 100 nm in diameter; Fig. 17.13d) are 
magnetized normal to their thin dimension because of a strong crystalline 
anisotropy (3.2 x lo5 J/m3) (see Chapter 13). 

Barium ferrite has the hexagonal magnetoplumbite structure assumed by 
the class of materials of formula M 0 6 F e , 0 3 ,  where M = Ba, Pb, or Sr. 
Barium ferrite is ferrimagnetic with M, < 400 G. Barium and strontium ferrites 
are used as high coercivity permanent magnets because their very large 
magnetocrystalline anisotropy favors c-axis magnetization. These ferrites grow 
most rapidly in their a-b plane to form hexagonal platelets and the crystal 
anisotropy overwhelms the shape anisotropy (271.~: M lo5 J/m3), SO the par- 
ticles remain magnetized perpendicular to their thin dimension. Barium ferrite 
particles are well suited for use in perpendicular particulate media; the flat 
particles generally lie with their plate normals perpendicular to the plane of the 
coating. Despite demonstrations of high recording density, barium ferrite 
media have not captured a sizable share of the particulate media market. This 
is due in part to their low magnetization. 

The large magnetocrystalline anisotropy gives the particles a coercivity too 
high for magnetic recording. Consequently, Ti2+, Co2+, or Fez+ ions are 
sometimes substituted for some of the Ba2+ to reduce K,  and bring H ,  into 
the range 500-1200 Oe. Barium ferrite media show a very sharp switching field 
distribution despite some evidence of strong interparticle magnetic interactions. 

Small platelets typically 100nm in diameter and 10nm thick can be made 
by a hydrothermal process or by devitrification of glass. 

In summary, the prototype particulate recording medium, acicular y-Fe203, 
is the product of a mature and cost-effective processing technology. However, 
it is characterized by low magnetization density and low coercivity. Cobalt- 
treated ferric oxide and CrO, particles were developed to improve on the H,  
of iron oxide. Metal particles were developed for their enhanced magnetization. 
Barium ferrite particles were developed as a perpendicular recording medium. 
Smaller particle sizes, desirable for high-density recording, bring problems of 
lower H,  and reduced M, due to the higher surface to volume ratio. Develop- 
ment of new compositions for particulate media have focused on rare earth- 
transition metal intermetallic compounds, among others. See Table 17.1 for a 
summary of properties of several particulate media. 

17.4 THIN-FILM RECORDING MATERIALS 

The challenge for thin-film media is to achieve high coercivity to insure a sharp 
transition with low noise, while at the same time maintaining adequate signal 
strength, proportional to M,t. In the case of particulate media, the anisotropy 
needed for high coercivity is generally provided by particle shape. Thin film 



TABLE 17.1 Summary of Gharaceedstics of Various Particulate Media 

Dimensions Source M s  Hc 
(Length, mm) of Anisotropy (6) (Oe> Application 

~ - ~ ~ 2 ~ 3  10 : 1 acicular 

CrQ, Acicular 

Co2 + --yFe20, 10 : 1 acicular 
(0.1-0.25) 

a-Fe 10 : 1 acicular 
(0.1-0.25) 

Ba0.6Fe2O, Hexagonal 
platelets 
(0.01 x 0.1) 

Shape 350 350 Audio and low- 
density data 

Shape and crystal 350 f 50-90 550 f 50 Audio/video and 
data tape 

Shape 350 900 & 100 Audio/video 

Shape 750-900 1500 8-mm video and 
digital audio 

Crystal 300 Broad range, typically 
500- 1200 
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media rely more on intrinsic crystal anisotropy. In both cases, single-domain 
particles are required to eliminate domain walls, which lower coercivity. 
Thin-film magnetic recording media, just as particulate media, can be either 
longitudinal and perpendicular. 

Typical values of S* in thin film media are 0.5-0.9. At low recording 
densities, it is desirable to maximize the coercive squareness. High squareness 
implies a large demagnetizing field at the transition. At high recording 
density, square media often reduce their magnetostatic energy at the sharp 
transition by forming a zig-zag domain wall. Such media show increased 
noise. 

17.4.1 Noise in Thin-Film Media 

Thin-film media are more prone to noise than are particulate media. The 
reason for this is that in the latter case, the particles are fully isolated from each 
other by the polymer matrix so the transition fluctuations are limited by the 
particle size. In thin film media, the grain boundaries are narrow enough and 
often sufficiently magnetic to allow the particles to couple by exchange or 
dipole fields. Thus several particles can act in unison (an interaction domain) 
effectively increasing particle size and transition thickness. The more irregular 
transitions in thin-film media are referred to as zigzag or sawtooth transitions. 
Noise in thin-film media is due primarily to the formation of zigzag transitions 
between bits. 

As is demonstrated in Problem 17.5, the amplitude of the sawtooth pattern 
scales roughly as M;/K'/~. This has been qualitatively confirmed by experi- 
ment. One solution is to reduce the magnetostatic energy by decreasing the 
M,t product of the thin film. However, this reduces signal strength. Another 
solution would be to increase the magnetic anisotropy. This is not always easy 
and must be limited by the ability of the write head to perform its function. 
Zigzag domain wall amplitude can be reduced also by use of a soft magnetic 
underlayer. This alloys flux closure and hence reduces the magnetostatic energy 
from the head-to-head transition. Media noise increases with increasing bit 
density in longitudinal films having no underlayer. It decreases with increasing 
bit density in perpendicular media because they have no zigzag domain walls. 
Zigzag or sawtooth transitions were identified in longitudinal Co-Cr films in 
the early 1970s. Bertram (1994) shows that a change in transition width from 
a delta function to an arctan-like transition of length a along the track 
[M,(x) = M, tan-'(xla)], results in a loss of signal as if the head-to-medium 
distance were increased by the amount a. 

Signal-to-noise ratio (SNR) is also a function of statistical counting noise in 
a measurement. Assume that there are N independent grains per bit. The 
transition position will be ill-defined on the scale of the grain size, thus noise 
goes as w/N112. Signal is proportional to w giving SNR cc N1I2. Equivalently, 
random walk considerations show that fluctuations (noise) from N random 



events increase Bike N- I i2 as more events are averaged. The signal is propor- 
tional to the number of measured events or particles per bit, AT. Hence 

An SNR of 20dB [dB = 20 log (ratio of amplitudes)] is equivalent to 
N1I2 = 10, N = 100, or 10 particles by 10 particles on the surface of a bit array. 
It is desirable to reduce particle size as long as I f ,  does not drop too severely 
on approaching the superparamagnetic regime. Superparamagnetism becomes 
a problem for particles smaller than about POnm in diameter, corresponding 
to areal densities of about 20 Gb/inz. 

Eambeth (1998) argues that for an ideal thin-film medium (completely 
noninteracting particles), the signal-power to noise-power, proportional to N ,  
is important. 

For either s f  these measures, SNR increases with increasing number of 
particles in a bit. If the particle easy axes are distributed in orientation, those 
orthogonal to the read and write axis are essentially inactive and contribute 
little to the signal. This cause of reduced signal can be minimized by texturing 
the thin film medium so that the c-axes of the cobalt-rich grains are more 
favorably aligned with the track direction. Directional roughening of the 
aluminum substrate is also useful. 

Interaction domains consist of clusters of coupled grains up to several 
microns wide that switch as a unit. They have been observed in high-noise 
thin-film media but not in low-noise media. Interaction domains result from 
either magnetostatic or exchange interactions between single-domain particles. 
Thus it is desirable to try to isolate the magnetic grains by a nonmagnetic 
intergranular layer. Particulate media use nonmagnetic, organic binders to 
isolate the separate particles. This reduces the likelihood of interaction do- 
mains and promotes a spatially sharp magnetization transition region. Grain 
isolation in thin film media is difficult to achieve but can be approached by 
alloy selection, processing conditions, and buffer layers. 

17.4.2 Longiteadinall Thin-Film Media 

The first electrochemically deposited cobalt thin films for magnetic recording 
(1952) had a coercivity of less than 300 Oe. The addition of phosphorus to the 
electrochemical solution increased Pi, nearly sixfold. Apparently, phosphorus 
segregates to the grain boundaries, isolating the grains and rendering them 
single-domain particles. 

The addition of nickel to Co-P led to films having smaller grain sizes and 
better corrosion resistance. It was studies of Co-Ni-P-plated media that first 
identified zigzag domain walls at bit transitions as a source of noise. Low noise 
was found to be associated with single-domain particles. 
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Evaporation of Co, Co-Ni, or Co-Ni-Cr on polyester at low angle of 
incidence (70° from normal) and high deposition rates (1-lO,um/s), has been 
used to make longitudinal media called metal evaporated tape (MET). These 
processing conditions lead to a tilted columnar microstructure due to shadow- 
ing effects during deposition. The shape anisotropy of this microstructure and 
the presence of cobalt oxide at the particle boundaries are responsible for the 
high coercivity (1 500 Oe) of MET media. 

Studies of electroless deposition of Co-P showed that under some conditions 
an HCP structure resulted with its c axis normal to the substrate plane. In 
these films, H, was of order 3000e for fields applied in plane (see Fig. 9 .3~ )  
and exceeded 1000 Oe for fields applied along the perpendicular easy axis (see 
Fig. 9.3b). These media having a significant perpendicular component of 
anisotropy showed lower noise for longitudinal recording. The reason for this 
may be that the magnetization near the transition is allowed to rotate up and 
out of the medium toward the head. This would reduce magnetostatic energy 
at the interface, decreasing the likelihood of zigzag transition formation. It may 
also increase signal strength. However, increased perpendicular anisotropy can 
also reduce H,. 

The most widely used substrate for hard disk media is presently an A1-Mg 
alloy with an electroless Ni-P coating. Harder glass substrates are also finding 
use in disk drives for personal computers because of their shock resistance. 

As a method of thin-film media deposition, sputtering allows for high 
deposition rates, the ability to deposit a wide range of complex compositions 
(metals and insulators) and good adhesion. The use of bias sputtering helps 
reduce the amount of oxygen trapped in films. y-Fe,O, and its cobalt-doped 
variant have been successfully sputtered on Ni-P/Al disks. These media show 
low noise and a coercivity of 10000e. RF-sputtered Co-Ni-Pt films show a 
coercivity of nearly 900 Oe along with good corrosion and wear resistance and 
a high remanent magnetization of 800 G. 

Presently used high-density, longitudinal thin film media are based on 
Co-Cr with Pt and Ta additions. Pt is used to increase the magnetic anisotropy 
of the cobalt-rich film. It also improves the epitaxial relation between the 
cobalt film and the Cr underlayer. Cr seems to play a role in isolating the 
magnetic grains. The use of Ta as an alloying addition in Co-Cr longitudinal 
media is found to enhance segregation of Cr to the grain boundaries as well as 
improving epitaxy to the Cr underlayer. Co-Cr-Pt-Ta longitudinal media show 
improved grain isolation, increased H,, and significantly lower media noise, 
particularly when there is a significant perpendicular component of anisotropy 
compared to Co-Cr alone. 

The natural growth mode for BCC Cr is (1 10). Co-Cr or Co-Ni media grow 
with their HCP c axis 28" out of plane on Cr (110) surfaces. From Figure 9.7 
it is clear that coercivity should be increased by enhancing the alignment of the 
c axes of the grains with the track length. Hexagonal Co-based films grow with 
their c axis in plane on Cr buffer layers having (002) or (112) surfaces. These 
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modes of grovvth can be induced in Cr by deposition at elevated temperatures 
and carrying the growth to greater thicknesses, respectively (kambeth et al. 
1998). The epitaxial relations between HCP Co-based films and BCC Cr buffer 
layers are illustrated in Figure 17.14. 

In the case of Co (1120) on Cr (002), there are two possible epitaxial Co 
c-axis orientations. As a result, such media show a bicrystal-type structure with 
a reduced remanence (sharper transitions). There is only one axis for alignment 
of the HCP c axis on a Cr (112) surface. The difficulty of achieving Cr (112) 
growth on glass substrates led to the development of Ni-A1 (Lee et al. 1995) as 
an improved buffer layer favoring Cr (112) growth. Ni-AI offers the same 
advantages of adhesion, flatness, and promotion of desired texture in thin-film 
media. In addition, it promotes a finer, more uniform grain size in the magnetic 
thin-film medium. 

Table 87.2 summarizes the relevant properties of some thin film systems 
used in magnetic recording media. 

Hard disks are generally coated with a 10-20-nm-thick, sputtered, dia- 
mondlilte carbon (DEC) layer. This provides protection against head crashes 
but increases the distance between the head and the magnetic medium. In the 
future, overcoats may have to be reduced to thicknesses of 5nm. 

