
SOLUTIONS TO PROBLEMS

PREFACE

This section of instructors materials contains solutions and answers to all
problems and questions that appear in the textbook.  My penmanship leaves
something to be desired;  therefore, I generated these solutions/answers using
computer software so that the resulting product would be "readable."  Furthermore, I
endeavored to provide complete and detailed solutions in order that:  (1)  the
instructor, without having to take time to solve a problem, will understand what
principles/skills are to be learned by its solution;  and (2)  to facilitate student
understanding/learning when the solution is posted.

I would recommended that the course instructor consult these
solutions/answers before assigning problems and questions.  In doing so, he or she
ensures that the students will be drilled in the intended principles and concepts.  In
addition, the instructor may provide appropriate hints for some of the more difficult
problems.

With regard to symbols, in the text material I elected to boldface those symbols
that are italicized in the textbook.  Furthermore, I also endeavored to be consistent
relative to symbol style.  However, in several instances, symbols that appear in the
textbook were not available, and it was necessary to make appropriate substitutions.
These include the following:  the letter a (unit cell edge length, crack length) is used in
place of the cursive a.  And Roman F and E replace script F (Faraday's constant in
Chapter 18) and script E (electric field in Chapter 19), respectively.

I have exercised extreme care in designing these problems/questions, and then
in solving them.  However, no matter how careful one is with the preparation of a work
such as this, errors will always remain in the final product.  Therefore, corrections,
suggestions, and comments from instructors who use the textbook (as well as their
teaching assistants) pertaining to homework problems/solutions are welcomed.  These
may be sent to me in care of the publisher.
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CHAPTER 2

ATOMIC STRUCTURE AND INTERATOMIC BONDING

PROBLEM SOLUTIONS

2.1  (a)  When two or more atoms of an element have different atomic masses, each is termed an

isotope .

(b)  The atomic weights of the elements ordinarily are not integers because:  (1) the atomic

masses of the atoms generally are not integers (except for 
12

C), and (2) the atomic weight is

taken as the weighted average of the atomic masses of an atom's naturally occurring isotopes.

2.2  Atomic mass is the mass of an individual atom, whereas atomic weight is the average

(weighted) of the atomic masses of an atom's naturally occurring isotopes.

2.3  (a)  In order to determine the number of grams in one amu of material, appropriate manipulation

of the amu/atom, g/mol, and atom/mol relationships is all that is necessary, as

#g/amu = 
 


 
1 mol

6.023 x 1023 atoms
( )1 g/mol

1 amu/atom

= 1.66 x 10-24 g/amu

(b)  Since there are 453.6 g/lbm,

1 lb-mol = (453.6 g/lbm)(6.023 x 1023 atoms/g-mol)

= 2.73 x 1026 atoms/lb-mol

2.4  (a)  Two important quantum-mechanical concepts associated with the Bohr model of the atom

are that electrons are particles moving in discrete orbitals, and electron energy is quantized into

shells.

(b)  Two important refinements resulting from the wave-mechanical atomic model are that

electron position is described in terms of a probability distribution, and electron energy is

quantized into both shells and subshells--each electron is characterized by four quantum

numbers.
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2.5  The n  quantum number designates the electron shell.

The l quantum number designates the electron subshell.
The m

l
 quantum number designates the number of electron states in each electron subshell.

The m
s

 quantum number designates the spin moment on each electron.

2.6  For the L  state, n  = 2, and eight electron states are possible.  Possible l  values are 0 and 1,
while possible ml values are 0 and ±1.  Therefore, for the s  states, the quantum numbers are

200(
1
2

) and 200(-
1
2

).  For the p  states, the quantum numbers are 210(
1
2

), 210(-
1
2

), 211(
1
2

), 211(-

1
2

), 21(-1)(
1
2

), and 21(-1)(-
1
2

).

For the M  state, n  = 3, and 18 states are possible.  Possible l  values are 0, 1, and 2;

possible m l  values are 0, ±1, and ±2; and possible m s  values are ±1
2

.  Therefore, for the s

states, the quantum numbers are 300(
1
2

), 300(-
1
2

), for the p  states they are 310(
1
2

), 310(-
1
2

),

311(\F(1,2)), 311(-\F(1,2)), 31(-1)(\F(1,2)), and 31(-1)(-\F(1,2));  for the d  states they are

320(
1
2

), 320(-
1
2

), 321(
1
2

), 321(-
1
2

), 32(-1)(
1
2

), 32(-1)(-
1
2

), 322(
1
2

), 322(-
1
2

), 32(-2)(
1
2

), and 32(-2)(-
1
2

).

2.7  The electron configurations of the ions are determined using Table 2.2.

Fe
2+

 - 1s
2

2s
2

2p
6

3s
2

3p
6

3d
6

Fe
3+

 - 1s
2

2s
2

2p
6

3s
2

3p
6

3d
5

Cu
+

 - 1s
2

2s
2

2p
6

3s
2

3p
6

3d
10

Ba
2+

 - 1s
2

2s
2

2p
6

3s
2

3p
6

3d
10

4s
2

4p
6

4d
10

5s
2

5p
6

Br
-
 - 1s

2
2s

2
2p

6
3s

2
3p

6
3d

10
4s

2
4p

6

S
2-

 - 1s
2

2s
2

2p
6

3s
2

3p
6

2.8  The Cs
+

 ion is just a cesium atom that has lost one electron; therefore, it has an electron

configuration the same as xenon (Figure 2.6).

The Br
-
 ion is a bromine atom that has acquired one extra electron;  therefore, it has an

electron configuration the same as krypton.

2.9  Each of the elements in Group VIIA has five p  electrons.

2.10  (a)  The 1s
2

2s
2

2p
6

3s
2

3p
6

3d
7

4s
2

 electron configuration is that of a transition metal because

of an incomplete d  subshell.
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(b)  The 1s
2

2s
2

2p
6

3s
2

3p
6

 electron configuration is that of an inert gas because of filled 3s  and

3p subshells.

(c)  The 1s
2

2s
2

2p
5

 electron configuration is that of a halogen because it is one electron

deficient from having a filled L shell.

(d)  The 1s
2

2s
2

2p
6

3s
2

 electron configuration is that of an alkaline earth metal because of two s

electrons.

(e)  The 1s
2

2s
2

2p
6

3s
2

3p
6

3d
2

4s
2

 electron configuration is that of a transition metal because of

an incomplete d  subshell.

(f)  The 1s
2

2s
2

2p
6

3s
2

3p
6

4s
1

 electron configuration is that of an alkali metal because of a

single s electron.

2.11  (a)  The 4f subshell is being filled for the rare earth series of elements.

(b)  The 5f subshell is being filled for the actinide series of elements.

