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Introduction to Materials Science 
and Engineering

1–4 Steel is often coated with a thin layer of zinc if it is to be used outside. What charac-
teristics do you think the zinc provides to this coated, or galvanized, steel? What
precautions should be considered in producing this product? How will the recycla-
bility of the product be affected?

Solution: The zinc provides corrosion resistance to the iron in two ways. If the
iron is completely coated with zinc, the zinc provides a barrier between
the iron and the surrounding environment, therefore protecting the
underlying iron. If the zinc coating is scratched to expose the iron, the
zinc continues to protect the iron because the zinc corrodes preferentially
to the iron (see Chapter 23). To be effective, the zinc should bond well to
the iron so that it does not permit reactions to occur at the interface with
the iron and so that the zinc remains intact during any forming of the
galvanized material. When the material is recycled, the zinc will be lost
by oxidation and vaporization, often producing a “zinc dust” that may
pose an environmental hazard. Special equipment may be required to
collect and either recycle or dispose of the zinc dust.

1–5 We would like to produce a transparent canopy for an aircraft. If we were to use a
ceramic (that is, traditional window glass) canopy, rocks or birds might cause it to
shatter. Design a material that would minimize damage or at least keep the canopy
from breaking into pieces.

Solution: We might sandwich a thin sheet of a transparent polymer between two
layers of the glass. This approach, used for windshields of automobiles,
will prevent the “safety” glass from completely disintegrating when it
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fails, with the polymer holding the broken pieces of glass together until
the canopy can be replaced.

Another approach might be to use a transparent, “glassy” polymer
material such as polycarbonate. Some polymers have reasonably good
impact properties and may resist failure. The polymers can also be
toughened to resist impact by introducing tiny globules of a rubber,
or elastomer, into the polymer; these globules improve the 
energy-absorbing ability of the composite polymer, while being too
small to interfere with the optical properties of the material.

1–6 Coiled springs ought to be very strong and stiff. Si3N4 is a strong, stiff material.
Would you select this material for a spring? Explain.

Solution: Springs are intended to resist high elastic forces, where only the atomic
bonds are stretched when the force is applied. The silicon nitride would
satisfy this requirement. However, we would like to also have good
resistance to impact and at least some ductility (in case the spring is
overloaded) to assure that the spring will not fail catastrophically. We
also would like to be sure that all springs will perform satisfactorily.
Ceramic materials such as silicon nitride have virtually no ductility,
poor impact properties, and often are difficult to manufacture without
introducing at least some small flaws that cause to fail even for relatively
low forces. The silicon nitride is NOT recommended.

1–7 Temperature indicators are sometimes produced from a coiled metal strip that
uncoils a specific amount when the temperature increases. How does this work;
from what kind of material would the indicator be made; and what are the important
properties that the material in the indicator must possess?

Solution: Bimetallic materials are produced by bonding two materials having
different coefficients of thermal expansion to one another, forming a
laminar composite. When the temperature changes, one of the materials
will expand or contract more than the other material. This difference in
expansion or contraction causes the bimetallic material to change shape;
if the original shape is that of a coil, then the device will coil or uncoil,
depending on the direction of the temperature change. In order for the
material to perform well, the two materials must have very different
coefficients of thermal expansion and should have high enough modulus
of elasticity so that no permanent deformation of the material occurs.

1–8 You would like to design an aircraft that can be flown by human power nonstop for
a distance of 30 km. What types of material properties would you recommend?
What materials might be appropriate?

Solution: Such an aircraft must possess enough strength and stiffness to resist 
its own weight, the weight of the human “power source”, and any
aerodynamic forces imposed on it. On the other hand, it must be as light
as possible to assure that the human can generate enough work to
operate the aircraft. Composite materials, particularly those based on a
polymer matrix, might comprise the bulk of the aircraft. The polymers
have a light weight (with densities of less than half that of aluminum)
and can be strengthened by introducing strong, stiff fibers made of glass,
carbon, or other polymers. Composites having the strength and stiffness
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of steel, but with only a fraction of the weight, can be produced in this
manner.

1–9 You would like to place a three-foot diameter microsatellite into orbit. The satellite
will contain delicate electronic equipment that will send and receive radio signals from
earth. Design the outer shell within which the electronic equipment is contained. What
properties will be required, and what kind of materials might be considered?

Solution: The shell of the microsatellite must satisfy several criteria. The material
should have a low density, minimizing the satellite weight so that it can
be lifted economically into its orbit; the material must be strong, hard,
and impact resistant in order to assure that any “space dust” that might
strike the satellite does not penetrate and damage the electronic
equipment; the material must be transparent to the radio signals that
provide communication between the satellite and earth; and the material
must provide some thermal insulation to assure that solar heating does
not damage the electronics.

One approach might be to use a composite shell of several materials.
The outside surface might be a very thin reflective metal coating that
would help reflect solar heat. The main body of the shell might be a light
weight fiber-reinforced composite that would provide impact resistance
(preventing penetration by dust particles) but would be transparent to
radio signals.

1–10 What properties should the head of a carpenter’s hammer possess? How would you
manufacture a hammer head?

Solution: The head for a carpenter’s hammer is produced by forging, a metal-
working process; a simple steel shape is heated and formed in several
steps while hot into the required shape. The head is then heat treated to
produce the required mechanical and physical properties.

The striking face and claws of the hammer should be hard—the metal
should not dent or deform when driving or removing nails. Yet these
portions must also possess some impact resistance, particularly so that
chips do not flake off the striking face and cause injuries. 

1–11 The hull of the space shuttle consists of ceramic tiles bonded to an aluminum skin.
Discuss the design requirements of the shuttle hull that led to the use of this combi-
nation of materials. What problems in producing the hull might the designers and
manufacturers have faced?

Solution: The space shuttle experiences extreme temperatures during re-entry into
earth’s atmosphere; consequently a thermal protection system must be
used to prevent damage to the structure of the shuttle (not to mention its
contents!). The skin must therefore be composed of a material that has
an exceptionally low thermal conductivity. The material must be capable
of being firmly attached to the skin of the shuttle and to be easily
repaired when damage occurs. 

The tiles used on the space shuttle are composed of silica fibers bonded
together to produce a very low density ceramic. The thermal
conductivity is so low that a person can hold on to one side of the tile
while the opposite surface is red hot. The tiles are attached to the shuttle
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skin using a rubbery polymer that helps assure that the forces do not
break the tile loose, which would then expose the underlying skin to
high temperatures.

1–12 You would like to select a material for the electrical contacts in an electrical switch-
ing device which opens and closes frequently and forcefully. What properties should
the contact material possess? What type of material might you recommend? Would
Al2O3 be a good choice? Explain.

Solution: The material must have a high electrical conductivity to assure that no
electrical heating or arcing occurs when the switch is closed. High purity
(and therefore very soft) metals such as copper, aluminum, silver or gold
provide the high conductivity. However, the device must also have good
wear resistance, requiring that the material be hard. Most hard, wear
resistant materials have poor electrical conductivity.

One solution to this problem is to produce a particulate composite
material composed of hard ceramic particles embedded in a continuous
matrix of the electrical conductor. For example, silicon carbide particles
could be introduced into pure aluminum; the silicon carbide particles
provide wear resistance while aluminum provides conductivity. Other
examples of these materials are described in Chapter 17.

Al2O3 by itself would not be a good choice—alumina is a ceramic
material and is an electrical insulator. However, alumina particles
dispersed into a copper matrix might provide wear resistance to the
composite.

1–13 Aluminum has a density of 2.7 g/cm3. Suppose you would like to produce a com-
posite material based on aluminum having a density of 1.5 g/cm3. Design a material
that would have this density. Would introducing beads of polyethylene, with a 
density of 0.95 g/cm3, into the aluminum be a likely possibility? Explain.

Solution: In order to produce an aluminum-matrix composite material with a
density of 1.5 g/cm3, we would need to select a material having a
density considerably less than 1.5 g/cm3. While polyethylene’s density
would make it a possibility, the polyethylene has a very low melting
point compared to aluminum; this would make it very difficult to
introduce the polyethylene into a solid aluminum matrix—processes
such as casting or powder metallurgy would destroy the polyethylene.
Therefore polyethylene would NOT be a likely possibility.

One approach, however, might be to introduce hollow glass beads.
Although ceramic glasses have densities comparable to that of
aluminum, a hollow bead will have a very low density. The glass also
has a high melting temperature and could be introduced into liquid
aluminum for processing as a casting.

1–14 You would like to be able to identify different materials without resorting to chemical
analysis or lengthy testing procedures. Describe some possible testing and sorting
techniques you might be able to use based on the physical properties of materials.

Solution: Some typical methods might include: measuring the density of the
material (may help in separating metal groups such as aluminum,
copper, steel, magnesium, etc.), determining the electrical conductivity
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of the material (may help in separating ceramics and polymers from
metallic alloys), measuring the hardness of the material (perhaps even
just using a file), and determining whether the material is magnetic or
nonmagnetic (may help separate iron from other metallic alloys). 

1–15 You would like to be able to physically separate different materials in a scrap recy-
cling plant. Describe some possible methods that might be used to separate materi-
als such as polymers, aluminum alloys, and steels from one another.

Solution: Steels can be magnetically separated from the other materials; steel (or
carbon-containing iron alloys) are ferromagnetic and will be attracted by
magnets. Density differences could be used—polymers have a density
near that of water; the specific gravity of aluminum alloys is around 2.7;
that of steels is between 7.5 and 8. Electrical conductivity measurements
could be used—polymers are insulators, aluminum has a particularly
high electrical conductivity.

1–16 Some pistons for automobile engines might be produced from a composite material
containing small, hard silicon carbide particles in an aluminum alloy matrix. Explain
what benefits each material in the composite may provide to the overall part. What
problems might the different properties of the two materials cause in producing 
the part?

Solution: Aluminum provides good heat transfer due to its high thermal
conductivity. It has good ductility and toughness, reasonably good
strength, and is easy to cast and process. The silicon carbide, a ceramic,
is hard and strong, providing good wear resistance, and also has a high
melting temperature. It provides good strength to the aluminum, even at
elevated temperatures. However there may be problems producing the
material—for example, the silicon carbide may not be uniformly
distributed in the aluminum matrix if the pistons are produced by
casting. We need to assure good bonding between the particles and the
aluminum—the surface chemistry must therefore be understood.
Differences in expansion and contraction with temperature changes may
cause debonding and even cracking in the composite.
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7

2
Atomic Structure

2–6 (a) Aluminum foil used for storing food weighs about 0.3 g per square inch. How
many atoms of aluminum are contained in one square inch of foil?

Solution: In a one square inch sample:

number =
(0.3 g)(6.02 × 1023 atoms/mol)

= 6.69 × 1021 atoms
26.981 g/mol

(b) Using the densities and atomic weights given in Appendix A, calculate and com-
pare the number of atoms per cubic centimeter in (i) lead and (ii) lithium.

Solution: (i) In lead:

(11.36 g/cm3)(1 cm3)(6.02 × 1023 atoms/mol)
= 3.3 × 1022 atoms/cm3

207.19 g/mol

(ii) In lithium:

(0.534 g/cm3)(1 cm3)(6.02 × 1023 atoms/mol)
= 4.63 × 1022 atoms/cm3

6.94 g/mol

2–7 (a) Using data in Appendix A, calculate the number of iron atoms in one ton (2000
pounds).

Solution: (2000 lb)(454 g/lb)(6.02 × 1023 atoms/mol)
= 9.79 × 1027 atoms/ton

55.847 g/mol

(b) Using data in Appendix A, calculate the volume in cubic centimeters occupied by
one mole of boron.

Solution: (1 mol)(10.81 g/mol)
= 4.7 cm3

2.3 g/cm3
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2–8 In order to plate a steel part having a surface area of 200 in.2 with a 0.002 in. thick
layer of nickel, (a) how many atoms of nickel are required and (b) how many moles
of nickel are required?

Solution: Volume = (200 in.2)(0.002 in.)(2.54 cm/in.)3 = 6.555 cm3

(a) (6.555 cm3)(8.902 g/cm3)(6.02 × 1023 atoms/mol)
= 5.98 × 1023 atoms

58.71 g/mol

(b) (6.555 cm3)(8.902 g/cm3)
= 0.994 mol Ni required

58.71 g/mol

2–9 Suppose an element has a valence of 2 and an atomic number of 27. Based only on
the quantum numbers, how many electrons must be present in the 3d energy level?

Solution: We can let x be the number of electrons in the 3d energy level. Then:

1s2 2s22p63s23p63dx4s2 (must be 2 electrons in 4s for valence = 2)

Since 27−(2+2+6+2+6+2) = 7 = x there must be 7 electrons in the 3d
level.

2–11 Bonding in the intermetallic compound Ni3Al is predominantly metallic. Explain
why there will be little, if any, ionic bonding component. The electronegativity of
nickel is about 1.8.

Solution: The electronegativity of Al is 1.5, while that of Ni is 1.8. These values
are relatively close, so we wouldn’t expect much ionic bonding. Also,
both are metals and prefer to give up their electrons rather than share or
donate them.

2–12 Plot the melting temperatures of elements in the 4A to 8–10 columns of the periodic
table versus atomic number (i.e., plot melting temperatures of Ti through Ni, Zr
through Pd, and Hf through Pt). Discuss these relationships, based on atomic bonding
and binding energy, (a) as the atomic number increases in each row of the periodic
table and (b) as the atomic number increases in each column of the periodic table.

Solution: Ti – 1668 Zr – 1852 Hf – 2227

V – 1900 Nb – 2468 Ta – 2996

Cr – 1875 Mo – 2610 W – 3410

Mn – 1244 Tc – 2200 Re – 3180

Fe – 1538 Ru – 2310 Os – 2700

Co – 1495 Rh – 1963 Ir – 2447

Ni – 1453 Pd – 1552 Pt – 1769

200 in2

0.002 in
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For each row, the melting temperature is highest when the outer “d”
energy level is partly full. In Cr, there are 5 electrons in the 3d shell;
in Mo, there are 5 electrons in the 4d shell; in W there are 4 electrons
in the 5d shell. In each column, the melting temperature increases as
the atomic number increases—the atom cores contain a larger num-
ber of tightly held electrons, making the metals more stable.

2–13 Plot the melting temperature of the elements in the 1A column of the periodic table
versus atomic number (i.e., plot melting temperatures of Li through Cs). Discuss
this relationship, based on atomic bonding and binding energy.

Solution: T(oC)

Li – 180.7 

Na – 97.8 

K – 63.2 

Rb – 38.9

Cs – 28.6

As the atomic number increases, the melting temperature decreases,
opposite that found in Problem 2–12.
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2–14 Calculate the fraction of bonding of MgO that is ionic.

Solution: EMg = 1.2 EO = 3.5

fcovalent = exp[(−0.25)(3.5 − 1.2)2] = exp(−1.3225) = 0.266

fionic = 1 − 0.266 = 0.734 ∴ bonding is mostly ionic

2–18 Beryllium and magnesium, both in the 2A column of the periodic table, are light-
weight metals.  Which would you expect to have the higher modulus of elasticity?
Explain, considering binding energy and atom radii and using appropriate sketches
of force versus interatomic spacing.

Solution: 4 Be 1s22s2 E = 42 × 106 psi rBe = 1.143 Å

12 Mg 1s22s22p63s2 E = 6 × 106 psi rMg = 1.604 Å

The smaller Be electrons are held closer to the core ∴ held more tightly,
giving a higher binding energy.

2–19 Would you expect MgO or magnesium to have the higher modulus of elasticity?
Explain.

Solution: MgO has ionic bonds, which are strong compared to the metallic bonds
in Mg. A higher force will be required to cause the same separation
between the ions in MgO compared to the atoms in Mg. Therefore, MgO
should have the higher modulus of elasticity. In Mg, E ≈ 6 × 106 psi; in
MgO, E = 30 × 106 psi.

2–20 Aluminum and silicon are side-by-side in the periodic table. Which would you
expect to have the higher modulus of elasticity (E)? Explain.

Solution: Silicon has covalent bonds; aluminum has metallic bonds.  Therefore,
Si should have a higher modulus of elasticity.

2–21 Steel is coated with a thin layer of ceramic to help protect against corrosion. What
do you expect to happen to the coating when the temperature of the steel is
increased significantly? Explain.

Solution: Ceramics are expected to have a low coefficient of thermal expansion
due to strong ionic/covalent bonds; steel has a high thermal expansion
coefficient. When the structure heats, steel expands more than the coat-
ing, which may crack and expose the underlying steel to corrosion.

F
or

ce

EBe ~ ∆f /∆a 

Be

Mg

EMg ~ ∆f /∆a 

distance “a”2rBe

2rmg
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11

3
Atomic and Ionic Arrangements

3–13 Calculate the atomic radius in cm for the following: (a) BCC metal with 
a0 = 0.3294 nm and one atom per lattice point; and (b) FCC metal with 
a0 = 4.0862 Å and one atom per lattice point.

Solution: (a) For BCC metals,

(b) For FCC metals,

3–14 Determine the crystal structure for the following: (a) a metal with a0 = 4.9489 Å,
r = 1.75 Å and one atom per lattice point; and (b) a metal with a0 = 0.42906 nm,
r = 0.1858 nm and one atom per lattice point.

Solution: We want to determine if “x” in the calculations below equals 
(for FCC) or (for BCC):

(a) (x)(4.9489 Å) = (4)(1.75 Å)

x = , therefore FCC

(b) (x)(0.42906 nm) = (4)(0.1858 nm)

x = , therefore BCC

3–15 The density of potassium, which has the BCC structure and one atom per lattice
point, is 0.855 g/cm3. The atomic weight of potassium is 39.09 g/mol. Calculate 
(a) the lattice parameter; and (b) the atomic radius of potassium.

3

2

3
2

r
a

=
2

=
2 ( .0862 Å)

4
= . 447 Å = . 447 10  cm8( ) ( )

× −0

4

4
1 4 1 4

r
a

=
3

=
3 ( .  nm)

4
= . 426 nm = .426 10  cm8( ) ( )

× −0

4

0 3294
0 1 1
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Solution: (a) Using Equation 3–5:

0.855 g/cm3 =
(2 atoms/cell)(39.09 g/mol)

(a0)3(6.02 × 1023 atoms/mol)

a0
3 = 1.5189 × 10−22 cm3 or a0 = 5.3355 × 10−8 cm

(b) From the relationship between atomic radius and lattice parameter:

3–16 The density of thorium, which has the FCC structure and one atom per lattice point,
is 11.72 g/cm3. The atomic weight of thorium is 232 g/mol. Calculate (a) the lattice
parameter and (b) the atomic radius of thorium.

Solution: (a) From Equation 3–5:

11.72 g/cm3 =
(4 atoms/cell)(232 g/mol)

(a0)3(6.02 × 1023 atoms/mol)

a0
3 = 1.315297 × 10−22 cm3 or a0 = 5.0856 × 10−8 cm

(b) From the relationship between atomic radius and lattice parameter:

3–17 A metal having a cubic structure has a density of 2.6 g/cm3, an atomic weight of 
87.62 g/mol, and a lattice parameter of 6.0849 Å. One atom is associated with each
lattice point. Determine the crystal structure of the metal.

Solution: 2.6 g/cm3 =
(x atoms/cell)(87.62 g/mol)      

(6.0849 × 10−8 cm)3(6.02 × 1023 atoms/mol)

x = 4, therefore FCC

3–18 A metal having a cubic structure has a density of 1.892 g/cm3, an atomic weight of
132.91 g/mol, and a lattice parameter of 6.13 Å. One atom is associated with each
lattice point. Determine the crystal structure of the metal.

Solution: 1.892 g/cm3 = (x atoms/cell)(132.91 g/mol)      

(6.13 × 10−8 cm)3(6.02 × 1023 atoms/mol)

x = 2, therefore BCC

3–19 Indium has a tetragonal structure with a0 = 0.32517 nm and c0 = 0.49459 nm. The
density is 7.286 g/cm3 and the atomic weight is 114.82 g/mol. Does indium have 
the simple tetragonal or body-centered tetragonal structure?

Solution:

7.286 g/cm3 =
(x atoms/cell)(114.82 g/mol)              

(3.2517 × 10−8 cm)2(4.9459 × 10−8 cm)(6.02 × 1023 atoms/mol)

x = 2, therefore BCT (body-centered tetragonal)

r =
×

= ×
−

−( )( . )
.

2 5 0856 10

4
1 7980 10

8
8 cm
 cm

r =
×

= ×
−

−( )( . )
.

2 5 0856 10

4
1 7980 10

8
8 cm
 cm
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3–20 Bismuth has a hexagonal structure, with a0 = 0.4546 nm and c0 = 1.186 nm. 
The density is 9.808 g/cm3 and the atomic weight is 208.98 g/mol. Determine 
(a) the volume of the unit cell and (b) the number of atoms in each unit cell.

Solution: (a) The volume of the unit cell is V = a0
2c0cos30.

V = (0.4546 nm)2(1.186 nm)(cos30) = 0.21226 nm3

= 2.1226 × 10−22 cm3

(b) If “x” is the number of atoms per unit cell, then:

9.808 g/cm3 =
(x atoms/cell)(208.98 g/mol)       

(2.1226 × 10−22 cm3)(6.02 × 1023 atoms/mol)

x = 6 atoms/cell

3–21 Gallium has an orthorhombic structure, with a0 = 0.45258 nm, b0 = 0.45186 nm,
and c0 = 0.76570 nm. The atomic radius is 0.1218 nm. The density is 5.904 g/cm3

and the atomic weight is 69.72 g/mol. Determine (a) the number of atoms in each
unit cell and (b) the packing factor in the unit cell.

Solution: The volume of the unit cell is V = a0b0c0 or

V = (0.45258 nm)(0.45186 nm)(0.76570 nm) = 0.1566 nm3

= 1.566 × 10−22 cm3

(a) From the density equation:

5.904 g/cm3 =
(x atoms/cell)(69.72 g/mol)      

(1.566 × 10−22 cm3)(6.02 × 1023 atoms/mol)

x = 8 atoms/cell

(b) From the packing factor (PF) equation:

PF =
(8 atoms/cell)(4π/3)(0.1218 nm)3

= 0.387
0.1566 nm3

3–22 Beryllium has a hexagonal crystal structure, with a0 = 0.22858 nm and 
c0 = 0.35842 nm. The atomic radius is 0.1143 nm, the density is 1.848 g/cm3,
and the atomic weight is 9.01 g/mol. Determine (a) the number of atoms in each
unit cell and (b) the packing factor in the unit cell.

Solution: V = (0.22858 nm)2(0.35842 nm)cos 30 = 0.01622 nm3 = 16.22 × 10−24 cm3

(a) From the density equation:

1.848 g/cm3 =
(x atoms/cell)(9.01 g/mol)        

(16.22 × 10−24 cm3)(6.02 × 1023 atoms/mol)

x = 2 atoms/cell

(b) The packing factor (PF) is:

PF =
(2 atoms/cell)(4π/3)(0.1143 nm)3

= 0.77
0.01622 nm3
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3–23 A typical paper clip weighs 0.59 g and consists of BCC iron. Calculate (a) the num-
ber of unit cells and (b) the number of iron atoms in the paper clip. (See Appendix A
for required data)

Solution: The lattice parameter for BCC iron is 2.866 × 10−8 cm. Therefore

Vunit cell = (2.866 × 10−8 cm)3 = 2.354 × 10−23 cm3

(a) The density is 7.87 g/cm3. The number of unit cells is:

number =
0.59 g                      

= 3.185 × 1021 cells
(7.87 g/cm3)(2.354 × 10−23 cm3/cell)

(b) There are 2 atoms/cell in BCC iron. The number of atoms is:

number = (3.185 × 1021 cells)(2 atoms/cell) = 6.37 × 1021 atoms

3–24 Aluminum foil used to package food is approximately 0.001 inch thick. Assume that
all of the unit cells of the aluminum are arranged so that a0 is perpendicular to the
foil surface. For a 4 in. × 4 in. square of the foil, determine (a) the total number of
unit cells in the foil and (b) the thickness of the foil in number of unit cells. (See
Appendix A.)

Solution: The lattice parameter for aluminum is 4.04958 × 10−8 cm. Therefore:

Vunit cell = (4.04958 × 10−8)3 = 6.6409 × 10−23 cm3

The volume of the foil is:

Vfoil = (4 in.)(4 in.)(0.001 in.) = 0.016 in.3 = 0.262 cm3

(a) The number of unit cells in the foil is:

number =
0.262 cm3

= 3.945 × 1021 cells
6.6409 × 10−23 cm3/cell

(b) The thickness of the foil, in number of unit cells, is:

number =
(0.001 in.)(2.54 cm/in.)

= 6.27 × 104 cells
4.04958 × 10−8 cm

3–27 Above 882oC, titanium has a BCC crystal structure, with a = 0.332 nm. Below this
temperature, titanium has a HCP structure, with a = 0.2978 nm and c = 0.4735 nm.
Determine the percent volume change when BCC titanium transforms to HCP titanium.
Is this a contraction or expansion?

Solution: We can find the volume of each unit cell. Two atoms are present in both
BCC and HCP titanium unit cells, so the volumes of the unit cells can be
directly compared.

VBCC = (0.332 nm)3 = 0.03659 nm3

VHCP = (0.2978 nm)2(0.4735 nm)cos30 = 0.03637 nm3

∆V =
VHCP − VBCC

× 100 =
0.03637 nm3 − 0.03659 nm3

× 100 = −0.6%
VBCC 0.03659 nm3

Therefore titanium contracts 0.6% during cooling.
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3–28 a-Mn has a cubic structure with a0 = 0.8931 nm and a density of 7.47 g/cm3. b-Mn
has a different cubic structure, with a0 = 0.6326 nm and a density of 7.26 g/cm3.
The atomic weight of manganese is 54.938 g/mol and the atomic radius is 0.112 nm.
Determine the percent volume change that would occur if a-Mn transforms to b-Mn.

Solution: First we need to find the number of atoms in each unit cell so we can
determine the volume change based on equal numbers of atoms. From
the density equation, we find for the a-Mn:

7.47 g/cm3 =
(x atoms/cell)(54.938 g/mol)      

(8.931 × 10−8 cm)3(6.02 × 1023 atoms/mol)

x = 58 atoms/cell V
a-Mn = (8.931 × 10−8 cm)3 = 7.12 × 10−22 cm3

For b-Mn:

7.26 g/cm3 =
(x atoms/cell)(54.938 g/mol)      

(6.326 × 10−8 cm)3(6.02 × 1023 atoms/mol)

x = 20 atoms/cell V
b-Mn = (6.326 × 10−8 cm)3 = 2.53 × 10−22 cm3

The volume of the b-Mn can be adjusted by a factor of 58/20, to account
for the different number of atoms per cell. The volume change is then:

∆V =
(58/20)V

b-Mn − V
a-Mn

× 100 =
(58/20)(2.53) − 7.12

× 100 = + 3.05%
V
a-Mn 7.12

The manganese expands by 3.05% during the transformation.

3–37 Determine the Miller indices for the directions in the cubic unit cell shown in 
Figure 3–35. 

Solution: A: 0,1,0 − 0,1,1 = 0,0,−1     = [00–1]

B: 1⁄2,0,0 − 0,1,0 = 1⁄2,−1,0     = [1–20]

C: 0,1,1 − 1,0,0 = −1,1,1     = [–111]

D: 1,0,1⁄2 − 0,1⁄2,1 = 1,−1⁄2,−1⁄2 = [2–1–1]

3–38 Determine the indices for the directions in the cubic unit cell shown in Figure 3–36.

Solution: A: 0,0,1 − 1,0,0 = −1,0,1     = [–101]

B: 1,0,1 − 1⁄2,1,0 = 1⁄2,−1,1     = [1–22]

C: 1,0,0 − 0,3⁄4,1 = 1,−3⁄4,−1   = [4–3–4]

D: 0,1,1⁄2 − 0,0,0 = 0,1,1⁄2 = [021]

3–39 Determine the indices for the planes in the cubic unit cell shown in Figure 3–37.

Solution: A: x = 1 1/x = 1
y = −1 1/y = −1 (1–11)
z = 1 1/z = 1  

B: x = ∞ 1/x = 0
y = 1⁄3 1/y = 3 (030)
z = ∞ 1/z = 0
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C: x = 1 1/x = 1
y = ∞ 1/y = 0 (10–2) (origin at 0,0,1)
z = −1⁄2 1/z = −2

3–40 Determine the indices for the planes in the cubic unit cell shown in Figure 3–38.