Although the head flies on an air bearing when the disk is spinning, 
accidental contact between the head and the hard disk is unavoidable. In 
addition, the head may come to rest on the disk on shutdown. In order to 
decrease the likelihood of the head sticking to the medium, the substrate is 

Quad-crystal Bi-crystal Uni-cry stal 
Co(10~Il~Cr(lIO) CoIl l.O)/Cr(200) C o ~ 1 0 ~ 0 ~ ~ C r ( l  12) 

Figure 17.14 Epitaxial relations between Co-rich media and Cr underlayers for 
in-plane and 28"-out-ofplane orientation of the Co c axis. [From Lambeth et al. 
(1998).] 
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TABLE 17.2 Comparison of Properties of Various Thin-Film Compositions for Media 

Thickness Method or 
Hc Substrate Ms (mm) Application 

COP 1000 Plastic - 0.3 Plate 
MET" 1500 Polyester - - Evaporated 
CoNiCr Sony 8-mm 

video 

Y - F ~ ~ O ,  1000 NiP/Al 250 0.12 Sputter 
CoNiPt 900 NiP/Al 800 0.03 Sputter 
Co 1000 Cr/NiP/Al - - Sputter 
CoCrTa 1400 Cr/NiP/Al - - Sputter 
CoCrM - Cr/NiP/Al - 0.05 Sputter 

(M = Pt, Ta, Zr) 
CoNiCr 2000 CrGd/NiP/Al - - RF-biased 

sputter 

"Metal evaporated tape. 

often roughened on a scale finer than the head dimensions. This can be done 
by mechanical polishing, by laser texturing of dedicated, circumferential 
landing zones, or by deposition of a small amount of low-melting-temperature 
metal such as In or Ga (which tends to bead up to reduce its surface energy). 
The latter, so-called "transient metal underlayer" process was developed for 
glass substrates where mechanical roughening is more difficult. A1-N coatings 
can also be used to roughen the disk surface to reduce striation. 

Materials challenges in thin-film media include: 

1. Decreased grain size for increased SNR without loss of H,  
2. Improved grain isolation for low noise and higher H ,  
3. Higher H ,  in smaller, single domain (particle) grains 

Future media may involve higher anisotropy materials such as SmCo, barium 
ferrite, or Copt. 

17.4.3 Perpendicular Media 

Perpendicular media are generally deposited on a thin layer of high-permea- 
bility, longitudinal material, such as NiFe, which provides a flux closure path 
for a single pole tip record head. This high-permeability layer effectively creates 
an image pole tip opposite the active one, focusing its flux (see Fig. 17.10). 

When Co-Cr films having 18 at% Cr are RF  sputtered on polyester 
substrates, a strong perpendicular anisotropy results. Iwasaki et al. (1979, 1980) 



developed this idea, vghich became the foundation sf a class of magnetic media 
designed specifica%ly for perpendicular recording. This is to be contrasted with 
the longitudinal media that are processed to exhibit a degree of perpendicular 
anisotropy for reduced noise. 

There is a complex interplay between thin-film processing conditions, 
microstructure, and magnetic properties for RF-sputtered Co-Cr. Increasing 
the magnetization by increasing Co/Cr ratio leads to more domain walls and 
hence lower H,. Increasing film thickness results in larger, rnultidomain 
particles, also having lower H,. Optimal H ,  is obtained by choosing the correct 
Co/Cr ratio and film thickness so that single-domain particles result with 
coherent rotation as the dominant magnetization process. 

In a laboratory demonstration of high-density perpendicular recording, a 
floppy disk coated with 100nm of Co-Cr on 0.5 pm of Ni-Fe achieved a density 
of 680kbpi (thousands of bits per inch) when written with a 0.4-pm-thick 
single-pole head. 

Magnetooptic recording uses perpendicular media based on rare-earth 
transition metal alloys such as Fe-Tb-Dy (Gambino and Suzuki, 1999). 
Magnetooptic recording is thoroughly discussed by Mansuripur (1993) and 
Gambino and Suzuki (1999) and is not described here. 

69.5 RECORDIING HEADS 

Magnetic recording heads are basically transducers that convert electrical 
signals into a magnetic field (write head) or that sense a magnetic field and 
convert it to an electrical signal (read head). A11 write heads make use of 
Ampfire's law using electrical windings around a high-permeability pole piece. 
Read heads can be inductive (Faraday's law), in which case the strength of the 
electric signal depends on the speed at which the fringe field is read. They can 
also be magnetoresistive, in which case the signal is independent of reading or 
scanning speed. 

From the calculated field dependence on head height [Eq. (17.1) or (17.2)], 
it is clear that the head must be as close to the medium as possible. This puts 
constraints on head wear resistance. Thin-film heads will become more 
prevalent as demands for higher recording density increase. 

We review the general material requirements, survey those materials pres- 
ently in use, and outline what is needed in the future. 

67.5.1 Inductive Heads 

Inductive heads can be ring heads (Fig. 17.2) or single-pole heads (Fig. 17.10). 
Table 17.3 summarizes the present classes of inductive recording head 

materials and their properties. 
Bulk recording heads may soon become obsolete because they cannot 

achieve the dimensional refinements needed for high-density recording. Nickel 
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TABLE 17.3 Properties of Various Materials for Inductive Recording Heads 

4zM, He P 
Material (kc)  P (Oe) 1, (pLR.cm) Comments 

Bulk 
Sendusta 
MnZn ferrite 
NiZn ferrite 

Thin Film 

81- 19 Permalloy 
(PI) 

50-50 Permalloy 
0'2) 

Sendust, 
amorphous 

12 2000- 0 lo6 Poor WRb 
5.5 5000 % O  lo6 Poor CRc 
4.5 100-200 # O  10'' 1 %  the wear 

of permalloy 

"Sendust composition: 85% Fe + 9.6% Si + 5.4 Al. 
bWear resistance. 
'Corrosion resistance. 

zinc ferrite heads lose their sensitivity with use because the contact friction with 
the medium causes wear and strain on the head surface. The appreciable 
magnetostriction of the compositions used allows the strain to create a very 
strong magnetoelastic anisotropy field at the surface, which eventually pins the 
magnetization there and reduces the permeability. This problem is referred to 
as the "dead layer" problem, which means that the remaining active part of the 
head is further removed from the recording medium and so the signal written 
or read is weaker. To correct this problem, MnZn ferrites can be used instead. 
They generally show higher permeability than NiZn ferrites, but their resistiv- 
ity (of order 1 !2-cm) makes them less suitable for high-frequency use (NiZn 
ferrite has p = 104!2 .cm). Ferrites also suffer from relatively low saturation 
flux density. For this reason some heads are made of Sendust (see Chapter 111, 
which has a saturation magnetization 4nM,  of 12 kG. 

Another means of enhancing the field strength of a head is to cap or coat 
the pole tips with a high saturation magnetization metal. These are called 
metal-in-yap (MIG) heads. 

Presently, 81-19 permalloy is the most widely used thin-film head material. 
Permalloy thin-film heads show improved recording density and resolution 
relative to bulk ferrite and Sendust heads. A thin-film head is shown in Figure 
17.15. The film thickness is typically 2-3 ym, and the gap of order 200nm for 
high-density recording. Reduction of permeability due to corrosion of permal- 
loy could be reduced by the addition of small concentrations of Cr, Ti, Pr, or 
Rh. However, Cr causes unacceptable degradation of magnetic properties. 
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Figure 17.15 Thin-film recording head. Left, layout of pole pieces and windings; right, 
enlarged, cross-sectional view of magnetic pole pieces. 

Mumetali (77% Ni, 14% Fe, 5% Cu, 4% Mo (wt%)] and Sendust thin films 
have also been used in thin-film heads. 

Single-pole heads for perpendicular recording are limited in their resolution 
by the pole tip thickness. For higher resolution, thickness must decrease; to 
maintain write field strength, 4nM, of the tip material must increase corre- 
spondingly. 

A write head is driven to near saturation so its domain structure is not 
important. A read head, on the other band, operates from its quiescent or 
demagnetized state. This state is very sensitive to the domain structure. A read 
head should respond to the fringe field of the medium by magnetization 
rotation rather than wall motion (wall motion generates noise). Thus the head 
material should be able to be field annealed to develop a weak, cross-track 
uniaxial anisotropy in order to define the demagnetized domain state. 

A number of materials are under consideration for future inductive head 
applications either for their higher saturation magnetization or for their good 
high-frequency response. Most notable among these are the amorphous alloys 
based on Co-Zr: 4nM, = 14 kG, H ,  < 0.5 Oe, and p = 3500. These films also 
show exceptional hardness. Lamination with SiO, allows good permeability to 
be maintained to higher frequencies: p = 1000 at f = 100 MHz in amorphous 
Co,,Nb,Zr,. 

Metastable iron nitride films composed of the Fe,,W, phase show high 
saturation flux density (nearly 3 T) but also show strong negative magneto- 
striction. The large iron moment in this system is believed to be due to a 
tetragonal expansion of the iron lattice by nitrogen, resulting in an iron 
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moment increase from 2 . 2 ~ ~  to nearly 3 . 0 , ~ ~ .  The concept of lattice expansion 
could possibly be exploited in multilayers to achieve high 4nM, and low /2, in 
more stable compositions. 

Iron-carbon multilayers can be tailored to achieve near zero magnetostric- 
tion and show coercitivies under 10e .  Ni/Fe multilayers having thickness 
ratios of 1 : 5 and a period of 22nm have shown low magnetostriction and 
47rM, approaching 20 kG. The low magnetostriction is not of the same origin 
as that found in 81-19 permalloy but may be related to strain-induced changes 
in electronic structure. Insulation layers of SiO, or A1,0, are sometimes used 
between the metal layers to reduce eddy currents. 

Nanocrystalline materials made by devitrification of amorphous alloys or 
simply by underquenching (e.g., Fe-B-Cu-Si) are promising and show lower H ,  
the finer the grain size (see Chapter 12). Nanocrystalline Fe-Co-B-Si films 1 pm 
thick have exhibited p = 1000 up to lo9 Hz (Fig. 17.16). 

Because higher recording densities require higher-frequency head operation, 
new head materials should be designed with an objective of pushing operating 
frequencies toward lo9 Hz. Again this implies that the magnetization process 
must be dominated by rotation. Hence a weak uniaxial anisotropy should be 
present or be able to be induced. Thin films of high electrical resistivity will 
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Figure 17.16 Permeability versus frequency for four thin-film systems; NiFe/SiO, and 
Sendust results from Jagielinski (1990). 
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probably play a dominant role. Multilayers will allow eddy-current suppres- 
sion while maintaining high flux-carrying capability. 

Wi-FelSiO, multilayers have shown permeabilities in excess of 2500 that are 
sustained up to f = 300 MI3z (Jagielinski 1990) (Fig. 17.16). Amorphous alloys 
allow for field-induced anisotropy but lack the temperature stability to permit 
high-temperature glass bonding. 

17.5.2 Magnetoresistive Heads 

In 8975, Thompson et al. described the use of the magnetoresistance effect in 
magnetic recording heads. They described the need for bias field to allow the 
head to operate on the steep, nearly linear portion of the curve. The resistance 
versus field for the anisotropic magnetoresistance effect fo'sllows the general 
form shown in Figure 17.17: Ap(Ef)/p = (Ap/p)(cos 6 -+). In the case of 
transverse anisotropy and y-directed field, M,/M,  = N,/H, = sin 6. Thus, this 
form of Ap/p leads to a quadratic field dependence below saturation: 

Shield layers on either side of the MR element were found to increase its 
sensitivity and reduce signal pickup from adjacent transitions. Further, Thorn- 
pson et al. found that the MR ratio increases with increasing film thickness, 
saturating at about 2-3% for l00nm of permalloy. 

Consideration of Figure 17.17 showing Aplp vs. H makes it clear that MR 
sensitivity is greatest near the inflection point of the curve. Thus it is desirable 
to apply a bias field in the direction of the sensed field (hard axis). Optimal 
sensitivity occurs for a bias that holds M a t  approximately 45" from the current 
direction. This is usually accomplished by the incorporation with the MR 
element a means of applying a bias field in the + y direction. 

Figure 17.17 Field dependence of magnetoresistance (solid line) for uniform response 
to a uniform field H,. Dotted line shows idealistic, quadratic MR response. 
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The sensitivity of an MR head depends not only on the magnitude of the 
magnetoresistance ratio Aplp but also inversely on the field change over which 
Ap occurs: 

AP Sensitivity = - 

where Ha = H ,  + H,  is the sum of the uniaxial anisotropy field and the de- 
magnetizing field. 

Figure 17.18 is a schematic diagram of an MR head (bias and shields not 
shown). Typical MR head parameters are h = 1-2 pm, w = 2-4 pm, t = 10- 
20nm, and Aplp = 2.0% (Ni,,Fe,,), in which case H,  >> H,, where the 
demagnetizing field is H ,  = 4nMs (t/2h) = 400e. Permalloy is currently the 
most widely used material for MR heads. 

We need to know the mathematical form of the resistance change with 
applied field H,,. The earliest description of MR heads, found in the classical 
paper by Hunt (1971), shows explicitly the role of biasfield and nonuniform h, 
from the transition. The magnetization responds to the field in the y direction, 
H,,, + h,,,, by rotation through an angle 8 measured from the easy horizontal 
axis. Thus, in terms of the 8 in Figure 17.18, we have 

If the field from the transition is small compared to the bias field, the MR 
signal (Aplp K $ - sin28) can be linearized when operating at the bias point: 

AR 
- R = (%)max [constant + 2 --T . 

Ha "1 
The fractional change in voltage generated by this effect is given by 

where <he,,) is the field from the medium, h(xry'), averaged over the MR head. 

Figure 17.18 Geometry of magnetoresistive sensor showing sense current, anisotropy 
field, and external or fringe field of medium, and their effect on magnetization. 