2.12  The attractive force between two ions FA  is just the derivative with respect to the interatomic

separation of the attractive energy expression, Equation (2.8), which is just

FA = 
dEA
dr

 = 
d( )- 

A
r

dr
 = 

A

r2

The constant A  in this expression is defined in footnote 3 on page 21.  Since the valences of

the K+ and O2- ions are +1 and -2, respectively, Z1  = 1 and Z2  = 2, then

FA = 
(Z1e)(Z2e)

4πεor2

= 
(1)(2)(1.6 x 10-19 C)2

(4)(π)(8.85 x 10-12 F/m)(1.5 x 10-9 m)2

= 2.05 x 10-10 N

2.13  (a)  Differentiation of Equation (2.11) yields

dEN
dr

 = 
A

r(1 + 1)  - 
nB

r(n + 1)  = 0
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(b)  Now, solving for r (= r
o

)

A

ro
2 = 

nB
ro

(n + 1)

or

ro = ( )A
nB

1/(1 - n)

(c)  Substitution for ro into Equation (2.11) and solving for E (= Eo)

Eo = - 
A
ro

 + 
B
ro
n

= - 
A

( )A
nB

1/(1 - n) + 
B

( )A
nB

n/(1 - n)

2.14  (a)  Curves of E
A

, E
R

, and E
N

 are shown on the plot below.

1.00.80.60.40.20.0
-7

-6

-5

-4

-3

-2

-1

0

1

2

Interatomic Separation (nm)

B
on

di
ng

 E
ne

rg
y 

(e
V

)

EA

ER

E N

ro = 0.28 nm

Eo = -4.6 eV
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(b)  From this plot
r
o

 = 0.28 nm

E
o

 = -4.6 eV

(c)  From Equation (2.11) for E
N

A = 1.436

B = 5.86 x 10
-6

n = 9

Thus,

ro = ( )A
nB

1/(1 - n)

= 
 



 

1.436

(9)(5.86 x 10-6)

1/(1 - 9)
 = 0.279 nm

and

Eo= - 
1.436

 



 

1.436

(9)(5.86 x 10-6)

1/(1 - 9) + 
5.86 x 10-6

 



 

1.436

(9)(5.86 x 10-6)

9/(1 - 9)

= - 4.57 eV

2.15  This problem gives us, for a hypothetical X+-Y- ion pair, values for ro (0.35 nm), Eo (-6.13 eV),

and n  (10), and asks that we determine explicit expressions for attractive and repulsive energies

of Equations 2.8 and 2.9.  In essence, it is necessary to compute the values of A  and B  in
these equations.  Expressions for ro  and Eo  in terms of n , A , and B  were determined in

Problem 2.13, which are as follows:

ro = ( )A
nB

1/(1 - n)

Eo = - 
A

( )A
nB

1/(1 - n) + 
B

( )A
nB

n/(1 - n)

Thus, we have two simultaneous equations with two unknowns (viz. A  and B).  Upon substitution
of values for ro and Eo in terms of n , these equations take the forms
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0.35 nm = ( )A
10B

1/(1 - 10)

-6.13 eV = - 
A

( )A
10B

1/(1 - 10) + 
B

( )A
10B

10/(1 - 10)

Simultaneous solution of these two equations leads to A  = 2.38 and B  = 1.88 x 10-5.  Thus,

Equations (2.8) and (2.9) become

EA = - 
2.38

r

ER = 
1.88 x 10-5

r10

Of course these expressions are valid for r  and E in units of nanometers and electron volts,

respectively.

2.16  (a)  Differentiating Equation (2.12) with respect to r yields

dE
dr

 = 
C

r2
 - 

De-r/ρ

ρ

At r = ro , dE/dr = 0, and

C

r2o

 = 
De-ro/ρ

ρ (2.12b)

Solving for C and substitution into Equation (2.12) yields an expression for Eo as

Eo = De-ro/ρ 
 


 


1 - 
ro
ρ

(b)  Now solving for D from Equation (2.12b) above yields

D = 
Cρe

ro/ρ

ro
2
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Substitution of this expression for D into Equation (2.12) yields an expression for Eo as

Eo = 
C
ro 


 
ρ

ro
 - 1

2.17  (a)  The main differences between the various forms of primary bonding are:

Ionic --there is electrostatic attraction between oppositely charged ions.

Covalent --there is electron sharing between two adjacent atoms such that each atom

assumes a stable electron configuration.

Metallic --the positively charged ion cores are shielded from one another, and also "glued"

together by the sea of valence electrons.

(b)  The Pauli exclusion principle states that each electron state can hold no more than two

electrons, which must have opposite spins.

2.18  Covalently bonded materials are less dense than metallic or ionically bonded ones because

covalent bonds are directional in nature whereas metallic and ionic are not;  when bonds are

directional, the atoms cannot pack together in as dense a manner, yielding a lower mass

density.

2.19  The percent ionic character is a function of the electron negativities of the ions XA  and XB

according to Equation (2.10).  The electronegativities of the elements are found in Figure 2.7.

For TiO2, XTi = 1.5 and XO = 3.5, and therefore,

%IC = [ ]1 - e(-0.25)(3.5 - 1.5)2
 x 100 = 63.2%

For ZnTe, XZn  = 1.6 and XTe = 2.1, and therefore,

%IC = [ ]1 - e(-0.25)(2.1 - 1.6)2
 x 100 = 6.1%

For CsCl, XCs  = 0.7 and XCl = 3.0, and therefore,

%IC = [ ]1 - e(-0.25)(3.0 - 0.7)2
 x 100 = 73.4%

For InSb, XIn = 1.7 and XSb  = 1.9, and therefore,
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%IC = [ ]1 - e(-0.25)(1.9 - 1.7)2
 x 100 = 1.0%

For MgCl2, XMg  = 1.2 and XCl = 3.0, and therefore,

%IC = [ ]1 - e(-0.25)(3.0 - 1.2)2
 x 100 = 55.5%

2.20  Below is plotted the bonding energy versus melting temperature for these four metals.  From

this plot, the bonding energy for copper (melting temperature of 1084°C) should be

approximately 3.6 eV.  The experimental value is 3.5 eV.
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2.21  For germanium, having the valence electron structure 4s
2

4p
2

, N' = 4; thus, there are 8 - N' = 4

covalent bonds per atom.

For phosphorus, having the valence electron structure 3s
2

3p
3

, N' = 5;  thus, there are 8

- N' = 3 covalent bonds per atom.

For selenium, having the valence electron structure 4s
2

4p
4

, N' = 6;  thus, there are 8 -

N' = 2 covalent bonds per atom.

For chlorine, having the valence electron structure 3s
2

3p
5

, N' = 7; thus, there is 8 - N' =

1 covalent bond per atom.

2.22  For brass, the bonding is metallic since it is a metal alloy.

For rubber, the bonding is covalent with some van der Waals. (Rubber is composed

primarily of carbon and hydrogen atoms.)
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For BaS, the bonding is predominantly ionic (but with some covalent character) on the

basis of the relative positions of Ba and S in the periodic table.

For solid xenon, the bonding is van der Waals since xenon is an inert gas.

For bronze, the bonding is metallic since it is a metal alloy (composed of copper and tin).

For nylon, the bonding is covalent with perhaps some van der Waals.  (Nylon is

composed primarily of carbon and hydrogen.)

For AlP the bonding is predominantly covalent (but with some ionic character) on the

basis of the relative positions of Al and P in the periodic table.

2.23  The intermolecular bonding for HF is hydrogen, whereas for HCl, the intermolecular bonding is

van der Waals.  Since the hydrogen bond is stronger than van der Waals, HF will have a higher

melting temperature.