Solution: A: x = −1 1/x = −1 × 3 = −3
y = 1⁄2 1/y = 2 × 3 = 6 (3–64) (origin at 1,0,0)
z = 3⁄4 1/z = 4⁄3 × 3 = 4

B: x = 1 1/x = 1 × 3 = 3
y = −3⁄4 1/y = −4⁄3× 3 = −4 (34–0) (origin at 0,1,0)
z = ∞ 1/z = 0 × 3 = 0

C: x = 2 1/x = 1⁄2× 6 = 3      
y = 3⁄2 1/y = 2⁄3× 6 = 4 (346)
z = 1 1/z = 1 × 6 = 6

3–41 Determine the indices for the directions in the hexagonal lattice shown in 
Figure 3–39, using both the three-digit and four-digit systems.

Solution: A: 1,−1,0 − 0,0,0 = 1,−1,0 = [1–10]

h = 1⁄3(2 + 1) = 1

k = 1⁄3(−2 − 1) = −1 = [1–100]

i = −1⁄3(1 − 1) = 0

l = 0  

B: 1,1,0 − 0,0,1 = 1,1,−1 = [11–1]

h = 1⁄3(2 − 1) = 1⁄3

k = 1⁄3(2 − 1) = 1⁄3 = [11–2 –3]

i = −1⁄3(1 + 1) = −2⁄3

l = −1

C: 0,1,1 − 0,0,0 = 0,1,1 = [011]

h = 1⁄3(0 − 1) = −1⁄3

k = 1⁄3(2 − 0) = 2⁄3

i = −1⁄3(0 + 1) = −1⁄3 = [1–21–3]

l = 1

3–42 Determine the indices for the directions in the hexagonal lattice shown in 
Figure 3–40, using both the three-digit and four-digit systems.

Solution: A: 0,1,1 − 1⁄2,1,0 = −1⁄2,0,1 = [–102]

h = 1⁄3(−2 − 0) = −2⁄3

k = 1⁄3(0 + 1) = 1⁄3 = [–2116]

i = −1⁄3(−1 + 0) = 1⁄3

l = 2

B: 1,0,0 − 1,1,1 = 0,−1,−1 = [0–1–1]

h = 1⁄3(0 + 1) = 1⁄3

k = 1⁄3(−2 + 0) = −2⁄3 = [1–21–3]

i = −1⁄3(0 − 1) = 1⁄3

l = −1
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C: 0,0,0 − 1,0,1 = −1,0,−1 = [1–01–]

h = 1⁄3(−2 + 0) = −2⁄3

k = 1⁄3(0 + 1) = 1⁄3 = [–2 11–3]

i = −1⁄3(−1 + 0) = 1⁄3

l = −1

3–43 Determine the indices for the planes in the hexagonal lattice shown in Figure 3-41.

Solution: A: a1 = 1 1/a1 = 1

a2 = −1 1/a2 = −1 (1–101) (origin at a2 = 1)

a3 = ∞ 1/a3 = 0

c = 1 1/c = 1

B: a1 = ∞ 1/a1 = 0

a2 = ∞ 1/a2 = 0 (0003)

a3 = ∞ 1/a3 = 0

c = 2⁄3 1/c = 3⁄2

C: a1 = 1 1/a1 = 1

a2 = −1 1/a2 = −1 (1–100)

a3 = ∞ 1/a3 = 0

c = ∞ 1/c = 0

3–44 Determine the indices for the planes in the hexagonal lattice shown in Figure 3–42.

Solution: A: a1 = 1 1/a1 = 1

a2 = −1 1/a2 = −1 (1–102)

a3 = ∞ 1/a3 = 0

c = 1⁄2 1/c = 2

B: a1 = ∞ 1/a1 = 0

a2 = 1 1/a2 = 1 (01–11)

a3 = −1 1/a3 = −1

c = 1 1/c = 1

C: a1 = −1 1/a1 = −1

a2 = 1⁄2 1/a2 = 2 (–12–10)

a3 = −1 1/a3 = −1

c = ∞ 1/c = 0

3–45 Sketch the following planes and directions within a cubic unit cell.

(a) [101] (b) [0–10] (c) [12–2] (d) [301] (e) [–201] (f) [2–13]
(g) (0–1–1) (h) (102) (i) (002) (j) (1–30) (k) (–212) (l) (3–1–2)
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3–46 Sketch the following planes and directions within a cubic unit cell.

(a) [1–10] (b) [–2–21] (c) [410] (d) [0–12] (e) [33–2–1] (f) [1–11]
(g) (11–1) (h) (01–1) (i) (030) (j) (1–21) (k) (11–3) (l) (0–41)

x

z

y

a b c d

e f
g

h

i
j k l

1
2

1/4

1/2

1/3

1/2

2/3

1/4

1/2

1/2

x

z

y

a b c d

1
3

1
2

e f

g
h

i
j k l

1
2

2/3

1/3

1/3

1
2

1
2

1
2

1
3

1
2

1
2
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3–47 Sketch the following planes and directions within a hexagonal unit cell.

(a) [01–10] (b) [11–20] (c) [–1011] (d) (0003) (e) (–1010) (f) (01–11)

Solution:

3–48 Sketch the following planes and directions within a hexagonal unit cell.

(a) [–2110] (b) [11–21] (c) [10–10] (d) (1–210) (e) (–1–122) (f) (12–30)

Solution:

3–49 What are the indices of the six directions of the form <110> that lie in the (11–1)
plane of a cubic cell?

Solution: [–110] [101] [011]

[1–10] [–10–1] [0–1–1]

3–50 What are the indices of the four directions of the form <111> that lie in the (1–01)
plane of a cubic cell?

Solution: [111] [–1–1–1]

[1–11] [–11–1]
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3–51 Determine the number of directions of the form <110> in a tetragonal unit cell and
compare to the number of directions of the form <110> in an orthorhombic unit cell.

Solution: Tetragonal: [110], [–1–10], [–110], [1–10] = 4

Orthorhombic: [110], [–1–10] = 2

Note that in cubic systems, there are 12 directions of the form <110>.

3–52 Determine the angle between the [110] direction and the (110) plane in a tetragonal
unit cell; then determine the angle between the [011] direction and the (011) plane
in a tetragonal cell. The lattice parameters are a0 = 4 Å and c0 = 5 Å. What is
responsible for the difference?

Solution: [110] ⊥ (110) 

tan(u/2) = 2.5 / 2 = 1.25

u/2 = 51.34o

u = 102.68o

The lattice parameters in the x and y directions are the same; this
allows the angle between [110] and (110) to be 90o. But the lattice
parameters in the y and z directions are different!

3–53 Determine the Miller indices of the plane that passes through three points having the
following coordinates.

(a) 0,0,1; 1,0,0; and 1⁄2,1⁄2,0

(b) 1⁄2,0,1; 1⁄2,0,0; and 0,1,0

(c) 1,0,0; 0,1,1⁄2; and 1,1⁄2,1⁄4

(d) 1,0,0; 0,0,1⁄4; and 1⁄2,1,0

Solution:

(a) (111) (b) (210) (c) (0–12) (d) (218)

4

4

5

θ
θ2

2.5

4

5
θ
2

20 The Science and Engineering of Materials Instructor’s Solutions Manual

03 Askeland Chap  9/27/05  11:34 AM  Page 20



3–54 Determine the repeat distance, linear density, and packing fraction for FCC nickel,
which has a lattice parameter of 0.35167 nm, in the [100], [110], and [111] direc-
tions. Which of these directions is close packed?

Solution:

For [100]: repeat distance = ao = 0.35167 nm

linear density = 1/ao = 2.84 points/nm

linear packing fraction = (2)(0.1243)(2.84) = 0.707

For [110]: repeat distance = ao/2 = 0.2487 nm

linear density = ao = 4.02 points/nm

linear packing fraction = (2)(0.1243)(4.02) = 1.0

For [111]: repeat distance = ao = 0.6091 nm

linear density = 1/ ao = 1.642 points/nm

linear packing fraction = (2)(0.1243)(1.642) = 0.408

Only the [110] is close packed; it has a linear packing fraction of 1.

3–55 Determine the repeat distance, linear density, and packing fraction for BCC lithium,
which has a lattice parameter of 0.35089 nm, in the [100], [110], and [111] direc-
tions. Which of these directions is close packed?

Solution:

For [100]: repeat distance = ao = 0.35089 nm

linear density = 1/ao = 2.85 points/nm

linear packing fraction = (2)(0.1519)(2.85) = 0.866

For [110]: repeat distance = ao = 0.496 nm

linear density = 1/ ao = 2.015 points/nm

linear packing fraction = (2)(0.1519)(2.015) = 0.612 

2

2

r = 3(0.35089) / 4 = 0.1519 nm

3

3

2 / 2

2

r = 2( )(0.35167) / 4 = 0.1243 nm
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For [111]: repeat distance = ao/2 = 0.3039 nm

linear density = 2/ ao = 3.291 points/nm

linear packing fraction = (2)(0.1519)(3.291) = 1

The [111] direction is close packed; the linear packing factor is 1.

3–56 Determine the repeat distance, linear density, and packing fraction for HCP magne-
sium in the [–2110] direction and the [11–20] direction. The lattice parameters for
HCP magnesium are given in Appendix A.

Solution: ao = 3.2087 Å r = 1.604 Å

For [–2110]:

repeat distance = ao = 3.2087 Å

linear density = 1/ao = 0.3116 points/nm

linear packing fraction = (2)(1.604)(0.3116) = 1

(Same for [112–0])

3–57 Determine the planar density and packing fraction for FCC nickel in the (100),
(110), and (111) planes. Which, if any, of these planes is close packed?

Solution: ao = 3.5167 Å

For (100):

planar density =
2                

= 0.1617 × 1016 points/cm2

(3.5167 × 10−8 cm)2

packing fraction = = 0.7854

ao

2

4 2

2

2
πr

r/( )

(1120)
(2110) a1

a2

a3

3

3
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For (110):

planar density =
2 points                            

(3.5167 × 10−8 cm) (3.5167 × 10−8 cm)

= 0.1144 × 10−16 points/cm2

packing fraction = = 0.555

For (111):
From the sketch, we can determine that the area of the (111) plane is 

. There are (3)(1⁄2) + (3)(1⁄6) = 2 atoms in 
this area.

planar density =
2 points               

0.866(3.5167 × 10−8 cm)2

= 0.1867 × 1016 points/cm2

packing fraction = = 0.907

The (111) is close packed.

3–58 Determine the planar density and packing fraction for BCC lithium in the (100),
(110), and (111) planes. Which, if any, of these planes is close packed?

Solution: ao = 3.5089 Å

For (100):

planar density =
1               

= 0.0812 × 1016 points/cm2

(3.5089 × 10−8 cm)2

packing fraction = = 0.589
π 3ao /4[ ]

2

ao
2

2p 2ao/4( )
2

0.866ao2

2ao/2( ) 3ao/ 2( ) = 0.866ao
2

2ao

ao

2pr2

2 4r/ 2( )
2

2( )
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For (110):

planar density = = 0.1149 × 1016 points/cm2

packing fraction = = 0.833

For (111):

There are only (3)(1⁄6) = 1⁄2 points in the plane, which has an area of 0.866ao
2.

planar density =
1⁄2

= 0.0469 × 1016 points/cm2

0.866(3.5089 × 10−8 cm)2

packing fraction = = 0.34

There is no close-packed plane in BCC structures.

3–59 Suppose that FCC rhodium is produced as a 1-mm thick sheet, with the (111) plane
parallel to the surface of the sheet. How many (111) interplanar spacings d111 thick
is the sheet? See Appendix A for necessary data.

Solution:

thickness =
(1 mm/10 mm/cm)

= 4.563 × 106 d111 spacings
2.1916 × 10−8 cm

3–60 In a FCC unit cell, how many d111 are present between the 0,0,0 point and the 1,1,1
point?

Solution: The distance between the 0,0,0 and 1,1,1 points is ao. The interplanar
spacing is

Therefore the number of interplanar spacings is

number of d111 spacings = ao/(ao/ ) = 333

d a a111
2 2 21 1 1 3= + + =o o/ /

3

d
a

111 2 21 1

3 796
2 1916=

+ +
= =o

21

 Å

3
 Å

.
.

A = 0.866 a2

1
2

2

2

3 4

0 866

π a

a

o

o

/

.

[ ]1⁄2

ao

2ao 

2 3 4

2

2

2

π a

a

o

o

/[ ]

2

2 3 5089 10 8
2

. ×( )−  cm
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3–62 Determine the minimum radius of an atom that will just fit into (a) the tetrahedral
interstitial site in FCC nickel and (b) the octahedral interstitial site in BCC lithium.

Solution: (a) For the tetrahedral site in FCC nickel (ao = 3.5167 Å):

r/rNi = 0.225 for a tetrahedral site. Therefore:

r = (1.243 Å)(0.225) = 0.2797 Å

(b) For the octahedral site in BCC lithium (ao = 3.5089 Å):

r/rLi = 0.414 for an octrahedral site. Therefore:

r = (1.519 Å)(0.414) = 0.629 Å

3–64 What is the radius of an atom that will just fit into the octahedral site in FCC copper
without disturbing the crystal structure? 

Solution: rCu = 1.278 Å

r/rCu = 0.414 for an octahedral site. Therefore:

r = (1.278 Å)(0.414) = 0.529 Å

3–65 Using the ionic radii given in Appendix B, determine the coordination number
expected for the following compounds.

(a) Y2O3 (b) UO2 (c) BaO (d) Si3N4

(e) GeO2 (f) MnO (g) MgS (h) KBr

Solution:

(a) rY
+3/rO

−2 =
0.89

= 0.67 CN = 6 (e) rGe
+4/rO

−2 =
0.53

= 0.40 CN = 4
1.32 1.32

(b) rU
+4/rO

−2 =
0.97

= 0.73 CN = 6 (f) rMn
+2/rO

−2 =
0.80

= 0.61 CN = 6
1.32 1.32

(c) rO
−2/rBa

+2 =
1.32

= 0.99 CN = 8 (g) rMg
+2/rS

−2 =
0.66

= 0.50 CN = 6
1.34 1.32

(d) rN
−3/rSi

+4 =
0.15

= 0.36 CN = 4 (h) rK
+1/rBy

−1 =
1.33

= 0.68 CN = 6
0.42 1.96

rLi =
3 3.5089( )

4
= 1.519 Å

rNi =
2 3.5167 Å( )

4
= 1.243 Å
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3–66 Would you expect NiO to have the cesium chloride, sodium chloride, or zinc blende
structure? Based on your answer, determine (a) the lattice parameter, (b) the density,
and (c) the packing factor.

Solution: rNi
+2 = 0.69 Å rO

−2 = 1.32 Å
rNi

+2

= 0.52 CN = 6
rO

−2

A coordination number of 8 is expected for the CsCl structure, and a
coordination number of 4 is expected for ZnS. But a coordination num-
ber of 6 is consistent with the NaCl structure.

(a) ao = 2(0.69) + 2(1.32) = 4.02 Å 

(b) r =
(4 of each ion/cell)(58.71 + 16 g/mol)   

= 7.64 g/cm3

(4.02 × 10−8 cm)3(6.02 × 1023 atoms/mol)

(c) PF =
(4π/3)(4 ions/cell)[(0.69)3 + (1.32)3]

= 0.678
(4.02)3

3–67 Would you expect UO2 to have the sodium chloride, zinc blende, or fluorite struc-
ture? Based on your answer, determine (a) the lattice parameter, (b) the density, and
(c) the packing factor.

Solution: rU
+4 = 0.97 Å rO

−2 = 1.32 Å
rU

+4

= 0.97/1.32 = 0.735
rO

−2

valence of U = +4, valence of O = −2

The radius ratio predicts a coordination number of 8; however there must
be twice as many oxygen ions as uranium ions in order to balance the
charge. The fluorite structure will satisfy these requirements, with:

U = FCC position (4) O = tetrahedral position (8)

(a) ao = 4ru + 4ro = 4(0.97 + 1.32) = 9.16 or ao = 5.2885 Å

(b) r =
4(238.03 g/mol) + 8(16 g/mol)           

= 12.13 g/cm3

(5.2885 × 10−8 cm)3 (6.02 × 1023 atoms/mol)

(c) PF =
(4π/3)[4(0.97)3 + 8(1.32)3] 

= 0.624
(5.2885)3

3–68 Would you expect BeO to have the sodium chloride, zinc blende, or fluorite struc-
ture? Based on your answer, determine (a) the lattice parameter, (b) the density, and
(c) the packing factor.

Solution: rBe
+2 = 0.35 Å rO

−2 = 1.32 Å

rBe/rO = 0.265 CN = 4 ∴ Zinc Blende

(a) ao = 4rBe
+2 + 4rO

−2 = 4(0.35 + 1.32) = 6.68 or ao = 3.8567 Å

(b) r =
4(9.01 + 16 g/mol)                 

= 2.897 g/cm3

(3.8567 × 10−8 cm)3 (6.02 × 1023 atoms/mol)

(c) PF =
(4π/3)(4)[(0.35)3 + 8(1.32)3] 

= 0.684
(3.8567)3

3

3
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3–69 Would you expect CsBr to have the sodium chloride, zinc blende, fluorite, or cesium
chloride structure? Based on your answer, determine (a) the lattice parameter,
(b) the density, and (c) the packing factor.

Solution: rCs
+1 = 1.67 Å rBr

−1 = 1.96 Å

rCs
+1

= 0.852 CN = 8 ∴ CsCl
rBr

−1

(a) ao = 2rCs
+1 + 2rBr

−1 = 2(1.96 + 1.67) = 7.26 or ao = 4.1916 Å

(b) r =
79.909 + 132.905 g/mol                

= 4.8 g/cm3

(4.1916 × 10−8 cm)3 (6.02 × 1023 atoms/mol)

(c) PF =
(4π/3)[(1.96)3 + (1.67)3]

= 0.693
(4.1916)3

3–70 Sketch the ion arrangement on the (110) plane of ZnS (with the zinc blende struc-
ture) and compare this arrangement to that on the (110) plane of CaF2 (with the
flourite structure). Compare the planar packing fraction on the (110) planes for these
two materials.

Solution: ZnS:

ao = 4rZn
+2 + 4rS

−2

ao = 4(0.074 nm) + 4(0.184 nm)

ao = 0.596 nm

CaF2:

ao = 4rCa
+2 + 4rF

−1

ao = 4(0.099 nm) + 4(0.133 nm)

ao = 0.536 nm

PPF =
2( ) πrCa

2( ) + 4( ) πrF
2( )

2ao( )ao

=
2π 0.099( )2

+ 4π 0.133( )2

2 0.536 nm( )2
= 0.699

3

3

PPF =
2( ) πrZn

2( ) + 2( ) πrS
2( )

2ao( )ao

=
2π 0.074( )2

+ 2π 0.184( )2

2 0.596 nm( )2
= 0.492

3

3

3
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3–71 MgO, which has the sodium chloride structure, has a lattice parameter of 0.396 nm.
Determine the planar density and the planar packing fraction for the (111) and (222)
planes of MgO. What ions are present on each plane?

Solution: As described in the answer to Problem 3–57, the area of the (111) plane
is 0.866ao

2.

ao = 2rMg
+2 + 2rO

−2 = 2(0.66 + 1.32) = 3.96 Å

(111): P.D. =
2 Mg                

= 0.1473 × 1016 points/cm2

(0.866)(3.96 × 10−8 cm)2

(111): PPF =
2π(0.66)2

= 0.202
(0.866)(3.96)2

(222): P.D. = 0.1473 × 1016 points/cm2

(111): PPF =
2π(1.32)2

= 0.806
(0.866)(3.96)2

3–75 A diffracted x-ray beam is observed from the (220) planes of iron at a 2u angle of
99.1o when x-rays of 0.15418 nm wavelength are used. Calculate the lattice parame-
ter of the iron.

Solution: sin u = l/2d220 

sin(99.1/2) =

3–76 A diffracted x-ray beam is observed from the (311) planes of aluminum at a 2u
angle of 78.3o when x-rays of 0.15418 nm wavelength are used. Calculate the lattice
parameter of the aluminum.

Solution: sin u = l /d311

ao
sin

 nm=
+ +

( )
=

0 15418 3 1 1

2 78 3 2
0 40497

2 2 2.

. /
.

ao
sin

 nm=
( )

=
0 15418 8

2 49 55
0 2865

.

.
.

0 15418 2 2 0

2

2 2 2. + +

ao

(111)

(222)

ao

2ao 
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3–77 Figure 3–43 shows the results of an x-ray diffraction experiment in the form of the
intensity of the diffracted peak versus the 2u diffraction angle. If x-rays with a
wavelength of 0.15418 nm are used, determine (a) the crystal structure of the metal,
(b) the indices of the planes that produce each of the peaks, and (c) the lattice
parameter of the metal.  

Solution: The 2u values can be estimated from Figure 3–43:

Planar
2u sin2u sin2u/0.0077 indices d = l /2sinu

1 17.5 0.023 3 (111) 0.5068 0.8778

2 20.5 0.032 4 (200) 0.4332 0.8664

3 28.5 0.061 8 (220) 0.3132 0.8859

4 33.5 0.083 11 (311) 0.2675 0.8872

5 35.5 0.093 12 (222) 0.2529 0.8761

6 41.5 0.123 16 (400) 0.2201 0.8804

7 45.5 0.146 19 (331) 0.2014 0.8779

8 46.5 0.156 20 (420) 0.1953 0.8734

The sin2u values must be divided by 0.077 (one third the first sin2u value) in order to
produce a possible sequence of numbers)

(a) The 3,4,8,11, . . . sequence means that the material is FCC

(c) The average ao = 0.8781 nm

3–78 Figure 3–44 shows the results of an x-ray diffraction experiment in the form of the
intensity of the diffracted peak versus the 2u diffraction angle. If x-rays with a
wavelength of 0.0717 nm are used, determine (a) the crystal structure of the metal,
(b) the indices of the planes that produce each of the peaks, and (c) the lattice
parameter of the metal.  

Solution: The 2u values can be estimated from the figure:

Planar
2u sin2u sin2u/0.047 indices d = l /2sinu

1 25.5 0.047 1 (111) 0.16100 0.2277

2 36.5 0.095 2 (200) 0.11500 0.2300

3 44.5 0.143 3 (211) 0.09380 0.2299

4 51.5 0.189 4 (220) 0.08180 0.2313

5 58.5 0.235 5 (310) 0.07330 0.2318

6 64.5 0.285 6 (222) 0.06660 0.2307

7 70.5 0.329 7 (321) 0.06195 0.2318

8 75.5 0.375 8 (400) 0.05800 0.2322

(a) The sequence 1,2,3,4,5,6,7,8 (which includes the “7”) means that the material is
BCC.

(c) The average ao = 0.2307 nm

ao = d h2 + k 2 + l2

ao = d h2 + k 2 + l2
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31

4
Imperfections in the Atomic 
and Ionic Arrangements

4–1 Calculate the number of vacancies per cm3 expected in copper at 1080oC (just below
the melting temperature). The activation energy for vacancy formation is 20,000
cal/mol.

Solution:
n =

(4 atoms/u.c.)      
= 8.47 × 1022 atoms/cm3

(3.6151 × 10−8 cm)3

nv = 8.47 × 1022 exp[−20,000/(1.987)(1353)] 

= 8.47 × 1022 exp(−7.4393) = 4.97 × 1019 vacancies/cm3

4-2 The fraction of lattice points occupied by vacancies in solid aluminum at 660oC is
10−3. What is the activation energy required to create vacancies in aluminum?

Solution: nv/n = 10−3 = exp[−Q/(1.987)(933)] 

ln(10−3) = −6.9078 = −Q/(1.987)(933)

Q = 12,800 cal/mol 

4–3 The density of a sample of FCC palladium is 11.98 g/cm3 and its lattice parameter is
3.8902 Å. Calculate (a) the fraction of the lattice points that contain vacancies and
(b) the total number of vacancies in a cubic centimeter of Pd.

Solution:
(a) 11.98 g/cm3 =

(x)(106.4 g/mol)                     

(3.8902 × 10−8 cm)3(6.02 × 1023 atoms/mol)

x = 3.9905

fraction =
4.0 − 3.9905

= 0.002375 
4  
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(b) number =
0.0095 vacancies/u.c.

= 1.61 × 1020 vacancies/cm3

(3.8902 × 10−8 cm)3

4–4 The density of a sample of HCP beryllium is 1.844 g/cm3 and the lattice parameters
are a0 = 0.22858 nm and c0 = 0.35842 nm.  Calculate (a) the fraction of the lattice
points that contain vacancies and (b) the total number of vacancies in a cubic cen-
timeter.

Solution: Vu.c. = (0.22858 nm)2(0.35842 nm)cos30 = 0.01622 nm3

= 1.622 × 10−23 cm3

(a) From the density equation:

1.844 g/cm3 =
(x)(9.01 g/mol)                       

x = 1.9984
(1.622 × 10−23 cm3)(6.02 × 1023 atoms/mol)

fraction =
2 − 1.9984

= 0.0008
2

(b) number =
0.0016 vacancies/uc

= 0.986 × 1020 vacancies/cm3

1.622 × 10−23 cm3

4–5 BCC lithium has a lattice parameter of 3.5089 × 10−8 cm and contains one vacancy
per 200 unit cells. Calculate (a) the number of vacancies per cubic centimeter and
(b) the density of Li.

Solution:
(a)

1 vacancy              
= 1.157 × 1020 vacancies/cm3

(200)(3.5089 × 10−8 cm)3

(b) In 200 unit cells, there are 399 Li atoms. The atoms/cell are 399/200:

r =
(399/200)(6.94 g/mol)                  

= 0.532 g/cm3

(3.5089 × 10−8 cm)3(6.02 × 1023 atoms/mol)

4–6 FCC lead has a lattice parameter of 0.4949 nm and contains one vacancy per 500 Pb
atoms.  Calculate (a) the density and (b) the number of vacancies per gram of Pb.

Solution: (a) The number of atoms/cell = (499/500)(4 sites/cell)

r =
(499/500)(4)(207.19 g/mol)           

= 11.335 g/cm3

(4.949 × 10−8 cm)3(6.02 × 1023 atoms/mol)

(b) The 500 Pb atoms occupy 500 / 4 = 125 unit cells:

[(1/11.335 g/cm3)] = 5.82 × 1018 vacancies/g

4–7 A niobium alloy is produced by introducing tungsten substitutional atoms in the
BCC structure; eventually an alloy is produced that has a lattice parameter of
0.32554 nm and a density of 11.95 g/cm3.  Calculate the fraction of the atoms in the
alloy that are tungsten.

Solution:
11.95 g/cm3 =

(xW)(183.85 g/mol) + (2 − xW)(92.91 g/mol) 

(3.2554 × 10−8 cm)3(6.02 × 1023 atoms/mol)

248.186 = 183.85xW + 185.82 − 92.91xW

90.94xW = 62.366     or     xW = 0.69 W atoms/cell

1

3

vacancy

125 cells

(4.949 10 cm8×

⎛

⎝
⎜

⎞

⎠
⎟

×

− )
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There are 2 atoms per cell in BCC metals.  Thus:

fw = 0.69/2 = 0.345 

4–8 Tin atoms are introduced into a FCC copper crystal, producing an alloy with a lat-
tice parameter of 3.7589 × 10−8 cm and a density of 8.772 g/cm3. Calculate the
atomic percentage of tin present in the alloy.

Solution:
8.772 g/cm3 = 

(xSn)(118.69 g/mol) + (4 − xSn)(63.54 g/mol)

(3.7589 × 10−8 cm)3(6.02 × 1023 atoms/mol)

280.5 = 55.15xSn + 254.16       or     xSn = 0.478 Sn atoms/cell

There are 4 atoms per cell in FCC metals; therefore the at% Sn is:

(0.478/4) = 11.95%

4–9 We replace 7.5 atomic percent of the chromium atoms in its BCC crystal with tanta-
lum.  X-ray diffraction shows that the lattice parameter is 0.29158 nm. Calculate the
density of the alloy.

Solution:
r =

(2)(0.925)(51.996 g/mol) + 2(0.075)(180.95 g/mol)
= 8.265 g/cm3

(2.9158 × 10−8 cm)3(6.02 × 1023 atoms/mol)

4–10 Suppose we introduce one carbon atom for every 100 iron atoms in an interstitial
position in BCC iron, giving a lattice parameter of 0.2867 nm. For the Fe-C alloy,
find (a) the density and (b) the packing factor.