With the field of the medium given by Eq. (17.4) with a factor from Eq. (17.51, 
the voltage across the MR head is 

Ap 4zM,Hb - 1 - e - k h  
L x ~ =  J P W ( ~ )  e k d ( l  - e - l c * )  

k h  
cos kh (17.12) 

where d is the head-medium spacing, 6 is the medium thickness, M ,  is the 
remanence of the recording medium that sets the strength of k,, and k = 2z/A 
as before. The term e-kd accounts for the falloff of the field above the recorded 
transition, and the next term describes the effects of medium thickness. The last 
two factors come from integration of the fringe field over the MW element 
height, h. Note that the medium does not induce a voltage in the head by 
Faraday's law of induction V = -Nd$/dt. The MR signal is independent of 
the relative speed of the head and medium; the voltage or resistance change is 
a result of the amount of rotation of M, which depends on the strength of the 
fringe field above the recorded medium and on the head characteristics. 

The strength of the signal from an MR head is usually expressed per unit 
track width, A v w .  This is seen from Eq. (17.12) to vary as J A ~ H ~ M , / ~  
times factors related to the length scales of the recording process. The signal 
strength is limited practically by the ability of the head to dissipate heat 
generated by the sense current. 

A completely passive MR element bias is provided by a soft magnetic layer 
adjacent to the MR strip. The soft adjacent layer (SAE) is magnetized by the 
primary current in the MR strip. In turn, the magnetization of the bias layer 
causes a dipole field that provides the necessary bias. To a first approximation, 
the flux per unit track width Mt is closed through the magnetic circuit of the 
SAL layer and the MR element: M,t,,, = M,t,,. 

Barkhausen noise results from irregular domain wall motion in the head, 
shields or SAE layers, and generally becomes more severe as the element width 
(which scales with track width) is decreased and as the aspect ratio is more 
favorable to domain formation. Figure 17.19 illustrates the reduction of 
Barkhausen noise by use of an applied easy-axis bias field in an otherwise 
unbiased MR head. This transverse bias field is often referred to as a 
stabilization field. Note that as the stabilization field H ,  increases, the noise 
associated with Barkhausen jumps of domain walls vanishes. 

Adjacent strips of hard magnetic material can apply a stabilization field. 
Exchange coupling between the MR strip and a suitable layer in intimate 
contact can also provide the bias needed for low noise. Permanent magnet 
materials such as Copt, as well as the more familiar y-FeMn or the magnetic 
oxide Coo,  are known to apply stabilization fields to neighboring magnetic 
layers. 

It is useful to summarize the response of an MW head to the various effective 
fields governing the direction of its magnetization: 
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Figure 17.19 Measured MR ratio in a 24-pm-wide element versus excitation field for 
different bias fields directed along the track width (easy) direction (Jeffers et al. 1987). 
Insert at right shows schematic of domain elimination by application of stabilization 
field, H,. 

1. Uniaxial anisotropy of the MR element due to shape and processing, 
K ,  sin28 

2. Vertical bias field for linear operation, - M,H, sin 8 
3.  Exchange or other cross-track bias field to reduce noise, - M,Hex cos 8 
4. Fringe field from the medium, - M,H, sin 8 

Figure 17.20 illustrates the effects of these terms on the rn-h and ARIR-h 
curves. The shape of the MR transfer curves can be generated to first order by 
recalling that Aplp goes as cos20 - $ and for hard-axis magnetization, 
cos 8 = m = h, the reduced magnetization and reduced field, respectively. 

The familiar shearing effect of the anisotropy field, H,,  is shown first in 
Figure 17.20 as a reference. The bias field H ,  cants the MR magnetic moment 
from its horizontal easy axis and consequently shifts the loop along the field 
axis (first two panels, Figure 17.20). The domain stabilization field Hex shears 
the loop, as does Ha (first panel), but it also adds curvature in the approach to 
saturation (third panel) because of its different field dependence. The final 
panel shows the additive effects of exchange and anisotropy. In real MR 
elements, the demagnetizing field is not uniform and so is not described by a 
uniaxial anisotropy. Thus, even without Hex,  the M - H  loop is not linear but 
curves toward saturation; the Ap/p curve does not show a break at Ha but also 
curves toward saturation. 



Figure 1'7.20 Schematic reduced magnetization versus external field h,, showing the 
different effects of anisotropy field, bias field, exchange field, and exchange plus 
anisotropy. Lower part shows the transfer functions ARIR corresponding to each 
magnetic effect above. 

A quantitative expression of these effects provides a useful review of the 
magnetization process and of the MR transfer function. In the geometry of 
Figure 67.26, the free energy is written 

2 . 2  f = K,  sin28 + ( N ,  - N, )poMs  sm 8 - MsHeXc, cos 6' 

- M ,  H,,, sin 8 - M ,  N ,  sin 8 (17.13) 

The uniaxial anisotropy and shape anisotropy terms can be combined to a 
single effective uniaxial anisotropy, K E ~ ~  sin2$. Equation (17.13) leads to a zero- 
net-torque condition that can be simplified by the substitutions rn = sin@, 
(1 - m2)'I2 = cos 8: 

The M-H loops in Figure 17.21 were calculated for = 10 Oe, H,,, = 4 Oe, 
and Hex,, = 1 and 6 Oe. Without an exchange field, the M - N  response below 
saturation would be linear with a slope M S / H z f f .  The exchange field 
strengthens the effective uniaxial anisotropy with a unidirectional anisotropy 
that also retards the approach to saturation of the M-H curve. 

To the lower right in Figure 17.21 is displayed the MR transfer functions 
using the same parameters that generated the M-H loop at left. Because ARIR 
goes as cos28 - :, it varies also as $ - sin26' = $ - m2, which is displayed here. 
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Figure 17.21 Upper right, geometry of MR head and various fields acting on its 
magnetization. Left, M-H loop calculated from simple theory in text using exchange 
fields of 6 and 1 Oe, respectively, H ,  = 10 and a 4 Oe bias. Lower right, MR transfer 
functions calculated from same model for the parameters used in M-H. 

Note that this head is underbiased in the sense that a larger bias field would 
be required to shift the transfer function so that the zero-external-field point is 
at the steepest, most linear part of the curve. 

The interested reader is encouraged to generate the MR transfer curves for 
these effects by incorporating the energies of Eq. (17.13) in Eq. (17.10) 
(Problem 17.6). 

Figure 17.22~ shows the arrangement of the exchange tabs or hard magnet 
domain stabilization layers viewed from the air-bearing surface (ABS). The 
three layers making up the portion of the MR head over the track width are 
the SAL layer, a spacer (often Ta) and the MR element itself. Permalloy is most 
often used for the MR layer. Certain Co-Fe-Ni alloys show larger Aplp but 
have larger anisotropy and electrical resistivity. 

MR heads are generally integrated with the inductive write head. The 
configuration of shields in a dual head, that is, one including both thin film 
write and MR read functions, is shown in Figure 17.22b. The two elements of 
the inductive write head, P1 and P2, are shown with the write gap between 
them. P I  also serves as one of the shields for the MR read sensor, shown 
schematically between the two shields. This design, with the current leads 
defining a narrower read track than the write track defined by PI, is called 
"write wide, read narrow." 
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Figure 17.22 (a) Cross-sectional views of exchange-stabilized (above) and permanent- 
magnet-stabilized MR elements (Ishiwata et al. (1995); (b) Arrangement of components 
in a dual-function head. The PI element of the inductive write head also serves as one 
shield for the MR element. 

The sensitivity of an MR head is often expressed in terms of voltage output 
per unit track width w [Eq. (17.12)]. Clearly, as track width decreases to 
accommodate higher recording density, the signal from MR heads decreases. 
This has driven the development of spin valve read heads, based on the GMR 
effect described in Chapter 15. 

17.5.3 Spin-Valve Read Heads 

It will be recalled from Chapter 15 that a spin valve is composed of two 
magnetic layers separated by a conducting spacer. The resistance of the trilayer 
depends on the relative orientation of the magnetizations in the two layers. 
Exchange coupling is often used to pin the direction of magnetization in one 
of the layers. A favored configuration of the device is for the free layer to have 
its quiescent orientation orthogonal to the direction of the field to be sensed; 
the pinned layer should be magnetized in the sense field direction. Spin valve 
(SV) structures, because of the weak magnetic coupling between their two 
magnetic layers, are easily changed from the quiescent state (f +) by a 
magnetic field to either the f f or TL state. The structure of a simple spin valve 
sensor is illustrated in Figure 17.23. The magnetization of the reference layer 
is pinned in the vertical direction by deposition in a field with an adjacent 
FeMn exchange-coupled layer. The sensitivity of the device is improved by 
interposing a thin layer of Co at the interfaces between the magnetic layers and 
the Cu spacer. 

Note the structural similarity between this spin valve and an MR head. The 
SAL layer in an MR head is essentially saturated in the vertical direction, 
similar to the pinned layer in a spin valve. Both devices make use of a thin, 
conducting spacer layer to decouple the moments of the two magnetic films. 
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Figure 17.23 Structure of a simple spin valve. Note that free layer is deposited first, 
reference layer is magnetized in positive y direction, and sense current is in positive x 
direction; the device dimensions are approximately h = 2 to 6 pm and w = 10 pm (Heim 
et al. 1994). 

In an MR head, the active layer is biased at 45" to the current direction and 
its angular range for near-linear response is bounded well within 90". In a spin 
valve, the free layer is magnetized parallel to the sense current and its 
quasilinear range is bounded within 180". Besides being based on different 
physical interactions (Chapter 15) there is a further functional difference 
between these two devices. In the MR head, all of the MR effect occurs within 
the MR element; the SAL and spacer layers ideally should carry no current. 
The operation of a spin valve, on the other hand, depends critically on the 
ability of the charge carriers to drift between the free and pinned layers. In 
terms of applications, the defining difference is that the MR ratio of an MR 
head decreases monotonically with decreasing thickness of the MR element. 
The spin valve, on the other hand, shows improved performance with decreas- 
ing thickness of the three layers down to a limit that seems to depend on our 
ability to mass-fabricate high-quality ultrathin films. 

Transfer curves for finished, unshielded sensors measured in uniform fields 
are shown in Figure 17.24 for a 2-pm-high device (Heim et al. 1994). Note that 
a positive field leads to saturation of the signal. A negative field leads first to 
a negative saturation near - 100 Oe then the signal returns through zero 
toward positive saturation. Of the three resistance states implied by Figure 
17.24, the middle one corresponds to antiparallel M I  and &I2. Thus, the signal 
here is inverted relative to ARIR of the device. Note that changes in the 
direction of the sense current give different quiescent orientations for M,.  

The magnetization profile in the free layer is a result of four fields acting on 
MI (Fig. 17.25): 

1. Magnetostatic field due to the poles on the pinned layers. This field is 
strongest at the top and bottom of the free layer. 

2. Exchange field favoring M, 11M2. This field is roughly uniform in y. 
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Figlare 17.24 Experimental transfer curve for a 2-pm high-spin valve sensor for + 5 mA 
(solid) and -5 mA (dashed) sense current. Computed transfer curves follow the data 
within experimental error. [Adapted from Heim et al. 1994).] 

3. The magnetostatic field of the free layer itself. This field is greatest near 
the top and bottom surfaces. 

4. The field due to sense current distribution. This field is greatest near the 
center of the free layer. 

The spin valve should be designed and operated so that these fields nearly 
cancel, leaving the orientation of M I  governed by the horizontal uniaxial 
anisotropy and the vertical field to be sensed. 

It is critical for the operation of a spin valve that the pinned layer not 
respond to the transition field. A less than fully pinned M2 would reduce the 
field-induced change in relative orientation between MI and IBg, that deter- 
mines the resistance change of the device. Consequently, considerable attention 
is given to the exchange coupling layer used to pin M2. Two cases are worth 
mentioning: FeMn "top" spin valve (pinned FeMn/NiFe layers deposited after 
free NiFe layer) and NiO "bottom" spin valve (pinned FeNi/NiO before free 

'"'2 Hi 

I 
"ref" "free" Hdernog 

Figure 17.25 Representation of four contributors to the field (fine arrows) acting on 
MI of the spin valve in Figure 17.23 to establish its quiescent orientation. Bold arrows 
give orientation of M2 or M I .  
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Figure 17.26 Structure of spin valves made by Wang et al. (1997) to compare effects 
of ion-beam versus dc magnetron sputter deposition and the relative merits of NiO 
versus FeMn exchange biasing layers. 

NiFe layer) (see Fig. 17.26). The reason for the difference in sequence of these 
depositions is largely related to the effects of processing and substrate on the 
quality of the deposited film. FeMn is a good antiferromagnetic exchange 
coupling layer only in its metastable FCC phase. This phase is best achieved 
by deposition on an FCC substrate such as permalloy. NiO, on the other hand, 
has no such structural constraints and further provides a suitable substrate for 
the growth of the pinned permalloy layer. 

17.6 MAGNETIC RANDOM ACCESS MEMORIES 

17.6.1 Ferrite Ring Core Memories 

The ideal magnetic recording medium was described above as consisting of a 
regular array of noninteracting, single-domain, bistable magnetic elements. 
Such memories were manufactured in the 1950s and 1960s using an array of 
small (< 1-mm-diameter) ferrite toroids laced together by a grid of x and y 
conducting wires. Each toroid was a bit that could be written by sending a 
current pulse through the two wires that defined the coordinates of the toroid, 
its address. The current in each wire is chosen so that its field alone is 
insufficient to switch any of the toroids along its path: 



But two intersecting currents do produce a fiend that exceeds the switching 
threshold: 

Reading the bit at a given address is a matter of testing the address to see if it 
switches under a given pulse. If the toroid is not switched by a pair of inquiry 
current pulses of a given polarity, the impedance of the x and y wires is purely 
resistive (p, = 1) and the state of the bit is known. If the toroid is switched, its 
permeability gives it an appreciable inductance causing a back EMF. Again, 
the state is known as a result of the inquiry but it must be reset to its original 
state. Thus either one or two current pulses are required to query an address 
and leave the memory unchanged. 