2.24  The geometry of the H
2

O molecules, which are hydrogen bonded to one another, is more

restricted in the solid phase than for the liquid. This results in a more open molecular structure in

the solid, and a less dense solid phase.
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CHAPTER 3

THE STRUCTURE OF CRYSTALLINE SOLIDS

PROBLEM SOLUTIONS

3.1  Atomic structure relates to the number of protons and neutrons in the nucleus of an atom, as

well as the number and probability distributions of the constituent electrons.  On the other hand,

crystal structure pertains to the arrangement of atoms in the crystalline solid material.

3.2  A crystal structure is described by both the geometry of, and atomic arrangements within, the

unit cell, whereas a crystal system is described only in terms of the unit cell geometry.  For

example, face-centered cubic and body-centered cubic are crystal structures that belong to the

cubic crystal system.

3.3  For this problem, we are asked to calculate the volume of a unit cell of aluminum.  Aluminum

has an FCC crystal structure (Table 3.1).  The FCC unit cell volume may be computed from

Equation (3.4) as

VC = 16R3√ 2 = (16)(0.143 x 10-9 m)3√ 2 = 6.62 x 10-29 m3

3.4  This problem calls for a demonstration of the relationship a = 4R√ 3 for BCC.  Consider the BCC

unit cell shown below

a

a

N

O

P

Q

a

Using the triangle NOP
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(NP
__

)
2

 = a2 + a2 = 2a2

And then for triangle NPQ,

(NQ
__

)2 = (QP
__

)2 + (NP
__

)2

But NQ
__

 = 4R, R being the atomic radius.  Also, QP
__

 = a.  Therefore,

(4R)2 = a2 + 2a2, or

a = 
4R

√ 3

3.5  We are asked to show that the ideal c /a ratio for HCP is 1.633.  A sketch of one-third of an HCP

unit cell is shown below.

c

a

a

J

M

K

L

Consider the tetrahedron labeled as JKLM , which is reconstructed as
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KJ

L

M

H

The atom at point M is midway between the top and bottom faces of the unit cell--that is MH
__

 =

c /2.  And, since atoms at points J , K , and M, all touch one another,

JM
__

 = JK
__

 = 2R = a

where R is the atomic radius.  Furthermore, from triangle JHM ,

(JM
__

)2 = ( JH
__

)2 + (MH
__

)2, or

a2 = ( JH
__

)2 + ( )c
2

2

Now, we can determine the JH
__

 length by consideration of triangle JKL , which is an equilateral

triangle,

J

L

K

H

a/2

30

cos 30° = 
a/2
JH

 = 
√ 3
 2

, and

JH
__

 = 
a

√ 3
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Substituting this value for JH
__

 in the above expression yields

a2 = 
 


 
a

√ 3

2
 + ( )c

2
2

 = 
a2

3
 + 

c2

4

and, solving for c /a

c
a

 = √ 8
3

 = 1.633

3.6  We are asked to show that the atomic packing factor for BCC is 0.68. The atomic packing factor

is defined as the ratio of sphere volume to the total unit cell volume, or

APF = 
VS
VC

Since there are two spheres associated with each unit cell for BCC

VS = 2(sphere volume) = 2 


 
4πR3

3
 = 

8πR3

3

Also, the unit cell has cubic symmetry, that is V
C

 = a
3

.  But a depends on R  according to

Equation (3.3), and

VC = 
 


 
4R

√ 3

3
 = 

64R3

3√ 3

Thus,

APF = 
8πR3/3

64R3/3√ 3
 = 0.68

3.7  This problem calls for a demonstration that the APF  for HCP is 0.74. Again, the APF  is just the

total sphere-unit cell volume ratio.  For HCP, there are the equivalent of six spheres per unit cell,

and thus
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VS = 6 


 
4πR3

3
 = 8πR3

Now, the unit cell volume is just the product of the base area times the cell height, c .  This base

area is just three times the area of the parallelepiped ACDE  shown below.

A
B

C D

E

a = 2R

a = 2R

a = 2R

60

30

The area of ACDE  is just the length of CD
__

 times the height BC
__

.  But CD
__

 is just a or 2R, and

BC
__

 = 2R cos(30°) = 
2R√ 3

2

Thus, the base area is just

AREA = (3)(CD
__

)(BC
__

) = (3)(2R) 


 
2R√ 3

2
 = 6R2√ 3

and since c  = 1.633a = 2R(1.633)

VC = (AREA)(c) = 6R2c√ 3 = (6R2√ 3)(2)(1.633)R = 12√ 3(1.633)R3

Thus,

APF = 
VS
VC

 = 
8πR3

12√ 3(1.633)R3 = 0.74

3.8  This problem calls for a computation of the density of iron.  According to Equation (3.5)
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ρ = 
nAFe
VCNA

For BCC, n = 2 atoms/unit cell, and

VC = 
 


 
4R

√ 3

3

Thus,

ρ = 
(2 atoms/unit cell)(55.9 g/mol)

[ ](4)(0.124 x 10-7 cm)3/√ 3 3/(unit cell)(6.023 x 1023 atoms/mol)

= 7.90 g/cm3

The value given inside the front cover is 7.87 g/cm
3

.

3.9  We are asked to determine the radius of an iridium atom, given that Ir has an FCC crystal

structure.  For FCC, n = 4 atoms/unit cell, and V
C

 = 16R3√ 2 [Equation (3.4)].  Now,

ρ = 
nAIr

VCNA

And solving for R from the above two expressions yields

R = 
 



 

nAIr

16ρNA√ 2

1/3

= 
 



 

(4 atoms/unit cell)(192.2 g/mol)

(√ 2)(16)(22.4 g/cm3)(6.023 x 1023 atoms/mol)

1/3

= 1.36 x 10-8 cm = 0.136 nm

3.10  This problem asks for us to calculate the radius of a vanadium atom. For BCC, n  = 2

atoms/unit cell, and
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VC = 
 


 
4R

√ 3

3
 = 

64R3

3√ 3

Since,

ρ = 
nAV

VCNA

and solving for R

R = 
 



 

3√ 3nAV

64ρNA

1/3

= 
 


 
(3√ 3)(2 atoms/unit cell)(50.9 g/mol)

(64)(5.96 g/cm3)(6.023 x 1023 atoms/mol)

1/3

= 1.32 x 10-8 cm = 0.132 nm

3.11  For the simple cubic crystal structure, the value of n  in Equation (3.5) is unity since there is only

a single atom associated with each unit cell.  Furthermore, for the unit cell edge length, a = 2R.