Solution: There is one carbon atom per 100 iron atoms, or 1 C/50 unit cells, or 
1/50 C per unit cell:

(a)
r =

(2)(55.847 g/mol) + (1/50)(12 g/mol)    
= 7.89 g/cm3

(2.867 × 10−8 cm)3(6.02 × 1023 atoms/mol)

(b)
Packing Factor =

2(4π/3)(1.241)3 + (1/50)(4π/3)(0.77)3

= 0.681
(2.867)3

4–11 The density of BCC iron is 7.882 g/cm3 and the lattice parameter is 0.2866 nm
when hydrogen atoms are introduced at interstitial positions. Calculate (a) the
atomic fraction of hydrogen atoms and (b) the number of unit cells required on aver-
age that contain hydrogen atoms.

Solution:
(a) 7.882 g/cm3 =

2(55.847 g/mol) + x(1.00797 g/mol)    

(2.866 × 10−8 cm)3(6.02 × 1023 atoms/mol)

x = 0.0081 H atoms/cell

The total atoms per cell include 2 Fe atoms and 0.0081 H atoms.
Thus:

fH =
0.0081 

= 0.004
2.0081

(b) Since there is 0.0081 H/cell, then the number of cells containing H 
atoms is:

cells = 1/0.0081 = 123.5   or   1 H in 123.5 cells
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4–12 Suppose one Schottky defect is present in every tenth unit cell of MgO. MgO has
the sodium chloride crystal structure and a lattice parameter of 0.396 nm. Calculate
(a) the number of anion vacancies per cm3 and (b) the density of the ceramic.

Solution: In 10 unit cells, we expect 40 Mg + 40 O ions, but due to the defect:

40 Mg − 1 = 39

40 O  − 1 = 39

(a) 1 vacancy/(10 cells)(3.96 × 10−8 cm)3 = 1.61 × 1021 vacancies/cm3

(b)
r =

(39/40)(4)(24.312 g/mol) + (39/40)(4)(16 g/mol)
= 4.205 g/cm3

(3.96 × 10−8 cm)3(6.02 × 1023 atoms/mol)

4–13 ZnS has the zinc blende structure. If the density is 3.02 g/cm3 and the lattice param-
eter is 0.59583 nm, determine the number of Schottky defects (a) per unit cell and
(b) per cubic centimeter.

Solution: Let x be the number of each type of ion in the unit cell.  There 
normally are 4 of each type.

(a) 3.02 g/cm3 =
x(65.38 g/mol) + x(32.064 g/mol)       

x = 3.9465
(5.9583 × 10−8 cm)3(6.02 × 1023 ions/mol)  

4 − 3.9465 = 0.0535 defects/u.c.

(b) # of unit cells/cm3 = 1/(5.9683 × 10−8 cm)3 = 4.704 × 1021

Schottky defects per cm3 = (4.704 × 1021)(0.0535) = 2.517 × 1020

4–14 Suppose we introduce the following point defects.  What other changes in each
structure might be necessary to maintain a charge balance? Explain.
(a) Mg2+ ions substitute for yttrium atoms in Y2O3
(b) Fe3+ ions substitute for magnesium ions in MgO
(c) Li1+ ions substitute for magnesium ions in MgO
(d) Fe2+ ions replace sodium ions in NaCl

Solution: (a) Remove 2 Y3+ and add 3 Mg2+ − create cation interstitial.

(b) Remove 3 Mg2+ and add 2 Fe3+ − create cation vacancy.

(c) Remove 1 Mg2+ and add 2 Li+ − create cation interstitial.

(d) Remove 2 Na+ and add 1 Fe2+ − create cation vacancy.

4–16 What are the Miller indices of the slip directions
(a) on the (111) plane in an FCC unit cell
(b) on the (011) plane in a BCC unit cell?

Solution: [01–1], [011–] [11–1], [1–11–]
[1–10], [11–0] [1–1–1], [111–]
[1–01], [101–] 

x

y

z

x

y

z
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4–17 What are the Miller indices of the slip planes in FCC unit cells that include the
[101] slip direction?

Solution: (111–), (1–1–1) (1–11), (11–1–)

4–18 What are the Miller indices of the {110} slip planes in BCC unit cells that include
the [111] slip direction?

Solution: (11–0), (1–10) (01–1), (011–) (101–), (1–01)

4–19 Calculate the length of the Burgers vector in the following materials:
(a) BCC niobium (b) FCC silver (c) diamond cubic silicon

Solution: (a) The repeat distance, or Burgers vector, is half the body diagonal,
or:

b = repeat distance = (1⁄2) (3.294 Å) = 2.853 Å

(b) The repeat distance, or Burgers vector, is half of the face diagonal,
or:

b = (1⁄2) = (1⁄2) (4.0862 Å) = 2.889 Å

(c) The slip direction is [110], where the repeat distance is half of the
face diagonal:

b = (1⁄2) (5.4307 Å) = 3.840 Å

4–20 Determine the interplanar spacing and the length of the Burgers vector for slip on
the expected slip systems in FCC aluminum. Repeat, assuming that the slip system
is a (110) plane and a [11–1] direction. What is the ratio between the shear stresses
required for slip for the two systems? Assume that k = 2 in Equation 4-2.

Solution: (a) For (111)/[110],

b = (1⁄2) (4.04958 Å) = 2.863 Å

(b) If (110)/[111], then:

b = (4.04958 Å) = 7.014 Å d110 =
4.04958 Å

12 +12 + 02
= 2.863Å3

d111 =
4.04958 Å

1+ 1+ 1
= 2.338Å( 2 )

( 2 )

( 2 )( 2ao )

( 3 )
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(c) If we assume that k = 2 in Equation 4-2, then

(d/b)a =
2.338

= 0.8166 (d/b)b =
2.863

= 0.408
2.863 7.014

∴
ta =

exp(−2(0.8166))
= 0.44

tb exp(−2(0.408))  

4–21 Determine the interplanar spacing and the length of the Burgers vector for slip on
the (110)/[11–1] slip system in BCC tantalum.  Repeat, assuming that the slip system
is a (111)/[11–0] system.  What is the ratio between the shear stresses required for
slip for the two systems?  Assume that k = 2 in Equation 4-2.

Solution: (a) For (110)/[11–1]:

b = (1⁄2) (3.3026 Å) = 2.860 Å

(b) If (111)/[11–0], then:

b = (3.3026 Å) = 4.671 Å

(c) If we assume that k = 2 in Equation 4-2, then:

(d/b)a =
2.335

= 0.8166 (d/b)b =
1.907 

= 0.408
2.86 4.671

ta =
exp(−2(0.8166))

= 0.44
tb exp(−2(0.408))  

4–26 How many grams of aluminum, with a dislocation density of 1010 cm/cm3, are
required to give a total dislocation length that would stretch from New York City to
Los Angeles (3000 miles)?

Solution: (3000 mi)(5280 ft/mi)(12 in./ft)(2.54 cm/in.) = 4.828 × 108 cm

(4.828 × 108 cm)(2.699 g/cm3)
= 0.13 g 

(1010 cm/cm3)

4–27 The distance from Earth to the Moon is 240,000 miles. If this were the total length
of dislocation in a cubic centimeter of material, what would be the dislocation 
density?

Solution: (240,000 mi)(5280 ft/mi)(12 in./ft)(2.54 cm/in.) = 3.86 × 1010 cm/cm3

4-30 Suppose you would like to introduce an interstitial or large substitutional atom into
the crystal near a dislocation. Would the atom fit more easily above or below the
dislocation line shown in Figure 4-8(b)? Explain.

Solution: The atom would fit more easily into the area just below the dislocation
due to the atoms being pulled apart; this allows more space into which
the atom can fit.

4–31 Compare the c/a ratios for the following HCP metals, determine the likely slip
processes in each, and estimate the approximate critical resolved shear stress.
Explain. (See data in Appendix A)
(a) zinc (b) magnesium (c) titanium
(d) zirconium (e) rhenium (f) beryllium 

Solution: We expect metals with c/a > 1.633 to have a low tcrss:

d111 2 2 2

3

1 1 1
1 907=

+ +
=

.3026 Å
Å.2

d110 2 2 2

3

1 1 0
2 335=

+ +
=

.3026 Å
Å.( )3
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(a) Zn:
4.9470

= 1.856 − low tcrss (b) Mg:
5.209 

= 1.62 − medium tcrss
2.6648                               3.2087

(c) Ti:
4.6831

= 1.587 − high tcrss (d) Zr:
5.1477

= 1.593 − high tcrss
2.9503 3.2312

(e) Rh:
4.458

= 1.615 − medium tcrss (f) Be:
3.5842

= 1.568 − high tcrss
2.760 2.2858

4–32 A single crystal of an FCC metal is oriented so that the [001] direction is parallel to
an applied stress of 5000 psi. Calculate the resolved shear stress acting on the (111)
slip plane in the [1–10], [01–1], and [101–] slip directions. Which slip system(s) will
become active first?

Solution: f = 54.76o t = 5000 cos 54.76 cos l

l110 = 90o t = 0

l011 = 45o t = 2040 psi active

l101 = 45o t = 2040 psi active

4–33 A single crystal of a BCC metal is oriented so that the [001] direction is parallel to
the applied stress. If the critical resolved shear stress required for slip is 12,000 psi,
calculate the magnitude of the applied stress required to cause slip to begin in the
[11–1] direction on the (110), (011), and (101–) slip planes.

Solution: CRSS = 12,000 psi = s cosf cosl

l = 54.76o 12,000 psi 
= s

cosf cosl

f110 = 90o s = ∞

f011 = 45o s = 29,412 psi

f101 = 45o s = 29,412 psi
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4–34 Our discussion of Schmid’s law dealt with single crystals of a metal. Discuss slip
and Schmid’s law in a polycrystalline material.  What might happen as the grain size
gets smaller and smaller?

Solution: With smaller grains, the movement of the dislocations is impeded by 
frequent intersections with the grain boundaries.  The strength of 
metals is not nearly as low as might be predicted from the critical 
resolved shear stress as a consequence of these interactions.

4–38 The strength of titanium is found to be 65,000 psi when the grain size is 17 × 
10−6 m and 82,000 psi when the grain size is 0.8 × 10−6 m.  Determine (a) the con-
stants in the Hall-Petch equation and (b) the strength of the titanium when the grain
size is reduced to 0.2 × 10−6 m.

Solution:

(a) By solving the two simultaneous equations:

4–39 A copper-zinc alloy has the following properties:

Grain diameter (mm) Strength (MPa) d−1⁄2        

0.015 170 MPa 8.165

0.025 158 MPa 6.325

0.035 151 MPa 5.345

0.050 145 MPa 4.472

Determine (a) the constants in the Hall-Petch equation and (b) the grain size required
to obtain a strength of 200 MPa.

( ) , . / . ,b psiσ = + × =−60 290 19 4 0 2 10 103 6706

K psi psio= =19 4 60 290. / ,d σ

82 000
1

0 8 10
1118 0

6
,

.
.= +

×
= +

−
σ σo oK  K

65 000
1

17 10
242 5

6
, .= +

×
= +

−
σ σo oK  K

x

y

z

54
.7

6°

Stress

x

y

z

x

y

z
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Solution: The values of d−
1⁄2 are included in the table; the graph shows the relation-

ship. We can determine K and σo either from the graph or by using two
of the data points.

(a) 170 = σo + K(8.165)

145 = σo + K(4.472)

25 = 3.693K

(b) To obtain a strength of 200 MPa:

4–40 For an ASTM grain size number of 8, calculate the number of grains per square inch
(a) at a magnification of 100 and (b) with no magnification. 

Solution: (a) N = 2n−1 N = 28−1 = 27 = 128 grains/in.2

(b) No magnification means that the magnification is “1”:

(27)(100/1)2 = 1.28 × 106 grains/in.2

4–41 Determine the ASTM grain size number if 20 grains/square inch are observed at a
magnification of 400.

Solution: (20)(400/100)2 = 2n−1 log(320) = (n−1)log(2) 

2.505 = (n−1)(0.301) or n = 9.3

4–42 Determine the ASTM grain size number if 25 grains/square inch are observed at a
magnification of 50.

Solution: 25(50/100)2 = 2n−1 log(6.25) = (n−1)log(2)

0.796 = (n−1)(0.301) or n = 3.6

200 = 114.7 + 6.77 / d
85.3 = 6.77 / d
d = 0.0063 mm

K = 6.77 MPa / mm σ o = 114.7 MPa
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4–43 Determine the ASTM grain size number for the materials in
(a) Figure 4-17 (b) Figure 4-21

Solution: (a) There are about 26 grains in the photomicrograph, which has the
dimensions 2.375 in. × 2 in.  The magnification is 100, thus:

26     
= 2n−1 log(5.47) = 0.738 = (n−1)log(2)    n = 3.5

(2.375)(2)

(b) There are about 59 grains in the photomicrograph, which has the 
dimensions 2.25 in. × 2 in.  The magnification is 500, thus:

59(500/100)2

= 2n−1 log(328) = 2.516 = (n−1)log(2)     n = 9.4
(2.25)(2)

There are about 28 grains in the photomicrograph, which has the 
dimensions 2 in. × 2.25 in.  The magnification is 200, thus:

28(200/100)2

= 2n−1 log(24.889) = 1.396 = (n−1)log(2)  n = 5.6
(2.25)(2)

4–46 The angle u of a tilt boundary is given by sin(u/2) = b/2D (see Figure 4-18). Verify
the correctness of this equation.

Solution: From the figure, we note that the grains are offset one Burgers vector,
b, only for two spacings D. Then it is apparent that sin(u/2) must be b
divided by two D.

4–47 Calculate the angle u of a small-angle grain boundary in FCC aluminum when the
dislocations are 5000 Å apart. (See Figure 4-18 and equation in Problem 4-46.)

Solution: b = (1⁄2) (4.04958) = 2.8635 Å and D = 5000 Å

sin(u/2) =
2.8635  

= 0.000286
(2)(5000)

u/2 = 0.0164

u = 0.0328o

4–48 For BCC iron, calculate the average distance between dislocations in a small-angle
grain boundary tilted 0.50o. (See Figure 4-18.)

Solution: sin(0.5/2) =

0.004364 = 1.241/D

D = 284 Å

( )( . )3 2 866

2D

( )2

D

b

b

2D /2
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41

5
Atom and Ion Movements in Materials

5–8 Atoms are found to move from one lattice position to another at the rate of 5 × 105

jumps/s at 400oC when the activation energy for their movement is 30,000 cal/mol.
Calculate the jump rate at 750oC.

Solution:

Rate =
5 × 105

=
co exp[−30,000/(1.987)(673)]  

=  exp(−22.434 + 14.759)
x co exp[−30,000/(1.987)(1023)]     

5 × 105

= exp(−7.675) = 4.64 × 10-4

x

x =
5 × 105 

= 1.08 × 109 jumps/s
4.64 × 10-4

5–9 The number of vacancies in a material is related to temperature by an Arrhenius
equation. If the fraction of lattice points containing vacancies is 8 × 10−5 at 600oC,
determine the fraction at 1000oC.

Solution: 8 × 10−5 = exp[−Q/(1.987)(873)] Q = 16,364 cal/mol

f = nv/n = exp[−16,364/(1.987)(1273)] = 0.00155

5–15 The diffusion coefficient for Cr+3 in Cr2O3 is 6 × 10−15 cm2/s at 727oC and is 
1 × 10−9 cm2/s at 1400oC. Calculate (a) the activation energy and (b) the constant D0.

Solution: (a) 
6 × 10−15

=
D0 exp[−Q/(1.987)(1000)]

1 × 10−9 D0 exp[−Q/(1.987)(1673)]

6 × 10−6 = exp[−Q(0.000503 − 0.00030)] = exp[−0.000203 Q]

−12.024 = −0.000203 Q or      Q = 59,230 cal/mol

(b) 1 × 10−9 = D0 exp[−59,230/(1.987)(1673)] = D0 exp(−17.818)

1 × 10−9 = 1.828 × 10−8 D0 or     D0 = 0.055 cm2/s
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5–16 The diffusion coefficient for O−2 in Cr2O3 is 4 × 10−15 cm2/s at 1150oC and 
6 × 10−11 cm2/s at 1715oC. Calculate (a) the activation energy and (b) the constant
D0.

Solution:
4 × 10−15

=
D0 exp[−Q/(1.987)(1423)]

6 × 10−11 D0 exp[−Q/(1.987)(1988)]

6.67 × 10−5 = exp[−0.0001005 Q]

−9.615 = −0.0001005 Q or      Q = 95,700 cal/mol

4 × 10−15 = D0 exp[−95,700/(1.987)(1423)] = D0(2.02 × 10−15)

D0 = 1.98 cm2/s

5–23 A 0.2-mm thick wafer of silicon is treated so that a uniform concentration gradient
of antimony is produced. One surface contains 1 Sb atom per 108 Si atoms and the
other surface contains 500 Sb atoms per 108 Si atoms. The lattice parameter for Si is
5.407 Å (Appendix A). Calculate the concentration gradient in (a) atomic percent Sb
per cm and (b) Sb atoms/cm3 � cm.

Solution: ∆c/∆x =
(1/108 − 500/108) 

× 100% = −0.02495 at%/cm
0.02 cm

a0 = 5.4307 Å Vunit cell = 160.16 × 10−24 cm3

c1 =
(8 Si atoms/u.c.)(1 Sb/108 Si)

= 0.04995 × 1016 Sb atoms/cm3

160.16 × 10−24 cm3/u.c.

c2 =
(8 Si atoms/u.c.)(500 Sb/108 Si)

= 24.975 × 1016 Sb atoms/cm3

160.16 × 10−24 cm3/u.c.

∆c/∆x =
(0.04995 − 24.975) × 1016 

= −1.246 × 1019 Sb atoms/cm3 � cm
0.02 cm

5–24 When a Cu-Zn alloy solidifies, one portion of the structure contains 25 atomic per-
cent zinc and another portion 0.025 mm away contains 20 atomic percent zinc. The
lattice parameter for the FCC alloy is 3.63 × 10−8 cm. Determine the concentration
gradient in (a) atomic percent Zn per cm, (b) weight percent Zn per cm, and 
(c) Zn atoms/cm3.cm.

Solution: (a) ∆c/∆x =
20% − 25%         

= −2000 at% Zn/cm 
(0.025 mm)(0.1 cm/mm)

(b) We now need to determine the wt% of zinc in each portion:

wt% Zn =
(20)(65.38 g/mol)      

× 100 = 20.46
(20)(65.38) + (80)(63.54)

wt% Zn =
(25)(65.38 g/mol)     

× 100 = 25.54
(25)(65.38) + (75)(63.54)

∆c/∆x =
20.46% − 25.54%

= −2032 wt% Zn/cm
0.0025 cm

(c) Now find the number of atoms per cm3:

c1 =
(4 atoms/cell)(0.2 Zn fraction)

= 0.0167 × 1024 Zn atoms/cm3

(3.63 × 10−8 cm)3

c2 =
(4 atoms/cell)(0.25 Zn fraction)

= 0.0209 × 1024 Zn atoms/cm3

(3.63 × 10−8 cm)3
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∆c/∆x =
0.0167 × 1024 − 0.0209 × 1024

= −1.68 Zn atoms/cm3 � cm 
0.0025 cm  

5–25 A 0.001-in. BCC iron foil is used to separate a high hydrogen gas from a low hydro-
gen gas at 650oC.  5 × 108 H atoms/cm3 are in equilibrium with the hot side of the
foil, while 2 × 103 H atoms/cm3 are in equilibrium with the cold side  Determine (a)
the concentration gradient of hydrogen and (b) the flux of hydrogen through the foil.

Solution: (a) ∆c/∆x =
2 × 103 − 5 × 108

= −1969 × 108 H atoms/cm3 � cm
(0.001 in.)(2.54 cm/in.)

(b) J = −D(∆c/∆x) = −0.0012 exp[−3600/(1.987)(923)](−1969 × 108)

J = 0.33 × 108 H atoms/cm2 � s

5–26 A 1-mm sheet of FCC iron is used to contain nitrogen in a heat exchanger at
1200oC. The concentration of N at one surface is 0.04 atomic percent and the con-
centration at the second surface is 0.005 atomic percent. Determine the flux of nitro-
gen through the foil in N atoms/cm2 � s.

Solution: (a) ∆c/∆x =
(0.00005 − 0.0004)(4 atoms per cell)/(3.589 × 10−8 cm)3

(1 mm)(0.1 cm/mm)

= −3.03 × 1020 N atoms/cm3 � cm

(b) J = −D(∆c/∆x) = −0.0034 exp[−34,600/(1.987)(1473)](−3.03 × 1020)

= 7.57 × 1012 N atoms/cm2 � s

5–27 A 4-cm-diameter, 0.5-mm-thick spherical container made of BCC iron holds nitro-
gen at 700oC. The concentration at the inner surface is 0.05 atomic percent and at
the outer surface is 0.002 atomic percent. Calculate the number of grams of nitrogen
that are lost from the container per hour.

Solution:
∆c/∆x =

[0.00002 − 0.0005](2 atoms/cell)/(2.866 × 10−8 cm)3

(0.5 mm)(0.1 cm/mm)

= −8.16 × 1020 N/cm3 � cm

J = −0.0047 exp[−18,300/(1.987)(973)][−8.16 × 1020] = 2.97 × 1014 N/cm2 � s

Asphere = 4πr2 = 4π(2 cm)2 = 50.27 cm2 t = 3600 s/h

N atoms/h = (2.97 × 1014)(50.27)(3600) = 5.37 × 1019 N atoms/h

N loss =
(5.37 × 1019 atoms)(14.007 g/mol) 

= 1.245 × 10−3 g/h
(6.02 × 1023 atoms/mol)

5–28 A BCC iron structure is to be manufactured that will allow no more than 50 g of
hydrogen to be lost per year through each square centimeter of the iron at 400oC. If
the concentration of hydrogen at one surface is 0.05 H atom per unit cell and is
0.001 H atom per unit cell at the second surface, determine the minimum thickness
of the iron.

Solution: c1 = 0.05 H/(2.866 × 10−8 cm)3 = 212.4 × 1019 H atoms/cm3

c2 = 0.001 H/(2.866 × 10−8 cm)3 = 4.25 × 1019 H atoms/cm3

∆c/∆x =
4.25 × 1019 − 212.4 × 1019]

=
−2.08 × 1021

∆x ∆x
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J =
(50 g/cm2 y)(6.02 × 1023 atoms/mol)

= 9.47 × 1017 H atoms/cm2 � s
(1.00797 g/mol)(31.536 × 106 s/y) 

J = 9.47 × 1017 H atoms/cm2 � s 

= (−2.08 × 1021/∆x)(0.0012)exp[−3600/((1.987)(673))]

∆x = 0.179 cm

5–29 Determine the maximum allowable temperature that will produce a flux of less than
2000 H atoms/cm2 � s through a BCC iron foil when the concentration gradient is 
−5 × 1016 atoms/cm3 � cm. (Note the negative sign for the flux.)

Solution:

2000 H atoms/cm2 � s = −0.0012 exp[−3600/1.987T][−5 × 1016 atoms/cm3 � cm] 

ln(3.33 × 10−11) = −3600/1.987T

T = −3600/((−24.12)(1.987)) = 75 K = −198oC  

5–35 Compare the rate at which oxygen ions diffuse in Al2O3 with the rate at which alu-
minum ions diffuse in Al2O3 at 1500oC. Explain the difference.

Solution: DO
−2 = 1900 exp[−152,000/(1.987)(1773)] = 3.47 × 10−16 cm2/s

DAl
+3 = 28 exp[−114,000/(1.987)(1773)] = 2.48 × 10−13 cm2/s

The ionic radius of the oxygen ion is 1.32 Å, compared with the aluminum
ionic radius of 0.51 Å; consequently it is much easier for the smaller
aluminum ion to diffuse in the ceramic.

5–36 Compare the diffusion coefficients of carbon in BCC and FCC iron at the allotropic
transformation temperature of 912oC and explain the difference.

Solution: DBCC = 0.011 exp[−20,900/(1.987)(1185)] = 1.51 × 10−6 cm2/s

DFCC = 0.23 exp[−32,900/(1.987)(1185)] = 1.92 × 10−7 cm2/s

Packing factor of the BCC lattice (0.68) is less than that of the FCC 
lattice; consequently atoms are expected to be able to diffuse more 
rapidly in the BCC iron.

5–37 Compare the diffusion coefficients for hydrogen and nitrogen in FCC iron at 1000oC
and explain the difference in their values.

Solution: DH in BCC = 0.0063 exp[−10,300/(1.987)(1273)] = 1.074 × 10−4 cm2/s

DN in FCC = 0.0034 exp[−34,600/(1.987)(1273)] = 3.898 × 10−9 cm2/s

Nitrogen atoms have a larger atoms radius (0.71 Å) compared with that of 
hydrogen atoms (0.46 Å); the smaller hydrogen ions are expected to 
diffuse more rapidly.

5–41 A carburizing process is carried out on a 0.10% C steel by introducing 1.0% C at
the surface at 980oC, where the iron is FCC. Calculate the carbon content at 0.01
cm, 0.05 cm, and 0.10 cm beneath the surface after 1 h.

Solution: D = 0.23 exp[−32,900/(1.987)(1253)] = 42 × 10−8 cm2/s

1

1 0 1
2 42 10 3600 0 07788−

−
= × =−c

x xx

.
[ / ( ( )( )] [ / . ]erf erf

44 The Science and Engineering of Materials Instructor’s Solutions Manual

05 Askeland Chap  9/27/05  11:37 AM  Page 44



x = 0.01: erf[0.01/0.0778] = erf(0.1285) =
(1 − cx) = 0.144     cx = 0.87% C

0.9

x = 0.05: erf[0.05/0.0778] = erf(0.643) =
(1 − cx) = 0.636       cx = 0.43% C

0.9

x = 0.10: erf[0.10/0.0778] = erf(1.285) =
(1 − cx) = 0.914       cx = 0.18% C

0.9

5–42 Iron containing 0.05% C is heated to 912oC in an atmosphere that produces 
1.20% C at the surface and is held for 24 h. Calculate the carbon content at 0.05 cm
beneath the surface if (a) the iron is BCC and (b) the iron is FCC. Explain the dif-
ference.

Solution: t = (24 h)(3600 s/h) = 86,400 s

DBCC = 0.011 exp[−20,900/(1.987)(1185)] = 1.54 × 10−6 cm2/s

DFCC = 0.23 exp[−32,900/(1.987)(1185)] = 1.97 × 10−7 cm2/s

BCC:
1.2 − cx = erf[0.05/ = erf[0.0685] = 0.077

1.2 − 0.05

cx = 1.11% C

FCC:
1.2 − cx = erf[0.05/ = erf[0.192] = 0.2139

1.2 − 0.05

cx = 0.95% C

Faster diffusion occurs in the looser packed BCC structure, leading to
the higher carbon content at point “x”.

5–43 What temperature is required to obtain 0.50% C at a distance of 0.5 mm beneath the
surface of a 0.20% C steel in 2 h, when 1.10% C is present at the surface?  Assume
that the iron is FCC.

Solution:
1.1 − 0.5

= 0.667 = erf[0.05/ ]
1.1 − 0.2

0.05/ = 0.685     or     = 0.0365    or    Dt = 0.00133

t = (2 h)(3600 s/h) = 7200 s

D = 0.00133/7200 = 1.85 × 10−7 = 0.23 exp[−32,900/1.987T]

exp(−16,558/T) = 8.043 × 10−7

T = 1180K = 907oC

Dt2 Dt

2 Dt

( ( . )( , ) )]2 1 97 10 86 4007× −

( ( . )( , ) )]2 1 54 10 86 4006× −

1.0

0.5

% C

Surface 0.05 0.10 0.15x
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5–44 A 0.15% C steel is to be carburized at 1100o C, giving 0.35% C at a distance of
1 mm beneath the surface. If the surface composition is maintained at 0.90% C,
what time is required?

Solution:
0.9 − 0.35

= 0.733 = erf[0.1/ ]
0.9 − 0.15

0.1/ = 0.786       or    = 0.0636      or    Dt = 0.00405

D = 0.23 exp[−32,900/(1.987)(1373)] = 1.332 × 10−6 cm2/s

t = 0.00405/1.332 × 10−6 = 3040 s = 51 min

5–45 A 0.02% C steel is to be carburized at 1200oC in 4 h, with a point 0.6 mm beneath
the surface reaching 0.45% C. Calculate the carbon content required at the surface
of the steel.

Solution:
cs − 0.45

= erf[0.06/ ]
cs − 0.02

D = 0.23 exp[−32,900/(1.987)(1473)] = 3.019 × 10−6 cm2/s

t = (4 h)(3600) = 14,400 s

erf[0.06/(2)(0.2085)] = erf(0.144) = 0.161

cs − 0.45
= 0.161  or  cs = 0.53% C

cs − 0.02

5–46 A 1.2% C tool steel held at 1150oC is exposed to oxygen for 48 h. The carbon con-
tent at the steel surface is zero. To what depth will the steel be decarburized to less
than 0.20% C?