Ferrite core memories obviously have areal density limitations based on the 
ability to make and assemble the microscopic components. However, they have 
advantages based on the fact that there are no moving parts and there is no 
separate head required. 

These memories have been used in a few special applications for which 
nonvolatile, robust information storage is more important than areal density. 
The bulk of the storage market is owned by hard disk drives, tape drives, and 
floppy disks. 

17.6.2 Thin-Film, High-Density MWAM 

Some of the advantageous concepts of ferrite core array memories are used 
today in a class of storage devices called magnetic random access memories 
(MRAMs). Those advantages are no moving parts, no heads, and the ability 
to access information at an arbitrary sequence of addresses (random access) as 
opposed to sequential access as in tape and disk storage. The individual ferrite 
cores and their tedious assembly have been replaced by magnetoresistive 
storage elements made by thin-film technology and high-resolution lithog- 
raphy. Magnetoresistive random access memories were pioneered by Schwee 
(19721, Pohm el al. (1991), and Daughton (1992). 

Present MRAM information storage densities measure in the tens of kilobits 
per chip using an array of MR elements. Several orders of magnitude increase 
in storage density are expected in the near future in devices using spin-valve- 
like (SVL) storage elements and improved design and lithography. How does 
an MR random access memory element work? 

We describe one recently proposed, spin-valve-like MRAM structure that 
embodies the essential concepts of the technology (Hrie et al. 1995). The 
MRAM design retains the grid of conductors that defines the bit addresses in 
the ferrite core memory. However, the ferrite cores are replaced by SVE 
devices, and, most importantly, the dimensions of the thin-film structure can 
be reduced dramatically, limited by the lithography, film quality, and the peak 
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response of the GMR effect (Fig. 15.26). 
A conventional spin valve would show destructive readout (DRO) because 

of the strong pinning of the reference layer. A pseudo-spin-valve (PSV) 
structure was developed that shows nondestructive readout (NDRO). Figure 
17.27 provides a basis for description of the device. 

A PSV structure consists of a free layer, a spacer, and a semihard layer 
(unlike a spin valve that uses an exchange-coupled layer as a reference). Irie et 
al. use a multilayered PSV device totaling 130 nm in thickness: [Ni,oFeloCo,o/ 
CU/CO,~P~,~/CU],. The magnetization and relative resistance change of such 
a device is shown schematically below the structure in Figure 17.27. The 
coercivities H,, and H,, correspond to the switching of the free and semihard 
layers, respectively. The form of the output signal of these storage devices is 
closer to that of a spin switch described in Section 15.2.2 (Fig. 15.35) than to 
that of a spin valve. However, here the current is in the plane of the layers. The 
array of storage elements is connected by conducting shunts to form a series 
of lines called sense lines. An insulating layer of polyimide or SiN is deposited 

Au 
Free word l ~ n e  

Shunts Sense Line ' 
. 

Hci  Hc2 CU/ Glass Substrate 

Figure 17.27 Above, simplified depiction of assembly of an MRAM. At left, the 
pseudo-spin-valve (PSV) structure elements are deposited on a substrate. Gold shunts 
connect the PSVs to form the sense line. After application of an insulation layer, the 
gold word lines are deposited over the PSV elements. Below right, cross section through 
the middle of the sense line showing structure. Below left, M-H and ARIR character- 
istics of the PSV. 



TABLE 17.4 C o m p o s i ~ a ~  awd Dimemslouas of the PrimcipaQ Layers %an a Canremt 
Representative MBAM Device 

Composition Thickness Line Width 
Device Element (at %) brim> ( ~ 4  

Free layer 
PSV 

Spacer Cu 
Semihard Co,5pt25 

Sense line shunts Au 
Word line Au 

to electrically isolate this array of storage elements from succeeding layers. 
After the deposition of the insulator, an array of "word lines" (typically gold) 
orthogonal to the sense lines is deposited. The layer dimensions for the device 
made by Hrie et al. are summarized in Table 14.4. Clearly, a current in a word 
line generates a field parallel to the underlying sense lines. Similarly, a current 
through a sense Pine generates a field that cants the free layer magnetization 
away from its easy axis; this makes it easier for the work line field to switch 
only the storage element at the intersection of the two current pulses. 

As shown in Figure f 7.28, the write process consists of magnetizing both the 
free and semihard layers in one direction or another by an appropriately 
directed word current pulse (and simultaneous sense line current). After the 
write process, the two layers are in their remanent states and the resistance of 
either state has the same minimum value ( E f  = 0 in Fig. 17.28, lower left). 

The read process consists of applying a bipolar current pulse to the word 
line. This pulse produces a field sufficient to switch the soft layer but not the 
hard layer: PI,, < PI,,,, < If,,. Thus, depending on the state of the element, "0" 
or '9,'' the resistance in the sense line changes in phase or out-of-phase, 
respectively, with the word current pulse. After application of the read pulse, 
the MR element reverts to its original remanent state (rf or 11). This is 
possible only if the two magnetic layers are ferromagnetically exchange- 
coupled through the Cu spacer, or if the read pulse is followed by a small reset 
pulse of opposite polarity. Thus, this device exhibits NDRB. 

Some MRAM devices have been proposed making use of symmetric PSV 
storage elements (Everitt and Pohm 1998). 

If MRAM storage density were to approach the Cb/in2 range, it could 
possibly displace tape and disk drive storage in some applications. 

17.7 OUTLOOK AND FUNDAMENTAL LIMITS TO RECORDING 

An areal density of 1 Cb/in2 is realized at 158 kfci (thousands of flux changes 
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W r i t e  
R e a d  

Word 

Write currcnt Current 

in  "word line" 
Stored State 

Ni Fe 
Co Pt 

'sense 

Figure 17.28 Schematic of the read and write processes in a PSV random access 
memory. The write process involves current pulses through both the word line and the 
sense line such that the field at the PSV exceeds H,,. The read process involves a field 
pulse that takes the device to the high-resistance state without switching the semihard 
layer (H,,  < H < H,,). 

per inch) and 7470 tpi (tracks per inch). This areal density corresponds to a bit 
size that is approximately 2 times greater than the diffraction limit of visible 
optical recording. The bit density limit of thin-film media is estimated to be 
approximately of order 100 Gb/in2. 

It is desirable that the density with which the information is recorded be as 
great as possible without sacrificing signal-to-noise ratio (SNR). Media alone 
do not limit recording density. It should be clear from Eqs. (17.2) and (17.5) 
that if bit size, A/2, in Eq. (17.5) is to decrease, the write gap, g must decrease, 
Eq. (17.2), and thus the write head must be closer to the medium. The first 
1-Gb/in2 system had a write gap of 200 nm and the head flew at 50 nm (2p in). 
Also, smaller A demands that the depth to which the signal is recorded in the 
medium be reduced [Eq. (17.6)]. This means that there is less volume 
magnetized and smaller flux changes at the transitions. The fringe field above 
the medium decreases and signal strength drops even more. The read head, 
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then, must be either more sensitive or closer to the medium. Thus, all of the 
relevant dimensions of the recording process need to be scaled down together 
to achieve high recording density. In addition to reduced dimensions of the 
recording process, all the issues associated with friction, wear, head-track 
alignment (tracking), and reliability must advance apace. It is amazing that 
despite these demanding conditions, the density of information storage has 
been able to increase so dramatically in recent years. 

17.7.1 Fundamental Limits 

Optical recording is diffraction limited in its density. (Near-field optical 
techniques are being developed that circumvent the diffraction limit.) Magnetic 
recording is not so limited and presently achieves higher information density 
than magnetooptical recording. The information density in magnetic recording 
systems based on currently used concepts is fundamentally limited by the 
minimum particle or grain size which is magnetically stable against ambient 
thermal demagnetization. For stable recorded information, the particle volume 
must exceed the superparamagnetic limit [see Eq. (8.3411. For K,  = 1Q5 J/m3, 
the critical volume of an isolated particle is V = 1.5 x 10-24m3. However, at 
head-to-head transitions in thin-film media, magnetostatic energy reduces the 
effective anisotropy of the grains. The grain size in longitudinal, thin-film 
media, below which recorded information is unstable, is given approximately 
by (Lu and Charap 1995) 

Below the superparamagnetic limit a particle has no memory. But Eq. (17.15) 
looks at only one aspect of the medium limitations on recording density. Note 
that a larger value of anisotropy reduces the size below which particles are 
superparamagnetic. Thus, for higher-density recording, the medium anisotropy 
should be increased. Increased areal density therefore puts a lower limit on 
medium anisotropy of 60 k,T/I/: But increased anisotropy increases medium 
coercivity. The medium coercivity should not be so high that information 
cannot be written (write head fields are limited by the saturation flux density 
of the Plead material). This places an upper limit on media anisotropy of 
MsN,/2. Eu and Charap (1995) estimate that these limits will converge for 
recording densities of order 40 Gb/in2. The fuller results of their calculations 
are graphically illustrated in Figure 17.29. Here the region of stable (lower limit 
to K,) and recordable (upper limit to K,) media are bounded on an 
anisotropy-magnetization plane. In region 1 the signal strength is weak 
because Ad, is small. In region 2, the signal is weak because magnetostatic 
energy smears the transition. Region 5 is optimal because for higher magnet- 
ization media, higher anisotropy is required. 
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Figure 17.29 Recording performance field in K ,  - M, space for grain size D and 
thickness 6, each measuring 10 nm. See text. [After Lu and Charap (1995).] 

It should be noted that for higher writing rates (shorter write times) the 
factor of 15 in Eq. (17.14) must increase (see Chapter 13). Thus, the effective 
coercivity increases at higher data rates and the write process requires larger 
fields. Also, as data rates increase the head is effectively operating at higher 
frequencies. Presently, frequencies are in the range of 100 MHz, and higher 
frequencies will become typical for high-density recording. The speed with 
which magnetic materials can respond to a field is limited by resonance 
phenomena, and in metals, by eddy-current damping. (These effects were 
touched on in Chapter 9. Eddy currents are associated with the decrease in AC 
field intensity with depth inside a magnetic material. If the skin depth is 
appreciably smaller than the sample dimensions, then a significant volume 
fraction of the magnetic material is unresponsive to the field and, effectively, 
the permeability is reduced.) The thickest film dimensions in high-end heads is 
of order 2pm. The head permeability should hold its value up to these high 
frequencies. The skin depth for permalloy (p = 20 pQ. cm) at 10' Hz is of order 
2 pm if the permeability is 100. Thus, the entire thickness of a Zpm-thick write 
head is being magnetized and eddy currents should not cause a loss of 
permeability. 

The natural resonance frequency for magnetic materials, the Larmor pre- 
cession frequency [Eq. (3.2)], is of order 14 GHz per tesla of flux density. At 
higher frequency, the moments cannot keep up with the drive field and the 
permeability decreases sharply. It is not simply the data rate (e.g., 100 MHz) 
that needs to be considered in relation to the resonance frequency (see Section 
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68.8). A sequence of transitions at a fundamental frequency of 108Az has 
higher harmonics associated with the sharpness of the transition. If these 
high-frequency components are suppressed by the resonance limit, even a 
spatially sharp transition in the recording medium will be read as less sharp 
and signal strength will decrease. There are some material effects that can alter 
the resonance frequency and the relaxation time, but these generally involve 
decreased magnetic moment. When metals are used in the recording process, 
the ferromagnetic resonance line width is broadened to several kilogauss. 
Attention to the issue of resonance imitations is increasing. 

17.7.2 Patterned Media 

One way to achieve low-noise, high-density media is to make each bit consist 
of a single piece or grain of magnetic material. Such bits should be arranged 
periodically to be synchronized with the signal channel. This can be achieved 
using high-resolution lithography. 

The term patterned media is used to refer to media for which each bit 
consists of a single, lithographically defined grain. Such a recording medium 
eliminates the random JN noise associated with multigrain bits. It also 
eliminates the noise associated with irregular or sawtooth transitions that 
cause noise in thin-film media. Patterned media will allow for high bit densities 
because the superparamagnetic limit applies to a single bit, not to each of the 
many grains in a multigrain bit. Finally, the patterning process defines a 
sharper transition between bits, and dispersion of easy axes can be minimized 
relative to that in thin-film media. Thus patterned media have relaxed 
conditions on coercivity and M,t  product. 

Figure 17.30 shows an array of Ni pillars grown by electrodeposition on a 
lithographically defined pattern of holes in a removable template. The substra- 
te is coated with a conductive plating base, an antireflection coating, a silica 
etch mask, and, finally, photoresist. A pattern of holes is formed in the mask 
using laser interferometric lithography. After electrodeposition of the Ni, the 
template is removed (Ross and Smith 1998). The magnetic properties if 
nanoscaled arrays of particles such as these represents a possible path toward 
higher-density, lower-noise media. 

Patterned media with bit sizes on the scale of 100 nm square will require 
new read and write head technology. Inductive MR and GMR heads produce 
signals proportional to track width; track width will be reduced tenfold in 
patterned media. Further, the ability of the servo system that allows the head 
to follow a given information track will have to be improved. 