Therefore, employment of Equation (3.5) yields

ρ = 
nA

VCNA
 = 

nA

(2R)3NA

= 
(1 atom/unit cell)(70.4 g/mol)

[ ](2)(1.26 x 10-8 cm) 3/unit cell(6.023 x 1023 atoms/mol)

= 7.30 g/cm3

3.12.  (a)  The volume of the Zr unit cell may be computed using Equation (3.5) as

VC = 
nAZr
ρNA

Now, for HCP, n = 6 atoms/unit cell, and for Zr, A
Zr

 = 91.2 g/mol. Thus,
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VC = 
(6 atoms/unit cell)(91.2 g/mol)

(6.51 g/cm3)(6.023 x 1023 atoms/mol)

= 1.396 x 10-22 cm3/unit cell = 1.396 x 10-28 m3/unit cell

(b)  From the solution to Problem 3.7, since a = 2R, then, for HCP

VC = 
3√ 3a2c

2

but, since c  = 1.593a

VC = 
3√ 3(1.593)a3

2
 = 1.396 x 10-22 cm3/unit cell

Now, solving for a

a = 
 


 
(2)(1.396 x 10-22 cm3)

(3)(√ 3)(1.593)

1/3

= 3.23 x 10-8 cm = 0.323 nm

And finally

c = 1.593a = (1.593)(0.323 nm) = 0.515 nm

3.13  This problem asks that we calculate the theoretical densities of Pb, Cr, Cu, and Co.

Since Pb has an FCC crystal structure, n = 4, and VC = ( )2R√ 2
3

.  Also, R  = 0.175 nm

(1.75 x 10-8 cm) and APb  = 207.2 g/mol.  Employment of Equation (3.5) yields

ρ = 
(4 atoms/unit cell)(207.2 g/mol)

[ ](2)(1.75 x 10-8 cm)(√ 2) 3/unit cell(6.023 x 1023 atoms/mol)

= 11.35 g/cm3

The value given in the table inside the front cover is 11.35 g/cm3.

Chromium has a BCC crystal structure for which n = 2 and a = 4R/√ 3;  also ACr = 52.00

g/mol and R  = 0.125 nm.  Therefore, employment of Equation (3.5) leads to
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ρ = 
(2 atoms/unit cell)(52.00 g/mol)

 


 
(4)(1.25 x 10-8 cm)

√ 3

3
/unit cell(6.023 x 1023 atoms/mol)

= 7.18 g/cm3

The value given in the table is 7.19 g/cm3.

Copper has an FCC crystal structure;  therefore,

ρ = 
(4 atoms/unit cell)(63.55 g/mol)

[ ](2)(1.28 x 10-8 cm)(√ 2) 3/unit cell(6.023 x 1023 atoms/mol)

= 8.89 g/cm3

The value given in the table is 8.94 g/cm3.

Cobalt has an HCP crystal structure, and from Problem 3.7,

VC = 
3√ 3a2c

2

and, since c  = 1.623a and a = 2R = 2(1.25 x 10-8 cm) = 2.50 x 10-8 cm

VC = 
3√ 3(1.623)( )2.50 x 10-8 cm 3

2
 = 6.59 x 10-23 cm3/unit cell

Also, there are 6 atoms/unit cell for HCP.  Therefore the theoretical density is

ρ = 
nACo
VCNA

= 
(6 atoms/unit cell)(58.93 g/mol)

(6.59 x 10-23 cm3/unit cell)(6.023 x 1023 atoms/mol)

= 8.91 g/cm3
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The value given in the table is 8.9 g/cm3.

3.14  In order to determine whether Rh has an FCC or BCC crystal structure, we need to compute its

density for each of the crystal structures.  For FCC, n = 4, and a = 2R√ 2.  Also, from Figure 2.6,

its atomic weight is 102.91 g/mol.  Thus, for FCC

ρ = 
nARh

( )2R√ 2 3NA

= 
(4 atoms/unit cell)(102.91 g/mol)

[ ](2)(1.345 x 10-8 cm)(√ 2)
3

/unit cell(6.023 x 1023 atoms/mol)

= 12.41 g/cm3

which is the value provided in the problem.  Therefore, Rh has an FCC crystal structure.

3.15  For each of these three alloys we need to, by trial and error, calculate the density using

Equation (3.5), and compare it to the value cited in the problem.  For SC, BCC, and FCC crystal
structures, the respective values of n  are 1, 2, and 4, whereas the expressions for a (since VC =

a3) are 2R, 2R√ 2, and 4R/√ 3.

For alloy A, let us calculate ρ assuming a simple cubic crystal structure.

ρ = 
nAA

VCNA

= 
(1 atom/unit cell)(77.4 g/mol)

[ ](2)(1.25 x 10-8 cm)
3

/unit cell(6.023 x 1023 atoms/mol)

= 8.22 g/cm3

Therefore, its crystal structure is SC.

For alloy B, let us calculate ρ assuming an FCC crystal structure.

ρ = 
(4 atoms/unit cell)(107.6 g/mol)

[ ](2)√ 2(1.33 x 10-8 cm)
3

/unit cell(6.023 x 1023 atoms/mol)
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= 13.42 g/cm3

Therefore, its crystal structure is FCC.

For alloy C, let us calculate ρ assuming an SC crystal structure.

ρ = 
(1 atom/unit cell)(127.3 g/mol)

[ ](2)(1.42 x 10-8 cm)
3

/unit cell(6.023 x 1023 atoms/mol)

= 9.23 g/cm3

Therefore, its crystal structure is SC.

3.16  In order to determine the APF  for Sn, we need to compute both the unit cell volume (VC) which

is just the a2c  product, as well as the total sphere volume (VS) which is just the product of the

volume of a single sphere and the number of spheres in the unit cell (n).  The value of n  may be

calculated from Equation (3.5) as

n = 
ρVCNA

ASn

= 
(7.30)(5.83)2(3.18)(x 10-24)(6.023 x 1023)

118.69

= 4.00 atoms/unit cell

Therefore

APF = 
VS
VC

 = 
(4)( )4

3
πR3

(a)2(c)

(4)[ ]4
3

(π)(0.151)3

(0.583)2(0.318)

= 0.534

3.17  (a)  From the definition of the APF
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APF = 
VS
VC

 = 
n( )4

3
πR3

abc

we may solve for the number of atoms per unit cell, n , as

n = 
(APF)abc

4
3

πR3

= 
(0.547)(4.79)(7.25)(9.78)(10-24 cm3)

4
3

π(1.77 x 10-8 cm)3

= 8.0 atoms/unit cell

(b)  In order to compute the density, we just employ Equation (3.5) as

ρ = 
nAI

abcNA

= 
(8 atoms/unit cell)(126.91 g/mol)

[ ](4.79)(7.25)(9.78) x 10-24 cm3/unit cell (6.023 x 1023 atoms/mol)

= 4.96 g/cm3

3. 18  (a)  We are asked to calculate the unit cell volume for Ti.  From the solution to Problem 3.7

VC = 6R2c√ 3

But, c  = 1.58a, and a = 2R, or c  = 3.16R, and

VC = (6)(3.16)R3√ 3

= (6)(3.16)(√ 3)[ ]0.1445 x 10-7 cm 3 = 9.91 x 10-23 cm3/unit cell

(b)  The density of Ti is determined as follows:
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ρ = 
nATi

VCNA

For HCP, n = 6 atoms/unit cell, and for Ti, A
Ti

 = 47.88 g/mol.  Thus,

ρ = 
(6 atoms/unit cell)(47.88 g/mol)

(9.91 x 10-23 cm3/unit cell)(6.023 x 1023 atoms/mol)

= 4.81 g/cm3

The value given in the literature is 4.51 g/cm
3

.

