Capítulo 4

Programação linear

Um problema de otimização que envolve apenas funções lineares das variáveis de projeto é também chamado de problema de programação linear.

Programação Linear é normalmente considerada como um método de pesquisa operacional, mas existe uma série muito grande de aplicações. O problema que será exposto pode ser expresso em sua forma padrão como:

Minimizar
$$f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$$
 (função objetivo)
sujeita a $\mathbf{A}\mathbf{x} = \mathbf{b}$ (equações de restrição) onde $\mathbf{x} \ge 0$

 \mathbf{x} é o vetor coluna das n variáveis de projeto que se deseja determinar. As constantes dadas do sistema, também conhecidas como **recursos disponíveis**, são fornecidas pelo vetor coluna \mathbf{b} , uma matriz: $\mathbf{A} m \times n$ e um vetor coluna \mathbf{c} . Todas as equações de restrições e a função objetivo que se deseja minimizar estão na forma linear.

Repetindo, o problema representa a necessidade de minimizar uma função linear, a função objetivo, sujeita a satisfazer um sistema de igualdades linear. Apesar de ter sido dada a forma "standard", muitas outras formas deste problema podem aparecer, as quais são convertidas a esta considerada. Por exemplo, as restrições podem ser inicialmente de desigualdades e estas podem ser convertidas em igualdades, adicionando-se ou subtraindo-se variáveis adicionais, as **variáveis de folga**. O objetivo pode ser maximizar a função, em vez de minimiza-la. Novamente isto é obtido alterando-se os sinais dos coeficientes **c**.

Alguns exemplos práticos onde a Programação Linear pode ser aplicada são:

- problema de dietas alimentares em hospitais, requerendo redução de custos de alimentos, enquanto permanece-se oferecendo a melhor dieta;
- problema de redução de perda padrão em indústrias;
- problema de se otimizar o lucro, sujeito a restrições de disponibilidade de materiais;
- problema de otimização de rotinas de chamadas telefônicas.

4.1 Método SIMPLEX

Um poderoso método numérico para resolução de problemas de programação linear é denominado SIMPLEX, um dos primeiros a se tornarem disponíveis e populares quando da introdução dos computadores eletrônicos digitais de programa armazenado, na segunda metade do século XX.

Para exposição do algoritmo será utilizado o mesmo exemplo de maximização de lucro resolvido graficamente na Seção 3.1. Numa primeira fase, transformam-se as equações de restrições de desigualdade em equações de restrições de igualdade pela introdução de

variáveis adicionais que representam a folga de recursos existente em cada uma delas, denominadas *slack variables* em inglês. O problema é

Minimizar
$$f(\mathbf{x}) = -400x_1 - 600x_2$$
, sujeita a

$$x_1 + x_2 + x_3 = 16$$

$$x_1/28 + x_2/14 + x_4 = 1$$

$$x_1/14 + x_2/24 + x_5 = 1$$

Matricialmente, tem-se o vetor de variáveis de projeto $\mathbf{x} = [x_1 \quad x_2 \quad \cdots \quad x_5]^T$, a função objetivo $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$, onde $\mathbf{c} = [c_1 \quad c_2 \quad \cdots \quad c_5]^T = [-400 \quad -600 \quad \cdots \quad 0]^T \mathbf{e}$ a equação de restrições $\mathbf{A}\mathbf{x} = \mathbf{b}$. As componentes a_{ij} da matriz \mathbf{A} , $m \times n$ (no caso m = 3 e n = 5), são os coeficientes das equações de restrições e $\mathbf{b} = [b_1 \quad b_2 \quad b_3]^T = [16 \quad 1 \quad 1]^T$.

Como a matriz \mathbf{A} é 3 x 5, isto é, m < n, não há solução única. Introduz-se o conceito de solução básica, em que n-m variáveis são anuladas (no caso duas), chamadas variáveis não básicas, e as demais são denominadas variáveis básicas, permitindo a solução do sistema restante (no caso, 3 x 3). Cada uma dessas soluções básicas corresponde a um vértice do polígono da Fig. 4.1. Como se percebe, das 10 soluções básicas possíveis neste caso, algumas são viáveis (respeitam todas as restrições) e outras são inviáveis. A inspeção de todas essas soluções básicas possíveis é um procedimento tipo força bruta para resolver o problema. Num caso de dimensão grande se torna economicamente irrealizável.