17.8 SUMMARY 

Magnetic recording technology is driven by the desire to increase the areal 
density and access speed of stored information. The quantitative description of 
the write field and the signal from the written bits makes it clear that all 



PROBLEMS 721 

Nickel pillars 

Figure 17.30 Scanning electron microscopy image of a square array of elec- 
trodeposited Ni pillars of height 300 nm and period, 200nm. Courtesy of Ross et al. 
1999. 

dimensions of the recording process must be reduced proportionally to achieve 
increased density. Other aspects of the recording system must also be improved 
to accommodate the reduced length scales and higher data rates. These include 
issues of tribology, track servo mechanics, and signal processing. 

From the point of view of materials, magnetic recording offers a rich range of 
challenges in terms of thin-film processing, microstructure, and interface control, 
all within strict limitations of reliability and high operating temperatures. 

Present modes of magnetic recording face hard fundamental limits to 
materials performance at higher areal densities. These arise from loss of 
magnetization in small, superparamagnetic particles and the magnetic reson- 
ance relaxation limit to read head response time. Nevertheless, fascinating 
devices (such as spin valves) and improved thin film media (perhaps patterned 
media) incorporating advanced materials science, thin-film processing, and 
high-resolution lithography, hold promise for information densities approach- 
ing 100 Gb/in2. 

PROBLEMS 

17.1 Evaluate the reduced Karlkvist field h, = H,(xy)/H, at midgap (x = 0) 
for y = 0, g and 2g. 

17.2 Derive the vector field components beneath the gap of a write head by 
replacing the head with a current flowing in the cross-track direction in 
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the gap at x = 0 and y = 2g. Choose the strength of the current so that 
H,(O, 0) = H g .  

1'3.3 Derive the form of the vertical and horizontal components of the fringe 
field above a sharp head-to-head transition using Eqs. (2.2) and (2.3). 

14.4 Calculate the vertical component of the field above a sharp head-to-head 
transition in a thin-film recording medium characterized by M,t = 2 x 

erg/cm2. Assume infinite track width. 

11.5 Consider a rectangular area (see accompanying diagram) on the surface 
of a recording medium measuring a by 2a magnetized to a depth t into 
the medium. Compare the sum of magnetostatic plus domain wall energy 
for the case of a linear wall separating head-to-head domains with that of 
a sawtooth of peak-to-peak amplitude a' = a110 and period I I  = a/10. 

17.6 Generate the MR transfer curves corresponding to the four M-N loops 
shown in Figure 17.20, using the energies in Eq. (17.14) and AR/R = 

(Aplg)  41 - cos28 - f). 

BIBLIOGRAPHY 

Bertram, N. H., Proc. IEEE 7'4, 1949 (1986). 
Bloomberg, D. S., and 6. A. N. Connell, in Magnetic Recording Handbook, C. D. Mee 

and E. D. Daniel, eds., McGraw-Hill, New York, 1981, p. 530. 
Daughton, J., IEEE Trans. MAG-29, 2705 (1993). 
Derbyshire, K., and E. Korczynski, Solid State Technol., p. 57 (Sept. 1995). 
Dorner, M. IF., and Richard L. White, Muter. Bull. 21, 28 (1996). 
Fontana, Pi. E., IEEE Trans. MAG-31 2579 (1995). 
Gambino, R. J., and T. Suzuki, Magneto-Optical Materials, IEEE Press, Piscataway, NJ, 

1999. 

REFERENCES 

Bate, G., in Ferromagnetic Materials, Vol. 2, E. B. Wohlfarth, ed., North Holland, 
Amsterdam, 1980, p. 381. 

Bertram, W. N., Theory of Magnetic Recording, Cambridge Univ. Press, Cambridge, 
UIC, 1994. 

Daughton, J., Thin Solid Films 216, 162 (1992). 
Everitt, B. A., and A. Y. Pohm, preprint (1998). 



REFERENCES 723 

Grachowski, E., and D. A. Thompson, ZEEE Trans. MAG-30, 3797 (1994). 
Heim, D. E., R. E. Fontana, C. Tsang, V. S. Speriosu, B. A. Gurney, and M. L. Williams, 

ZEEE Trans. MAG-30, 316 (1994). 
Hunt, R. P., ZEEE Trans. MAG-7, 150 (1971). 

Ishiwata, N., H. Matsutera and K. Yamada, Paper AS, TMRE Pittsburgh PA, July, 
1995. 

Iwasaki, S., Y. Nakamura, and K. Ouchi, ZEEE Trans. MAG-15, 1456 (1979). 
Iwasaki, S., Y. Nakamura, and N. Honda, ZEEE Trans. MAG-16, 11 11 (1980). 
Irie, Y., H. Sakakima, M. Satomi, and Y. Kawawake, Jpn. J.  Appl. Phys. 34,415 (1995). 
Jagielinski, T., M R S  Bull. 15, 36 (1990). 

Jeffers, F., D. Wachenschwanz, D. Phelps, and J. Freeman, IEEE Trans. MAG-23, 2088 
(1987). 

Jorgensen, F. The Complete Handbook of Magnetic Recording, TAB Books, Blue Ridge 
Summit, PA, 1988. 

Kryder, M. H., ZEEE Trans. MAG-25, p. 4358 (1989). 
Lambeth, D. L. et al., M R S  ConJ Proc. (1998). 
Lee, L. L., D. E. Loughlin, L. Fang, and D. L. Lambeth, ZEEE Trans. MAG-31, 

2728 (1995). 
Lemke, J., Magnetic Recording Materials, M.R.S. Bulletin, March 1990. 
Lu, P. L., and S. H. Charap, ZEEE Trans. MAG-31, 2767 (1995). 

Mallinson, J., ZEEE Trans. MAG-21, 1217 (1981). 
Mallinson, J., Foundations of Magnetic Recording, Academic Press, San Diego, 1987. 
Mansuripur, M., Physical Principles of Magneto-optical Recordings, Cambridge Univ. 

Press, Cambridge, UK, 1993. 
Mee, C. D., and E. D. Daniel, eds., Magnetic Recording Handbook, McGraw Hill, NU, 

1989. 
Mee, C. C., and E. D. Daniel, Second edition, IEEE Press, 1995. 
Onodera, S., H. Kondo, and T. Kawana, Mater. Bull. 21, 35 (1996). 
Pohm, A. V., C. S. Comstock, G. B. Granley, and J. M. Daughton, ZEEE Trans. 

MAG-27, 5520 (1991). 
Ross, C. A,, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, 

M. Abraham, and R. Ram, J. Vac. Sci. Technol. in press (1999). 
Schwee, L. J., ZEEE Trans. MAG-8, 405 (1972). 
Sharrock, M. P., M R S  Bull. 15, 53 (1990). 
Speriosu, V. S., D. A. Herman Jr., I. L. Sanders and T. Yogi, ZBM Jour. ofR&D 34, 884 

(1990). 
Suzuki, T., ZEEE Trans. MAG-20, 675 (1980); MAG-24, 675 (1984). 
Suzuki, T., Mater. Bull. 21, 42 (1996). 

Tang, L. et al., J.  Appl. Phys. 81, 4906 (1997). 
Thompson, D. et al., ZEEE Trans. MAG-11, 1036 (1975). 
Tsang, C., M. Chen. T. Yogi, and K. Ju, ZEEE Eans. MAG-26, 1689 (1990). 
Tsang, C., R. Fontana, T. Lin, D. Heim, V. Speriosu, B. Gurney, and M. Williams, IEEE 

Trans. MAG-30, 3801 (1994). 



Tsang, C., T. Lin, S. MacDonsald, Pa. Pinarbasi, N. Robertson, H. Santini, Doerner, 
T. Reith, Lang $lo, T. Diola, and P. Amctt, IEEE Trans. WIAG-33, 2866 (1997). 

Wang, S. X., W. E. Bailey, and @. Siirgers, BEEE Bans. IWAG-33, 2369 (1994). 
White, R. L., IEEE Trans. MAG-28, 2482 (1992). 
White, R. M., Physics of Magnetic Recording, IEEE Press, New York, 1985. 
Wood, R., HEEE Spectrum, May 1990, p. 32. 
Yang, W., and D. L. Lambeth, IEEE Trans. Magn. 33, 2965 (1997). 



TABLE OF CONSTANTS 

MKS/SI CGS-EMU 

A Exchange stiffness lo-'' J/m erg/cm 
av First Bohr radius 5.29 x 10-I ' m 5.29 x lo-' cm 
c Speed of light 2.998 x 10' m/s 2.998 x 10'" cm/s 
e Electronic charge 1.602 x 10-l9 coulombs 1.602 x emu 

4.8 x lo-'" esp 
E v Dielectric constant 8.85 x lo-'' A2 s2 m-2 
Y Gyromagnetic ratio 1.76 x 10'' C/kg 1.76 x lo7 emu/g 

of electron elm (= 11T.s) (= l/Oe.s) 
h Planck's constant 6.625 x J . s  6.625 x erg.s 
h Planck's constant/27c 1.054 x J . s  1.054 x erg.s 

k~ Boltzmann constant 1.38 x J/deg 1.38 x 10-l6 erg/deg 
me Mass of the electron 9.108 x kg 9.108 x g 
mproton Mass of the proton 1832 x me 1832 x me 
PO Free space 4n x 

permeability = 1.26 x lo-' NA-2 - 

PB Bohr magneton 0.927 x J/T 0.927 x erg/Oe 
( = Am2) ( = emu) 

N.4 Avogadro's number - 6.025 x loz3 (g.mo1)-' 
R=N,k ,  Gas constant 8.317 J/mol. deg) 8.317 x 107 erg/(mol. deg) 



CONVERSION FACTORS 
AND USEFUL RELATIONS 

Symbol MKS Gaussian 

1 couPomb 
1 ampere 
1 joule 
1 henry (Vs/A) 
1 newton 
1 ohm (a> 
1 volt 
1 weber (V . s) 
1 tesla (W/m2> 
1 A/m 

3 x 609 esu 
0.1 abamperes 
PO7 erg 
1Q9 esu henrys 
PO5 dynes 
P01'/9 esu ohms 
1/30O esu volts 
PO8 maxwells 
104 gauss 
4n/1Q3 M 80 oersteds 

1 abcoulomb = 1 statcoulomb x c (crn/s) ~/(P,E,> = c2 (m2/s2) 
1 calorie = 4.184 J 1 eV = 6.6 x 10-l2 erg 
1 Calorie = 4184 J k,T = 0.025 eV 
1 bar = 106 dyne/cm2 1 atm = 1.063 x 606 dyn/cm2 
1 mrn Hg = 1 torr = 1333 dyne/cm2 1 Ib/in2 = 6.895 x 6Q4 dyn/cm2 
Electron spin precession frequency = 2.8 GHz/kOe 
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Acicular particles, 690 
metal, 692 

Aftereffect, see Magnetic, aftereffect 
AIMn-C, 512 
Alnico, 476, 514 

anisotropic, 478 
directed-growth, 480 
effects of cobalt, 478 
microstructure, 481 

Alnico-5, 480 
anisotropy, 482 

Alloy magnetic moment, modeling, 417 
cc-Fe, 89, 149, 151, 153,169, 197,227, 360, 457 

anisotropy constants, 189 
electronic structure, 163 
magnetostriction constant, 224 
stability, 171 
whisker, 453 

cr-FeCo, 374, 482 
a-Fe20, hematite, 125 
a-Fe,Si, 432, 456, 457 
a"-Fel,N2, 540 
a-AIMnSi, 426 
Amorphous alloys, 22, 25 

annealing, 379 
applications, 421 
Brillouin function, 404 
cluster calculations, 415 

coercivity, 335, 381 
CO-B, 418 
Co-Fe-B-Si, 526 
CO-Nb-B, 432, 456 
Co-Nb-Zr, 702 
CO-P, 23, 392, 418 
Co-Zr, 382, 397, 702 
core loss, 422 
Curie temperatures, 396 
domains and technical properties, 400, 410 
electronic structure, 412, 415 
electron transport, 419 
Fe, _,B,, 398 
FeB, 413 
Fe,,Bl,Si,, 379 
(FeCoNi),,Zrl,, 382 
(Fe-Co),,B2,, 227, 376, 395 
(Fe-Ni),,BZo, 395 
Fe-P, 413 
Fe-Zr, 382 
field-induced anisotropy, 410, 537 
high induction, 376 
history, 392 
magnetic moments, 395, 418 
magnetic properties, 399 
magnetostriction, 248 
metalloid effects, 399 
Ni-Zr. 382 



Amorphous alloys (Continue4 
Pd-Zr, 161, 413 
random anisotropy, 495 
short-range order, 411 
spontaneous Hall coefficient, 420 
structure, 393 
zero-magnetostriction compositions, 380 

Analog recording, 676 
Angular momentum 

field-induced, 68 
intrinsic, spin, 82 
orbital, 65, 78, 105, 698 
total, 84 

Anion, 109 
Anisotropic 

exchange, 198 
magnctoresistance, see Magnetoresistancc 
magnetostriction, see Magnetostriction 
pair interaction, 196, 231 

Anisotropy, 179, 181, 250 
cubic, 188 
data, 192 
energy surface, 184 
exchange, 413 
field, 180 
field-induced, 410, 517, 368, 524 
phenomenology, 183 
physical origin, 194 
roll-induced, 5 17 
shape, 29, 38,43 
single-ion, 251 
temperature dependence, 202 
torque magnetometry, 210 
two-ion, 251 
uniaxial, 43, 181, 183 