Solution:
0 − 0.2 

= 0.1667  ∴ x/ = 0.149
0 − 1.2

D = 0.23 exp[−32,900/(1.987)(1423)] = 2.034 × 10−6 cm2/s

t = (48 h)(3600 s/h) = 17.28  × 104 s

= 0.5929

Then from above, x = (0.149)(2)(0.5929) = 0.177 cm

5–47 A 0.80% C steel must operate at 950oC in an oxidizing environment, where the car-
bon content at the steel surface is zero.  Only the outermost 0.02 cm of the steel part
can fall below 0.75% C. What is the maximum time that the steel part can operate?

Solution:
0 − 0.75

= 0.9375 = erf[x/ ]  ∴ x/ = 1.384
0 − 0.8

0.02/ = 1.384   or   = 0.007226     or     Dt = 5.22 × 10−5

D = 0.23 exp[−32,900/(1.987)(1223)] = 3.03 × 10−7 cm2/s

t = 5.22 × 10−5 / 3.03 × 10−7 = 172 s = 2.9 min

5–48 A steel with BBC crystal structure containing 0.001% N is nitrided at 550oC for 5 h.
If the nitrogen content at the steel surface is 0.08%, determine the nitrogen content
at 0.25 mm from the surface.

Dt2 Dt

2 Dt2 Dt

Dt

2 Dt

Dt = × =−( . )( , ) .3 019 10 14 400 0 20856

2 Dt

Dt2 Dt

2 Dt
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Solution:
0.08 − cs = erf[0.025/ ]        t = (5 h)(3600 s/h) = 1.8 × 104 s

0.08 − 0.001

D = 0.0047 exp[−18,300/(1.987)(823)]

= 6.488 × 10−8 cm2/s

= 0.0342

erf[0.025/(2)(0.0342)] = erf(0.3655) = 0.394

0.08 − cs = 0.394  or  cs = 0.049% N
0.079

5–49 What time is required to nitride a 0.002 N steel to obtain 0.12% N at a distance of
0.002 in. beneath the surface at 625oC? The nitrogen content at the surface is 0.15%.

Solution:
0.15 − 0.12 

= 0.2027 = erf[x/ ]  ∴ x/ = 0.2256
0.15 − 0.002

D = 0.0047 exp[−18,300/(1.987)(898)] = 1.65 × 10−7 cm2/s

x = 0.002 in. = 0.00508 cm

Dt = 1.267 × 10−4 or t = 1.267 × 10−4/1.65 × 10−7 = 768 s = 12.8 min

5–50 We currently can successfully perform a carburizing heat treatment at 1200oC in 
1 h. In an effort to reduce the cost of the brick lining in our furnace, we propose to
reduce the carburizing temperature to 950oC. What time will be required to give us a
similar carburizing treatment?

Solution: D1200 = 0.23 exp[−32,900/(1.987)(1473)] = 3.019 × 10−6 cm2/s

D950 = 0.23 exp[−32,900/(1.987)(1223)] = 3.034 × 10−7 cm2/s

t1200 = 1 h

t950 = D1200 t1200/D950 =
(3.019 × 10−6)(1)

= 9.95 h
3.034 × 10−7

5–56 During freezing of a Cu-Zn alloy, we find that the composition is nonuniform. By
heating the alloy to 600oC for 3 hours, diffusion of zinc helps to make the composi-
tion more uniform. What temperature would be required if we wished to perform
this homogenization treatment in 30 minutes?

Solution: D600 = 0.78 exp[−43,900/(1.987)(873)] = 7.9636 × 10−12 t600 = 3 h

tx = 0.5 h

Dx = D600 t600/tx = (7.9636 × 10−12)(3)/0.5

Dx = 4.778 × 10−11 = 0.78 exp[−43,900/1.987T]

ln (6.1258 × 10−11) = −23.516 = −43,900/1.987 T

T = 940 K = 667oC

5–57 A ceramic part made of MgO is sintered successfully at 1700oC in 90 minutes. To
minimize thermal stresses during the process, we plan to reduce the temperature to

0 00508

2 1 65 10
0 2256

7

.

( . )
.

×
=

− t

2 Dt2 Dt

Dt

2 Dt
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1500oC. Which will limit the rate at which sintering can be done: diffusion of mag-
nesium ions or diffusion of oxygen ions? What time will be required at the lower
temperature?

Solution: Diffusion of oxygen is the slower of the two, due to the larger ionic 
radius of the oxygen.

D1700 = 0.000043 exp[−82,100/(1.987)(1973)] = 3.455 × 10−14  cm2/s

D1500 = 0.000043 exp[−82,100/(1.987)(1773)] = 3.255 × 10−15 cm2/s

t1500 = D1700 t1700/D1500 =
(3.455 × 10−14)(90) 

= 955 min = 15.9 h
3.255 × 10−15

5–58 A Cu-Zn alloy has an initial grain diameter of 0.01 mm. The alloy is then heated to
various temperatures, permitting grain growth to occur. The times required for the
grains to grow to a diameter of 0.30 mm are

Temperature (oC)    Time (min)

500 80,000

600 3,000

700 120

800 10

850 3

Determine the activation energy for grain growth.  Does this correlate with the diffu-
sion of zinc in copper?  (Hint: Note that rate is the reciprocal of time.)

Solution: Temperature 1/T Time Rate
(oC)       (K) (K−1) (min) (min−1)       

500      773 0.00129 80,000 1.25 × 10−5

600      873 0.00115 3,000 3.33 × 10−4

700      973 0.001028 120 8.33 × 10−3

800      1073 0.000932 10 0.100

850      1123 0.000890 3 0.333

From the graph, we find that Q = 51,286 cal/mol, which does correlate
with the activation energy for diffusion of zinc in copper.
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5–60 A sheet of gold is diffusion-bonded to a sheet of silver in 1 h at 700oC. At 500oC,
440 h are required to obtain the same degree of bonding, and at 300oC, bonding
requires 1530 years. What is the activation energy for the diffusion bonding process?
Does it appear that diffusion of gold or diffusion of silver controls the bonding rate?
(Hint: Note that rate is the reciprocal of time.)

Solution: Temperature 1/T Time Rate
(oC)       (K) (K−1) (s) (sec−1)      

700       973 0.001007 3600 0.278 × 10−3

500       773 0.001294 1.584 × 106 0.631 × 10−6

300       573 0.001745 4.825 × 1010 0.207 × 10−10

0.278 × 10−3

=
exp[−Q/(1.987)(973)]

=
exp[−0.0005172Q]

0.207 × 10−10 exp[−Q/(1.987)(573)]    exp[−0.0008783Q]

ln(1.343 × 107) = 16.413 = 0.0003611 Q

Q = 45,450 cal/mol.

The activation energy for the diffusion of gold in silver is 45,500 cal/mole;
thus the diffusion of gold appears to control the bonding rate.
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51

6
Mechanical Properties and Behavior

6–24 A 850-lb force is applied to a 0.15-in.-diameter nickel wire having a yield strength
of 45,000 psi and a tensile strength of 55,000 psi. Determine (a) whether the wire
will plastically deform and (b) whether the wire will experience necking.

Solution: (a) First determine the stress acting on the wire:

s = F/A = 850 lb / (π/4)(0.15 in.)2 = 48,100 psi

Because s is greater than the yield strength of 45,000 psi, the wire
will plastically deform.

(b) Because s is less than the tensile strength of 55,000 psi, no necking
will occur.

6–25 (a) A force of 100,000 N is applied to a 10 mm × 20 mm iron bar having a yield
strength of 400 MPa and a tensile strength of 480 MPa. Determine whether the
bar will plastically deform and whether the bar will experience necking.

Solution: First determine the stress acting on the wire:

s = F/A = 100,000 N / (10 mm)(20 mm) = 500 N/mm2 = 500 MPa

Because s is greater than the yield strength of 400 MPa, the wire will
plastically deform.

Because s is greater than the tensile strength of 480 MPa, the wire will
also neck.

(b) Calculate the maximum force that a 0.2-in. diameter rod of Al2O3, having a
yield strength of 35,000 psi, can withstand with no plastic deformation. Express
your answer in pounds and Newtons.

Solution: F = σA = (35,000 psi)(π/4)(0.2 in.)2 = 1100 lb

F = (1100 lb)(4.448 N/lb) = 4891 N
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6–26 A force of 20,000 N will cause a 1 cm × 1 cm bar of magnesium to stretch from
10 cm to 10.045 cm. Calculate the modulus of elasticity, both in GPa and psi.

Solution: The strain e is e = (10.045 cm − 10 cm)/10 cm = 0.0045 cm/cm

The stress s is s = 20,000 N / (10 mm)(10 mm) = 200 N/mm2

= 200 MPa

E = s/e = 200 MPa / 0.0045 cm/cm = 44,444 MPa = 44.4 GPa

E = (44,444 MPa)(145 psi/MPa) = 6.44 × 106 psi

6–27 A polymer bar’s dimensions are 1 in. × 2 in. × 15 in. The polymer has a modulus of
elasticity of 600,000 psi. What force is required to stretch the bar elastically to 
15.25 in.?

Solution: The strain e is e = (15.25 in. − 15 in.) / (15 in.) = 0.01667 in./in.

The stress s is s = Ee = (600,000 psi)(0.01667 in./in.) = 10,000 psi

The force is then F = sA = (10,000 psi)(1 in.)(2 in.) = 20,000 lb

6–28 An aluminum plate 0.5 cm thick is to withstand a force of 50,000 N with no perma-
nent deformation. If the aluminum has a yield strength of 125 MPa, what is the min-
imum width of the plate?

Solution: The area is  A = F/s = 50,000 N / 125 N/mm2 = 400 mm2

The minimum width is w = A/t = (400 mm2)(0.1 cm/mm)2 / 0.5 cm 
= 8 cm

6–29 (a) A 3-in.-diameter rod of copper is to be reduced to a 2-in.-diameter rod by being
pushed through an opening. To account for the elastic strain, what should be the
diameter of the opening?  The modulus of elasticity for the copper is 
17 × 106 psi and the yield strength is 40,000 psi.

Solution: (a) The strain is e = s/E = 40,000 psi / 17 × 106 psi = 0.00235 in./in.

The strain is also e = (2 in. − do) / do = 0.00235 in./in.

2 − do = 0.00235 do

do = 2 / 1.00235 = 1.995 in.

The opening in the die must be smaller than the final diameter.

6–30 A steel cable 1.25 in. in diameter and 50 ft long is to lift a 20-ton load. What is the
length of the cable during lifting? The modulus of elasticity of the steel is 
30 × 106 psi.

Solution: The stress is s = F/A =
(20 ton)(2000 lb/ton)

= 32,595 psi
(π/4)(1.25 in.)2

The strain is e = s/E = 32,595 psi / 30 × 106 psi = 0.0010865 in./in.

e = (lf − 50 ft) / 50 ft = 0.0010865 ft/ft

lf = 50.0543 ft

6–33 The following data were collected from a standard 0.505-in.-diameter test specimen
of a copper alloy (initial length (lo) = 2.0 in.):
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Load Gage Length Stress Strain
(lb) (in.) (psi) (in./in.)

0 2.00000 0 0.0

3,000 2.00167 15,000 0.000835

6,000 2.00333 30,000 0.001665

7,500 2.00417 37,500 0.002085

9,000 2.0090 45,000 0.0045

10,500 2.040 52,500 0.02

12,000 2.26 60,000 0.13

12,400 2.50 (max load) 62,000 0.25

11,400 3.02 (fracture) 57,000 0.51

After fracture, the gage length is 3.014 in. and the diameter is 0.374 in. Plot the data
and calculate the 0.2% offset yield strength along with (a) the tensile strength, (b) the
modulus of elasticity, (c) the % elongation, (d) the % reduction in area, (e) the
engineering stress at fracture, (f) the true stress at fracture, and (g) the modulus of
resilience.

Solution: s = F / (π/4)(0.505)2 = F/0.2

e = (l − 2) / 2

0.2% offset yield strength = 45,000 psi

(a) tensile strength = 62,000 psi

(b) E = (30,000 − 0) / (0.001665 − 0) = 18 × 106 psi

(c) % elongation =
(3.014 − 2)

× 100 = 50.7%
2

(d) % reduction in area =
(π/4)(0.505)2 − (π/4)(0.374)2

× 100 = 45.2%
(π/4)(0.505)2

(e) engineering stress at fracture = 57,000 psi

(f) true stress at fracture = 11,400 lb / (π/4)(0.374)2 = 103,770 psi

(g) From the graph, yielding begins at about 37,500 psi.  Thus:

1⁄2(yield strength)(strain at yield) = 1⁄2(37,500)(0.002085) = 39.1 psi
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6–34 The following data were collected from a 0.4-in. diameter test specimen of
polyvinyl chloride (lo = 2.0 in.):

Load Gage Length Stress Strain
(lb) (in.) (psi) (in./in.)

0 2.00000 0 0.0

300 2.00746 2,387 0.00373

600 2.01496 4,773 0.00748

900 2.02374 7,160 0.01187

1200 2.032 9,547 0.016

1500 2.046 11,933 0.023

1660 2.070 (max load) 13,206 0.035

1600 2.094 12,729 0.047

1420 2.12  (fracture) 11,297 0.06 

After fracture, the gage length is 2.09 in. and the diameter is 0.393 in. Plot the data
and calculate (a) the 0.2% offset yield strength, (b) the tensile strength, (c) the
modulus of elasticity, (d) the % elongation, (e) the % reduction in area, (f) the
engineering stress at fracture, (g) the true stress at fracture, and (h) the modulus of
resilience.

Solution: s = F /(π/4)(0.4)2 = F/0.1257

e = (l − 2) / 2

(a) 0.2% offset yield strength = 11,600 psi

(b) tensile strength = 12,729 psi

(c) E = (7160 − 0) / (0.01187 − 0) = 603,000 psi

(d) % elongation =
(2.09 − 2)

× 100 = 4.5%
2

(e) % reduction in area =
(π/4)(0.4)2 − (π/4)(0.393)2

× 100 = 3.5%
(π/4)(0.4)2

(f) engineering stress at fracture = 11,297 psi

(g) true stress at fracture = 1420 lb / (π/4)(0.393)2 = 11,706 psi

(h) From the figure, yielding begins near 9550 psi. Thus:

1⁄2(yield strength)(strain at yield) = 1⁄2(9550)(0.016) = 76.4 psi
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6–35 The following data were collected from a 12-mm-diameter test specimen of
magnesium (lo = 30.00 mm):

Load Gage Length Stress Strain
(N) (mm) (MPa)  (mm/mm)  

0 30.0000 0 0.0

5,000 30.0296 44.2 0.000987

10,000 30.0592 88.4 0.001973

15,000 30.0888 132.6 0.00296

20,000 30.15 176.8 0.005

25,000 30.51 221.0 0.017

26,500 30.90 234.3 0.030

27,000 31.50 (max load) 238.7 0.050

26,500 32.10 234.3 0.070

25,000 32.79 (fracture) 221.0 0.093 

After fracture, the gage length is 32.61 mm and the diameter is 11.74 mm. Plot the
data and calculate (a) the 0.2% offset yield strength, (b) the tensile strength, (c) the
modulus of elasticity, (d) the % elongation, (e) the % reduction in area, (f) the
engineering stress at fracture, (g) the true stress at fracture, and (h) the modulus of
resilience.

Solution: s = F / (π/4)(12 mm)2 = F/113.1

e = (l − 30)/30

(a) 0.2% offset yield strength = 186 MPa

(b) tensile strength = 238.7 MPa

(c) E = (132.6 − 0) / (0.00296 − 0) = 44,800 MPa = 44.8 GPa

(d) % elongation =
(32.61 − 30)

× 100 = 8.7%
30

(e) % reduction in area =
(π/4)(12)2 − (π/4)(11.74)2

× 100 = 4.3%
(π/4)(12)2

(f) engineering stress at fracture = 221 MPa

(g) true stress at fracture = 25,000 N / (π/4)(11.74)2 = 231 MPa
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(h) From the figure, yielding begins near 138 MPa psi.  Thus:

1⁄2(yield strength)(strain at yield) = 1⁄2(138)(0.00296) = 0.2 MPa

6–36 The following data were collected from a 20 mm diameter test specimen of a ductile
cast iron (lo = 40.00 mm):

Load Gage Length Stress Strain
(N) (mm) (MPa)  (mm/mm)  

0 40.0000 0 0.0

25,000 40.0185 79.6 0.00046

50,000 40.0370 159.2 0.000925

75,000 40.0555 238.7 0.001388

90,000 40.20 286.5 0.005

105,000 40.60 334.2 0.015

120,000 41.56 382.0 0.039

131,000 44.00 (max load) 417.0 0.010

125,000 47.52 (fracture) 397.9 0.188

After fracture, the total length is 47.42 mm and the diameter is 18.35 mm. Plot the
data and calculate (a) the 0.2% offset yield strength, (b) the tensile strength, (c) the
modulus of elasticity, (d) the % elongation, (e) the % reduction in area, (f) the
engineering stress at fracture, (g) the true stress at fracture, and (h) the modulus of
resilience.

Solution: s = F/(π/4)(20 mm)2 = F/314.2

e = (l − 40)/40

(a) 0.2% offset yield strength = 274 MPa

(b) tensile strength = 417 MPa

(c) E = (238.7 − 0) / (0.001388 − 0) = 172,000 MPa = 172 GPa

(d) % elongation =
(47.42 − 40)

× 100 = 18.55%
40

(e) % reduction in area =
(π/4)(20)2 − (π/4)(18.35)2

× 100 = 15.8%
(π/4)(20)2
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(f) engineering stress at fracture = 397.9 MPa

(g) true stress at fracture = 125,000 N / (π/4)(18.35)2 = 473 MPa

(h) From the figure, yielding begins near 240 MPa.  Thus:

1⁄2(yield strength)(strain at yield) = 1⁄2(240)(0.001388) = 0.17 MPa

6–39 A bar of Al2O3 that is 0.25 in. thick, 0.5 in. wide, and 9 in. long is tested in a 
three-point bending apparatus, with the supports located 6 in. apart. The deflection
of the center of the bar is measured as a function of the applied load. The data are
shown below. Determine the flexural strength and the flexural modulus.

Force Deflection Stress
(lb) (in.) (psi) 

14.5 0.0025 4,176

28.9 0.0050 8,323

43.4 0.0075 12,499

57.9 0.0100 16,675

86.0 0.0149 (fracture) 24,768

Solution: stress = 3LF/2wh2 (6-15)

= (3)(6 in.)F /(2)(0.5 in.)(0.25 in.)2

= 288F

The flexural strength is the stress at fracture, or 24,768 psi.

The flexural modulus can be calculated from the linear curve; picking the
first point as an example:

FM = 
FL3

=
(14.5 lb)(6 in.)3

= 40 × 106 psi
4wh3δ (4)(0.5 in.)(0.25 in.)3(0.0025 in.)

6–40 (a) A 0.4-in. diameter, 12-in.-long titanium bar has a yield strength of 50,000 psi, a
modulus of elasticity of 16 × 106 psi, and Poisson’s ratio of 0.30. Determine the
length and diameter of the bar when a 500-lb load is applied.

Solution: The stress is  σ = F/A = 500 lb/(π/4)(0.4 in.)2 = 3,979 psi
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The applied stress is much less than the yield strength; therefore Hooke’s
law can be used.

The strain is e = s/E = 3,979 psi / (16 × 106 psi) = 0.00024868 in./in.

lf − lo =
lf − 12 in.

= 0.00024868 in./in.
lo 12 in.

lf = 12.00298 in.

From Poisson’s ratio, m = − elat / elong = 0.3

elat = − (0.3)(0.00024868) = − 0.0000746 in./in.

df − do = 
df − 0.4 in.

= − 0.0000746 in./in.
df 0.4

df = 0.39997 in.

(b) When a tensile load is applied to a 1.5-cm diameter copper bar, the diameter is
reduced to 1.498-cm diameter.  Determine the applied load, using the data in 
Table 6–3.

Solution: From Table 6–3, m = − elat / elong = 0.36

elat =
1.498 − 1.5

= − 0.001333
1.5

elong = − elat / m = − (−0.001333) / 0.36 = 0.0037 in./in.

s = Ee = (124.8 GPa)(1000 MPa/GPa)(0.0037 in./in.) = 462 MPa

F = sA = (462 MPa)(π/4)(15 mm)2 = 81,640 N

6–41 A three-point bend test is performed on a block of ZrO2 that is 8 in. long, 0.50 in.
wide, and 0.25 in. thick and is resting on two supports 4 in. apart. When a force of
400 lb is applied, the specimen deflects 0.037 in. and breaks. Calculate (a) the flex-
ural strength and (b) the flexural modulus, assuming that no plastic deformation
occurs.

Solution: (a) flexural strength = 3FL/2wh2 =
(3)(400 lb)(4 in.)   

= 76,800 psi
(2)(0.5 in.)(0.25 in.)2

(b) flexural modulus = FL3/4wh3d

=
(400 lb)(4 in.)3

(4)(0.5 in.)(0.25 in.)3(0.037 in.)

= 22.14 × 106 psi

6–42 A three-point bend test is performed on a block of silicon carbide that is 10 cm long,
1.5 cm wide, and 0.6 cm thick and is resting on two supports 7.5 cm apart. The sam-
ple breaks when a deflection of 0.09 mm is recorded. Calculate (a) the force that
caused the fracture and (b) the flexural strength. The flexural modulus for silicon
carbide is 480 GPa. Assume that no plastic deformation occurs.

Solution: (a) The force F required to produce a deflection of 0.09 mm is

F = (flexural modulus)(4wh3d)/L3

F = (480,000 MPa)(4)(15 mm)(6 mm)3(0.09 mm) / (75 mm)3

F = 1327 N
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(b) flexural strength = 3FL/2wh2 = (3)(1327 N)(75 mm)/(2)(15 mm)(6 mm)2

= 276 MPa

6–43 (a) A thermosetting polymer containing glass beads is required to deflect 0.5 mm
when a force of 500 N is applied. The polymer part is 2 cm wide, 0.5 cm thick,
and 10 cm long. If the flexural modulus is 6.9 GPa, determine the minimum dis-
tance between the supports. Will the polymer fracture if its flexural strength is 
85 MPa? Assume that no plastic deformation occurs.

Solution: (a) The minimum distance L between the supports can be calculated
from the flexural modulus.

L3 = 4wh3d(flexural modulus)/F

L3 = (4)(20 mm)(5 mm)3(0.5 mm)(6.9 GPA)(1000 MPa/GPa) / 
500 N

L3 = 69,000 mm3 or     L = 41 mm

The stress acting on the bar when a deflection of 0.5 mm is 
obtained is

s = 3FL/2wh2 = (3)(500 N)(41 mm) / (2)(20 mm)(5 mm)2

= 61.5 MPa

The applied stress is less than the flexural strength of 85 MPa; the
polymer is not expected to fracture.

(b) The flexural modulus of alumina is 45 × 106 psi and its flexural strength is
46,000 psi. A bar of alumina 0.3 in. thick, 1.0 in. wide, and 10 in. long is placed
on supports 7 in. apart. Determine the amount of deflection at the moment the
bar breaks, assuming that no plastic deformation occurs.

Solution: (b) The force required to break the bar is

F = 2wh2(flexural strength)/3L

F = (2)(1 in.)(0.3 in.)2(46,000 psi / (3)(7 in.) = 394 lb

The deflection just prior to fracture is

d = FL3/4wh3(flexural modulus)

d = (394 lb)(7 in.)3/(4)(1 in.)(0.3 in.)3(45 × 106 psi) = 0.0278 in.

6–52 A Brinell hardness measurement, using a 10-mm-diameter indenter and a 500-kg
load, produces an indentation of 4.5 mm on an aluminum plate. Determine the
Brinell hardness number (HB) of the metal.

Solution:

6–53 When a 3000-kg load is applied to a 10-mm-diameter ball in a Brinell test of a steel,
an indentation of 3.1 mm is produced. Estimate the tensile strength of the steel.

Solution:

Tensile strength = 500 HB = (500)(388) = 194,000 psi

HB =
− −

=
3000

2 10 10 10 3 1
388

2 2

kg

mm( / )( )[ . ]π

HB =
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=
500
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6–57 The following data were obtained from a series of Charpy impact tests performed on
four ductile cast irons, each having a different silicon content. Plot the data and
determine (a) the transition temperature (defined by the mean of the absorbed ener-
gies in the ductile and brittle regions) and (b) the transition temperature (defined as
the temperature that provides 10 J absorbed energy). Plot the transition temperature
versus silicon content and discuss the effect of silicon on the toughness of the cast
iron. What would be the maximum silicon allowed in the cast iron if a part is to be
used at 25oC?

Test temperature Impact energy (J)
oC 2.55% Si 2.85% Si 3.25% Si 3.63% Si 

−50 2.5 2.5 2 2

−5 3 2.5 2 2

0 6 5 3 2.5

25 13 10 7 4

50 17 14 12 8

75 19 16 16 13

100 19 16 16 16

125 19 16 16 16

Solution:

(a) Transition temperatures defined by the mean of the absorbed energies
are:

2.55% Si: mean energy = 2.5 + (19 + 2.5)/2 = 13.2 J; T = 26oC

2.85% Si: mean energy = 2.5 + (16 + 2.5)/2 = 11.8 J; T = 35oC

3.25% Si: mean energy = 2 + (16 + 2)/2 = 11 J;         T = 45oC

3.63% Si: mean energy = 2 + (16 + 2)/2 = 11 J;         T = 65oC

(b) Transition temperatures defined by 10 J are:

2.55% Si: T = 15oC

2.85% Si: T = 25oC

3.25% Si: T = 38oC

3.63% Si: T = 56oC
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Increasing the silicon decreases the toughness and increases the tran-
sition temperature; silicon therefore reduces the impact properties of the
cast iron.

If the part is to be used at 25oC, we would want a maximum of about
2.9% Si in the cast iron.

6–58 FCC metals are often recommended for use at low temperatures, particularly when
any sudden loading of the part is expected. Explain.

Solution: FCC metals do not normally display a transition temperature; instead the
impact energies decrease slowly with decreasing temperature and, in at
least some cases (such as some aluminum alloys), the energies even
increase at low temperatures. The FCC metals can obtain large ductili-
ties, giving large areas beneath the true stress-strain curve.

6–59 A steel part can be made by powder metallurgy (compacting iron powder particles
and sintering to produce a solid) or by machining from a solid steel block. Which
part is expected to have the higher toughness? Explain.

Solution: Parts produced by powder metallurgy often contain considerable
amounts of porosity due to incomplete sintering; the porosity provides
sites at which cracks might easily nucleate. Parts machined from solid
steel are less likely to contain flaws that would nucleate cracks, therefore
improving toughness.

6–62 A number of aluminum-silicon alloys have a structure that includes sharp-edged
plates of brittle silicon in the softer, more ductile aluminum matrix. Would you
expect these alloys to be notch-sensitive in an impact test? Would you expect these
alloys to have good toughness? Explain your answers.

Solution: The sharp-edged plates of the brittle silicon may act as stress-raisers, or
notches, thus giving poor toughness to the alloy. The presence of addi-
tional notches, such as machining marks, will not have a significant
effect, since there are already very large numbers of “notches” due to the
microstructure. Consequently this type of alloy is expected to have poor
toughness but is not expected to be notch sensitive.
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63

7
Fracture Mechanics, Fatigue, and Creep
Behaviour

7–1 Alumina (Al2O3) is a brittle ceramic with low toughness. Suppose that fibers of sili-
con carbide (SiC), another brittle ceramic with low toughness, could be embedded
within the alumina. Would doing this affect the toughness of the ceramic matrix
composite? Explain. (These materials are discussed in later chapters.)

Solution: The SiC fibers may improve the toughness of the alumina matrix. The
fibers may do so by several mechanisms. By introducing an interface
(between the fibers and the matrix), a crack may be blocked; to continue
growing, the crack may have to pass around the fiber, thus increasing the
total energy of the crack and thus the energy that can be absorbed by the
material. Or extra energy may be required to force the crack through the
interface in an effort to continue propagating. In addition, the fibers may
begin to pull out of the matrix, particularly if bonding is poor; the fiber
pull-out requires energy, thus improving toughness. Finally, the fibers
may bridge across the crack, helping to hold the material together and
requiring more energy to propagate the crack.