O método SIMPLEX é organizado em tabelas denominadas Tableau, cada uma representando 1 solução básica. A passagem de uma solução para outra é feita de uma forma inteligente, e há um critério para se saber quando é atingida a solução do problema de otimização. O tableau inicial é

Variável básica	X_1	x_2	<i>X</i> ₃	X_4	<i>x</i> ₅	b	Razão b_i / a_{i2}
x_3	1	1	1	0	0	16	16
x_4	1/28	1/14	0	1	0	1	14
x_5	1/14	1/24	0	0	1	1	24
Custo	-400	-600	0	0	0	f - 0	

Nesta solução, as variáveis básicas são $x_3 = 16$, $x_4 = 1$, $x_5 = 1$, e $x_1 = 0$, $x_2 = 0$ são as variáveis não básicas, levando, obviamente, a f = 0 (verificar a Fig. 4.1). Pelo método, para examinar-se uma nova solução básica, uma das variáveis básicas deve se tornar não básica e uma variável não básica deve se tornar básica. O critério para tanto é adota-se a coluna que corresponde ao menor custo (a segunda coluna, de custo -600) e a linha correspondente à menor razão positiva b_i/a_{i2} . O elemento $a_{22} = 1/14$ é o novo pivô do procedimento. No método numérico, é costume fazer esse pivô unitário, dividindo essa linha por ele mesmo. Além disso, subtrai-se essa linha, multiplicada por um número

adequado, das demais linhas para zerar os coeficientes da coluna 2. O resultado é o segundo tableau, a seguir (verificar a Fig. 4.1).

Variável básica	x_1	x_2	x_3	x_4	x_5	b	Razão b_i / a_{i1}
x_3	1/2	0	1	- 14	0	2	4
x_2	1/2	1	0	14	0	14	28
x_5	17/336	0	0	-7/12	1	7	2352/17
Custo	-100	0	0	8400	0	f + 8400	

Adota-se, agora, a coluna que corresponde ao menor custo (a primeira coluna, de custo – 100) e a linha correspondente à menor razão positiva b_i / a_{i1} . O elemento $a_{11} = 1/2$ é o novo pivô do procedimento. Faz-se esse pivô unitário, dividindo essa linha por ele mesmo e subtrai-se essa linha, multiplicada por um número adequado, das demais linhas para zerar os coeficientes da coluna 1. O resultado é o terceiro tableau, a seguir.

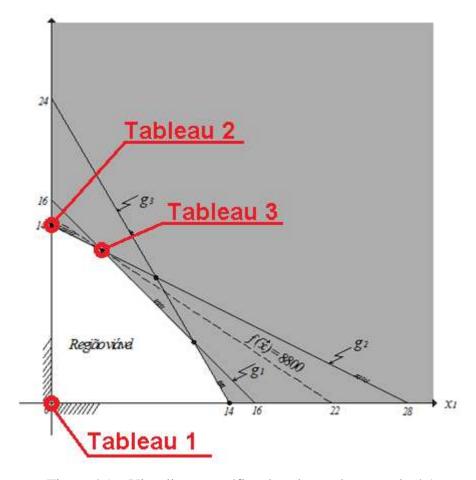


Figura 4.1 – Visualização gráfica da solução do exemplo 4.1

Variável básica	<i>x</i> ₁	x_2	x_3	X_4	x_5	b	Razão b_i / a_{i1}
x_1	1	0	2	- 28	0	4	Não
1							necessário
x_2	0	1	-1	28	0	12	Não
							necessário
x_5	0	0	-17/168	5/6	1	3/14	Não
							necessário
Custo	0	0	200	5600	0	f + 8800	

Pode-se provar que o processo atinge o mínimo quando os valores reduzidos da linha Custo para as variáveis não básicas são não negativos (em vez de diminuir eles aumentam o custo). A solução do problema é, portanto, as variáveis básicas são $x_1 = 4$, $x_2 = 12$, $x_5 = 3/14$, e $x_3 = 0$, $x_4 = 0$ são as variáveis não básicas, levando a f = -8800. Na Figura 4.1 são marcados os pontos correspondentes a cada uma das tableaux. Observe que o algoritmo desloca a solução ao longo dos vértices do polígono que define a região viável do problema (domínio viável) até que se obtenha o valor ótimo.