Annealing temperature, 520 
Anomalous eddy-current loss, 345 
Anomalous Zeeman effect, 80, 82 
Antibonding orbitals, wavefunctions, 109, 148 

states, 146, 147, 167 
Antiferromagnets, 16, 19 

c o o ,  437 
FeMn, 440 
Ni0, 712 

Antiferromagnetic coupling, 125 
Antiferromagnetism, 19 
Antisymmetric orbital, wavefunctions, 113, 148 
Antisymmetrization, 117 
Apparent susceptibility, 47 
Areal density, information, 675 
Arrott plots, 103 
Atomic 

d-functions, 246 
magnetic moment, 3, 6, 14, 16 

magnetic susceptibilities, 69 
oscillators, 74 
pair ordering, 518 
spectra, 77, 88 
susceptibility, 70 

Aufbau principle, 88 
Auger electrons, spin polarized, 633 

B-H loops, 20, 21, 470 
Ba0.6[Fe203], 485 
Band 

filling, 166 
formation, 146 
model, 149 
structure, see Electronic structure 

Barium ferrite, 485 
anisotropy, 485 
crystal structure, 487 
domain pattern, 489 
phase diagram, 486 
recording media, 693 

Barkhausen jumps, noise, 21, 706 
BCC 

cobalt, 629 
FCC phase boundary, 229 
Fe, see cr-Fe 

BCS density of states, 603 
Bernal polyhedra, 394 
Bessel function, 252 

modified, 252 
Bethe-Slater curve, 148, 403 
Bias, MR head, 704 

exchange, 706 
permanent magnet, 710 
soft adjacent layer (SAL), 706 
spin valve, 710 

Binary coded information, 677 
Binding energy, 416 
Biot-Savart law, 12, 86 
Bloch-Blombergen equations, 349 
Bloch's T3I2 law, 101, 102 
Bloch wall, 276, 289 

structure near surface, 291 
thickness, energy density, 289 

Blocking temperature, 436 
Bohr 

magneton, 83 
model of atom, 15, 66, 80 

Boltzmann factor, 74, 89 
Bonding and magnetism, 115 

orbitals, 109 
states, 146, 147, 167 

Born-Oppenheimer approximation, 116 
Bose-Einstein statistics, 113 
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Bosons, 113 
Bottom spin valve, 712 
Boundary conditions, 33, 37, 54, 276, 331 
Bragg-Williams theory, 554 
Brillouin function, 90, 92, 97, 132 

CaCu, structure (SmCo,), 496 
Canted magnetization, 193 
Capacitance bridge, 254 
Cascade electrons, 631 

spin polarization, 635 
Cation, 109 
Charge transfer, 109 
Chemical ordering, 189, 521 
Chromic oxide, see CrO, 
Classical skin depth, 340 
Closure domains, 301 

cubic crystal anisotropy, 302 
uniaxial material, 301 

Cluster calculations, 163, 414 
Co, 149, 153, 169, 180, 606 

ferrite, 512 
films, 640 
particles, 437 

Co-doped iron oxide, 691 
c o 2 + ,  201 
Coz,Ag,,, 593 
CoAu, 640 

multilayers, 640 
Co-COO, 446 
CoCr, 23, 474, 697 
Co/Cu multilayers, 452, 586 
Co,,Gd,,, 409 
CoMo, 474 
CoNd, 409 
Co-Nd, 409 
CoNi, CoNiCr, 697 
COO, 437,438 
Co0.Fe30, ,  512 
CoO/MgO interfaces, 447 
COP, 418, 697 
Co/Pd, 635, 641 
Co/Pd multilayers, 197 
Copt, 511, 548, 715 
Co,R, Co,,R,, 492 
Coarsening, 544 
Coercivity, 20, 21, 436 

amorphous CoFeB, 381 
amorphous CoNbB, 335 
dependence on defect size, 334 
effect of exchangc coupling, 337 
FeNdB, 332 
hexagonal ferrites, 488 
large fuzzy defects, 329 

nucleation-limited, 513 
particle size dependence, 456 
pinning limited, 329 
Sm,(Co, Cu, Fe, Zr),,, 333 
squareness, 688 
well-defined defects, 331 

Coherent rotation, 512 
Colossal magnetoresistance, 609 

in size effect, 613 
Concentrated alloys, 159 
Conduction bands, 146 
Conduction electron mediated exchange, 172. 

See also RKKY exchange 
Conduction electron polarization, 174 
Constitutive relations, 5 
Cooper pairs, 113, 603 
Coordination number, 165, 418 
Core loss, 25 

amorphous alloys, 378 
eddy currents, see Eddy current loss 
effect of grain size, 364 
sine-flux conditions, 377 

Correlation, electronic, 88, 163 
Correlation length, orientational, 436, 406 
Coulomb 

gauge, 97 
integral, 111, 146, 148 
interaction, 110, 111, 121 
repulsion, 88, 146 

Covalent bonds, 109, 147 
Cr, 20, 169 
Cr3 +, 93 
CrO,, chromic oxide, 23, 691 
Critical strain, 236 
Critical 

film thickness, for single domain, 300 
temperature, 553 
thickness for dislocation, 627 

Cross-tie walls, 292 
Crystal field, 194 

anisotropy, 202 
splitting, 198 
symmetry, 201 
single-ion, 251 

Crystal structure 
barium ferrite, 487 
Co (HCP), 180 
Copt (CuAu), 512 
Fe (BCC), 180 
Fe,,Nd,B, 504 
magnetoplumbite, 487 
MnO (NaCl), 123 
Ni (FCC), 180 
Ni3Fe (Cu3Au), 548 



Crystal structure (Continue4 
perovsfite, 61 1 
SmCo, (CaCu,) 498 
Srn,Co,, (Th,Zn,,), 500 
spinel, 126, 201 

Cube-on-edge texture, 364 
Cubic anisotsopy, 188 
CuNiCo (Cunico), 484 
Cu/Ni/Cu films, 627, 643, 651 
CuNiFe (Cunife), 484 
Cu/Ni interface, 644 
Curie 

constant, 76, 121 
temperature, 17, 96, 99, 122, 165, 166, 

171 
determination, 102 

Curie-Weiss function, 101 
Current density, 7 

surface, 36 
Current loop, magnetic moment, 12 
Cyclotron orbit, 579 

d-band 
broadening, shift, 413 
width, Fermi energy, 165 

d-orbitals, 199 
Debye temperature, 558 
Decoupling temperature, 458 
d electron kinetic energy, 170 
de Gennes factor, 491 
Delocalized states, 109 

AE effect, 240, 241,244 
Demagnetization factor, 38, 40, 45 
Demagnetizing field, 32, 38 
Dense random packing, 393 
Density functional theory, 163 
Density of states (DOS), 146, 150-165, 171, 

373, 415, 564, 582, 599,603, 621 
minimum, 160 

Destructive readout, 715 
Diamagnetic 

materials, 16, 71 
susceptibilities, 70, 71 

Diamagnetism, 16, 104 
classical, 68 
quantum, 89, 95 

Diamondlike carbon, 684, 698 
Diatomic 

molecules, 74, 166 
oxygen, 76 

Diffusion equation, 58 
Digital recording, 23, 676 
Dipolar interactions, 194 
Dipole field, 38 

Dirac 
delta function, 36, 617, 658 
equation, 82 

Directed-pair anisotropy, 521. See also 
Field-induced anisotropy 

Dislocation density, 627 
Distribution transformers, 376, 422 
Divalent transition metal ions, 200 
Domain, magnetic, 18, 20, 296. See also 

Domain images 
closure, 301 
interaction domain, 696 
particles, 303 
polycrystalline materials, 308 
size, 656 

uniaxial case, 298 
stabilization field size, 706 
thin films, 277, 293, 451, 647, 654, 662 

Domain image 
amorphous Co-rich alloy, 410 
amorphous Fe-B-Si, 379, 401 
barium ferrite, 489 
Fe (001) 277 
Fe/Cr/Fe, 451 
Ni/Cu thin films, 294, 654 
NiFe films, 293 
permalloy, 401 
ripple, 663 
3% Si-Fe, 19, 309, 365 

Domain wall, 18, 21, 274 
boundary condition, 281 
charged, 292 
coercivity, 328 
energy density, 283, 329 

Ni, Fe, 284 
equation of motion, 343 
Fe whisker, 292 
magnetostatic effects on, 285 
mass, 343 
motion, 21, 318 
near interfaces, 294 
90" walls, 286 
180" wall, 276, 279 
permalloy, 292 
pinning, 328 
profile, numerical solution, 284 
spacing, 299 
surface profiles, 277, 291, 658 
thickness, 279 

Ni, Fe, 284 
SmCo,, 497 

thin films, 288, 293, 653 
viscous damping, 344 

Double exchange, 612 
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Drude model, 561 
Dy, 186 

Easy axis, 45, 180, 186, 191, 496 
magnetization, 3 16 

Easy plane, 186, 191, 496 
Eddy-current loss, 341, 370 

anomalous, 341 
classical, 339 

Effective 
field, 120 
mass, 561 
(paramagnetic) moment, 92, 122 
spin, 492 
susceptibility, 47 

e, orbital, 199 
Eigenfunctions, 116 
Elastic 

compliance, 264 
constant field, 243 

energy density, 230 
Electric dipole moment, 5 
Electrical resistivity, 560 

FeNi, CoNi, CuNi, 577 
spin waves, 565 
temperature dependence, 565 

Electromotive force (EMF), 8, 58 
Electron 

beam, 631 
electron interactions, 115 
polarization, 623 

Electronegativity, 109 
Electronic 

correlation, 163 
exchange, 163 
structure, see also Density of states 

BCC Fe, 163 
cluster, 414 
diatomic molecules, 166 
FCC Ni, 164 
oxides, 199 
surface, 620 
transition metals, 155, 161 

susceptibility, 5 
Elongated single-domain (ESD) particles, 

474 
Energy 

density, 181 
of magnetic moment, 7 
of magnetization, 49 
minimization, 280 
product, 472 

Er, 186 
Euler-Lagrange equation, 281, 284, 331, 458 

Exchange 
anisotropic, 198 
anisotropy, 438 
energy, 115, 274 
field, 440 
fluctuations, 403, 404, 407 
forces, 148 
Heisenberg, 119, 123, 447 
integral, 115, 146, 148 
interactions, 121, 148, 163 

indirect, 124 
length, 295, 296, 436, 450, 455, 463, 658 
mean-field, 120, 131, 396, 504 
oxides, 123, 486 
scattering, 589, 591 
splitting, 150, 163 
stiffness constant, 122 
striction, 201 
symmetry, 113 

Exchange-averaged anisotropy, 455 
Exchange coupling, 433,436-440, 586 

anisotropy field, 440 
ferromagnetic-antiferromagnetic, 437 

thickness dependence, 449 
ferromagnetic-ferromagnetic, 450 

domain image, 453 
RKKY model, 454 

Heisenberg, 447 
interfacial magnetic structure, 445 
M-H loop, 442 
nanocrystalline particles, 455 
NiFeICoO, 448 
NiFeIFeMn, 442 
oscillatory, 453 
sixth power law, 455 
switching behavior, 446 
thickness dependence, 444 
unidirectional, 450 

Exchange-enhanced permanent magnets, 462, 
509 

Exclusion principle, see Pauli, exclusion principle 
Expectation value, 147 

FCC 
cobalt, 629 
Co,Cu,-,, 593 
Fe,Cu,_,, 593 
-HCP phase boundaries, 228 
iron, 171, 629 

Fe, see a-Fe 
clusters, 163 
films, 636 
monolayer, 636 

Fez+, 201 



Fe3+, 93 
Fe/Ag (OOl), 635, 639 
FeB, Fe2B, Fe3B, 398 
Fe-C, 474 
Fe3C, 459, 474 
FeCo, Permendur, 227, 374,474, 548 
Fe-Co alloys, 189, 229 
Fe-Co-base amorphous alloys, 227 
(FeCo),oTbzo, 23 
Fe/Cr multilayers, 452, 584 
Fe7,,Cu,Nb,Si,,~5B9, nanocrystalline, 456 
Fe(100)/Mg0, 646 
FeMn, 440, 441,443, 595 
Fe-N alloys, 540, 702 

microstructure, 540 
Fe-Nd, 409 
Fe,,Nd,B, 491, 496 

anisotropy, 193, 506 
cobalt additions, 509 
coercivity, 332 
crystal structure, 503 
die upsetting, 508 
epoxy bonded, 508 
hot isostatic pressing, 508 
magnetization process, 507 
melt spun, 507 
microstructure, 506 
molecular field, 504 
Stevens factor, 506 
processing, 506 

Fe-Ni alloys, 189, 226, 367 
Fe-Ni(C), 534 
Fe,,Ni,,, 144 
Fe,NiAl, 476 
Fe-Ni-Co, 519 
(Fe, -xNiJ,,B20 alloys, 538 
(Fe, -,CNi, Col,),oB2,, 538 
Fe0,125 
Fe,O,, FeO. Fe,O,, magnetite, 125, 383, 474, 

689 
Fe,O,, 23, 125, 474, 689 
Fe7,Pd3,, 262 
Fe-Pd, 5 11 
Fe-Pt, 51 1 
Fe-Si-Al, Sendust, 366 
Fe, -, -,Si,Al,, 366 
Fe,Si (DO,), 360 
FeSiBNbCu, 432- 
Fe-Si, Fe 3%Si, 19, 360 ff. 
Fe,,Sm,N, 510 
Fe(lOO)/W, 646 
Fermi-Dirac 

distribution, 171 
statistics, 74, 75, 113, 117, 148 

Fermi 
distribution, 94 
energy, level, 146, 152, 155, 165, 172 
particles, 94 
surface, 412 

Fermions, 113 
Fernmagnet@), 16, 20 
Ferrimagnetism, 17, 19, 134 
Ferrite 

exchange, 124 
hard, 485 
magnetic moments, 127 
magnetization, 128 

temperature dependence, 131 
site selection, 129 
soft, 383, 701 

Ferromagnetic-ferromagnetic coupling, see 
Exchange coupling 

Ferromagnetic 
Curie temperatures, 97, 99, 102 
materials, 67, 96, 99 
moment, 92, 99, 122 
resonance, 347 
shape memory alloys, 259ff. 