3.19  This problem calls for us to compute the atomic radius for Zn.  In order to do this we must use

Equation (3.5), as well as the expression which relates the atomic radius to the unit cell volume

for HCP;  from Problem 3.7 it was shown that

VC = 6R2c√ 3

In this case c  = 1.856(2R).  Making this substitution into the previous equation, and then

solving for R using Equation (3.5) yields

R = 
 


 


nAZn

(1.856)(12√ 3)ρNA

1/3

= 
 



 

(6 atoms/unit cell)(65.39 g/mol)

(1.856)(12√ 3)(7.13 g/cm3)(6.023 x 1023 atoms/mol)

1/3

= 1.33 x 10-8 cm = 0.133 nm

3.20  This problem asks that we calculate the unit cell volume for Re which has an HCP crystal

structure.  In order to do this, it is necessary to use a result of Problem 3.7, that is

VC = 6R2c√ 3

The problem states that c  = 1.615a, and a = 2R.  Therefore
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VC = (1.615)(12√ 3)R3

= (1.615)(12√ 3)(1.37 x 10-8 cm)3 = 8.63 x 10-23 cm3 = 8.63 x 10-2 nm3

3.21  (a)  The unit cell shown in the problem belongs to the tetragonal crystal system since a = b  =

0.30 nm, c  = 0.40 nm, and α  = β = γ = 90°.

(b)  The crystal structure would be called body-centered tetragonal.

(c)  As with BCC n = 2 atoms/unit cell.  Also, for this unit cell

VC = (3.0 x 10-8 cm)2(4.0 x 10-8 cm)

= 3.60 x 10-23 cm3/unit cell

Thus,

ρ = 
nA

VCNA

= 
(2 atoms/unit cell)(141 g/mol)

(3.60 x 10-23 cm3/unit cell)(6.023 x 1023 atoms/mol)

= 13.0 g/cm3

3.22  The unit cell for AuCu3 is to be generated using the software found on the CD-ROM.

3.23  The unit cell for AuCu is to be generated using the software found on the CD-ROM.

3.24  A unit cell for the body-centered orthorhombic crystal structure is presented below.

b

90

90

90

a

c
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3.25  (a)  This portion of the problem calls for us to draw a [121
_

] direction within an orthorhombic unit

cell (a ≠ b  ≠ c , α  = β = γ = 90°).  Such a unit cell with its origin positioned at point O is shown

below.  We first move along the +x-axis a units (from point O to point A), then parallel to the +y-

axis 2b  units (from point A  to point B ).  Finally, we proceed parallel to the z-axis -c  units (from

point B  to point C).  The [121
_

] direction is the vector from the origin (point O ) to point C  as

shown.

b

90

90
90

c

a

x

y

z

O

A B

C

(b)  We are now asked to draw a (210) plane within an orthorhombic unit cell.  First remove the

three indices from the parentheses, and take their reciprocals--i.e., 1/2, 1, and ∞.  This means

that the plane intercepts the x -axis at a/2, the y -axis at b , and parallels the z-axis.  The plane

that satisfies these requirements has been drawn within the orthorhombic unit cell below.
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b

c

a

x

y

z

3.26  (a)  This portion of the problem asks that a [01
_

1] direction be drawn within a monoclinic unit cell

(a ≠ b  ≠ c , and α  = β = 90° ≠ γ).  One such unit cell with its origin at point O is sketched below.

For this direction, there is no projection along the x -axis since the first index is zero;  thus, the

direction lies in the y -z plane.  We next move from the origin along the minus y -axis b  units

(from point O to point R).  Since the final index is a one, move from point R parallel to the z-axis,

c  units (to point P). Thus, the [01
_

1] direction corresponds to the vector passing from the origin to

point P, as indicated in the figure.

x

y

z

a

b

c

αβ

γ
O

-y R

P [011]
-

(b)  A (002) plane is drawn within the monoclinic cell shown below. We first remove the

parentheses and take the reciprocals of the indices;  this gives ∞, ∞, and 1/2.  Thus, the (002)

plane parallels both x- and y-axes, and intercepts the z-axis at c /2, as indicated in the drawing.
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x

y

z

a

b

c

αβ

γ
O

3.27  (a)  We are asked for the indices of the two directions sketched in the figure.  For direction 1,

the projection on the x-axis is zero (since it lies in the y-z plane), while projections on the y- and

z-axes are b/2 and c, respectively.  This is an [012] direction as indicated in the summary below

x y z

Projections 0a b/2 c

Projections in terms of a, b,

and c 0 1/2 1

Reduction to integers 0 1 2

Enclosure [012]

Direction 2 is [112
_

] as summarized below.

x y z

Projections a/2 b/2 -c

Projections in terms of a, b,

and c 1/2 1/2 -1

Reduction to integers 1 1 -2

Enclosure [112
_

]
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(b)  This part of the problem calls for the indices of the two planes which are drawn in the sketch.

Plane 1 is an (020) plane.  The determination of its indices is summarized below.

x y z

Intercepts ∞ a b/2 ∞ c

Intercepts in terms of a, b ,

and c ∞ 1/2 ∞

Reciprocals of intercepts 0 2 0

Enclosure (020)

Plane 2 is a (22
_

1) plane, as summarized below.

x y z

Intercepts a/2 -b/2 c

Intercepts in terms of a, b ,

and c 1/2 -1/2 1

Reciprocals of intercepts 2 -2 1

Enclosure (22
_

1)

3.28  The directions asked for are indicated in the cubic unit cells shown below.
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y

z

x

[110]
_

[121]
__

[012]
_

[123]
_ _
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z

y

x

[103]
_

[133]
_

[111]
__

[122]
_

3.29  Direction A  is a [01
_

1
_

] direction, which determination is summarized as follows.  We first of all

position the origin of the coordinate system at the tail of the direction vector;  then in terms of

this new coordinate system

x y z

Projections 0a -b -c

Projections in terms of a, b,

and c 0 -1 -1

Reduction to integers not necessary

Enclosure [01
_

1
_

]

Direction B  is a [2
_

10] direction, which determination is summarized as follows.  We first

of all position the origin of the coordinate system at the tail of the direction vector;  then in terms

of this new coordinate system

x y z

Projections -a
b
2

0c

Projections in terms of a, b,

and c -1
1
2

0

Reduction to integers -2 1 0

Enclosure [2
_

10]
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Direction C is a [112] direction, which determination is summarized as follows.  We first

of all position the origin of the coordinate system at the tail of the direction vector;  then in terms

of this new coordinate system

x y z

Projections
a
2

b
2

c

Projections in terms of a, b,

and c
1
2

1
2

1

Reduction to integers 1 1 2

Enclosure [112]

Direction D is a [112
_

] direction, which determination is summarized as follows.  We first

of all position the origin of the coordinate system at the tail of the direction vector;  then in terms

of this new coordinate system

x y z

Projections
a
2

b
2

-c

Projections in terms of a, b,

and c
1
2

1
2

-1

Reduction to integers 1 1 -2

Enclosure [112
_

]

3.30  Direction A  is a [4
_

30] direction, which determination is summarized as follows.  We first of all

position the origin of the coordinate system at the tail of the direction vector;  then in terms of

this new coordinate system

x y z

Projections - 
2a
3

b
2

0c

Projections in terms of a, b,

and c - 
2
3

1
2

0
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Reduction to integers -4 3 0