7–2 A ceramic matrix composite contains internal flaws as large as 0.001 cm in length.  
The plane strain fracture toughness of the composite is 45 and the tensile 
strength is 550 MPa. Will the flaw cause the composite to fail before the tensile
strength is reached? Assume that f = 1.

Solution: Since the crack is internal, 2a = 0.001 cm = 0.00001 m. Therefore

a = 0.000005 m

s = =( ) / ( ) ( . ) ,45 1 0 000005 11 354MPa m m MPaπ

K f a K f aIc lc= =s sπ πor /

MPa m
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The applied stress required for the crack to cause failure is much larger
than the tensile strength of 550 MPa. Any failure of the ceramic should
be expected due to the massive overload, not because of the presence of
the flaws.

7–3 An aluminum alloy that has a plane strain fracture toughness of 25,000 
fails when a stress of 42,000 psi is applied. Observation of the fracture surface indi-
cates that fracture began at the surface of the part. Estimate the size of the flaw that
initiated fracture. Assume that f = 1.1.

Solution:

7–4 A polymer that contains internal flaws 1 mm in length fails at a stress of 25 MPa.
Determine the plane strain fracture toughness of the polymer. Assume that f = 1.

Solution: Since the flaws are internal, 2a = 1 mm = 0.001 m; thus a = 0.0005 m

7–5 A ceramic part for a jet engine has a yield strength of 75,000 psi and a plane strain 

fracture toughness of 5,000 To be sure that the part does not fail, we plan 
to assure that the maximum applied stress is only one third the yield strength. We
use a nondestructive test that will detect any internal flaws greater than 0.05 in.
long. Assuming that f = 1.4, does our nondestructive test have the required 
sensitivity? Explain.

Solution: The applied stress is s = (1⁄3)(75,000 psi) = 25,000 psi

a = (1/π)[KIc/fs]2 = (1/π)[5,000 / (1.4)(25,000 psi)]2

a = 0.0065 in.

The length of internal flaws is 2a = 0.013 in.

Our nondestructive test can detect flaws as small as 0.05 in. long, which
is not smaller than the critical flaw size required for failure. Thus our
NDT test is not satisfactory.

7–22 A cylindrical tool steel specimen that is 6 in. long and 0.25 in. in diameter rotates as
a cantilever beam and is to be designed so that failure never occurs. Assuming that
the maximum tensile and compressive stresses are equal, determine the maximum
load that can be applied to the end of the beam. (See Figure 7–19.)

Solution: The stress must be less than the endurance limit, 60,000 psi.

s = 10.18LF/d3 or    F = (endurance limit)d3/10.18L

F = (60,000 psi)(0.25 in.)3 / (10.18)(6 in.) = 15.35 lb

7–23 A 2-cm-diameter, 20-cm-long bar of an acetal polymer (Figure 7–29) is loaded on
one end and is expected to survive one million cycles of loading, with equal maxi-
mum tensile and compressive stresses, during its lifetime. What is the maximum
permissible load that can be applied?

Solution: From the figure, we find that the fatigue strength must be 22 MPa in
order for the polymer to survive one million cycles.  Thus, the maximum
load is

psi in.

psi in.

K f aIc = = =s π π( )( ) ( . ) .1 25 0 0005 0 99MPa m MPa m

a = =( / )[ , . / ( . )( , )] . .1 25 000 1 1 42 000 0 0932π psi in psi in

K f a or a K fIc lc= =s sπ π( / )[ / ]1 2

psi in.
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F = (fatigue strength)d3/10.18L

F = (22 MPa)(20 mm)3 / (10.18)(200 mm) = 86.4 N

7–24 A cyclical load of 1500 lb is to be exerted at the end of a 10-in.-long aluminum
beam (Figure 7–19). The bar must survive for at least 106 cycles. What is the mini-
mum diameter of the bar?

Solution: From the figure, we find that the fatigue strength must be 35,000 psi in
order for the aluminum to survive 106 cycles. Thus, the minimum diame-
ter of the bar is

7–25 A cylindrical acetal polymer bar 20 cm long and 1.5 cm in diameter is subjected to a
vibrational load at a frequency of 500 vibrations per minute with a load of 50 N.
How many hours will the part survive before breaking? (See Figure 7–29)

Solution: The stress acting on the polymer is

s = 10.18LF/d3 = (10.18)(200 mm)(50 N) / (15 mm)3 = 30.16 MPa

From the figure, the fatigue life at 30.16 MPa is about 2 × 105 cycles.
Based on 500 cycles per minute, the life of the part is
life = 2 × 105 cycles / (500 cycles/min)(60 min/h) = 6.7 h

7–26 Suppose that we would like a part produced from the acetal polymer shown in
Figure 7–29 to survive for one million cycles under conditions that provide for equal
compressive and tensile stresses. What is the fatigue strength, or maximum stress
amplitude, required? What are the maximum stress, the minimum stress, and the
mean stress on the part during its use? What effect would the frequency of the stress
application have on your answers? Explain.

Solution: From the figure, the fatigue strength at one million cycles is 22 MPa.

The maximum stress is +22 MPa, the minimum stress is −22 MPa, and
the mean stress is 0 MPa.

A high frequency will cause heating of the polymer. As the temperature
of the polymer increases, the fatigue strength will decrease. If the
applied stress is not reduced, then the polymer will fail in a shorter time.

7–27 The high-strength steel in Figure 7–21 is subjected to a stress alternating at 200
revolutions per minute between 600 MPa and 200 MPa (both tension). Calculate the
growth rate of a surface crack when it reaches a length of 0.2 mm in both m/cycle
and m/s. Assume that f = 1.0.

Solution: For the steel, C = 1.62 × 10−12 and n = 3.2. The change in the stress
intensity factor ∆K is

The crack growth rate is

da/dN = 1.62 × 10−12(∆K)3.2

da/dN = 1.62 × 10−12(12.03)3.2 = 4.638 × 10−9 m/cycle

∆ ∆K f a− = − =s π π( . )( ) ( . .1 2 600 200 0 0002 12 03MPa MPa m) MPa m

d = =3 10 18 10 1500 35 000 1 634( . )( .)( ) / , . .in lb psi in

d LF= 3 10 18. / fatiguestrength
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da/dt = (4.638 × 10−9 m/cycle)(200 cycles/min)/ 60 s/min

da/dt = 1.55 × 10−8 m/s

7–28 The high-strength steel in Figure 7–21, which has a critical fracture toughness of 
80 is subjected to an alternating stress varying from −900 MPa (compres-
sion) to +900 MPa (tension). It is to survive for 105 cycles before failure occurs.
Calculate (a) the size of a surface crack required for failure to occur and (b) the
largest initial surface crack size that will permit this to happen. Assume that f = 1.

Solution: (a) Only the tensile portion of the applied stress is considered in ∆s.
Based on the applied stress of 900 MPa and the fracture toughness 
of 80 the size of a surface crack required for failure to
occur is

(b) The largest initial surface crack tolerable to prevent failure within 105

cycles is

N = 105 cycles =
2[(0.0025 m)(2−3.2)/2 − ai

(2−3.2)/2]       

(2 − 3.2)(1.62 × 10−12)(1)3.2(900)3.2(π)3.2/2

105 =
2[36.41 − (ai)

−0.60]                 

(−1.2)(1.62 × 10−12)(1)(2.84 × 109)(6.244)

(ai)
−0 6 = 1760

ai = 3.9 × 10−6 m = 0.0039 mm

7–29 The acrylic polymer from which Figure 7–30 was obtained has a critical fracture 

toughness of 2 It is subjected to a stress alternating between −10 and 
+10 MPa. Calculate the growth rate of a surface crack when it reaches a length of 
5 × 10−6 m if f = 1.0.

Solution: ∆s = 10 MPa − 0 = 10 MPa, since the crack doesn’t propagate for
compressive loads.

From the graph, da/dN = 3 × 10−7 m/cycle

7–30 Calculate the constants “C” and “n” is the Equation 7–18 for the crack growth rate
of an acrylic polymer. (See Figure 7–30.)

Solution: Let’s pick two points on the graph:

2 × 10−6

=
C(0.1)n

1 × 10−7 C(0.037)n

20 = (0.1 / 0.037)n = (2.703)n

ln(20) = n ln(2.703)     2.9957 = 0.994n n = 3.01

2 × 10−6 = C(0.1)3.01 = 0.000977C C = 2.047 × 10−3

da dN K/ / .= × =−1 10 0 0377 m cycle when MPa m∆

da dN K/ / .= × =−2 10 0 16 m cycle when MPa m∆

∆ ∆K f a− = × =−σ π π( . )( ) ( ) .1 3 10 5 10 0 05156MPa m MPa m

MPa m .

ac = = =( / )[ / ( )( )] . .1 80 1 900 0 0025 2 52π MPa m MPa m mm

K f a a K fc c= =s sπ πor ( / )[ / ]1 2

MPa m ,

MPa m ,
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7–31 The acrylic polymer from which Figure 7–30 was obtained is subjected to an alter-
nating stress between 15 MPa and 0 MPa. The largest surface cracks initially
detected by nondestructive testing are 0.001 mm in length. If the critical fracture 

toughness of the polymer is 2 calculate the number of cycles required
before failure occurs. Let f = 1.0. (Hint: Use the results of Problem 7–30.)

Solution: From Problem 7–30, C = 2.047 × 10−3 and n = 3.01

The critical flaw size ac is

ac = (1/π)[KIc / fs]2 = (1/π)[(2 / (1.2)(15 MPa)]2

ac = 0.00393 m = 3.93 mm

Then

N =
2[(0.00393 m)(2−3.01)/2 − (0.000001 m)(2−3.01)/2]   

(2−3.01)(2.047 × 10−3)(1.2)3.01(15 mPa)3.01(π)3.01/2

N =
2(16.3995 − 1071.52)                  

= 30.36 cycles
(−1.01)(2.047 × 10−3)(1.7312)(3467.65)(5.6)

7–33 Verify that integration of da/dN = C(∆K)n will give Equation 7–20.

Solution: dN = (1/cf n∆snπn/2)(da/an/2)      or     N = (1/cf n∆snπn/2) ∫ (da/an/2)

since ∫ apda = [1/(1 + p)](ap + 1)

then if p = −n/2, ∫ da/an/2 =
1    

[a−n/2 + 1]ai
ac = (2/2 − n)[ac

(2−n)/2 − ai
(2−n)/2]

1 − n/2

thus N =  
2[ac

(2−n)/2 − ai
(2−n)/2]

(2−n)cf n∆σnπn/2

7–38 The activation energy for self-diffusion in copper is 49,300 cal/mol. A copper speci-
men creeps at 0.002 in./in. � h when a stress of 15,000 psi is applied at 600oC. If the
creep rate of copper is dependent on self-diffusion, determine the creep rate if the
temperature is 800oC.

Solution: The creep rate is governed by an Arrhenius relationship of the form rate
= A exp(−Q/RT).  From the information given,

x
=

A exp[−49,300/(1.987)(800 + 273)]
=

9.07 × 10−11

0.002 in./in. � h       A exp[−49,300/(1.987)(600 + 273)]       4.54 × 10−13

x = (0.002)(9.07 × 10−11 / 4.54 × 10−13) = 0.4 in./in. � h

7–39 When a stress of 20,000 psi is applied to a material heated to 900oC, rupture occurs
in 25,000 h. If the activation energy for rupture is 35,000 cal/mol, determine the
rupture time if the temperature is reduced to 800oC.

Solution: The rupture time is related to temperature by an Arrhenius relationship
of the form tr = A exp(+Q/RT); the argument of the exponential is posi-
tive because the rupture time is inversely related to the rate. From the
information given

tr =
A exp[35,000/(1.987)(800+273)]

=
1.35 × 107

25,000 h          A exp[35,000/(1.987)(900+273)]        3.32 × 106

tr = (25,000)(1.35 × 107 / 3.32 × 106) = 101,660 h

MPa m )

MPa m ,
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7–40 The following data were obtained from a creep test for a specimen having an initial
gage length of 2.0 in. and an initial diameter of 0.6 in. The initial stress applied to
the material is 10,000 psi. The diameter of the specimen after fracture is 0.52 in.

Length Between Time Strain
Gage Marks (in.) (h) (in./in.)

2.004 0 0.002

2.01 100 0.005

2.02 200 0.010

2.03 400 0.015

2.045 1000 0.0225

2.075 2000 0.0375

2.135 4000 0.0675

2.193 6000 0.0965

2.23 7000 0.115

2.30 8000 (fracture) 0.15

Determine (a) the load applied to the specimen during the test, (b) the approximate
length of time during which linear creep occurs, (c) the creep rate in in./in. � h and in
%/h, and (d) the true stress acting on the specimen at the time of rupture.

Solution:

(a) The load is  F = sA = (10,000 psi)(π/4)(0.6 in.)2 = 2827 lb

(b) The plot of strain versus time is linear between approximately 500
and 6000 hours, or a total of 5500 hours.

(c) From the graph, the strain rate is the slope of the linear portion of the
curve.

∆e/∆t =
0.095 − 0.03 

= 1.44 × 10−5 in./in. � h = 1.44 × 10−3 %/h  
6000 − 1500

(d) At the time of rupture, the force is still 2827 lb, but the diameter is
reduced to 0.52 in. The true stress is therefore

st = F/A = 2827 lb / (π/4)(0.52 in.)2 = 13,312 psi

Sec
on

d 
sta

ge
 cr

ee
p

slope = 144.10−3%/h

S
tr

ai
n 

(in
./i

n)

0.01

0.10

0.15

2000 4000 6000 8000
Time (h)
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7–41 A stainless steel is held at 705oC under different loads. The following data are
obtained:

Applied Stress (MPa) Rupture Time (h) Creep Rate (%/h)

106.9 1200 0.022

128.2 710 0.068

147.5 300 0.201

160.0 110 0.332

Determine the exponents “n” and “m” in Equations 7–22 and 7–23 that describe the
dependence of creep rate and rupture time on applied stress.

Solution: Plots describing the effect of applied stress on creep rate and on rupture
time are shown below. In the first plot, the creep rate is given by 
∆e/∆t= Csn and the graph is a log-log plot. In the second plot, rupture
time is given by tr = A sm, another log-log plot.

The exponents “n” and “m” are the slopes of the two graphs.  In this 
case,

n = 6.86           m = −6.9

7–42 Using the data in Figure 7–27 for an iron-chromium-nickel alloy, determine the acti-
vation energy Qr and the constant “m” for rupture in the temperature range 980 to
1090oC. 

Solution: The appropriate equation is  tr = Ksmexp(Qr/RT).

From Figure 7–27(a), we can determine the rupture time versus tempera
ture for a fixed stress, say s = 1000 psi:

tr = 2,400 h at 1090oC = 1363 K

tr = 14,000 h at 1040oC = 1313 K

tr = 100,000 h at  980oC = 1253 K

From this data, the equation becomes tr = K′exp(Qr/RT) and we can find 
Qr by simultaneous equations or graphically.

Qr = 117,000 cal/mol
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tr = Aσ−6.9
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We can also determine the rupture time versus applied stress for a con-
stant temperature, say 1090oC:

tr = 105 h for s = 450 psi

tr = 104 h for s = 800 psi

tr = 103 h for s = 1200 psi

tr = 102 h for s = 2100 psi

With this approach, the equation becomes tr = K″σm, where “m” is 
obtained graphically or by simultaneous equations:

m = 3.9

7–43 A 1-in.-diameter bar of an iron-chromium-nickel alloy is subjected to a load of 
2500 lb. How many days will the bar survive without rupturing at 980oC?  [See
Figure 7–27(a).]

Solution: The stress is s = F/A = 2500 lb / (π/4)(1 in.)2 = 3183 psi

From the graph, the rupture time is 700 h / 24 h/day = 29 days

7–44 A 5 mm × 20 mm bar of an iron-chromium-nickel alloy is to operate at 1040oC for
10 years without rupturing. What is the maximum load that can be applied? [See
Figure 7–27(a).]

Solution: The operating time is (10 years)(365 days/year)(24 h/day) = 87,600 h

From the graph, the stress must be less than 500 psi.  The load is then

F = sA = (500 psi)(5 mm/25.4 mm/in.)(20 mm/25.4 mm/in.) = 77.5 lb

7–45 An iron-chromium-nickel alloy is to withstand a load of 1500 lb at 760oC for 6
years. Calculate the minimum diameter of the bar. [See Figure 7–27(a).]

Solution: The operating time is (6 years)(365 days/year)(24 h/day) = 52,560 h

From the graph, the stress must be less than 7000 psi. The minimum
diameter of the bar is then

d F= = =( / )( / ( / )( / ) . .4 4 1500 7000 0 52π πs lb psi in
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7–46 A 1.2-in.-diameter bar of an iron-chromium-nickel alloy is to operate for 5 years
under a load of 4000 lb.  What is the maximum operating temperature? [See Figure
7–27(a).]

Solution: The operating time is (5 years)(365 days/year)(24 h/day) = 43,800 h

The stress is s = F/A = 4000 lb / (π/4)(1.2 in.)2 = 3537 psi

From the figure, the temperature must be below 850oC in order for the
bar to survive five years at 3537 psi.

7–47 A 1 in. × 2 in. ductile cast iron bar must operate for 9 years at 650oC. What is the
maximum load that can be applied? [See Figure 7–27(b).]

Solution: The operating time is (9 year)(365 days/year)(24 h/day) = 78,840 h.

The temperature is 650 + 273 = 923 K

LM = (923/1000)[36 + 0.78 ln(78,840)] = 41.35

From the graph, the stress must be no more than about 1000 psi.  The 
load is then

F = sA = (1000 psi)(2 in.2) = 2000 lb

7–48 A ductile cast iron bar is to operate at a stress of 6000 psi for 1 year. What is the
maximum allowable temperature?  [See Figure 7–27(b).]

Solution: The operating time is (1 year)(365 days/year)(24 h/day) = 8760 h

From the graph, the Larson-Miller parameter must be 34.4 at a stress of
6000 psi. Thus

34.4 = (T / 1000)[36 + 0.78 ln(8760)] = 0.043T

T = 800 K = 527oC
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73

8
Strain Hardening and Annealing

8–5 A 0.505-in.-diameter metal bar with a 2-in. gage length l0 is subjected to a tensile
test.  The following measurements are made in the plastic region:

Change in
Force (lb) Gage length (in.) (∆l) Diameter (in.)

27,500 0.2103 0.4800

27,000 0.4428 0.4566

25,700 0.6997 0.4343

Determine the strain-hardening exponent for the metal. Is the metal most likely to be
FCC, BCC, or HCP? Explain.

Solution:

Gage True True
Force length Diameter stress strain

(lb) (in.) (in.) (psi) (in./in.)

27,500 2.2103 0.4800 151,970 0.100

27,000 2.4428 0.4566 164,893 0.200

25,700 2.6997 0.4343 173,486 0.300

st = Ket
n or      ln s = ln K + n ln e

ln(151,970) = ln K + n ln(0.1) 11.9314 = ln K − n (2.3026)

ln(173,486) = ln K + n ln(0.3) 12.0639 = ln K − n (1.2040)

−0.1325 = −1.0986 n

n = 0.12 which is in the range of BCC metals
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8–7 A 1.5-cm-diameter metal bar with a 3-cm gage length (l0), is subjected to a tensile
test.  The following measurements are made.

Change in
Force (N) Gage length (cm) (∆l) Diameter (cm)

16,240 0.6642 1.2028

19,066 1.4754 1.0884

19,273 2.4663 0.9848

Determine the strain-hardening coefficient for the metal. Is the metal most likely to
be FCC, BCC, or HCP? Explain.

Solution:

Gage True True
Force length Diameter stress strain

(N) (cm) (mm) (MPa) (cm/cm)

16,240 3.6642 12.028 143 0.200

19,066 4.4754 10.884 205 0.400

19,273 5.4663 9.848 249 0.600

st = Ket
n ln 143 = ln K + n ln 0.2

ln 249 = ln K + n ln 0.6

(4.962 − 5.517) = n(−1.609 + 0.511)

n = 0.51

A strain hardening coefficient of 0.51 is typical of FCC metals.

n = 0.51
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8–9 A true stress-true strain curve is shown in Figure 8–21. Determine the strain harden-
ing exponent for the metal.

Solution: st = Ket
n

et st

0.05 in./in. 60,000 psi

0.10 in./in. 66,000 psi

0.20 in./in. 74,000 psi

0.30 in./in. 76,000 psi

0.40 in./in. 81,000 psi

From graph: K = 92,000 psi

n = 0.15

8–10 A Cu-30% Zn alloy tensile bar has a strain-hardening coefficient of 0.50. The bar,
which has an initial diameter of 1 cm and an initial gage length of 3 cm, fails at an
engineering stress of 120 MPa. After fracture, the gage length is 3.5 cm and the
diameter is 0.926 cm. No necking occurred. Calculate the true stress when the true
strain is 0.05 cm/cm.

Solution: et = ln(lf /lo) = ln(3.5/3.0) = 0.154

sE = 120 MPa =
F

(π/4)(10mm)2

F = 9425 N

st =
9425 N      

= 139.95 MPa
(π/4)(9.26 mm)2

st = K(0.154)0.5 = 139.95 MPa      or     K = 356.6

The true stress at et = 0.05 cm/cm is:

st = 356.6 (0.05)0.5 or      st = 79.7 MPa

8–18 A 0.25-in.-thick copper plate is to be cold worked 63%. Find the final thickness. 

Solution: (See Figure 8–7.)    63 =
0.25 − tf × 100%     or     tf = 0.0925 in.

0.25

8–19 A 0.25-in.-diameter copper bar is to be cold worked 63%. Find the final diameter.  

Solution: 63 =
(0.25)2 − df

2

× 100%    or    df
2 = 0.023   or    df = 0.152 in.

(0.25)2

50
60
70
80

100

Tr
ue

 s
tr

es
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si

)

True strain (in./in.)

0.05 0.10 0.20 0.40

σt = 92,000 for εt = 1

n = 0.15
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8–20 A 2-in.-diameter copper rod is reduced to 1.5 in. diameter, then reduced again to a
final diameter of 1 in. In a second case, the 2-in.-diameter rod is reduced in one step
from 2 in. to a 1 in. diameter. Calculate the % CW for both cases.  

Solution: % CW =
(2)2 − (1)2

× 100 = 75% in both cases
(2)2

8–21 A 3105 aluminum plate is reduced from 1.75 in. to 1.15 in. Determine the final
properties of the plate. (See Figure 8–22.)

Solution: % CW =
1.75 − 1.15

× 100% = 34.3%
1.75

TS = 24 ksi YS = 22 ksi % elongation = 5%

8–22 A Cu-30% Zn brass bar is reduced from 1-in. diameter to a 0.45-in. diameter.
Determine the final properties of the bar. (See Figure 8–23.)

Solution: % CW =
(1)2 − (0.45)2

× 100 = 79.75%
(1)2

TS = 105 ksi    YS = 68 ksi % elongation = 1%

8–23 A 3105 aluminum bar is reduced from a 1-in. diameter, to a 0.8-in. diameter, to a
0.6-in. diameter, to a final 0.4-in. diameter. Determine the % CW and the properties
after each step of the process. Calculate the total percent cold work. 
(See Figure 8–22.)

Solution: If we calculated the percent deformation in each step separately, we
would find that 36% deformation is required to go from 1 in. to 0.8 in.
The deformation from 0.8 in. to 0.6 in. (using 0.8 in. as the initial diame-
ter) is 43.75%, and the deformation from 0.6 in. to 0.4 in. (using 0.6 in.
as the initial diameter) is 55.6%. If we added these three deformations,
the total would be 135.35%. This would not be correct. Instead, we 
must always use the original 1 in. diameter as our starting point. The 
following table summarizes the actual deformation and properties after
each step.

TS YS %
ksi ksi elongation

(1)2 − (0.8)2

× 100 = 36% 26 23 6
(1)2

(1)2 − (0.6)2

× 100 = 64% 30 27 3
(1)2

(1)2 − (0.4)2

× 100 = 84% 32 29 2
(1)2

The total percent cold work is actually 84%, not the 135.35%.

8–24 We want a copper bar to have a tensile strength of at least 70,000 psi and a final
diameter of 0.375 in. What is the minimum diameter of the original bar? (See 
Figure 8–7.)

Solution: % CW ≥ 50%      to achieve the minimum tensile strength
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50 =
do

2 − (0.375)2

× 100
do

2

0.5 do
2 = 0.140625       or      do = 0.53 in.

8–25 We want a Cu-30% Zn brass plate originally 1.2-in. thick to have a yield strength
greater than 50,000 psi and a % elongation of at least 10%. What range of final
thicknesses must be obtained? (See Figure 8–23.)

Solution: YS > 50,000 psi  requires  CW > 20%

% E > 10%    requires   CW < 35%

1.2 − tf
= 0.20

1.2 − tf
= 0.35

1.2 1.2

tf = 0.96 in. tf = 0.78 in.

tf = 0.78 to 0.96 in.

8–26 We want a copper sheet to have at least 50,000 psi yield strength and at least 10%
elongation, with a final thickness of 0.12 in. What range of original thicknesses
must be used? (See Figure 8–7.)

Solution: YS > 50 ksi  requires  CW ≥ 25%

% E > 10%    requires  CW ≤ 30%

to − 0.12  
= 0.25

to − 0.12
= 0.30

to to

to = 0.16 in. to = 0.17 in.

to = 0.16 to 0.17 in.

8–27 A 3105 aluminum plate previously cold worked 20% is 2-in. thick.  It is then cold
worked further to 1.3 in. Calculate the total percent cold work and determine the
final properties of the plate? (See Figure 8–22.)

Solution: The original thickness (before the 20% cold work) must have been:

to − 2 
= 0.20 to = 2.5 in.

to

The total cold work is then based on the prior 2.5 in. thickness:

CW =
2.5 − 1.3 

× 100% = 48%
TS = 28 ksi

2.5 YS = 25 ksi

%E = 4%

8–28 An aluminum-lithium (Al-Li) strap 0.25-in. thick and 2-in. wide is to be cut from a
rolled sheet, as described in Figure 8–10. The strap must be able to support a
35,000-lb load without plastic deformation. Determine the range of orientations
from which the strap can be cut from the rolled sheet.

Solution: s =
35,000  

≥ 70,000 psi
(0.25)(2)

The properties can be obtained at angles of 0 to 20o from the rolling 
direction of the sheet.
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8–42 We want to draw a 0.3-in.-diameter copper wire having a yield strength of 
20,000 psi into 0.25-in.-diameter wire. (a) Find the draw force, assuming no friction.
(b) Will the drawn wire break during the drawing process? Show why. (See
Figure 8–7.)

Solution: (a) Before drawing (0% CW), the yield strength is 20 ksi = 20,000 psi.

CW =
(0.3)2 − (0.25)2

= 30.6%
which gives YS = 53,000 psi

(0.3)2 in the drawn wire

(b) The force needed to draw the original wire is :

20,000 psi = F/(π/4)(0.3)2 or     F = 1414 lb

(c) The stress acting on the drawn wire is:

s = 1414/(π/4)(0.25)2 = 28,806 psi < 53,000 psi

Since the actual stress (28,806 psi) acting on the drawn wire is less 
than the yield strength (53,000 psi) of the drawn wire, the wire will 
not break during manufacturing.

8–43 A 3105 aluminum wire is to be drawn to give a 1-mm-diameter wire having a yield
strength of 20,000 psi. (a) Find the original diameter of the wire, (b) calculate the
draw force required, and (c) determine whether the as-drawn wire will break during
the process. (See Figure 8–22.)

Solution: (a) We need to cold work 25% to obtain the required yield strength:

(b) The initial yield strength of the wire (with 0% cold work) is 
8000 psi, so the force required to deform the initial wire is:

F = 8000[(π/4)(0.04546)2] = 12.98 lb

(c) The stress acting on the drawn wire (which has a smaller diameter
but is subjected to the same drawing force) is:

s =
12.98 lb               

= 10,662 psi < 20,000 psi
(π/4)(1 mm/25.4 mm/in)2

Since the actual stress is less than the 20,000 psi yield strength of 
the drawn wire, the process will be successful and the wire will not
break.

8–52 A titanium alloy contains a very fine dispersion of tiny Er2O3 particles. What will be
the effect of these particles on the grain growth temperature and the size of the
grains at any particular annealing temperature? Explain.

Solution: These particles, by helping pin the grain boundaries, will increase the 
grain growth temperature and decrease the grain size.