Ferromagnetism, 17, 96, 147 
Field 

annealing, see Field-induced anisotropy 
cooling, 438, 439 
emission, spin polarized, 633 

Field-induced anisotropy, 410, 517, 368, 524 
amorphous 
Co-rich, 526 
Fe-Ni-base, 538 
Pie-Ni-Co-base, 538 

domain patterns, 520 
Fe-N, 540 
Fe, -,Nix, 526 
functional form, 525 
mechanisms of, 5 19 
microstructural effects, 539 
Ni,,Co3,, 527 

Fine particles, domains, 303 
Flux, 58 

changes per inch, 674 
density, 6 

Forced magnetostriction, 220 
Four-point bending, 266 
Frank-Kasper phases, 426 
Free energy, see Gibbs free energy; Helmholtz 

free energy 
layer in spin valve, 710 
poles, 3 1 

Friedel oscillations, 172 
Friedel virtual bound state model, 155 
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Fringe field, 649, 677 
Frustration, 445 
Fully-symmetric representation, 186 

g factor, see Land6 g factor 
Galvanomagnetic effects, 567, 569 

data, 569 
phenomenology, 578 

y-Fe,O, maghemite, 125, 474, 689 
Gas discharge, 78 
Gauge factor, 254 
Gauss theorem, 8, 26, 34, 53 
Gd, 186, 196, 606 

magnetostriction of, 248 
Gd3+, 93 
General ellipsoid, 41 
Giant internal pressure, 171 
Giant magnetoresistance, 584, 586 

mechanism of, 588 
equivalent circuit, 590 
current in-plane (CIP), 592 
current perpendicular to the place (CPP), 

592, 593 
Gibbs free energy, 51, 241, 243 
Golden ratio, 425 
Goss texture, 364 
Granular magnetic films, 593 
Guinier-Preston (GP) zones, 537 
Gyromagnetic ratio, 65, 82, 83 

H, molecule, 110 
Hf molecule, 118 
Hall 

amorphous alloys, 572 
angle, 571 
coefficient, 567 
effect, 567 

extraordinary, spontaneous, anomalous, 
570 

GdCo, 572 
resistivity, 568, 570 

Hard-axis magnetization process, 187, 314 
Hard magnetic materials, 22, 29, 62 

coercivity, 332, 333, 335 
mechanisms, 512 

data, 500 
exchange enhanced, 462 
moment enhancement, 464 

Harmonic 
generation, 423 
oscillator, 100 

Meat of formation, 413 

Heisenberg 
exchange, 123 
Hamiltonian, 119 
uncertainty principal, 80 

Helium atom, 116 
Helmholtz free energy, 51, 241 
Hematite, 126 
Heusler phase, 476 
Hexagonal ferrites, 485 

data, 490 
Hiperco-50, 375 
Hopping, 612 

integral, 148 
Hot electrons, 631 
Hund's rules, 88, 110, 126, 148, 171 
Hybridization, 414 
Hydrogen 

atom, 15, 66, 77, 80 
molecule, 116 
molecule ion, H f , 116 

Hyperfine field, 174, 404 
Hysteresis, 21, 328 

loss, 22 
rotational, 3 19, 446 

Icosahedral group, 426 
Impurities 

d-electron, in Cu, 560 
dilute magnetic, 559, 564 
Fe in Ni, 156 
Ni in Fe, 156 
V in Ni, 156 
in Fe, 359 

Impurity 
moment, 155, 156 
scattering, 559 

Indistinguishable, noninteracting particles, 11 3 
Inductor, 22 
Initial 

magnetization curve, 513 
permeability, 20, 21 

Insulators, 119 
Interaction domain, 696 
Interatomic exchange, 146, 165, 172 
Interface anisotropy, 644 
Internal 

energy, 50, 51 
field, 110 
pressure, 218 

Interstitial, 528 
atom, 522 
in a-Fe, 534 

Intra-atomic exchange, 89, 110, 172, 621 



Intrinsic 
B-H loop, 470 
coercivity, 21, 470 
M-W loop, 470 

Pnvar alloys, 220 
Inverse 

Joule effect, 232 
magnetoelastic effects, 235 
Wiedemann effect, 221 

Inversion symmetry, 11 1 
Iron, see a-Fe, Fe 
Iron oxides, 125,474 
Itinerant magnets, 103 

Jahn-Teller 
effect, 610 
theorem, 200 

Johnson-Mehl-Avrami kinetics, 459 
Joule 

effect, 226 
magnetostriction, 220, 222, 232, 246, 252 

Junction magnetoresistance, 608 

Karlkvist field, 678 
Kerr effect, 642 
Kinetic energy, 96 
Kohler's rule, 568, 574 

LaAIO,, 612 
LaBaMnO, 609 
La,_,Ca,MnO,, 559, 609, 613 
LaMnO, 609 
La, -,Sr,MnO,, 609 
Landau expansion, 102 
Landt, g factor, 82, 92 
Langevin 

behavior, particles, 307 
function, 76, 90, 93 
susceptibility, 92 
theory of paramagnetism, 96 

Laplace equation, 52, 53 
Laplacian operator, 52 
Larmor 

frequency, 67, 79 
precession, 85 

Lattice mismatch strains, 625 
Legendre polynomials, 81, 186, 196,202 
Lenz' law, 8, 24, 71 
L'H8pital's rule, 76 
Linear thermal expansion, 218 
Liquid metal transport theory, 419 
Local 

anisotropy, 406 

density approximation, 163 
environment, 196,418, 619 

models, I65 
magnetic anisotropy, 436 
moment, 165 

above T,, 171 
Localized electrons, P 19 
Lorentz force, 66, 67, 73, 78, 567 
Loss per cycle, 340 

Maghemite, 126 
Magnetic 

aftereffects, 528 
anisotropy, 53 1 
magnetostrictive, 531 

anisotropy, see Anisotropy 
annealing, see Field-induced anisotropy 
charge density, 51 
charge distribution, 52 
circuits, 58 
dipole, 15 
dipole moment, 6 
domains, see Domain 
flux density, 6 
force microscopy (MFM), 649ff. 

tip, 653 
interface energies, 541 
moment 

alloy, modeling, 417 
amorphous CoZr, 398 

formation, 169 
local, 218 
nonintegral, I52 
per average atom, 153 
of a current loop, 12 
oxides, 609 

current, 599 
density, 6 

ordering 
long-range, 218 

processing technique, 51 7 
properties, 99 
quantum number, 79 
random access memory (MRAM), 713ff. 
recording, see Recording 
resonance, 68, 74, 351 
saturation, 21 
shape memory, see Ferromagnetic shape 

memory 
steels, 358 
stress tensor, 220 
susceptibility, 6, 16 

at constant stress, 243 
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Magnetism and currents, 10 
Magnetite, Fe,O,, 20, 126, 474 
Magnetization, 6. See also Work done du 

magnetization 
curves, 43, 48 
process, 21, 313, 322 

AC, 338 
approach to saturation, 326 
buckling, 322 
curling, 321, 322 
chain of spheres, 322 
domino effect, 322 
free domain walls, 325 
multiple domain walls, 346 
particle interactions, 324 
reorientation transition, 193, 642 
rotation, 21, 315 
uniform rotation, 340 

ripple, 662 
Magnetoconductance, 606 
Magnetocrystalline anisotropy, 179, 275 
Magnetoelastic 

anisotropy, see energy density 
coupling coefficient, 220, 242, 257 

of thin films, 256 
energy density, 229, 232,235, 275 

first-order, 230, 235 
second-order, 230, 646 

resonance, 423 
shear stress B,, 233 
stress B,, 233 

Magnetomechanical coupling, 244, 423 
thermodynamics, 241 

Magnetomotive force (MMF), 58, 677 
quantitative, 650 

Magneto-optic Kerr effect (MOKE), 642 
media, 700 

Magnetoplumbite, 485 
Magnetoquasistatics, 9 
Magnetoresistance, 568, 573, 574, 597 

Fe-Ni, Ni-Co alloys, 576 
mechanism, 579 
ratio, 574, 576, 705 

Magnetoresistive (MR) head, 704 
bias, 705 
noise, 706 
shield, 704 
transfer curve, 709 

Magnetostatic 
energy, 9, 19, 30, 43, 47, 275, 276 
effects, 29 
potential, 51 

Magnetostriction 1, 220, 222, 233, 250 
constant, 224 

cubic symmetry, 246 
data, 225 

 ring hexagonal symmetry, 247 
polycrystalline sample, 234 
temperature dependence, 248, 252 

Magnetostrictive strains, 230, 235 
Magnetostrictivity d, 242 
Magnons, see Spin waves 
Many-electron atoms, 88 
Martensite-austenite phase boundaries, 259 
Martensitic transformation, 259 
Matteucci effect, 221 
Matthiessen's rule, 564 
Maximum energy product, 472 
Maxwell-Boltzmann statistics, 75 
Maxwell's equations, 7, 52 
Maxwell's relations, 242 
Mean-field, see Molecular field 
Media, see Recording 
Melt-spun FeNdB, see Fe-Nd-B 
Metal 

evaporated tape, 697 
insulator transition, 609, 613 
metalloid bonding, 416 
particle recording media, 692 

Metal-in-gap (MIG) head, 701 
hf-H loop, 44, 470. See also Magnetization 

process 
hard magnets, 498 
magnetometer measurement, 471 

Microscopic currents, 11 
Misfit dislocations (MDs), 627 
Misfit strain, 266, 627 
Mishima alloys, 476 
Mn, 153, 169 
MnAl(z), 512 
MnO, 123 
MnZn ferrites, 383, 701 
Mobility, 562 
Molecular field, 18, 99, 110 

coefficients, 132, 504 
theory, 120, 396 

Molecular orbital (MO), 74, 89, 163, 166 
Moment 

of inertia, 68 
per formula unit, 99 
suppression, 41 8 

Monatomic directional ordering, 522 
Mott 

detector, 647 
scattering, 632 

MR effect, ratio, see Magnetoresistance 
Muffin tin potential, 155 
Mu-metal, 25 



Nanoclrystalline 
alloys, 455 

CO-Nb-B, 335, 456 
Fe,4Sil,B,Cu,Nb,, 457 
high magnetization, 458 

particles, exchange coupling, 457 
Nanostructured 

films 
carbide-dispersed, 459 

(Fe2Co),,TagC,,, 458 
FeHfC, 461 

magnetostriction, 460 
permanent magnets, 432, 462 

NdFeB, 462 
NdPbMnO, 609 
Nearest neighbors, 403 
Ntel 

cap on Bloch wall, 291, 648 
surface anisotropy, 635 
temperature, 131, 133, 134, 437, 439, 447 
walls, 288, 289, 648 

thickness energy density, 289 
Neutron scattering data, 153 
Ni, 96, 98, 149, 151, 169, 558 

anisotropy, 189 
electronic structure, 163 
films, 257, 642 
magnetostriction, 224, 248 

NiA1, 698 
Nil-,AI,, 571 
Ni,,Co,,, field-induced anisotropy, 527 
Nil-,Cox, 574 
Ni/Cu, 620, 635, 642 
Nil-,Cu,, 176 
Nil -,Fez, 526 
Ni,Fe, 189, 548 
Ni,Fe, cluster, 415 
NiFe/CoO, 448 
Ni4,Fe,,Co,,, 519 
Ni,,Fe,,/Cu superlattices, 587 
NiFe film, 292 
Ni-Fe vanadates, 131 
Ni2+ . ion, 89 
Ni,MnGa, 261 
Nip electrodeposits, 392 
Ni-Zu ferrites, 383, 701 
Nitride magnets, 510 
Noise 

MR head, 706 
thin film media, 694 

Nondestructive readout, 715 
Nonintegral moment, 152 
Nuclear resonance, 83 
Nucleation, reversal domain, 5 13 

0 2 ,  89 
Oblate orbitals, 202 
Octahedral (B) sites, 126, 199 
Ohm's Paw, 5, 58, 578 
Optical spectra, 78, 79 
Orbit area, 69 
Orbital 

angular momentum, 65, 8M., 105, 198 
magnetic moment, 15, 65 
symmetry, 195 

Order-disorder transformation, 189, 374, 547, 
550 

magnetic, 550 
structural, 550 

Ordinary Hall effect, 567 
Ostwald ripening, 544 
Out-of-plane magnetization, 294 
Oxide magnets, 485 