Enclosure [4
_

30]

Direction B  is a [23
_

2] direction, which determination is summarized as follows.  We first

of all position the origin of the coordinate system at the tail of the direction vector;  then in terms

of this new coordinate system

x y z

Projections
2a
3

-b
2c
3

Projections in terms of a, b,

and c
2
3

-1
2
3

Reduction to integers 2 -3 2

Enclosure [23
_

2]

Direction C is a [13
_

3
_

] direction, which determination is summarized as follows.  We first

of all position the origin of the coordinate system at the tail of the direction vector;  then in terms

of this new coordinate system

x y z

Projections
a
3

-b -c

Projections in terms of a, b,

and c
1
3

-1 -1

Reduction to integers 1 -3 -3

Enclosure [13
_

3
_

]

Direction D is a [136
_

] direction, which determination is summarized as follows.  We first

of all position the origin of the coordinate system at the tail of the direction vector;  then in terms

of this new coordinate system
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x y z

Projections
a
6

b
2

-c

Projections in terms of a, b,

and c
1
6

1
2

-1

Reduction to integers 1 3 -6

Enclosure [136
_

]

3.31  For tetragonal crystals a = b  ≠ c  and α  = β = γ = 90°;  therefore, projections along the x  and y

axes are equivalent, which are not equivalent to projections along the z axis.

(a)  Therefore, for the [101] direction, equivalent directions are the following:  [1
_

01
_

], [1
_

01], [101
_

],

[011], [011
_

], [01
_

1], [01
_

1
_

].

(b)  For the [110] direction, equivalent directions are the following:  [1
_

1
_

0], [1
_

10], and [11
_

0].

(c)  For the [010] direction, equivalent directions are the following:  [01
_

0], [100], and [1
_

00]

3.32  (a)  We are asked to convert [100] and [111] directions into the four- index Miller-Bravais

scheme for hexagonal unit cells.  For [100]

u' = 1,

v' = 0,

w' = 0

From Equations (3.6)

u = 
n
3

(2u' - v') = 
n
3

(2 - 0) = 
2n
3

v = 
n
3

(2v' - u') = 
n
3

(0 - 1) = - 
n
3

t = - (u + v) = - ( )2n
3

 - 
n
3

 = - 
n
3

w = nw' = 0
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If we let n  = 3, then u  = 2, v  = -1, t  = -1, and w  = 0.  Thus, the direction is represented as

[uvtw ] = [211
__

0].

For [111], u ' = 1, v ' = 1, and w ' = 1;  therefore,

u = 
n
3

(2 - 1) = 
n
3

v = 
n
3

(2 - 1) = 
n
3

t = - ( )n
3

 + 
n
3

 = - 
2n
3

w = n

If we again let n  = 3, then u  = 1, v  = 1, t = -2, and w  = 3.  Thus, the direction is represented as

[112
_

3].

(b)  This portion of the problem asks for the same conversion of the (010) and (101) planes.  A

plane for hexagonal is represented by (hkil ) where i = - (h  + k), and h , k , and l are the same for

both systems.  For the (010) plane, h  = 0, k  = 1, l = 0, and

i = - (0 + 1) = -1

Thus, the plane is now represented as (hkil ) = (011
_

0).

For the (101) plane, i = - (1 + 0) = -1, and (hkil ) = (101
_

1).

3.33  For plane A  we will leave the origin at the unit cell as shown;  this is a (403) plane, as

summarized below.

x y z

Intercepts
a
2

∞b
2c
3

Intercepts in terms of a, b ,

and c
1
2

∞ 2
3
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Reciprocals of intercepts 2 0
3
2

Reduction 4 0 3

Enclosure (403)

For plane B  we will move the origin of the unit cell one unit cell distance to the right

along the y  axis, and one unit cell distance parallel to the x  axis;  thus, this is a (1
_

1
_

2) plane, as

summarized below.

x y z

Intercepts -a -b
c
2

Intercepts in terms of a, b ,

and c -1 -1
1
2

Reciprocals of intercepts -1 -1 2

Enclosure (1
_

1
_

2)

3.34  For plane A  we will move the origin of the coordinate system one unit cell distance to the

upward along the z axis;  thus, this is a (322
_

) plane, as summarized below.

x y z

Intercepts
a
3

b
2

- 
c
2

Intercepts in terms of a, b ,

and c
1
3

1
2

- 
1
2

Reciprocals of intercepts 3 2 -2

Enclosure (322
_

)

For plane B  we will move the original of the coordinate system on unit cell distance

along the x  axis;  thus, this is a (1
_

01) plane, as summarized below.

x y z

Intercepts - 
a
2

∞b
c
2
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Intercepts in terms of a, b ,

and c - 
1
2

∞ 1
2

Reciprocals of intercepts -2 0 2

Reduction -1 0 1

Enclosure (1
_

01)

3.35  For plane A  since the plane passes through the origin of the coordinate system as shown, we

will move the origin of the coordinate system one unit cell distance to the right along the y  axis;

thus, this is a (32
_

4) plane, as summarized below.

x y z

Intercepts
2a
3

-b
c
2

Intercepts in terms of a, b ,

and c
2
3

-1
1
2

Reciprocals of intercepts
3
2

-1 2

Reduction 3 -2 4

Enclosure (32
_

4)

For plane B  we will leave the origin at the unit cell as shown;  this is a (221) plane, as

summarized below.

x y z

Intercepts
a
2

b
2

c

Intercepts in terms of a, b ,

and c
1
2

1
2

1

Reciprocals of intercepts 2 2 1

Enclosure (221)

3.36  The (11
_

01) and (112
_

0) planes in a hexagonal unit cell are shown below.
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z

a
1

a
2

a
3

z

a
1

a
2

a
3

(1101)
_

(1120)
_

3.37  (a)  For this plane we will leave the origin of the coordinate system as shown;  thus, this is a

(11
_

00) plane, as summarized below.

a1 a2 a3 z

Intercepts a - a ∞a ∞c

Intercepts in terms of a's and c 1 -1 ∞ ∞

Reciprocals of intercepts 1 -1 0 0

Enclosure (11
_

00)

(b)  For this plane we will leave the origin of the coordinate system as shown;  thus, this

is a (211
__

2) plane, as summarized below.

a1 a2 a3 z

Intercepts
a
2

-a -a
c
2

Intercepts in terms of a's and c
1
2

-1 -1
1
2

Reciprocals of intercepts 2 -1 -1 2

Enclosure (211
__

2)

3.38  The planes called for are plotted in the cubic unit cells shown below.
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x

y

z

(131)
_

(112)
_

(102)
_

z

x

y

(011)
__

x

y

z

(111)
_ _

_
(122)

_

x

y

z

_
(013)

_

_
(123)

_

3.39  (a)  The atomic packing of the (100) plane for the FCC crystal structure is called for.  An FCC

unit cell, its (100) plane, and the atomic packing of this plane are indicated below.

(100)
Plane
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(b)  For this part of the problem we are to show the atomic packing of the (111) plane for the

BCC crystal structure.  A BCC unit cell, its (111) plane, and the atomic packing of this plane are

indicated below.