Há casos particulares, mas o exame deles foge ao escopo deste livro, e devem ser procurados na literatura da Pesquisa Operacional.

4.2 Exemplo

Uma refinaria recebe uma quantidade fixa de gás natural bruto em m³ por semana. Ele é processado em 2 qualidades de gás, comum e especial cada um consumindo um certo tempo e dando um certo lucro por tonelada processada. Só um dos tipos de produto pode ser processado de cada vez. A refinaria trabalha 80 horas por semana e sua capacidade de armazenamento é restrita para cada tipo de produto. Qual a quantidade de gás de cada tipo deve ser processada para o máximo lucro? Os dados disponíveis para o gestor resolver o problema de programação linear estão resumidos a seguir.

Recurso	Produto	Disponibilidade de	
	Gás comum	Gás especial	recursos
Gás bruto	7 m ³ /ton	11 m³/ton	77 m³/semana
Tempo de produção	10 h/ton	8 h/ton	80 h/semana
Armazenagem	9 ton	6 ton	
Lucro	R\$ 150/ton	R\$ 175/ton	

Variáveis de projeto:

 x_1 : quantidade de gás comum a ser produzida

x₂ : quantidade de gás especial a ser produzida

Função objetivo (lucro): $F(\mathbf{x}) = 150x_1 + 175x_2$

Restrições, já adicionando as variáveis de folga (slack variables):

$$g_1 = 7x_1 + 11x_2 + x_3 = 77$$

$$g_2 = 10x_1 + 8x_2 + x_4 = 80$$

$$g_3 = x_1 + x_5 = 9$$

$$g_4 = x_2 + x_6 = 6$$

Aplicando o SIMPLEX, constrói-se o primeiro tableau

Variável básica	x_1	x_2	x_3	x_4	X_5	<i>x</i> ₆	b	Razão b_i / a_{i2}
x_3	7	11	1	0	0	0	77	7
x_4	10	8	0	1	0	0	80	10
x_5	1	0	0	0	1	0	9	8
x_6	0	1	0	0	0	1	6	6
Custo	-150	-175	0	0	0	0	f - 0	

O pivô será o coeficiente $a_{42} = 1$ já que a segunda coluna corresponde ao menor custo (-175), e quarta linha à menor razão positiva b_i / a_{i2} .

Esse pivô já é unitário, como exigido pelo método. Zerando os coeficientes dessa coluna acima e abaixo dessa linha, chega-se ao segundo tableau.

Variável básica	X_1	x_2	x_3	X_4	x_5	x_6	b	Razão b_i / a_{i1}
x_3	7	0	1	0	0	-11	11	1,57143
x_4	10	0	0	1	0	-8	32	3,2
x_5	1	0	0	0	1	0	9	9
x_2	0	1	0	0	0	1	6	∞
Custo	-150	0	0	0	0	175	f + 1050	

O pivô será o coeficiente $a_{11} = 7$ já que a primeira coluna corresponde ao menor custo (-150), e a primeira linha à menor razão positiva b_i/a_{i2}

Tornando esse pivô unitário e zerando os coeficientes abaixo dessa linha, chega-se ao terceiro tableau.

Variável básica	x_1	x_2	x_3	X_4	<i>x</i> ₅	x_6	b	Razão b_i / a_{i2}
x_1	1	0	0,1429	0	0	-1,571	1,57143	
x_4	0	0	-0,1429	1	0	7,7143	16,2857	2,1111
x_5	0	0	-0,1429	0	1	1,571	7,4286	4,7286
x_2	0	1	0	0	0	1	6	6
Custo	0	0	21,4256	0	0	-60,71	f +1286	

O pivô será o coeficiente a_{26} = 7,7143 já que a sexta coluna corresponde ao menor custo (-60,71), e a segunda linha à menor razão positiva b_i/a_{i2}

Tornando esse pivô unitário e zerando os coeficientes abaixo e acima dessa linha, chegase ao quarto tableau.