8–54 The following data were obtained when a cold-worked metal was annealed. 
(a) Estimate the recovery, recrystallization, and grain growth temperatures. 
(b) Recommend a suitable temperature for a stress-relief heat treatment. 
(c) Recommend a suitable temperature for a hot-working process. 
(d) Estimate the melting temperature of the alloy.
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Annealing Electrical Yield Grain
Temperature Conductivity Strength Size

(oC) (ohm−1 � cm−1) (MPa) (mm) 

400 3.04 × 105 86 0.10

500 3.05 × 105 85 0.10

600 3.36 × 105 84 0.10

700 3.45 × 105 83 0.098

800 3.46 × 105 52 0.030

900 3.46 × 105 47 0.031

1000 3.47 × 105 44 0.070

1100 3.47 × 105 42 0.120

Solution: (a) recovery temperature ≈ 550oC 
recrystallization temperature ≅ 750oC
grain growth temperature ≅ 950oC

(b) Stress relief temperature = 700oC

(c) Hot working temperature = 900oC

(d) 0.4 Tmp ≅ 750oC = 1023 K
Tmp ≅ 1023 / 0.4 = 2558 K = 2285oC

8–55 The following data were obtained when a cold-worked metal was annealed. 
(a) Estimate the recovery, recrystallization, and grain growth temperatures. 
(b) Recommend a suitable temperature for obtaining a high-strength, high-electrical
conductivity wire. (c) Recommend a suitable temperature for a hot-working process.
(d) Estimate the melting temperature of the alloy.
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Annealing Residual Tensile Grain
Temperature Stresses Strength Size

(oC) (psi) (psi) (in.)

250 21,000 52,000 0.0030

275 21,000 52,000 0.0030

300 5,000 52,000 0.0030

325 0 52,000 0.0030

350 0 34,000 0.0010

375 0 30,000 0.0010

400 0 27,000 0.0035

425 0 25,000 0.0072

Solution: (a) recovery temperature ≈ 280oC
recrystallization temperature ≅ 330oC
grain growth temperature ≅ 380oC

(b) For a high strength, high conductivity wire, we want to heat into the
recovery range. A suitable temperature might be 320oC.

(c) Hot working temperature = 375oC

(d) 0.4 Tmp ≅ 330oC = 603 K

Tmp ≅ 603 / 0.4 = 1508 K = 1235oC

P
ro

pe
rt

ie
s

Temperature (°C)

250 300 350 400 450

Residual
   stress

Tensile
strength

Grain size

80 The Science and Engineering of Materials Instructor’s Solutions Manual

08 Askeland Chap  9/27/05  11:44 AM  Page 80



8–63 Using the data in Table 8–4, plot the recrystallization temperature versus the melting
temperature of each metal, using absolute temperatures (Kelvin). Measure the slope
and compare with the expected relationship between these two temperatures. Is our
approximation a good one?

Solution: Converting the recrystallization and melting temperatures to Kelvin, we 
can obtain the graph shown. The relationship of Tr = 0.4Tm (K) is very
closely followed.

Tm Tr

Al 933 K 423 K

Mg 923 K 473 K

Ag 1235 K 473 K

Cu 1358 K 473 K

Fe 1811 K 723 K

Ni 1726 K 873 K

Mo 2883 K 1173 K

W 3683 K 1473 K

8–64 We wish to produce a 0.3-in.-thick plate of 3105 aluminum having a tensile strength
of at least 25,000 psi and a % elongation of at least 5%. The original thickness of
the plate is 3 in. The maximum cold work in each step is 80%. Describe the cold
working and annealing steps required to make this product. Compare this process
with that you would recommend if you could do the initial deformation by hot
working. (See Figure 8–22.)

Solution: For TS ≥ 25000 CW ≥ 30%; For % elongation ≥ 5% CW ≤ 30% 
∴ required CW = 30%

ti − 0.3 
= 0.30 or ti = 0.429 in.

ti

Cold work/anneal treatment Hot work treatment

CW 75% from 3.0 to 0.75 in. HW 85.7% from 3.0 to 0.429 in.
anneal CW 30% from 0.429 to 0.3 in.

CW 42.8% from 0.75 to 0.429 in.
anneal

CW 30% from 0.429 to 0.3 in.
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8–65 We wish to produce a 0.2-in. diameter wire of copper having a minimum yield
strength of 60,000 psi and a minimum % elongation of 5%. The original diameter of
the rod is 2 in. and the maximum cold work in each step is 80%. Describe the cold
working and annealing steps required to make this product. Compare this process
with that you would recommend if you could do the initial deformation by hot
working. (See Figure 8–7.)

Solution: For YS > 60 ksi, CW ≥ 40%; For % elongation > 5 CW ≥ 45%
∴ pick CW = 42%, the middle of the allowable range

Cold work/anneal treatment Hot work treatment

CW 75% from 2 to 1 in-diameter HW 98.3% from 2 to 0.263 in.
anneal CW 42% from 0.263 to 0.2 in.

CW 75% from 1 to 0.5 in.
anneal

CW 72.3% from 0.5 to 0.263 in.
anneal

CW 42% from 0.263 to 0.2 in.
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83

9
Principles of Solidification

9–10 Suppose that liquid nickel is undercooled until homogeneous nucleation occurs.
Calculate (a) the critical radius of the nucleus required, and (b) the number of nickel
atoms in the nucleus. Assume that the lattice parameter of the solid FCC nickel is
0.356 nm.

Solution: From Table 9–1, ∆Tmax = 480oC

r* =
(2)(255 × 10−7 J/cm2)(1453 + 273)

= 6.65 × 10−8 cm
(2756 J/cm3)(480)

ao = 3.56 Å V = 45.118 × 10−24 cm3

Vnucleus = (4π/3)(6.65 × 10−8 cm)3 = 1232 × 10−24 cm3

number of unit cells = 1232/45.118 = 27.3

atoms per nucleus = (4 atoms/cell)(27.3 cells) = 109 atoms

9–11 Suppose that liquid iron is undercooled until homogeneous nucleation occurs.
Calculate (a) the critical radius of the nucleus required, and (b) the number of iron
atoms in the nucleus. Assume that the lattice parameter of the solid BCC iron is 
2.92 Å.

Solution:
r* =

(2)(204 × 10−7 J/cm2)(1538 + 273)
= 10.128 × 10−8 cm

(1737 J/cm3)(420)

V = (4π/3)(10.128)3 = 4352 Å3 = 4352 × 10−24 cm3

Vuc= (2.92 Å)3 = 24.897 Å3 = 24.897 × 10−24 cm3

number of unit cells = 4352/24.897 = 175

atoms per nucleus = (175 cells)(2 atoms/cell) = 350 atoms

9–12 Suppose that solid nickel was able to nucleate homogeneously with an undercooling
of only 22oC. How many atoms would have to group together spontaneously for this
to occur?  Assume that the lattice parameter of the solid FCC nickel is 0.356 nm.
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Solution: r* =
(2)(255 × 10−7 J/cm2)(1453 + 273)

= 145.18 × 10−8 cm
(2756 J/cm3)(22)

Vuc = 45.118 × 10−24 cm3 (see Problem 9–10)

Vnuc = (4π/3)(145.18 × 10−8 cm)3 = 1.282 × 10−17 cm3

number of unit cells = 1.282 × 10−17 / 45.118 × 10−24 = 2.84 × 105

atoms per nucleus = (4 atoms/cells)(2.84 × 105 cell) = 1.136 × 106

9–13 Suppose that solid iron was able to nucleate homogeneously with an undercooling
of only 15oC. How many atoms would have to group together spontaneously for this
to occur? Assume that the lattice parameter of the solid BCC iron is 2.92 Å.

Solution:
r* =

(2)(204 × 10−7 J/cm2)(1538 + 273)
= 283.6 × 10−8 cm

(1737 J/cm3)(15)

Vuc = 24.897 × 10−24 cm3 (see Problem 9–10)

Vnuc = (4π/3)(283.6 × 10−8 cm)3 = 95,544,850 × 10−24 cm3

number of unit cells = 95,544,850/24.897 = 3.838 × 106

atoms per nucleus = (2 atoms/cells)(3.838 × 106 cell) = 7.676 × 106

9–14 Calculate the fraction of solidification that occurs dendritically when iron nucleates
(a) at 10oC undercooling, (b) at 100oC undercooling, and (c) homogeneously. The
specific heat of iron is 5.78 J/cm3 � oC.

Solution:
f =

c∆T
=

(5.78 J/cm3 � oC)(10oC)
= 0.0333

∆Hf 1737 J/cm3

c∆T
=

(5.78 J/cm3 � oC)(100oC)
= 0.333

∆Hf 1737 J/cm3

c∆T
=

(5.78 J/cm3 � oC)(420oC)
, therefore, all dendritically

∆Hf 1737 J/cm3

9–28 Calculate the fraction of solidification that occurs dendritically when silver nucle-
ates (a) at 10oC undercooling, (b) at 100oC undercooling, and (c) homogeneously.
The specific heat of silver is 3.25 J/cm3 � oC.

Solution:
f =

c∆T
=

(3.25 J/cm3 � oC)(10oC)
= 0.0337

∆Hf 965 J/cm3

c∆T
=

(3.25 J/cm3 � oC)(100oC)
= 0.337

∆Hf 965 J/cm3

c∆T
=

(3.25 J/cm3 � oC)(250oC)
= 0.842

∆Hf 965 J/cm3

9–29 Analysis of a nickel casting suggests that 28% of the solidification process occurred
in a dendritic manner. Calculate the temperature at which nucleation occurred. The
specific heat of nickel is 4.1 J/cm3 � oC.

Solution:
f =

c∆T
=

(4.1 J/cm3 � oC)(∆T)
= 0.28

∆Hf 2756 J/cm3

∆T = 188oC       or       Tn = 1453 − 188 = 1265oC
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9–31 A 2-in. cube solidifies in 4.6 min. Calculate (a) the mold constant in Chvorinov’s
rule and (b) the solidification time for a 0.5 in. × 0.5 in. × 6 in. bar cast under the
same conditions. Assume that n = 2.

Solution: (a) We can find the volume and surface area of the cube:

V = (2)3 = 8 in.3 A = 6(2)2 = 24 in.2 t = 4.6 = B(8/24)2

B = 4.6/(0.333)2 = 41.48 min/in.2

(b) For the bar, assuming that B = 41.48 min/in.2:

V = (0.5)(0.5)(6) = 1.5 in.2

A = 2(0.5)(0.5) + 4(0.5)(6) = 12.5 in.2

t = (41.48)(1.5/12.5)2 = 0.60 min 

9–32 A 5-cm diameter sphere solidifies in 1050 s. Calculate the solidification time for a
0.3 cm × 10 cm × 20 cm plate cast under the same conditions. Assume that n = 2.

Solution:
t = 1050 s = B = B[2.5/3]2 or   B = 1512 s/cm2

t =
(1512)(0.3 × 10 × 20)2

= 1512[60/418]2 = 31.15 s
[2(0.3)(10) + 2(0.3)(20) + 2(10)(20)]2

9–33 Find the constants B and n in Chvorinov’s rule by plotting the following data on a
log-log plot:

Casting Solidification
dimensions time

(in.) (min)

0.5 × 8 × 12 3.48

2 × 3 × 10 15.78

2.5 cube 10.17

1 × 4 × 9 8.13

Solution: V(in.3) A(in.2) V/A (in.)  

48 212 0.226

60 112 0.536

15.6 37.5 0.416

36 98 0.367

From the graph on the following page, we find that

B = 48 min/in.2 and n = 1.72
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9–34 Find the constants B and n in Chvorinov’s rule by plotting the following data on a
log-log plot:

Casting Solidification
dimensions time

(cm) (s)

1 × 1 × 6 28.58

2 × 4 × 4 98.30

4 × 4 × 4 155.89

8 × 6 × 5 306.15

Solution: V(cm3) A(cm2) V/A (cm) 

6 26 0.23

32 64 0.5

64 96 0.67

240 236 1.02

From the graph on the next page, we find that

B = 305 s/cm2 and n = 1.58
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9–35 A 3-in.-diameter casting was produced. The times required for the solid-liquid inter-
face to reach different distances beneath the casting surface were measured and are
shown in the following table.

Distance from surface Time
(in.) (s)

0.1 32.6 5.71

0.3 73.5 8.57

0.5 130.6 11.43 

0.75 225.0 15.00

1.0 334.9 18.22

Determine (a) the time at which solidification begins at the surface and (b) the time
at which the entire casting is expected to be solid. (c) Suppose the center of the cast-
ing actually solidified in 720 s. Explain why this time might differ from the time
calculated in part (b).

Solution: We could plot d versus as shown, finding from where the 

plot intersects the x-axis and where the plot intersects d = 1.5 in.
Or we could take two of the data points and solve for c and k.

(a)

tsurface = (0.3/0.07)2 = 18.4 s

d t= = −0 0 070 0 30. .

k
c
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(b)

tcenter = (1.8/0.07)2 = 661 s 

(c) The mold gets hot during the solidification process, and 
consequently heat is extracted from the casting more slowly. This in
turn changes the constants in the equation and increases the time
required for complete solidification.

9–36 Figure 9-5(b) shows a photograph of an aluminum alloy.  Estimate (a) the secondary
dendrite arm spacing and (b) the local solidification time for that area of the casting.

Solution: (a) The distance between adjacent dendrite arms can be measured.
Although most people doing these measurements will arrive at
slightly different numbers, the author’s calculations obtained from
four different primary arms are:

16 mm / 6 arms = 2.67 mm

9 mm / 5 arms = 1.80 mm

13 mm / 7 arms = 1.85 mm

18 mm / 9 rms = 2.00 mm

average = 2.08 mm = 0.208 cm

Dividing by the magnification of ×50:

SDAS = 0.208 cm / 50 = 4.16 × 10−3 cm

(b) From Figure 9–6, we find that local solidification time (LST) = 90 s

9–37 Figure 9–25 shows a photograph of FeO dendrites that have precipitated from a
glass (an undercooled liquid). Estimate the secondary dendrite arm spacing.

Solution: We can find 13 SDAS along a 3.5 cm distance on the photomicro-
graph.  The magnification of the photomicrograph is ×450, while we
want the actual length (at magnification × 1).  Thus:

SDAS = (13 SDAS/3.5 cm)(1/450) = 8.25 × 10−3 cm
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9–38 Find the constants k and m relating the secondary dendrite arm spacing to the local
solidification time by plotting the following data on a log-log plot:

Solidification Time SDAS
(s) (cm)

156 0.0176

282 0.0216

606 0.0282

1356 0.0374

Solution: From the slope of the graph:

m = 34/100 = 0.34

We can then pick a point off the graph (say SDAS = 0.0225 cm when
LST = 300 s) and calculate “k”:

0.0225 = k(300)0.34 = 6.954k

k = 0.0032

9–39 Figure 9–26 shows dendrites in a titanium powder particle that has been rapidly
solidified. Assuming that the size of the titanium dendrites is related to solidification
time by the same relationship as in aluminum, estimate the solidification time of the
powder particle.

Solution: The secondary dendrite arm spacing can be estimated from the pho-
tomicrograph at several locations. The author’s calculations, derived
from measurements at three locations, are

11 mm / 8 arms = 1.375 mm

13 mm / 8 arms = 1.625 mm

13 mm / 8 arms = 1.625 mm

average = 1.540 mm

Dividing by the magnification of 2200:

SDAS = (1.540 mm)(0.1 cm/mm) / 2200 = 7 × 10−5 cm

The relationship between SDAS and solidification time for aluminum is:

SDAS = 8 × 10−4 t0.42 = 7 × 10−5

t = (0.0875)1/0.42 = 0.003 s
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9–40 The secondary dendrite arm spacing in an electron-beam weld of copper is 
9.5 × 10−4 cm. Estimate the solidification time of the weld.

Solution: From Figure 9–6, we can determine the equation relating SDAS and 
solidification time for copper:

n = 19/50 = 0.38 k = 4 × 10−3 cm

Then for the copper weld:

9.5 × 10−4 = 4 × 10−3(LST)0.38

(Note: LST is local solidification time)

0.2375 = (LST)0.38 or −1.438 = 0.38 ln LST

ln LST = −3.783 or LST = 0.023 s

9–45 A cooling curve is shown in Figure 9–27. Determine (a) the pouring temperature,
(b) the solidification temperature, (c) the superheat, (d) the cooling rate just before
solidification begins, (e) the total solidification time, (f) the local solidification time,
and (g) the probable identity of the metal. (h) If the cooling curve was obtained at
the center of the casting sketched in the figure, determine the mold constant, assum-
ing that n = 2.

Solution: (a) Tpour = 475oC (e) ts = 470 s

(b) Tsol = 320oC (f) LST = 470 − 170 = 300 s

(c) ∆Ts = 475 − 320 = 155oC (g) Cadmium (Cd)

(d) ∆T/∆t =
475 − 320

= 1.0oC/s
(h)  ts = 470 = B[38.4/121.6]2

150 − 0                     B = 4713 s/cm2

9–46 A cooling curve is shown in Figure 9–28. Determine (a) the pouring temperature,
(b) the solidification temperature, (c) the superheat, (d) the cooling rate just before
solidification begins, (e) the total solidification time, (f) the local solidification time,
(g) the undercooling, and (h) the probable identity of the metal. (i) If the cooling
curve was obtained at the center of the casting sketched in the figure, determine the
mold constant, assuming n = 2.

Solution: (a) Tpour = 900oC (e) ts = 9.7 min

(b) Tsol = 420oC (f) LST = 9.7 − 1.6 = 8.1 min

(c) ∆Ts = 900 − 420 = 480oC (g) 420 − 360 = 60oC

(d) ∆T/∆t =
900 − 400

= 312 oC/min
(h) Zn

1.6 − 0

(i) ts = 9.7 = B[8/24]2 or         B = 87.5 min/in.2

9–47 Figure 9–29 shows the cooling curves obtained from several locations within a
cylindrical aluminum casting. Determine the local solidification times and the SDAS
at each location, then plot the tensile strength versus distance from the casting sur-
face. Would you recommend that the casting be designed so that a large or small
amount of material must be machined from the surface during finishing? Explain.

Solution: The local solidification times can be found from the cooling curves
and can be used to find the expected SDAS values from Figure 9–6.
The SDAS values can then be used to find the tensile strength, using
Figure 9–7.

Surface: LST = 10 s ⇒ SDAS = 1.5 × 10−3 cm ⇒ TS = 47 ksi
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Midradius: LST = 100 s ⇒ SDAS = 5 × 10−3 cm ⇒ TS = 44 ksi

Center: LST = 500 s ⇒ SDAS = 10 × 10−3 cm ⇒ TS = 39.5 ksi

You prefer to machine as little material off the surface of the casting as
possible; the surface material has the finest structure and highest
strength; any excessive machining simply removes the “best” material.

9–48 Calculate the volume, diameter, and height of the cylindrical riser required to pre-
vent shrinkage in a 4 in. × 10 in. × 20 in. casting if the H/D of the riser is 1.5.

Solution:
(V/A)c =

(4)(10)(20)                
= 800/640 = 1.25

2(4)(10) + 2(4)(20) + 2(10)(20)

(V/A)r =
(π/4)D2H

=
(π/4)(3/2)D3 

=
3D/8

= 3D/16 ≥ 1.25
2(π/4)D2 + πDH (π/2)D2+(3π/2)D2 2

D ≥ 6.67 in. H ≥ 10 in.  V ≥ 349 in.3

9–55 Calculate the volume, diameter, and height of the cylindrical riser required to pre-
vent shrinkage in a 1 in. × 6 in. × 6 in. casting if the H/D of the riser is 1.0.

Solution: V = (1)(6)(6) = 36 in.3 A = 2(1)(6) + 2(1)(6) + 2(6)(6) = 96 in.2

(V/A)c = 36/96 = 0.375

(V/A)r =
(π/4)D2H

=
(π/4)D3 

= D/6 ≥ 0.375
2(π/4)D2 + πDH (3π/2)D2

D ≥ 2.25 in. H ≥ 2.25 in. V ≥ 8.95 in.3

9–56 Figure 9–30 shows a cylindrical riser attached to a casting. Compare the solidifica-
tion times for each casting section and the riser and determine whether the riser will
be effective.

Solution:
(V/A)thin =

(8)(6)(3)           
= 0.889

(3)(6) + 2(3)(8) + 2(6)(8)

(V/A)thick =
(6)(6)(6)             

= 1.13
(6)(3) + 5(6)(6)− (π/4)(3)2

(V/A)riser =
(π/4)(3)2(7)    

= 0.68
π(3)(7) + (π/4)(3)2

Note that the riser area in contact with the casting is not included in
either the riser or casting surface area; no heat is lost across this 
interface. In a like manner, the area of contact between the thick and thin
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portions of the casting are not included in the calculation of the casting
area.

The riser will not be effective; the thick section of the casting has the
largest V/A ratio and therefore requires the longest solidification time.
Consequently the riser will be completely solid before the thick section
is solidified; no liquid metal will be available to compensate for the
solidification shrinkage.

9–57 Figure 9–31 shows a cylindrical riser attached to a casting. Compare the solidifica-
tion times for each casting section and the riser and determine whether the riser will
be effective.

Solution:
(V/A)thick =

(4)(4)(4)    
= 0.73

5(4)(4) + 1(2)(4)

(V/A)thin =
(2)(2)(4)     

= 0.50
3(2)(4) + 2(2)(2) 

(V/A)R =
(π/4)(42)(8)    

= 0.8
π(4)(8) + 2(π/4)42

The area between the thick and thin sections of the casting are not
included in calculating casting area; no heat is lost across this interface.

The riser will not be effective; the thin section has the smallest V/A ratio
and therefore freezes first.  Even though the riser has the longest solidifi-
cation time, the thin section isolates the thick section from the riser, pre-
venting liquid metal from feeding from the riser to the thick section.
Shrinkage will occur in the thick section.

9–58 A 4-in.-diameter sphere of liquid copper is allowed to solidify, producing a spherical
shrinkage cavity in the center of the casting. Compare the volume and diameter of
the shrinkage cavity in the copper casting to that obtained when a 4-in. sphere of
liquid iron is allowed to solidify.

Solution: Cu: 5.1%            Fe: 3.4%           rsphere = 4/2 = 2 in.

Cu: Vshrinkage = (4π/3)(2)3 (0.051) = 1.709 in.3

(4π/3)r3 = 1.709 in.3 or         r = 0.742 in.         dpore = 1.48 in.

Fe: Vshrinkage = (4π/3)(2)3 (0.034) = 1.139 in.3

(4π/3)r3 = 1.139 in.3 or          r = 0.648 in.

dcavity = 1.30 in.

9–59 A 4-in. cube of a liquid metal is allowed to solidify. A spherical shrinkage cavity
with a diameter of 1.49 in. is observed in the solid casting. Determine the percent
volume change that occurs during solidification.

Solution: Vliquid = (4 in.)3 = 64 in.3

Vshrinkage = (4π/3)(1.49/2)3 = 1.732 in.3

Vsolid = 64 − 1.732 = 62.268 in.3

% volume change =
64 − 62.268

× 100 = 2.7%
64

92 The Science and Engineering of Materials Instructor’s Solutions Manual

09 Askeland Chap  9/27/05  11:46 AM  Page 92



9–60 A 2 cm × 4 cm × 6 cm magnesium casting is produced. After cooling to room tem-
perature, the casting is found to weigh 80 g. Determine (a) the volume of the shrink-
age cavity at the center of the casting and (b) the percent shrinkage that must have
occurred during solidification. 

Solution: The density of the magnesium is 1.738 g/cm3

(a) Vinitial = (2)(4)(6) = 48 cm3

Vfinal = 80 g/1.738 g/cm3 = 46.03 cm3

(b) % shrinkage =
48 − 46.03 

× 100% = 4.1%
48

9–61 A 2 in. × 8 in. × 10 in. iron casting is produced and, after cooling to room tempera-
ture, is found to weigh 43.9 lb. Determine (a) the percent shrinkage that must have
occurred during solidification and (b) the number of shrinkage pores in the casting if
all of the shrinkage occurs as pores with a diameter of 0.05 in.

Solution: The density of the iron is 7.87 g/cm3

(a) Vactual =
(43.9 lb)(454 g)

= 2532.5 cm3

7.87 g/cm3

Vintended = (2)(8)(10) = 160 in.3 × (2.54 cm/in)3 = 2621.9 cm3

shrinkage =
2621.9 − 2532.5

× 100% = 3.4%
2621.9

(b) Vpores = 2621.9 − 2532.5 = 89.4 cm3

rpores = (0.05 in./2)(2.54 cm/in.) = 0.0635 cm

# pores =
89.4 cm3

= 83,354 pores
(4π/3)(0.0635 cm)3

9–65 Liquid magnesium is poured into a 2 cm × 2 cm × 24 cm mold and, as a result of
directional solidification, all of the solidification shrinkage occurs along the length
of the casting. Determine the length of the casting immediately after solidification is
completed.

Solution: Vinitial = (2)(2)(24) = 96 cm3

% contraction = 4     or     0.04 × 96 = 3.84 cm3

Vfinal = 96 − 3.84 = 92.16 cm3 = (2)(2)(L)

Length (L) = 23.04 cm

9–66 A liquid cast iron has a density of 7.65 g/cm3. Immediately after solidification, the
density of the solid cast iron is found to be 7.71 g/cm3. Determine the percent vol-
ume change that occurs during solidification. Does the cast iron expand or contract
during solidification?

Solution: 1/7.65 − 1/7.71
× 100% =

0.1307 cm3 − 0.1297 cm3

× 100% = 0.77%
1/7.65 0.1307 cm3

The casting contracts.
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9–67 From Figure 9–14, find the solubility of hydrogen in liquid aluminum just before
solidification begins when the partial pressure of hydrogen is 1 atm. Determine the
solubility of hydrogen (in cm3/100 g Al) at the same temperature if the partial pres-
sure were reduced to 0.01 atm.

Solution: 0.46 cm3 H2/100 g Aluminum

0.46/x =

9–68 The solubility of hydrogen in liquid aluminum at 715oC is found to be 1 cm3/100 g
Al. If all of this hydrogen precipitated as gas bubbles during solidification and
remained trapped in the casting, calculate the volume percent gas in the solid
aluminum.

Solution: (1 cm3 H2/100 g Al)(2.699 g/cm3) = 0.02699 cm3 H2/cm3 Al = 2.699%

x = =0 46 0 01 0 046 1003. . . /cm g AL

1

0 01.
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95

10
Solid Solutions and Phase Equilibrium

10–10 The unary phase diagram for SiO2 is shown in Figure 10–19. Locate the triple point
where solid, liquid, and vapor coexist and give the temperature and the type of solid
present. What do the other “triple” points indicate?

Solution: (a) The solid-liquid-vapor triple point occurs at 1713�C; the solid phase pres-
ent at this point is b-cristobalite.

(b) The other triple points describe the equilibrium between two solids and a
vapor phase.

10–22 Based on Hume-Rothery’s conditions, which of the following systems would be
expected to display unlimited solid solubility? Explain.

(a) Au–Ag (b) Al–Cu (c) Al–Au (d) U–W
(e) Mo–Ta (f) Nb–W (g) Mg–Zn (h) Mg–Cd

Solution: (a)

(b)

(c)

(d)

 ¢ r � 0.7%     No
 rW � 1.371  v � �4   FCC
 rU � 1.38   v � �4   Ortho

 ¢ r � 0.7%    No
 rAu � 1.442 v � �1   FCC
 rAl � 1.432 v � �3   FCC

 ¢ r � 10.7%     No
 rCu � 1.278 v � �1   FCC
 rAl � 1.432 v � �3   FCC

 ¢ r � 0.2%     Yes
 rAg � 1.445 v � �1   FCC
 rAu � 1.442 v � �1   FCC
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(e)

(f)

(g)

(h)

The Au–Ag, Mo–Ta, and Mg–Cd systems have the required radius ratio, the
same crystal structures, and the same valences. Each of these might be
expected to display complete solid solubility. [The Au–Ag and Mo–Ta do
have isomorphous phase diagrams. In addition, the Mg–Cd alloys all solidify
like isomorphous alloys; however a number of solid-state phase transforma-
tions complicate the diagram.]

10–23 Suppose 1 at% of the following elements is added to copper (forming a separate
alloy with each element) without exceeding the solubility limit. Which one would be
expected to give the higher strength alloy? Is any of the alloying elements expected
to have unlimited solid solubility in copper?

(a) Au (b) Mn (c) Sr (d) Si (e) Co

Solution: For copper: rCu � 1.278 Å

(a) May be Unlimited
Solubility

(b) Different structure

(c) Highest Strength

(d) Different structure

(e) Different structure

The Cu–Sr alloy would be expected to be strongest (largest size difference).
The Cu–Au alloy satisfies Hume-Rothery’s conditions and might be expected
to display complete solid solubility—in fact it freezes like an isomorphous
series of alloys, but a number of solid-state transformations occur at lower
temperatures.