Plane
(111)

3.40  (a)  The unit cell in Problem 3.21 is body-centered tetragonal.  Only the (100) (front face) and

(01
_

0) (left side face) planes are equivalent since the dimensions of these planes within the unit

cell (and therefore the distances between adjacent atoms) are the same (namely 0.40 nm x

0.30 nm), which are different than the (001) (top face) plane (namely 0.30 nm x 0.30 nm).

(b)  The (101) and (011) planes are equivalent;  their dimensions within the unit cell are the

same--that is 0.30 nm x [ ](0.30 nm)2+ (0.40 nm)2
1/2

.  Furthermore, the (110) and (1
_

10) planes

are equivalent;  the dimensions of these planes within a unit cell are the same--that is 0.40 nm x

[ ](0.30 nm)2+ (0.30 nm)2
1/2

.

(c)  All of the (111), (11
_

1), (111
_

), and (1
_

11
_

) planes are equivalent.

3.41  (a)  The intersection between (110) and (111) planes results in a [1
_

10], or equivalently, a [11
_

0]

direction.

(b)  The intersection between (110) and (11
_

0) planes results in a [001], or equivalently, a [001
_

]

direction.

(c)  The intersection between (101
_

) and (001) planes results in a [010], or equivalently, a [01
_

0]

direction.

3.42  For FCC the linear density of the [100] direction is computed as follows:

The linear density, LD , is defined by the ratio

LD = 
Lc
Ll
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where L l  is the line length within the unit cell along the [100] direction, and Lc  is line length

passing through intersection circles.  Now, Ll is just the unit cell edge length, a which, for FCC is

related to the atomic radius R according to a = 2R√ 2 [Equation (3.1)].  Also for this situation, Lc

= 2R and therefore

LD = 
2R

2R√ 2
 = 0.71

For the [110] direction, Ll = Lc  = 4R and therefore,

LD = 
4R
4R

 = 1.0

For the [111] direction Lc = 2R, whereas Ll = 2R√ 6, therefore

LD = 
2R

 2R√ 6
 = 0.41

3.43  The linear density, LD , is the ratio of Lc  and L l .  For the [110] direction in BCC, Lc  = 2R ,

whereas Ll = 
4R√ 2

√ 3
.  Therefore

LD = 
Lc
Ll

 = 
2R

4R√ 2

√ 3

 = 0.61

For the [111] direction in BCC, Lc= Ll = 4R;  therefore

LD = 
4R
4R

 = 1.0

3.44  Planar density, PD, is defined as

PD = 
Ac
Ap

where Ap  is the total plane area within the unit cell and Ac  is the circle plane area within this

same plane.  For the (100) plane in FCC, in terms of the atomic radius, R, and the unit cell edge

length a
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Ap = a2 = ( )2R√ 2
2

 = 8R2

Also, upon examination of that portion of the (100) plane within a single unit cell, it may be

noted that there reside 2 equivalent atoms--one from the center atom, and one-fourth of each

of the four corner atoms.  Therefore,

Ac = (2)πR2

Hence

PD = 
2πR2

8R2  = 0.79

That portion of a (111) plane that passes through a FCC unit cell forms a triangle as

shown below.

4R

R

2R 3

In terms of the atomic radius R , the length of the triangle base is 4R , whereas the height is

2R√ 3.  Therefore, the area of this triangle, which is just Ap is

Ap = 
1
2

(4R)(2R√ 3) = 4R2√ 3

Now it becomes necessary to determine the number of equivalent atoms residing within this

plane.  One-sixth of each corner atom and one-half of each middle atom belong belongs to the

unit cell.  Therefore, since there are 3 corner and 3 middle atoms, there is an equivalent of 2

atoms within the unit cell.  Hence

Ac = 2(πR2)
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and

PD = 
2πR2

4R2√ 3
 = 0.91

3.45  Planar density, PD, is defined as

PD = 
Ac
Ap

where Ap  is the total plane area within the unit cell and Ac  is the circle plane area within this

same plane.  For the (100) plane in BCC, in terms of the atomic radius, R, and the unit cell edge

length a

Ap = a2 = 
 


 
4R

√ 3

2
 = 

16R2

3

Also, upon examination of that portion of the (100) plane within a single unit cell, that there

resides a single equivalent atom--one-fourth from each of the four corner atoms.  Therefore,

Ac = πR2

Hence

PD = 
πR2

16R2

3

 = 0.59

That portion of a (110) plane that passes through a BCC unit cell forms a rectangle as

shown below.
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3

4RR
3

24R

In terms of the atomic radius R , the length of the rectangle base is 4R√ 2/√ 3, whereas the

height is a = 
4R

√ 3
.  Therefore, the area of this rectangle, which is just Ap is

Ap = 
 



 

4R√ 2

√ 3  


 
4R

√ 3
 = 

16R2√ 2
3

Now for the number equivalent atoms within this plane.  One-fourth of each corner atom and

the entirety of the center atom belong to the unit cell.  Therefore, there is an equivalent of 2

atoms within the unit cell.  Hence

Ac = 2(πR2)

and

PD = 
2πR2

16R2√ 2
3

 = 0.83

3.46  Below is shown portion of  a (0001) plane for HCP.  Also indicated is a hexagon corresponding

to the base of one unit cell which consists of six equilateral triangles.
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2R

In terms of the atomic radius R, the area of each triangle is R2√ 3, or the total area Ap  is just

6R2√ 3.  Now, the entirety of the center circle lies within this hexagon, as well as and one-third of

each of the six corner circles;  thus there are 3 equivalent circles associated with the hexagon,

and therefore,

Ac = (3)πR2

Thus, the planar density is just

PD = 
Ac
Ap

 = 
3πR2

6R2√ 3
 = 0.91

3.47  Below is constructed a unit cell using the six crystallographic directions that were provided in

the problem.

x

z

y

[001] (0.50 nm)

[100] (0.40 nm)

[010] (0.40 nm)

[110]  (0.566 nm)

[011] (0.64 nm)

[101] (0.64 nm)

(a)  This unit cell belongs to the tetragonal crystal system since a = b  = 0.40 nm, c  = 0.50 nm,

and α  = β = γ = 90°.
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(b)  This crystal structure would be called face-centered tetragonal since the unit cell has

tetragonal symmetry, and an atom is located at each of the corners, as well as at the centers of

all six unit cell faces.  In the figure above, atoms are only shown at the centers of three faces;

however, atoms would also be situated at opposite faces.

3.48  The unit cell is constructed below from the three crystallographic planes that were provided in

the problem.

x

y

z

0.40n m 0.30nm

0
.3

5
n

m

(001)

(110) (101)

(a)  This unit cell belongs to the orthorhombic crystal system since a = 0.30 nm, b  = 0.40 nm, c

= 0.35 nm, and α  = β = γ = 90°.

(b)  This crystal structure would be called body-centered orthorhombic since the unit cell has

orthorhombic symmetry, and an atom is located at each of the corners, as well as at the cell

center.