Pair-interaction model, 196, 231 
at surfaces, 638 

Pair ordering, 41 1 
paramagnetic susceptibility, 69, 72, 122 

classical, 73 
effective, 47 
electron, 5 
orbital, 73 
Pauli, 93 
quantum mechanical, 89, 92, 93 

Paramagnetism, 16, 104 
classical, 73 
quantum, 89, 93 

Particulate recording media, 687 
Patterned media, 721 
Pauli 

exclusion principle, 88, 94, 110, 11 1, 117, 119, 
146, 148, 166 

paramagnetism, 93, 94 
Pd, 558 
Pd,,Ge,,, 394 
p-d bonding, 416 
PdZr, 161 
Pendulum equation, 281 
Periodic surface poles, 55 
Permalloy, 189, 224, 228, 367, 537, 595 

A Alloy, 368 
1040 Alloy, 368 
Deltamax, 368, 371 
films, 257 
Hi-mu 80, 367 
mumetal, 367 
50% nickel, 368, 371 
65% nickel, 368 
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78% nickel, 367, 368 
supermalloy, 367 

Permanent magnet, see Hard magnet 
Permeability, 6 

frequency dependence, 387, 703 
initial, 21 
rotational, 318 
thickness dependence, 37 1 

Permendur, 189 
Perminvar, 519, 537 

effect, 423 
Permittivity, 5 
Permutation (or exchange operator), 113 
Perovskite, 559 

structure, 61 1 
Perpendicular 

magnetic anisotropy, 640 
magnetization, 650 
recording, 685 
surface anisotropy, 636, 658 

Phase diagram 
barium ferrite, 486 
Fe-C, 475 
Fe-Co, 191 
Fe-Co-Ni, 629 
(Fe + Cu)-NiMo, 370 
Fe-Ni, 191 
Fe-WiAl), 477 
Fe-Si, 361 
La, -,Sr,MnO,, 61 1 
Sm-Co, 497 

Photoemission, 171 
spin polarized, 633 

Piezomagnetism, 221 
Pinned 

layer, in spin valve, 710 
wall behavior, 423 

Pinning, see Coercivity 
Planck 

constant, 80 
quantization of action, 77 

Poisson 
contraction, 254, 266 
equation, 51, 53 
ratio, 220 

Polar bonds, 109 
Polarization, 78 
Polycrystalline 

FeCo alloys, 227 
magnetostriction 

Fe, 234 
Ni, 234 

materials, 183 
Potential energy, 43, 47, 50 

Power loss, core, 25, 338ff. See also Eddy 
current loss 

Precession, 74 
Precipitation hardening, 498 
Principal quantum number, 78, 79 
Probability density, 111 
Prolate 

ellipsoid, 40 
orbitals, 202 

Pseudo-spin-valve (PSV), for MRAM, 715 

Quasicrystals (QCs), 425 

RCo,, 491, 496 
crystal structure, 496 

R,Co,,, 492, 496 
crystal structure, 499 

R-TM alloy 
anisotropy, 496 
antiferromagnetic coupling, 496 
Curie temperatures, 492 
exchange, 492,495 
ferromagnetic coupling, 496 
magnetization, 495 
microstructure, 499 

Radial distribution functions, 394 
Random 

access memory (MRAM), 713ff. 
magnetic anisotropy, 405, 436, 454, 464 
packing, 416 
polycrystal, 234 
thermal fluctuations, 100 
walk, 406 

Rare-earth metals, 172, 174, 187, 492 
Curie temperatures, 491 
magnetic moments, 491 
spin-orbit vs. crystal field, 196 

Recording head, 684, 700. See also 
Magnetoresistive head 

efficiency, 677 
head-media gap, 683 
inductive, 700 
read, 684 
write, 677, 700 

Recording, magnetic, 674. See also Areal 
density 

fundamental limits, 718 
head, see Recording head 
media, see Recording media 

Recording media, 22, 679 
CoCrTa-(Pt), 461, 697 
longitudinal, 685, 696 
noise, 694 
particulate, 687 



738 ONWEX 

Recording media (Continued) 
patterned, 721 
perpendicular, 685, 699 
switching field distribution (SFD), 689 
thin film, 694, 701 

epitaxy, 698 
transition, 681 

Relaxation time, 350, 562 
Reluctance, 59 
Remanence, 20, 180 
Resistivity 

Fe, 360 
metals, 558, 561, 569 
Ni, 558 
noble metals, 560 
oxides, 559 
temperature coefficients, 419 
tensor, 578 
two-current model, 562 

Resonance, ferromagnetic, 347 
Reversal domain nucleation, 513 
Rigid-band approximation, 153 
Rigid-band model, 144, 150, 159 
Ripple domains, 662 

stability, 664 
RKICY exchange, 172, 175,495 
Rocksalt structure, 20 
Roll-induced anisotropy, 517 
Rotational. See also Virtual bound state 

hysteresis, 439 
kinetic energy, 154 

Ruderman-Kittel-Kasuya-Yosida model, see 
RKKY 

s-d hybridization, 622 
scattering, 174, 562, 583 

saturation magnetic moment, 92, 99, 491 
Saw-tooth transition, 694, 722 
Scalar magnetic potential, 51 
Scanning electron microscopy with 

polarization analysis (SEMPA), 19, 276, 
291,401, 647 

Scattering, 73 
asymmetry, 632, 648 
exchange, 589, 591 

resonance, 155 
spin-orbit, 580 

Schrodinger equation, 80, 116, 154 
Second-order magnetoelastic anisotropy, 239 
Second law of thermodynamics, 50 
Secondary electron, 631 

electron yield, 648 
spin polarization, 630, 634 

Segregation, 521 

Self energy, 48 
Sendust, see Fe-Si-.Al 
Sense line, for MRAM, '715 
Shape anisotropy, 30, 38, 43, 478 
Sheared loop, 517 
Sherman function, 632 
Shielding, 25 

in MR heads and spin valves, 704, 710 
Short-range order, 165, 402 
3%Si-Fe, see Fe 3%Si 
Side jump, 571 
Silicon steels, 358 
Signal-to-noise ratio (SNR), 694 
Single-domain 

film, 300 
particle, 303, 433, 488 

acicular, 305 
magnetization process, 319, 433 

Single-ion anisotropy, 198, 250, 252, 253 
Skew scattering, 571 
Skin effect, 25, 371, 702 
Slater-Pauling curve, 144, 149, 150, 152, 153 
Slip-induced anisotropy, see Stress annealing 
Sm3*, 89 
SmCo, phase diagram, 497 
SmCo,, 191, 491 

crystal structure, 498 
microstructure, 499 

Sm,(CoFe),,, 499 
Sm,(CoFeZrCu),,, 500 

microstructure, 501 
Small-angle magnetization rotation, 254 
Snoek effect, 529, 530 
Soft adjacent layer (SAE), 706 
Soft ferrites, see Ferrites 
Soft iron core, 60 
Soft magnetic materials, 21, 357 
Solenoids, 13 
Solutes, see Impurities 
Specific heat, 151, 174 
Spectroscopy, 77 
Spero- and sperimagnets (SM), 408 

canted speri(o)magnets, 408 
spin glasses, 408 

Spherical harmonics, 53, 186 
Spin, 81 

correlation functions, 252 
density oscillations, 173 
filtering, 632, 634 
flip, 58 1 
flip scattering, 563 
glass, 407 
injection, 598 
mixing, 563, 565, 581, 583 
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polarization analysis, 631 
polarized photoemission, 637 
reorientation transition, 506 
scattering, 74 
singlet, 115 
stiffness, 122 
switch, 598, 600 
tunneling, 602 
valve, 594, 597, 710 

transfer curve, 71 1 
transistor, 597 

wave 100, 122, 350 
Spin-dependent electron scattering, 562, 589, 

632 
Spin-disorder scattering, 558, 565 
Spin-orbit 

interaction, 83, 86, 194, 198, 201, 570, 580, 
635 

operator, 581 
Spin-spin interaction, 119 
Spinel structure, 126, 201 

site preference, 129 
Spinodal decomposition, 476, 478 
Split-band model, 154, 159, 161, 372, 577 

angular momentum, 159 
spin-orbit interaction, 83, 86, 89, 121, 151 

Split d bands, 413 
Spontaneous magnetization, 102 
Square loop, 517 
Squareness ratio, 688 
SrTiO, structure, 61 1 
Stability condition, 44, 662 
Stacking fault, 537 
State density curve, see Density of states 
State of magnetization, 49 
Statistical average, 72 
Steels, magnetic, 358 
Stevens factor, 202 
Stokes theorem, 9, 26, 35 
Stoner 

criterion, 146, 165 
gap, 634 
integral, 165 

Stoner-Wohlfarth model, 319, 489 
Stoney equation, 256, 668 
Strain-dependent Hamiltonian, 250 
Strain gauges, 253 
Strain-modulated ferromagnetic resonance, 256 
Stress annealing, 536 
Stress-induced anisotropy, 221 
Strong ferromagnets, 150, 152, 163 
Structure, see Crystal structure 
Structure factor, 420, 548 
Substitutional atom, 522 

Superconducting density of states, 603 
Superexchange, 123ff., 486 
Superlattice lines, 549 
Superparamagnetism, 306, 323, 433, 436 
Superparamagnetic radii, 307, 718 
Surface 

anisotropy, 637, 642 
magnetoelastic contribution, 642 

charge, 37, 52, 622 
current density, 36 
domain wall, 658 
electron momentum, 635 
energy densities, 542 
magnetic anisotropy, 635 

Fe, 636 
magnetic moment, 620, 623 
magnetoelastic terms, 646 
magnetostriction, 229 
pole density, 31 
relaxation, 624 
spin density, 623 

Susceptibility, 6. See also Paramagnetic, 
diamagnetic 

differential, 689 
effective, 47 
electrical, 5 

Switching 
field, 316, 321 

distribution (SFD), 689 
probability, particle, 307 

Symmetric 
orbital, 148 
spin function, 148 
wavefunction, 113 

Symmetry, 112 
Symmetry-invariant notation, 244 

t,, orbital, 199 
Tb, 186, 196 

magnetostriction of, 248 
Tb-Fe, 410 
Temperature coefficient of resistance, 419 
Tetrahedral (A) sites, 126, 199 
Thermal 

demagnetization, 100 
energy, 17 
expansion, 625 

anomalies, 171 
Thermodynamics, 47 

strain, 241 
Thermoelastic shape memory, 259 
Thermomagnetic anisotropy, see Field-induced 

anisotropy 
Thermoremanent moment, 447 



Thomas precession, 87 
Thin film 

Bloch wall, 288, 653 
domains, 277,293,451, 647, 654, 663 
domain walls, 285, 293 
inhomogeneous magnetization, 657, 660 
magnetoelastic coupling, 644, 645 
metastable phases, 628 
NCel wall, 288 
Ni/Cu, 660 
perpendicular magnetization, 657 
recording media, 694 
strain, 625 
stress, 667 
surface anisotropy, 657 

3d impurities in Ni, 564 
3d transition metals and alloys, 196 
(Til - zVx)2Ni, 425 
Ti0,  557 
Top spin valve, 712 
Toroid, 30, 60 

gap, 61 
Torque, 66, 347 

magnetometry, 210 
Transfer function, 651, 652, 709 
Transformer, 23 
Transition length, recording, 682 
Transition metal 

bonding, 168 
monoxides, 20 

Triplet state, 115 
Tungsten steel, 474 
Tunnel 

conductance, 60 
junction, 602 

Al-A1203-Ni, 605 
FeCo-A1203 -Co, 607 
Fe-Ge-Co, 607 

Tunneling 
data, 606 
ferromagnetic-ferromagnetic, 606 
ferromagnetic-superconducting, 603 
spin waves, 608 
temperature dependence, 609 

Twin-boundary motion, 259, 261, 262, 263 
Twin variants, 259, 261, 262 
Two-current model, 562, 564, 580, 582, 583 

equivalent circuit, 563 
impurities, 563 

Two-ion 
anisotropy, 208, 250, 252, 253 
exchange, 208,251 

Ultraviolet photoelectron spectroscopy (UPS), 
161,413 

Uncompensated moments, 447 
Uniaxial 

anisotropy, 43, 181, 183. See also Anisotropy 
strain, 266 

Uniform precession, 350 
Uniformly-magnetized sphere, 53 

V, 153 
Valence difference, 413 
Vanadium-permendur, supermendur, 374 
Variational method, 280, 657 
Vector potential, 95 
Villari effects, 221 
Virtual bound state (VBS), 154, 155, 156 
Volume 

anisotropy, 637 
charge, 52 
expansion, 2 18 
magnetostriction, 220, 250 
susceptibility, 70 
thermal expansion, 242 

Wall motion, see Domain wall 
Wall thickness, see Domain wall 
Wasp-waisted loop, 519 
Wavelength, recorded bits, 683 
Weak ferromagnet, 152 
Weiss internal, effective, molecular field, 96, 

121, 146 
Wiedemann effect, 221 
Wigner-Seitz radius, 170 
Winchester disk, 689 
Word line for MRAM, 715 
Work done during magnetization, 49ff. 
Write head, recording 677, 700 

gap field, 678 

YIG, 248 
Young's modulus, 241 

Zeeman 
effect, 81, 85 
energy, 43, 102, 187, 263, 275 
splittings, 8 1 

Zero-field cooling, 438 
Zero-magnetostriction, 372 
Ziman liquid metal theory, 419 
Zustandsumme, 90 
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