10–24 Suppose 1 at% of the following elements is added to aluminum (forming a separate
alloy with each element) without exceeding the solubility limit. Which one would be
expected to give the least reduction in electrical conductivity? Is any of the alloy
elements expected to have unlimited solid solubility in aluminum?

(a) Li (b) Ba (c) Be (d) Cd (e) Ga

¢ r � �2.0%Co:   r � 1.253

¢ r � �8.0%Si:   r � 1.176

¢ r � �68.3%Sr:   r � 2.151

¢ r � �12.4%Mn:  r � 1.12

¢ r �
rAu � rCu

 rCu
� �12.8%Au:   r � 1.442

 ¢ r � 7.1%    Yes
 rCd � 1.490 v � �2   HCP
 rMg � 1.604 v � �2   HCP

 ¢ r � 17%    No
 rZn � 1.332 v � �2   HCP
 rMg � 1.604 v � �2   HCP

 ¢ r � 3.9%    Yes
 rW � 1.371 v � �4   BCC
 rNb � 1.426 v � �4   BCC

 ¢ r � 4.7%     No
 rTa � 1.43   v � �5   BCC
 rMo � 1.363  v � �4   BCC
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Solution: For aluminum: r � 1.432 Å (FCC structure with valence of 3)

(a)

(b)

(c)

(d)

(e)

The cadmium would be expected to give the smallest reduction in electrical
conductivity, since the Cd atoms are most similar in size to the aluminum
atoms.
None are expected to have unlimited solid solubility, due either to difference
in valence, atomic radius, or crystal structure.

10–25 Which of the following oxides is expected to have the largest solid solubility in Al2O3?

(a) Y2O3 (b) Cr2O3 (c) Fe2O3

Solution: The ionic radius of Al3� � 0.51 Å

(a)

(b)

(c)

We would expect Cr2O3 to have a high solubility in Al2O3; in fact, they are
completely soluble in one another.

10–29 Determine the liquidus temperature, solidus temperature, and freezing range for the
following NiO–MgO ceramic compositions. [See Figure 10–9(b).]

(a) NiO–30 mol% MgO (b) NiO–45 mol% MgO
(c) NiO–60 mol% MgO (d) NiO–85 mol% MgO

Solution: (a)

(b)

(c)

(d)

10–30 Determine the liquidus temperature, solidus temperature, and freezing range for the
following MgO–FeO ceramic compositions. (See Figure 10–21.)

(a) MgO–25 wt% FeO (b) MgO–45 wt% FeO
(c) MgO–65 wt% FeO (d) MgO–80 wt% FeO

FR � 110°CTS � 2610°CTL � 2720°C

FR � 190°CTS � 2380°CTL � 2570°C

FR � 210°CTS � 2250°CTL � 2460°C

FR � 180°CTS � 2150°CTL � 2330°C

 rFe3� � 0.64    ¢ r � 25.5%

 rCr3� � 0.63    ¢ r � 23.5%

 rY3� � 0.89    ¢ r �
0.63 � 0.51

0.51
� 100 � 74.5%

Ga:  r � 1.218    ¢ r � 14.9%  Orthorhombic   valence � 3

Cd:  r � 1.49     ¢ r � 4.1%  HCP   valence � 2

Be:  r � 1.143    ¢ r � �20.2%  HCP   valence � 2

Ba:  r � 2.176    ¢ r � �52.0%  BCC   valence � 2

Li:   r � 1.519    ¢ r � 6.1%  BCC   valence � 1
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Solution: (a)

(b)

(c)

(d)

10–31 Determine the phases present, the compositions of each phase, and the amount
of each phase in mol% for the following NiO–MgO ceramics at 2400�C. [See
Figure 10–9(b).]

(a) NiO–30 mol% MgO (b) NiO–45 mol% MgO
(c) NiO–60 mol% MgO (d) NiO–85 mol% MgO

Solution: (a)

(b)

(c)

(d)

10–32 (a) Determine the phases present, the compositions of each phase, and the amount
of each phase in wt% for the following MgO–FeO ceramics at 2000�C. (See
Figure 10–21.)

(i) MgO–25 wt% FeO (ii) MgO–45 wt% FeO
(iii) MgO–60 wt% FeO (iv) MgO–80 wt% FeO

Solution: (i)

(ii)

(iii)

(iv) 100% LS: 80% MgO

%L �
60 � 39

65 � 39
� 100% � 80.8%L: 65% MgO

%S �
65 � 60

65 � 39
� 100% � 19.2%S: 39% FeO

%L �
45 � 39

65 � 39
� 100% � 23.1%L: 65% FeO

%S �
65 � 45

65 � 39
� 100% � 76.9%S: 39% FeO

100% SS: 25% FeO

100% SS: 85% MgO

%L �
60 � 38

62 � 38
� 100% � 91.7%S: 62% MgO

%L �
62 � 60

62 � 38
� 100% � 8.3%L: 38% MgO

%L �
45 � 38

62 � 38
� 100% � 29.2%S: 62% MgO

%L �
62 � 45

62 � 38
� 100% � 70.8%L: 38% MgO

100% LL: NiO–30 mol% MgO

FR � 270°CTS � 1480°CTL � 1750°C

FR � 390°CTS � 1610°CTL � 2000°C

FR � 440°CTS � 1900°CTL � 2340°C

FR � 370°CTS � 2230°CTL � 2600°C

% S

% L

% S

% L

% L

% L

% L

% L
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(b) Consider an alloy of 65 wt% Cu and 35 wt% Al. Calculate the composition of
the alloy in at%.

Solution: (b)

10–33 Consider a ceramic composed of 30 mol% MgO and 70 mol% FeO. Calculate the
composition of the ceramic in wt%.

Solution:

10–34 A NiO–20 mol% MgO ceramic is heated to 2200�C. Determine (a) the composition
of the solid and liquid phases in both mol% and wt% and (b) the amount of each
phase in both mol% and wt%. (c) Assuming that the density of the solid is 6.32
g/cm3 and that of the liquid is 7.14 g/cm3, determine the amount of each phase in
vol% (see Figure 10–9(b)).

Solution:

(a)

(b)

The original composition, in wt% MgO, is:

(c)

 Vol% S � 21.9%

 Vol% L �
80.1�7.14

180.1�7.142� 119.9�6.322
� 100% � 78.1%

wt% L �
24.85 � 11.9

24.85 � 8.69
� 100% � 80.1%  wt% S � 19.9%

1202140.3122

1202140.3122� 1802174.712
� 100% � 11.9%

mol% L �
38 � 20

38 � 15
� 100% � 78.26%  mol% S � 21.74%

wt% MgO �
1382140.3122

1382140.3122� 1622174.712
� 100% � 24.85%

S: 38 mol% MgO

wt% MgO �
1152140.3122

1152140.3122� 1852174.712
� 100% � 8.69%

L: 15 mol% MgO

 MWNiO � 58.71 � 16 � 74.71 g/mol

 MWMgO � 24.312 � 16 � 40.312 g/mol

 wt% FeO �
1702171.8472

1302140.3122� 1702171.8472
� 100% � 80.6%

 wt% MgO �
1302140.3122

1302140.3122� 1702171.8472
� 100% � 19.4%

 MWFeO � 55.847 � 16 � 71.847 g/mol

 MWMgO � 24.312 � 16 � 40.312 g/mol

 At% Al �
35�26.981

165�63.542� 135�26.9812
� 100% � 55.9%

 At% Cu �
65�63.54

165�63.542� 135�26.9812
� 100% � 44.1%
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10–35 A Nb–60 wt% W alloy is heated to 2800�C. Determine (a) the composition of the
solid and liquid phases in both wt% and at% and (b) the amount of each phase in
both wt% and at%. (c) Assuming that the density of the solid is 16.05 g/cm3 and
that of the liquid is 13.91 g/cm3, determine the amount of each phase in vol%.
(See Figure 10–22.)

Solution: (a)

(b)

The original composition, in wt% MgO, is:

(c)

10–36 How many grams of nickel must be added to 500 grams of copper to produce an
alloy that has a liquidus temperature of 1350�C? What is the ratio of the number of
nickel atoms to copper atoms in this alloy?

Solution: We need 60 wt% Ni to obtain the correct liquidus temperature.

10–37 How many grams of nickel must be added to 500 grams of copper to produce an
alloy that contains 50 wt% a at 1300�C?

Solution: At 1300�C, the composition of the two phases in equilibrium are

The alloy required to give 50% a is then

x � 46

58 � 46
� 100 � 50% a or x � 52 wt% Ni

L: 46 wt% Ni and a: 58 wt% Ni

 
Ni atoms

Cu atoms
�

1750 g21NA2�58.71 g/mol

1500 g21NA2�63.54 g/mol
� 1.62

 %Ni � 60 �
x

x � 500 g
� 100% or x � 750 g Ni

 Vol% a � 48.8%

 Vol% L �
47.6�13.91

147.6�13.912� 152.4�16.052
� 100% � 51.2%

at% L �
54.1 � 43.1

54.1 � 32.7
� 100% � 51.4%  wt% a � 48.6%

60�183.85

160�183.852� 140�92.912
� 100% � 43.1%

wt% L �
70 � 60

70 � 49
� 100% � 47.6%  wt% a � 52.4%

at% W �
170�183.852

170�183.852� 130�92.912
� 100% � 54.1%

a: 70 wt% W

at% W �
49�183.85

149�183.852� 151�92.912
� 100% � 32.7%

L: 49 wt% W

vol

vol
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The number of grams of Ni must be:

10–38 How many grams of MgO must be added to 1 kg of NiO to produce a ceramic that
has a solidus temperature of 2200�C?

Solution:

38 mol% MgO is needed to obtain the correct solidus temperature.

The number of grams required is:

10–39 How many grams of MgO must be added to 1 kg of NiO to produce a ceramic that
contains 25 mol% solid at 2400�C?

Solution:

The number of grams of MgO is then:

10–40 We would like to produce a solid MgO–FeO ceramic that contains equal mol
percentages of MgO and FeO at 1200�C. Determine the wt% FeO in the ceramic.
(See Figure 10–21.)

Solution: Only solid is present at 1200�C.

10–41 We would like to produce a MgO–FeO ceramic that is 30 wt% solid at 2000�C.
Determine the original composition of the ceramic in wt%. (See Figure 10–21.)

Solution:

30 wt% �
65 � x

65 � 38
� 100% or x � 56.9 wt% FeO

S: 38 wt% FeOL: 65 wt% FeO

50 mol% FeO: 
1502171.8472

1502140.3122� 1502171.8472
� 64.1 wt% FeO

MWFeO � 71.847 g/mol

MWMgO � 40.312 g/mol

x

x � 1000
� 100% � 29.77% or x � 424 g MgO

wt% MgO �
1442140.3122

1442140.3122� 1562174.712
� 100% � 29.77%

x � 38

62 � 38
� 100% � 25%S or x � 44 mol% MgO

S: 62 mol% MgO   MWNiO � 74.71 g/mol

L: 38 mol% MgO   MWMgO � 40.312 g/mol

x

x � 1000
� 100% � 24.9% or x � 332 g of MgO

wt% MgO �
1382140.3122

1382140.3122� 1622174.712
� 100% � 24.9%

MWMgO � 40.312 g/mol  MWNiO � 74.71 g/mol

x

x � 500
� 100% � 52 or x � 541.7 g Ni
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10–42 A Nb–W alloy held at 2800�C is partly liquid and partly solid. (a) If possible,
determine the composition of each phase in the alloy; and (b) if possible,
determine the amount of each phase in the alloy. (See Figure 10–22.)

Solution: (a)

(b) Not possible unless we know the original composition of the alloy.

10–43 A Nb–W alloy contains 55% a at 2600�C. Determine (a) the composition of each
phase; and (b) the original composition of the alloy. (See Figure 10–22.)

Solution: (a)

(b)

10–44 Suppose a 1200-lb bath of a Nb–40 wt% W alloy is held at 2800�C. How many
pounds of tungsten can be added to the bath before any solid forms? How many
pounds of tungsten must be added to cause the entire bath to be solid? (See
Figure 10–22.)

Solution: Solid starts to form at 2800�C when 49 wt% W is in the alloy. In 1200 lb
of the original Nb–40% W alloy, there are (0.4)(1200) � 480 lb W and
720 lb Nb. The total amount of tungsten that must be in the final alloy is:

To be completely solid at 2800�C, the alloy must contain 70 wt% W. The
total amount of tungsten required in the final alloy is:

10–45 A fiber-reinforced composite material is produced, in which tungsten fibers are
embedded in a Nb matrix. The composite is composed of 70 vol% tungsten. (a)
Calculate the wt% of tungsten fibers in the composite. (b) Suppose the composite is
heated to 2600�C and held for several years. What happens to the fibers? Explain.
(See Figure 10–22.)

Solution: (a)

(b) The fibers will dissolve. Since the W and Nb are completely soluble in one
another, and the temperature is high enough for rapid diffusion, a single
solid solution will eventually be produced.

10–46 Suppose a crucible made of pure nickel is used to contain 500 g of liquid copper at
1150�C. Describe what happens to the system as it is held at this temperature for
several hours. Explain.

wt% �
170 cm32119.254 g/cm32

1702119.2542� 130218.572
� 83.98 wt% W

or  1680 � 480 � 1200 additional pounds of W must be added

0.70 �
x

x � 720
 or x � 1680 lb W total

or  692 � 480 � 212 additional pounds of W must be added

0.49 �
x

x � 720
 or x � 692 lb W total

0.55 �
x � 22

42 � 22
 or x � 33 wt% W

a: 42 wt% WL: 22 wt% W

a: 70 wt% WL: 49 wt% W
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Solution: Cu dissolves Ni until the Cu contains enough Ni that it solidifies com-
pletely. When 10% Ni is dissolved, freezing begins:

When 18% Ni dissolved, the bath is completely solid:

10–49 Equal moles of MgO and FeO are combined and melted. Determine (a) the liquidus
temperature, the solidus temperature, and the freezing range of the ceramic and (b)
determine the phase(s) present, their composition(s), and their amount(s) at 1800�C.
(See Figure 10–21.)

Solution:

(a)

(b)

10–50 Suppose 75 cm3 of Nb and 45 cm3 of W are combined and melted. Determine (a)
the liquidus temperature, the solidus temperature, and the freezing range of the alloy
and (b) determine the phase(s) present, their composition(s), and their amount(s) at
2800�C. (See Figure 10–22.)

Solution:

(a)

(b)

10–51 A NiO–60 mol% MgO ceramic is allowed to solidify. Determine (a) the composi-
tion of the first solid to form and (b) the composition of the last liquid to solidify
under equilibrium conditions.

Solution: (a) (b)

10–52 A Nb–35% W alloy is allowed to solidify. Determine (a) the composition of the first
solid to form and (b) the composition of the last liquid to solidify under equilibrium
conditions. (See Figure 10–22.)

Solution: (a) (b) Last L: 18% W1st a: 55% W

Last L: 35% MgO1st a: 80% MgO

a: 70%W   %a � 40%

L: 49%W   %L �
70 � 57.4

70 � 49
� 60%

TLiq � 2900°C  TSol � 2690°C FR � 210°C

wt% W �
145 cm32119.254 g/cm32

1452119.2542� 175218.572
� 100 � 57.4 wt% W

%L �
64.1 � 50

75 � 50
� 100% � 56.4%  %S � 43.6%

L: 75% FeO  S: 50% FeO

TLiq � 2000°C Ts � 1620°C FR � 380°C

wt% FeO �
11 mol FeO2171.847 g/mol2

11 mol FeO2171.8472� 11 mol MgO2140.3122
� 64.1%

MWFeO � 71.847 g/molMWMgO � 40.312 g/mol

0.18 �
x

x � 500
 or x � 109.8 g Ni

0.10 �
x

x � 500
 or x � 55.5 g Ni
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10–53 For equilibrium conditions and a MgO–65 wt% FeO ceramic, determine (a) the liq-
uidus temperature, (b) the solidus temperature, (c) the freezing range, (d) the com-
position of the first solid to form during solidification, (e) the composition of the
last liquid to solidify, (f) the phase(s) present, the composition of the phase(s), and
the amount of the phase(s) at 1800�C, and (g) the phase(s) present, the composition
of the phase(s), and the amount of the phase(s) at 1600�C. (See Figure 10–21.)

Solution: (a)

(b)

(c)

(d)

(e)

(f)

(g)

10–54 Figure 10–23 shows the cooling curve for a NiO–MgO ceramic. Determine (a) the
liquidus temperature, (b) the solidus temperature, (c) the freezing range, (d) the
pouring temperature, (e) the superheat, (f ) the local solidification time, (g) the total
solidification time, and (h) the composition of the ceramic.

Solution: (a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

10–55 For equilibrium conditions and a Nb–80 wt% W alloy, determine (a) the liquidus
temperature, (b) the solidus temperature, (c) the freezing range, (d) the composition
of the first solid to form during solidification, (e) the composition of the last liquid
to solidify, (f) the phase(s) present, the composition of the phase(s), and the amount
of the phase(s) at 3000�C, and (g) the phase(s) present, the composition of the
phase(s), and the amount of the phase(s) at 2800�C. (see Figure 10–22.)

Solution: (a)

(b)

(c) Freezing range � 3100 � 2920 � 180°C

Solidus � 2920°C

Liquidus � 3100°C

80% MgO

Total solidification time � 27 min

Local solidification time � 27 � 5 � 22 min

Superheat � 2775 � 2690 � 85°C

Pouring temperature � 2775°C

Freezing range � 2690 � 2570 � 120°C

Solidus � 2570°C

Liquidus � 2690°C

a: 65% FeO 100% a

a: 51% FeO %a � 42%

L: 75% FeO %L �
65 � 51

75 � 51
� 100% � 58%

Last liquid: 88% FeO

First solid: 40% FeO

Freezing range � 2000 � 1605 � 395°C

Solidus � 1605°C

Liquidus � 2000°C

%

%
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(d)

(e)

(f)

(g)

10–56 Figure 10–24 shows the cooling curve for a Nb–W alloy. Determine (a) the liquidus
temperature, (b) the solidus temperature, (c) the freezing range, (d) the pouring
temperature, (e) the superheat, (f ) the local solidification time, (g) the total
solidification time, and (h) the composition of the alloy.

Solution: (a)

(b)

(c)

(d)

(e)

(f)

(g)

(h) Nb–60 wt% W

10–57 Cooling curves are shown in Figure 10–25 for several Mo–V alloys. Based on these
curves, construct the Mo–V phase diagram.

Solution: TLiquidus TSolidus

0% V 2630°C
20% V 2500°C 2320°C
40% V 2360°C 2160°C
60% V 2220°C 2070°C
80% V 2100°C 1970°C

100% V 1930°C

2000

2200

2400

2600

Mo 20 40 60 80 V

L

a

a + L 

%V

Te
m

pe
ra

tu
re

 (
°C

)

Local solidification time � 340 � 40 � 300 s

Superheat � 2990 � 2900 � 90°C

Pouring temperature � 2990°C

Freezing range � 2900 � 2710 � 190°C

Solidus � 2710°C

Liquidus � 2900°C

a: 80% W 100% a

a: 85% W %a � 66.7%

L: 70% W %L �
85 � 80

85 � 70
� 100% � 33.3%

Last liquid: 64% W

First solid: 90% W

CHAPTER 10 Solid Solutions and Phase Equilibrium 105

Total solidificaton time � 340 sec

%

%
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10–59 For the nonequilibrium conditions shown for the MgO–65 wt% FeO ceramic,
determine (a) the liquidus temperature, (b) the nonequilibrium solidus temperature,
(c) the freezing range, (d) the composition of the first solid to form during solidifi-
cation, (e) the composition of the last liquid to solidify, (f) the phase(s) present, the
composition of the phase(s), and the amount of the phase(s) at 1800�C, and (g) the
phase(s) present, the composition of the phase(s), and the amount of the phase(s) at
1600�C. (See Figure 10–20.)

Solution: (a)

(b)

(c)

(d)

(e)

(f)

(g)

10–60 For the nonequilibrium conditions shown for the Nb–80 wt% W alloy, determine (a)
the liquidus temperature, (b) the nonequilibrium solidus temperature, (c) the freez-
ing range, (d) the composition of the first solid to form during solidification, (e) the
composition of the last liquid to solidify, (f) the phase(s) present, the composition of
the phase(s), and the amount of the phase(s) at 3000�C, and (g) the phase(s) present,
the composition of the phase(s), and the amount of the phase(s) at 2800�C. (See
Figure 10–21.)

Solution: (a)

(b)

(c)

(d)

(e)

(f)

(g)

a: 83% W %a � 90.9%

L: 50% W %L �
83 � 80

83 � 50
� 100% � 9.1%

a: 88% W %a � 55.6%

L: 70% W %L �
88 � 80

88 � 70
� 100% � 44.4%

Last liquid: 40% W

First solid: 90% W

Freezing range � 3100 � 2720 � 380°C

Solidus � 2720°C

Liquidus � 3100°C

S: 55% FeO %S � 69.7%

L: 88% FeO %L �
65 � 55

88 � 55
� 100% � 30.3%

S: 46% FeO %S � 34.5%

L: 75% FeO %L �
65 � 46

75 � 46
� 100% � 65.5%

Last liquid: 92% FeO

First solid: 40% FeO

Freezing range � 2000 � 1450 � 550°C

Solidus � 1450°C

Liquidus � 2000°C

% S

% S

% L

% L

% 

% 

% 

% 
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11
Dispersion Strengthening and
Eutectic Phase Diagrams

11–7 A hypothetical phase diagram is shown in Figure 11–25. (a) Are any intermetallic
compounds present? If so, identify them and determine whether they are stoichio-
metric or nonstoichiometric. (b) Identify the solid solutions present in the system. Is
either material A or B allotropic? Explain. (c) Identify the three-phase reactions by
writing down the temperature, the reaction in equation form, the composition of
each phase in the reaction, and the name of the reaction.

Solution: (a) u � non-stoichiometric intermetallic compound.

(b) a, h, g, and b; material B is allotropic, existing in three different forms at
different temperatures

(c)

11–8 The Cu–Zn phase diagram is shown in Figure 11–26. (a) Are any intermetallic com-
pounds present? If so, identify them and determine whether they are stoichiometric
or nonstoichiometric. (b) Identify the solid solutions present in the system. (c)
Identify the three-phase reactions by writing down the temperature, the reaction in
equation form, and the name of the reaction.

u: 40% B h: 95% B
 300°C:  b S u � h;   eutectoid;   b: 90% B

b: 80% B u: 37% B
 600°C:  a � b S u;   peritectoid;  a: 5% B

a: 5% B b: 90% B
 680°C:  L S a � b;   eutectic;   L: 60% B

L 2: 50% B a: 5% B
 900°C:  L1 S L2 � a;  monotectic;  L1: 28% B

g: 97% B b: 90% B
 1100°C:  g � L S b;   peritectic;   L: 82% B
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Solution: (a) b, b�, g, d, e: all nonstoichiometric.

(b) a, u

(c)

11–9 The Al–Li phase diagram is shown in Figure 11–27. (a) Are any intermetallic com-
pounds present? If so, identify them and determine whether they are stoichiometric
or nonstoichiometric. Determine the formula for each compound. (b) Identify the
three-phase reactions by writing down the temperature, the reaction in equation
form, the composition of each phase in the reaction, and the name of the reaction.

Solution: (a) b is non-stoichiometric @ 21 wt% Li:

g, is stoichiometric @ 34 wt% Li:

(b)

11–11 An intermetallic compound is found for 10 wt% Si in the Cu–Si phase diagram.
Determine the formula for the compound.

Solution:

11–12 Consider a Pb–15% Sn alloy. During solidification, determine (a) the composition
of the first solid to form, (b) the liquidus temperature, solidus temperature, solvus
temperature, and freezing range of the alloy, (c) the amounts and compositions of
each phase at 260°C, (d) the amounts and compositions of each phase at 183°C, and
(e) the amounts and compositions of each phase at 25°C.

Solution: (a) 8% Sn

(b) liquidus � 290°C, solidus � 240°C,
solvus � 170°C, freezing range � 50°C

at% Si �
10 g�28.08 g/mol

10�28.08 � 90�63.54
� 0.20 or SiCu4

g: 34% Li a 1Li2: 99% Li
170°C: L S g � a 1Li2  eutectic  L: 98%  Li

L: 47% Li g: 34% Li
510°C: b � L S g  peritectic  b: 25% Li

a: 4% Li b: 20.4% Li
600°C: L S a � b  eutectic  L: 9.9% Li

at% Li �
34 g�6.94 g/mol

34�6.94 � 66�26.981
� 100% � 66.7% Li ∴ AlLi2

at% Li �
21 g�6.94 g/mol

21�6.94 � 79�26.981
� 100% � 50 at% Li ∴ AlLi

250°C:  b¿S a � g;  eutectoid

420°C:  e � L S u;   peritectic

550°C:  d S g � e;   eutectoid

600°C:  d � L S e;   peritectic

700°C:  g � L S d;   peritectic

830°C:  b � L S g;   peritectic

900°C:  a � L S b;   peritecticperitectic

peritectic

peritectic

peritectic

eutectoid

peritectic

eutectoid
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(c) L: 30% Sn a: 12% Sn;

(d) a: 15% Sn 100% a

(e) a: 2% Pb b: 100% Sn

11–13 Consider an Al–12% Mg alloy (Figure 11–28). During solidification, determine
(a) the composition of the first solid to form, (b) the liquidus temperature, solidus
temperature, solvus temperature, and freezing range of the alloy, (c) the amounts
and compositions of each phase at 525°C, (d) the amounts and compositions of each
phase at 450°C, and (e) the amounts and compositions of each phase at 25°C.

Solution: (a) 2.5% Mg

(b) liquidus � 600°C, solidus � 470°C,
solvus � 400°C, freezing range � 130°C

(c) L: 26% Mg a: 7% Mg;

(d) a: 12% Mg 100% a

(e)

11–14 Consider a Pb–35% Sn alloy. Determine (a) if the alloy is hypoeutectic or hypereu-
tectic, (b) the composition of the first solid to form during solidification, (c) the
amounts and compositions of each phase at 184°C, (d) the amounts and composi-
tions of each phase at 182°C, (e) the amounts and compositions of each microcon-
stituent at 182°C, and (f) the amounts and compositions of each phase at 25°C.

Solution: (a) hypoeutectic (b) 14% Sn

(c)

(d)

(e) primary a: 19% Sn % primary a � 63%
eutectic: 61.9% Sn % eutectic � 37%

(f)

%a �
100 � 35

100 � 2
� 100% � 66% %b � 34%

a: 2% Sn b: 100% Sn

%a �
97.5 � 35

97.5 � 19
� 100% � 80% %b � 20%

a: 19% Sn  b: 97.5% Sn

%a �
61.9 � 35

61.9 � 19
� 100% � 63% %L � 37%

a: 19% Sn L: 61.9% Sn

%a �
34 � 12

34 � 1
� 100% � 67% %b � 33%

a: 1% Mg b: 34% Mg

%a �
26 � 12

26 � 7
� 100% � 74%  %L � 26%

%a �
100 � 15

100 � 2
� 100 � 87% %b � 13%

%L �
15 � 12

30 � 12
� 100% � 17% %a � 83%
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11–15 Consider a Pb–70% Sn alloy. Determine (a) if the alloy is hypoeutectic or hypereu-
tectic, (b) the composition of the first solid to form during solidification, (c) the
amounts and compositions of each phase at 184°C, (d) the amounts and composi-
tions of each phase at 182°C, (e) the amounts and compositions of each microcon-
stituent at 182°C, and (f) the amounts and compositions of each phase at 25°C.

Solution: (a) hypereutectic (b) 98% Sn

(c)

(d)

(e) primary b: 97.5% Sn % primary b� 22.8%
eutectic: 61.9% Sn % eutectic � 77.2%

(f)

11–16 Calculate the total % b and the % eutectic microconstituent at room temperature for
the following lead-tin alloys: 10% Sn, 20% Sn, 50% Sn, 60% Sn, 80% Sn, and 95%
Sn. Using Figure 11–18, plot the strength of the alloys versus the % b and the 
% eutectic and explain your graphs.