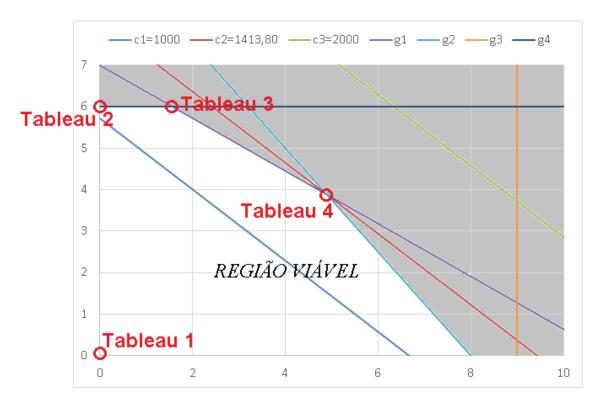


Figura 4.2 – Visualização gráfica da solução do exemplo 4.2

Variável básica	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆	b	Razão b_i / a_{i2}
x_1	1	0	0,1481	0,2037	0	0	4,8889	
x_6	0	0	-0,1852	0,1296	0	1	2,1111	
x_5	0	0	0,1481	-0,204	1	0	4,1111	
x_2	0	1	0,1852	-0,13	0	0	3.8889	
Custo	0	0	10,1852	7,8704	0	0	f +1413,8	

Este é o último tableau, pois na linha dos custos só há valores não negativos. A solução é 4,8889 toneladas de gás comum e 3,8889 toneladas de gás especial, por semana, resultando um lucro máximo de R\$ 1413,80. Cabe mencionar mais um resultado interessante para o gestor: existe uma folga de capacidade de armazenamento de 2,1111 toneladas do gás especial e de 4,1111 toneladas do gás comum.

Na Figura 4.2 são marcados os pontos correspondentes a cada uma dos tableaux. Além das restrições g1 a g4 são mostradas na figura os gráficos da função objetivo para os valores c1 = 1000 (valor da função objetivo igual a 1000), c2 = 1413,80 (valor da função objetivo igual a 1413,80) e c3 = 2000 (valor da função objetivo igual a 2000). Observe que neste caso também o algoritmo simplex desloca a solução ao longo dos vértices do polígono que define a região viável do problema (domínio viável) até que se obtenha o valor ótimo.

4.3 Programa em Matlab

```
% programação linear - método Simplex
% Prof. Reyolando Brasil - 01/04/2013
%
% dimensões do problema
%
ninc=5; % número de incognitas
neq=2; % número de equações (restrições)
```

%

% entrada das matrizes do primeiro tableau

a=[-1 1 -4 1 0;2 -1 2 0 1]; % coeficientes das equações de restrições

b=[30 10]; % vetor de recursos

%

```
c=[-1 -2 1 0 0]; % coeficientes da função objetivo
f=0;
%
while(1)
%
% coluna da incógnita que entra
%
centra=0;
for j=1:ninc
  if c(j) < centra
    centra=c(j);
    jentra=j;
  end
end
if centra==0, break, end
% linha da incognita que sai
%
razaoa=10000;
for i=1:neq
  razao=b(i)/a(i,jentra);
  if razao > 0
    if razao < razaoa
      razaoa=razao;
      isai=i;
    end
  end
end
%
% faz o pivo unitário
```

```
%
pivo=a(isai,jentra);
for j=1:ninc
  a(isai,j)=a(isai,j)/pivo;
end
b(isai)=b(isai)/pivo;
%
% modifica as demais linhas acima e abaixo da linha que sai para zerar a coluna
% acima e abaixo do pivo
%
for i=1:neq
  if i ~= isai
    const=a(i,jentra);
    for j=1:ninc
      a(i,j)=a(i,j)-const*a(isai,j);
    end
    b(i)=b(i)-const*b(isai);
  end
end
const=c(jentra);
for j=1:ninc
  c(j)=c(j)-const*a(isai,j);
end
f=f-const*b(isai);
end
a
b
c
f
%
```