Solution: % b % eutectic

10% Sn 0%

20% Sn

50% Sn

60% Sn

80% Sn

95% Sn  
97.5 � 95

97.5 � 61.9
� 7.0%

95 � 2

99 � 2
� 95.9%

 
97.5 � 80

97.5 � 61.9
� 49.2%

80 � 2

99 � 2
� 80.4%

 
60 � 19

61.9 � 19
� 95.6%

60 � 2

99 � 2
� 59.8%

 
50 � 19

61.9 � 19
� 72.3%

50 � 2

99 � 2
� 49.5%

 
20 � 19

61.9 � 19
� 2.3%

20 � 2

99 � 2
� 18.6%

10 � 2

99 � 2
� 8.2%

%a �
100 � 70

100 � 2
� 100% � 30% %b � 70%

a: 2% Sn   b: 100% Sn

%a �
97.5 � 70

97.5 � 19
� 100% � 35% %b � 65%

a: 19% Sn   b: 97.5% Sn

%b �
70 � 61.9

97.5 � 61.9
� 100% � 22.8% %L � 77.2%

b: 97.5% Sn   L: 61.9% Sn

% L � 77.2%

% b � 65%

% 

% 

% % b � 70%
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11–17 Consider an Al–4% Si alloy. (See Figure 11–19.) Determine (a) if the alloy is
hypoeutectic or hypereutectic, (b) the composition of the first solid to form during
solidification, (c) the amounts and compositions of each phase at 578°C, (d) the
amounts and compositions of each phase at 576°C, the amounts and compositions
of each microconstituent at 576°C, and (e) the amounts and compositions of each
phase at 25°C.

Solution: (a) hypoeutectic

(b) 1% Si

(c)

(d)

primary a: 1.65% Si % primary a� 78.5%
eutectic: 12.6% Si % eutectic � 21.5%

(e)

11–118 Consider a Al–25% Si alloy. (See Figure 11–19.) Determine (a) if the alloy is
hypoeutectic or hypereutectic, (b) the composition of the first solid to form during
solidification, (c) the amounts and compositions of each phase at 578°C, (d) the
amounts and compositions of each phase at 576°C, (e) the amounts and composi-
tions of each microconstituent at 576°C, and (f) the amounts and compositions of
each phase at 25°C.

Solution: (a) hypereutectic

(b) 100% Si

a: 0% Si b: 100% Si %a �
100 � 4

100 � 0
� 96% %b � 4%

%a �
99.83 � 4

99.83 � 1.65
� 97.6% %b � 2.4%

a: 1.65% Si b: 99.83% Si

%a �
12.6 � 4

12.6 � 1.65
� 78.5% %L � 21.5%

a: 1.65% Si L: 12.6% Si

20 40 60 80 100
4000

5000

6000

7000

8000

% β
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8000

% eutectic
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% L � 21.5%

% b � 2.4%

% b � 4%% a

% 

% 
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(c)

(d)

(e) primary b: 99.83% Si % primary b� 14.2%
eutectic: 12.6% Si % eutectic � 85.8%

(f)

11–19 A Pb–Sn alloy contains 45% a and 55% b at 100°C. Determine the composition of
the alloy. Is the alloy hypoeutectic or hypereutectic?

Solution:

11–20 An Al–Si alloy contains 85% a and 15% b at 500°C. Determine the composition of
the alloy. Is the alloy hypoeutectic or hypereutectic?

Solution:

11–21 A Pb–Sn alloy contains 23% primary a and 77% eutectic microconstituent.
Determine the composition of the alloy.

Solution:

11–22 An Al–Si alloy contains 15% primary b and 85% eutectic microconstituent.
Determine the composition of the alloy.

Solution:

11–23 Observation of a microstructure shows that there is 28% eutectic and 72% primary b
in an Al–Li alloy (Figure 11–27). (a) Determine the composition of the alloy and
whether it is hypoeutectic or hypereutectic. (b) How much a and b are in the eutec-
tic microconstituent?

Solution: (a)

(b) %aEut �
20.4 � 9.9

20.4 � 4
� 100% � 64% and %bEut � 36%

28 �
20.4 � x

20.4 � 9.9
� 100 or x � 17.46% Li Hypereutectic

%eutectic � 85 �
100 � x

100 � 12.6
� 100 or x � 25.71% Si

%primary a � 23 �
61.9 � x

61.9 �  19
� 100 or x � 52% Sn

%a � 85 �
100 � x

100 � 1
� 100 or x � 15.85% Si Hypereutectic

%a � 45 �
98.0 � x

98.0 � 5
� 100 or x � 56.15% Sn Hypoeutectic

a: 0% Si b: 100% Si %a �
100 � 25

100 � 0
� 75% %b � 25%

%a �
99.83 � 25

99.83 � 1.65
� 76.2% %b � 23.8%

a: 1.65% Si b: 99.83% Si

%L �
99.83 � 25

99.83 � 12.6
� 85.8% %b � 14.2%

b: 99.83% Si L: 12.6% Si

% b � 14.2%

% b � 23.8%

% b � 25%

% 

% 

% a

% a

% a

%

%

%%
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11–24 Write the eutectic reaction that occurs, including the compositions of the three
phases in equilibrium, and calculate the amount of a and b in the eutectic microcon-
stituent in the Mg–Al system, (Figure 11–28).

Solution:

11–25 Calculate the total amount of a and b and the amount of each microconstituent in a
Pb–50% Sn alloy at 182°C. What fraction of the total a in the alloy is contained in
the eutectic microconstituent?

Solution:

11–26 Figure 11–29 shows a cooling curve for a Pb–Sn alloy. Determine (a) the pouring
temperature, (b) the superheat, (c) the liquidus temperature, (d) the eutectic tempera-
ture, (e) the freezing range, (f) the local solidification time, (g) the total solidifica-
tion time, and (h) the composition of the alloy.

Solution: (a)

(b)

(c)

(d)

(e)

(f)

(g)

(h) approximately 32% Sn

11–27 Figure 11–30 shows a cooling curve for an Al–Si alloy. Determine (a) the pouring
temperature, (b) the superheat, (c) the liquidus temperature, (d) the eutectic tempera-
ture, (e) the freezing range, (f) the local solidification time, (g) the total solidifica-
tion time, and (h) the composition of the alloy.

Solution: (a) 

(b)

(c)

(d) eutectic temperature � 577°C

liquidus temperature � 1000°C

superheat � 1150 � 1000 � 150°C

pouring temperature � 1150°C

total solidification time � 600 s

local solidification time � 600 � 110 � 490 s

freezing range � 250 � 183 � 67°C

eutectic temperature � 183°C

liquidus temperature � 250°C

superheat � 360 � 250 � 110°C

pouring temperature � 360°C

 f � 32.8�60.5 � 0.54

 ain eutectic � 60.5 � 27.7 � 32.8%

 aPrimary �
61.9 � 50

61.9 � 19
� 100% � 27.7%   Eutectic � 72.3%

 atotal �
97.5 � 50

97.5 � 19
� 100% � 60.5%   bTotal � 39.5%

∴ %aEut �
40.2 � 32.3

40.2 � 12.7
� 100% � 28.7% and %gEut � 71.3%

L32.3 S a12.7 � g40.2
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(e)

(f)

(g)

(h) approximately 45% Si

11–28 Draw the cooling curves, including appropriate temperatures, expected for the
following Al–Si alloys.

(a) Al–4% Si (b) Al–12.6% Si (c) Al–25% Si (d) Al–65% Si

Solution:

11–29 Cooling curves are obtained for a series of Cu–Ag alloys, (Figure 11–31). Use this
data to produce the Cu–Ag phase diagram. The maximum solubility of Ag in Cu is
7.9% and the maximum solubility of Cu in Ag is 8.8%. The solubilities at room
temperature are near zero.

Solution: Tliq Tsol

0% Ag S 1085°C
8% Ag S 1030°C 950°C
20% Ag S 975°C 780°C
50% Ag S 860°C 780°C
71.9% Ag S 780°C 780°C
90% Ag S 870°C 780°C
100% Ag S 961°C

total solidification time � 11.5 min

local solidification time � 11.5 � 1 � 10.5 min

freezing range � 1000 � 577 � 423°C

T

t
Al – 4% Si

630°
577°

T

t
Al – 12.6% Si

577°
T

t
Al – 25% Si

780°

577° T

t
Al – 65% Si

1200°

577°

700

800

900

1000

1100

Cu 29 40 60 80 Ag

Te
m

pe
ra

tu
re

 (
°C

)

L

%Ag

a
a + L

b + L

a + b
b
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12
Dispersion Strengthening by Phase
Transformations and Heat Treatment

12–2 Determine the constants c and n in Equation 12–2 that describe the rate of crystal-
lization of polypropylene at 140�C. (See Figure 12–30)

Solution:

We can rearrange the equation and eliminate the exponential by taking natu-
ral logarithms of both sides of the rearranged equation. We can then note that
ln(1 � f ) versus t is a power equation; if these terms are plotted on a log-log
plot, we should obtain a linear relationship, as the graph of the data below
indicates. Note that in setting up the equation for plotting, we switch the minus
sign from the right hand to the left hand side, since we don’t have negative
numbers on the log-log paper.

A log-log plot of “�ln(1 � f )” versus “t” is
shown. From the graph, we find that the slope
n � 2.89 and the constant c can be found from
one of the points from the curve:

if f � 0.5, t � 55. Then

 c � 6.47 � 10�6
 1 � 0.5 � exp3�c15522.894

ln3�ln11 � f 24� ln1c2� n ln1t2
ln3�ln11 � f 24� ln1ct 

n2
ln11 � f 2� �ct 

n
1 � f � exp1�ct 

n2

T � 140°C � 413 Kf � 1 � exp1�ct 
n2

f t(min) �ln(1 � f )

0.1 28 0.1
0.2 37 0.22
0.3 44 0.36
0.4 50 0.51
0.5 55 0.69
0.6 60 0.92
0.7 67 1.20 
0.8 73 1.61
0.9 86 2.302
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12–3 Determine the constants c and n in Equation 12-2 that describe the rate of
recrystallization of copper at 135�C. (See Figure 12–2)

Solution:

We can rearrange the equation and eliminate the exponential by taking natu-
ral logarithms of both sides of the rearranged equation. We can then note that
ln(1 � f ) versus t is a power equation and should give a linear relationship in
a log-log plot. Note that in setting up the equation for plotting, we switch the
minus sign from the right hand to the left hand side, since we don’t have
negative numbers on the log-log paper.

ln3�ln11 � f 24� ln1c2� ln1t2
ln3�ln11 � f 24� ln1ct 

n2
ln11 � f 2� �ct 

n
1 � f � exp1�ct 

n2

T � 135°C � 408 Kf � 1 � exp1�ct 
n2

f t (min) �ln(1 � f )

0.1 5.0 0.10
0.2 6.6 0.22
0.3 7.7 0.36
0.4 8.5 0.51
0.5 9.0 0.69
0.6 10.0 0.92
0.7 10.5 1.20
0.8 11.5 1.61
0.9 13.7 2.30

5 10 20
t (min)

0.1

0.2

0.5

1.0

2.0

− 
In

 (
1 
− 

f)
n = 2.89
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12–4 Determine the activation energy for crystallization of polypropylene, using the
curves in Figure 12–30.

Solution: We can determine how the rate (equal to 1�t) changes with temperature:

1�1150 � 2732� 2.36 � 10�31�1316 min2160 s/min2� 5.27 � 10�5
1�1140 � 2732� 2.42 � 10�31�155 min2160 s/min2� 3.03 � 10�4
1�1130 � 2732� 2.48 � 10�31�19 min2160 s/min2� 1.85 � 10�3

1�T 1K�121�t 1s�12

rate � 1�t � c exp1�Q�RT2
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A log-log plot of “�ln(1 � f )” versus “t” is shown. From the graph, we find
that the slope n � 3.1 and the constant c can be found from one of the points
from the curve:

if f � 0.6, then t � 10. Then

 c � 7.28 � 10�4.
 1 � 0.6 � exp3�c11023.14

30 50 100
t (min)

0.1

0.2

0.5

1.0

2.0

4.0

− 
In

 (
1 
− 

f)

n = 2.89
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From the semilog graph of rate versus reciprocal temperature, we find that the
slope is:

 Q � 59,525 cal/mol
 Q�R � 29,957

 Q�R �
ln110�32� ln15 � 10�52

0.00246 � 0.00236

12–16 (a) Recommend an artificial age-hardening heat treatment for a Cu–1.2% Be alloy
(see Figure 12–34). Include appropriate temperatures. (b) Compare the amount of
the g2 precipitate that forms by artificial aging at 400�C with the amount of the
precipitate that forms by natural aging.

Solution: (a) For the Cu–1.2% Be alloy, the peritectic temperature is 870�C; above this
temperature, liquid may form. The solvus temperature is about 530�C.
Therefore:

1) Solution treat between 530�C and 870�C (780�C is typical for beryl-
lium copper alloys)

2) Quench
3) Age below 530�C (330�C is typical for these alloys)

(b) We can perform lever law calculations at 400�C and at room temperature.
The solubility of Be in Cu at 400�C is about 0.6% Be and that at room
temperature is about 0.2% Be:

12–17 Suppose that age hardening is possible in the Al–Mg system (see Figure 12–10). 
(a) Recommend an artificial age-hardening heat treatment for each of the following
alloys, and (b) compare the amount of the b precipitate that forms from your
treatment of each alloy. (i) Al–4% Mg (ii) Al–6% Mg (iii) Al–12% Mg (c) Testing
of the alloys after the heat treatment reveals that little strengthening occurs as a
result of the heat treatment. Which of the requirements for age hardening is likely
not satisfied?

 g2 1room T2�
1.2 � 0.2

12 � 0.2
� 100 � 8.5%

 g2 1at 400°C2�
1.2 � 0.6

11.7 � 0.6
� 100 � 5.4%

10−5

10−4

10−3

0.0023 0.0024 0.0025

R
at

e 
(s

−1
)

1/T (K−1)

0.00246 − 0.00236

In
 (

10
−3

) 
− 

In
 (

5 
×

 1
0−

5 )
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Solution: (a) The heat treatments for each alloy might be:

Al–4% Mg Al–6% Mg Al–12% Mg

TEutectic � 451�C 451�C 451�C
TSolvus � 210�C 280�C 390�C

Solution
Treat at: 210–451�C 280–451�C 390–451�C

Quench Quench Quench

Age at: �210�C �280�C �390�C

(b) Answers will vary depending on aging temperature selected. If all three
are aged at 200�C, as an example, the tie line goes from about 3.8 to
35% Mg:

(c) Most likely, a coherent precipitate is not formed; simple dispersion
strengthening, rather than age hardening, occurs.

12–18 An Al–2.5% Cu alloy is solution-treated, quenched, and overaged at 230�C to
produce a stable microstructure. If the spheroidal u precipitates so that form has a
diameter of 9000 Å and a density of 4.26 g/cm3, determine the number of precipitate
particles per cm3.

Solution:

12–33 Figure 12–31 shows a hypothetical phase diagram. Determine whether each of the
following alloys might be good candidates for age hardening and explain your
answer. For those alloys that might be good candidates, describe the heat treatment
required, including recommended temperatures.

(a) A–10% B (b) A–20% B (c) A–55% B
(d) A–87% B (e) A–95% B

Solution: (a) A–10% B is a good candidate: Solution Treatment @ T � 290 to 400�C
Quench
Age @ T � 290�C

(b) A–20% B: Some age hardening effect may occur when alloy is solution
treated below 400�C and quenched. However, eutectic is also present and
the strengthening effect will not be as dramatic as in (a).

# of particles �
0.0182 cm3

382 � 10�15 cm3 � 4.76 � 1010 particles

Vu � 14p�3214.5 � 10�5 cm23 � 382 � 10�15 cm3

du � 9000 � 10�10 m � 9 � 10�5 cm ru � 4.5 � 10�5 cm

vol fraction u �
2.88 g�4.26 g/cm3

2.88�4.26 � 97.12�2.669
� 0.0182 cm3 u�cm3 alloy

wt% a �
53 � 2.5

53 � 1
� 97.12% wt% u � 2.88%

Al–12% Mg:  %b � 112 � 3.82�135 � 3.82� 100 � 26.8%

Al–6% Mg:   %b � 16 � 3.82�135 � 3.82� 100 � 7.1%

Al–4% Mg:   %b � 14 � 3.82�135 � 3.82� 100 � 0.6%
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(c) A–55% B: almost all u is formed. The alloy is expected to be very brittle.

(d) A–87% B: the alloy cools from a two-phase (b� u) region to a one-phase
(b) region, opposite of what we need for age hardening.

(e) A–95% B: the alloy is single phase (b) at all temperatures and thus cannot
be age hardened.

12–46 For an Fe–0.35%C alloy, determine (a) the temperature at which austenite first
begins to transform on cooling, (b) the primary microconstituent that forms, (c) the
composition and amount of each phase present at 728�C, (d) the composition and
amount of each phase present at 726�C, and (e) the composition and amount of each
microconstituent present at 726�C.

Solution: (a) 795�C (b) primary a-ferrite

(c)

(d)

(e) primary a: 0.0218% C % primary a � 56.1%
pearlite: 0.77% C % Pearlite � 43.9%

12–47 For an Fe–1.15%C alloy, determine (a) the temperature at which austenite first
begins to transform on cooling, (b) the primary microconstituent that forms, (c) the
composition and amount of each phase present at 728�C, (d) the composition and
amount of each phase present at 726�C, and (e) the composition and amount of each
microconstituent present at 726�C.

Solution: (a) 880�C (b) primary Fe3C

(c)

(d)

(e) primary Fe3C: 6.67% C % primary Fe3C � 6.4%
pearlite: 0.77% C % Pearlite � 93.6%

12–48 A steel contains 8% cementite and 92% ferrite at room temperature. Estimate the
carbon content of the steel. Is the steel hypoeutectoid or hypereutectoid?

Solution: a � 0.92 �
6.67 � x

6.67 � 0
 x � 0.53% C, ∴ Hypoeutectoid

 Fe3C: 6.67% C  %Fe3C � 17%

 a: 0.0218% C   %a �
6.67 � 1.15

6.67 � 0.0218
� 100 � 83%

 g: 0.77% C   %g � 93.6%

 Fe3C: 6.67% C  %Fe3C �
1.15 � 0.77

6.67 � 0.77
� 100 � 6.4%

Fe3C: 6.67% C  %Fe3C � 4.9%

a: 0.0218% C   %a �
6.67 � 0.35

6.67 � 0.0218
� 100 � 95.1%

 g: 0.77% C   %g � 43.9%

a: 0.0218% C   %a �
0.77 � 0.35

0.77 � 0.0218
� 100 � 56.1%%

%

%

%

%

%

%

%
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12–49 A steel contains 18% cementite and 82% ferrite at room temperature. Estimate the
carbon content of the steel. Is the steel hypoeutectoid or hypereutectoid?

Solution:

12–50 A steel contains 18% pearlite and 82% primary ferrite at room temperature. Estimate
the carbon content of the steel. Is the steel hypoeutectoid or hypereutectoid?

Solution:

12–51 A steel contains 94% pearlite and 6% primary cementite at room temperature.
Estimate the carbon content of the steel. Is the steel hypoeutectoid or hypereutectoid?

Solution:

12–52 A steel contains 55% a and 45% g at 750�C. Estimate the carbon content of the
steel.

Solution: a � 0.02% C and g � 0.6% C (from the tie line at 750�C)

12–53 A steel contains 96% g and 4% Fe3C at 800�C. Estimate the carbon content of the
steel.

Solution: (from the tie line at 800�C)

12–54 A steel is heated until 40% austenite, with a carbon content of 0.5%, forms.
Estimate the temperature and the overall carbon content of the steel.

Solution: In order for g to contain 0.5% C, the austenitizing temperature must be
about 760�C (from the tie line). At this temperature:

12–55 A steel is heated until 85% austenite, with a carbon content of 1.05%, forms.
Estimate the temperature and the overall carbon content of the steel.

Solution: In order for � to contain 1.05% C, the austenitizing temperature must be
about 845�C (from the tie line). At this temperature:

0.85 �
6.67 � x

6.67 � 1.05
 x � 1.893% C

0.4 �
x � 0.02

0.5 � 0.02
 x � 0.212% C

g � 0.96 �
6.67 � x

6.67 � 0.92
 x � 1.15% C

g � 0.92% C and Fe3C � 6.67% C

%a � 55 �
0.6 � x

0.6 � 0.02
� 100 x � 0.281% C

Pearlite � 0.94 �
6.67 � x

6.67 � 0.77
, x � 1.124% C, ∴ Hypereutectoid

 x � 0.156% C, ∴ Hypoeutectoid

 primary a � 0.82 �
0.77 � x

0.77 � 0.0218
,

a � 0.82 �
6.67 � x

6.67 � 0
 x � 1.20% C, ∴ Hypereutectoid
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12–56 Determine the eutectoid temperature, the composition of each phase in the eutectoid
reaction, and the amount of each phase present in the eutectoid microconstituent for
the following systems. For the metallic systems, comment on whether you expect
the eutectoid microconstituent to be ductile or brittle.

(a) ZrO2–CaO (See Figure 12–32)
(b) Cu–Al at 11.8%Al (See Figure 12–33(c))
(c) Cu–Zn at 47%Zn (See Figure 12–33(a))
(d) Cu–Be (See Figure 12–33(d))

Solution: (a) @900�C: Tetragonal12% CaO S Monoclinic3% CaO � Cubic14% CaO

The eutectoid microconstituent (and the entire material, for that matter)
will be brittle because the materials are ceramics

(b)

Most of the eutectoid microconstituent is a (solid solution strengthened
copper) and is expected to be ductile.

(c)

Slightly more than half of the eutectoid is the copper solid solution; there
is a good chance that the eutectoid would be ductile.

(d)

Slightly more than half of the eutectoid is the copper solid solution; we
might then expect the eutectoid to be ductile.

12–58 Compare the interlamellar spacing and the yield strength when an eutectoid steel is
isothermally transformed to pearlite at (a) 700�C, and (b) 600�C.

Solution: We can find the interlamellar spacing from Figure 12–19 and then use this
spacing to find the strength from Figure 12–18.

(a)

(b)

12–66 An isothermally transformed eutectoid steel is found to have a yield strength of
410 MPa. Estimate (a) the transformation temperature and (b) the interlamellar spac-
ing in the pearlite.

 l � 1.5 � 10�5 cm 1�l � 66,667 YS � 460 MPa 167,600 psi2

 l � 7.5 � 10�5 cm 1�l � 13,333 YS � 200 MPa 129,400 psi2

%a �
11 � 6

11 � 1.5
� 100 � 52.6% %b � 47.4%

@605°C: g1 6% Be S a1.5% Be � g2 11% Be

%a �
59 � 47

59 � 36
� 100 � 52.2% %g � 47.8%

@250°C: b¿47% Zn S a36% An � g59% Zn

%a �
15.6 � 11.8

15.6 � 9.4
� 100 � 61.3% %b � 38.7%

@565°C: b11.8% Al S a9.4% Al � g2 15.6% Al

%Monoclinic �
14 � 12

14 � 3
� 100 � 18% %Cubic � 82%%

%

%

%

%

%

%

%
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Solution: We can first find the interlamellar spacing from Figure 12–18; then using
this interlamellar spacing, we can find the transformation temperature
from Figure 12–19.

(a) transformation temperature � 615�C

(b)

12–67 Determine the required transformation temperature and microconstituent if an eutec-
toid steel is to have the following hardness values:

(a) HRC 38 (b) HRC 42 (c) HRC 48 (d) HRC 52

Solution: (a) 600�C (b) 400�C (c) 340�C (d) 300�C
pearlite bainite bainite bainite

12–68 Describe the hardness and microstructure in an eutectoid steel that has been heated
to 800�C for 1 h, quenched to 350�C and held for 750 s, and finally quenched to
room temperature.

Solution: HRC � 47 and the microstructure is all bainite.

12–69 Describe the hardness and microstructure in an eutectoid steel that has been heated
to 800�C, quenched to 650�C and held for 500 s, and finally quenched to room
temperature.

Solution: HRC � 25 and the microstructure is all pearlite.

12–70 Describe the hardness and microstructure in an eutectoid steel that has been heated
to 800�C, quenched to 300�C and held for 10 s, and finally quenched to room
temperature.

Solution: HRC � 66 and the microstructure is all martensite.

12–71 Describe the hardness and microstructure in an eutectoid steel that has been heated
to 800�C, quenched to 300�C and held for 10 s, quenched to room temperature, and
then reheated to 400�C before finally cooling to room temperature again.

Solution: HRC � 42 and the microstructure is all tempered martensite.

12–72 A steel containing 0.3% C is heated to various temperatures above the eutectoid
temperature, held for 1 h, and then quenched to room temperature. Using 
Figure 12–34, determine the amount, composition, and hardness of any 
martensite that forms when the heating temperature is

(a) 728�C (b) 750�C (c) 790�C (d) 850�C

Solution: (a)

(b)  g: 0.60% C  %M �
0.3 � 0.02

0.6 � 0.02
� 100% � 48.3%   HRC 65

 g: 0.77% C  %M �
0.3 � 0.0218

0.77 � 0.0218
� 100% � 37.2%  HRC 65

1�l � 60,000 or l � 1.67 � 10�5 cm
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(c)

(d)

12–80 A steel containing 0.95% C is heated to various temperatures above the eutectoid
temperature, held for 1 h, and then quenched to room temperature. Using 
Figure 12–34, determine the amount and composition of any martensite 
that forms when the heating temperature is

(a) 728�C (b) 750�C (c) 780�C (d) 850�C

Solution: (a)

(b)

(c)

(d)

12–81 A steel microstructure contains 75% martensite and 25% ferrite; the composition of
the martensite is 0.6% C. Using Figure 12–34, determine (a) the temperature from
which the steel was quenched and (b) the carbon content of the steel.

Solution: In order for g (and therefore martensite) to contain 0.6% C, the austeni-
tizing T � 750�C. Then:

12–82 A steel microstructure contains 92% martensite and 8% Fe3C; the composition of
the martensite is 1.10% C. Using Figure 12–34, determine (a) the temperature from
which the steel was quenched and (b) the carbon content of the steel.

Solution: In order for g (and therefore martensite) to contain 1.10% C, the austeni-
tizing T � 865�C. Then:

12–83 A steel containing 0.8% C is quenched to produce all martensite. Estimate the vol-
ume change that occurs, assuming that the lattice parameter of the austenite is 3.6 Å.
Does the steel expand or contract during quenching?

Solution:

 VM � a2c � 12.85 � 10�8 cm22 12.96 � 10�82� 24.0426 � 10�24 cm3

 Vg � 13.6 Å23 � 46.656 � 10�24 cm3

M � g � 0.92 �
6.67 � x

6.67 � 1.10
 x � 1.55% C

M � g � 0.25 �
0.6 � x

0.6 � 0.02
 x � 0.455% C

 g � 0.95% C  %M � 100%   HRC 65

 g � 0.88% C  %M �
6.67 � 0.95

6.67 � 0.88
� 100% � 98.8%  HRC 65

 g � 0.82% C  %M �
6.67 � 0.95

6.67 � 0.82
� 100% � 97.8%  HRC 65

 g � 0.77% C  %M �
6.67 � 0.95

6.67 � 0.77
� 100% � 96.9%  HRC 65

 g: 0.3% C   %M � 100%   HRC 55

 g: 0.35% C  %M �
0.3 � 0.02

0.35 � 0.02
� 100% � 84.8%   HRC 58%

%

%

%

%

%
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But to assure that we have the same number of atoms, we need to consider
two unit cells of martensite (2 atoms/cell) for each cell of FCC austenite
(4 atoms/cell)

12–84 Describe the complete heat treatment required to produce a quenched and tempered
eutectoid steel having a tensile strength of at least 125,000 psi. Include appropriate
temperatures.

Solution: Austenitize at approximately 750�C,
Quench to below 130�C (the Mf temperature)
Temper at 620�C or less.

12–85 Describe the complete heat treatment required to produce a quenched and tempered
eutectoid steel having a HRC hardness of less than 50. Include appropriate
temperatures.

Solution: Austenitize at approximately 750�C,
Quench to below the Mf (less than 130�C)
Temper at a temperature higher than 330�C, but less than 727�C.

12–86 In eutectic alloys, the eutectic microconstituent is generally the continuous one, but
in the eutectoid structures, the primary microconstituent is normally continuous. By
describing the changes that occur with decreasing temperature in each reaction,
explain why this difference is expected.

Solution: In a eutectoid reaction, the original grain boundaries serve as nucleation
sites; consequently the primary microconstituent outlines the original
grain boundaries and isolates the eutectoid product as a discontinuous
constitutent.

In a eutectic reaction, the primary phase nucleates from the liquid and
grows. When the liquid composition approaches the eutectic composition,
the eutectic constituent forms around the primary constituent, making the
eutectic product the continuous constitutent.

%¢V � c
122124.04262� 46.656

46.656
d� 100% � 3.06%, ∴  expansion
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