(c)  In order to compute its atomic weight, we employ Equation (3.5), with n  = 2;  thus

A = 
ρVCNA

n

= 
(8.95 g/cm3)(3.0)(4.0)(3.5)(x 10-24 cm3/unit cell)(6.023 x 1023 atoms/mol)

2 atoms/unit cell

= 113.2 g/mol

3.49  Although each individual grain in a polycrystalline material may be anisotropic, if the grains

have random orientations, then the solid aggregate of the many anisotropic grains will behave

isotropically.
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3.50  From the table, molybdenum has a BCC crystal structure and an atomic radius of 0.1363 nm.

Using Equation (3.3), the lattice parameter a may be computed as

a = 
4R

√ 3
 = 

(4)(0.1363 nm)

√ 3
 = 0.3148 nm

Now, the interplanar spacing d111 maybe determined using Equation (3.10) as

d111 = 
a

√(1)2 + (1)2 + (1)2
 = 

0.3148

√ 3
 = 0.1818 nm

3.51  We must first calculate the lattice parameter using Equation (3.1) and the value of R cited in

Table 3.1 as

a = 2R√ 2 = (2)(0.1387 nm)√ 2 = 0.3923 nm

Next, the interplanar spacing may be determined using Equation (3.10) according to

d113 = 
a

√(1)2 + (1)2 + (3)2
 = 

0.3923 nm

√11
 = 0.1183 nm

And finally, employment of Equation (3.9) yields

sin θ = 
nλ
2d

 = 
(1)(0.1542 nm)
(2)(0.1183 nm)

 = 0.652

θ = sin-1(0.652) = 40.69°

And

2θ = (2)(40.69°) = 81.38°

3.52  From the table, aluminum has an FCC crystal structure and an atomic radius of 0.1431 nm.

Using Equation (3.1) the lattice parameter, a, may be computed as

a = 2R√ 2 = (2)(0.1431 nm)(√ 2) = 0.4047 nm

Now, the d110 interplanar spacing may be determined using Equation (3.10) as
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d110 = 
a

√(1)2 + (1)2 + (0)2
 = 

0.4047 nm

√ 2
 = 0.2862 nm

And, similarly for d221

d221 = 
a

√(2)2 + (2)2 + (1)2
 = 

0.4047 nm

√ 9
 = 0.1349 nm

3.53  (a)  From the data given in the problem, and realizing that 69.22° = 2θ, the interplanar spacing

for the (220) set of planes may be computed using Equation (3.9) as

d220 = 
nλ

2 sin θ = 
(1)(0.1542 nm)

(2)( )sin 
69.22°

2

 = 0.1357 nm

(b)  In order to compute the atomic radius we must first determine the lattice parameter, a using

Equation (3.10), and then R from Equation (3.1) since Ir has a FCC crystal structure.  Therefore,

a = d220√(2)2 + (2)2 + (0)2 = (0.1357 nm)(√ 8) = 0.3838 nm

And

R = 
a

2√ 2
 = 

0.3838 nm

2√ 2
 = 0.1357 nm

3.54  (a)  From the data given in the problem, and realizing that 27.00° = 2θ, the interplanar spacing

for the (321) set of planes may be computed using Equation (3.9) as

d321 = 
nλ

2 sin θ = 
(1)(0.0711 nm)

(2)( )sin 
27.00°

2

 = 0.1523 nm

(b)  In order to compute the atomic radius we must first determine the lattice parameter, a using

Equation (3.10), and then R  from Equation (3.3) since Rb has a BCC crystal structure.

Therefore,

a = d321√(3)2 + (2)2 + (1)2 = (0.1523 nm)(√14) = 0.5700 nm

And
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R = 
a√ 3

4
 = 

(0.5700 nm)√ 3
4

 = 0.2468 nm

3.55  The first step to solve this problem is to compute the interplanar spacing using Equation (3.9).

Thus,

dhkl = 
nλ

2 sin θ = 
(1)(0.0711 nm)

(2)( )sin 
46.21°

2

 = 0.0906 nm

Now, employment of both Equations (3.10) and (3.3), and the value of R for iron from Table 3.1

(0.1241 nm) leads to

√h2 + k2 + l2 = 
a

dhkl
 = 

4R

dhkl√ 3

= 
(4)(0.1241 nm)

(0.0906 nm)√ 3
 = 3.163

This means that

h2 + k2 + l2 = (3.163)2 = 10.0

By trial and error, the only three integers having a sum that is even, and the sum of the squares

of which equals 10.0 are 3, 1, and 0.  Therefore, the set of planes responsible for this diffraction

peak are the (310) ones.

3.56  For each peak, in order to compute the interplanar spacing and the lattice parameter we must

employ Equations (3.10) and (3.9), respectively.  For the first peak which occurs at 45.0°

d110 = 
nλ

2 sin θ = 
(1)(0.1542 nm)

(2)( )sin 
45.0°

2

 = 0.2015 nm

And

a = dhkl√(h)2 + (k)2 + (l)2 = d110√(1)2 + (1)2 + (0)2
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= (0.2015 nm)√ 2 = 0.2850 nm

Similar computations are made for the other peaks which results are tabulated below:

Peak Index 2θ dhkl(nm) a (nm)

200 65.1 0.1433 0.2866

211 82.8 0.1166 0.2856

3.57  The first four diffraction peaks that will occur for FCC consistent with h , k , and l all being odd or

even are (111), (200), (220), and (311).

3.58  (a)  Since Cu has an FCC crystal structure, only those peaks for which h , k , and l are all either

odd or even will appear.  Therefore, the first peak results by diffraction from (111) planes.

(b)  For each peak, in order to calculate the interplanar spacing we must employ Equation (3.9).

For the first peak which occurs at 43.8°

d111 = 
nλ

2 sin θ = 
(1)(0.1542 nm)

(2)( )sin 
43.8°

2

 = 0.2067 nm

(c)  Employment of Equations (3.10) and (3.1) is necessary for the computation of R for Cu as

R = 
a

2√ 2
 = 

(dhkl)√(h)2 + (k)2 + (l)2

2√ 2

= 
(0.2067 nm)√(1)2 + (1)2 + (1)2

2√ 2

= 0.1266 nm

Similar computations are made for the other peaks which results are tabulated below:

Peak Index 2θ dhkl(nm) R (nm)

200 50.8 0.1797 0.1271

220 74.4 0.1275 0.1275

311 90.4 0.1087 0.1274
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The value cited in Table 3.1 is 0.1278 nm, which is relatively close to these values.

3.59  A material in which atomic bonding is predominantly ionic in nature is less likely to form a

noncrystalline solid upon solidification than a covalent material because covalent bonds are

directional whereas ionic bonds are nondirectional;  it is more difficult for the atoms in a covalent

material to assume positions giving rise to an ordered structure.
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CHAPTER 4

IMPERFECTIONS IN SOLIDS

PROBLEM SOLUTIONS

4.1  In order to compute the fraction of atom sites that are vacant in lead at 600 K, we must employ
Equation (4.1).  As stated in the problem, Q

v
 = 0.55 eV/atom.  Thus,

NV
N

 = exp  


 


- 
QV
kT

 = exp 
 



 

- 

0.55 eV/atom

(8.62 x 10-5 eV/atom-K)(600 K)

= 2.41 x 10
-5

4.2  Determination of the number of vacancies per cubic meter in iron at 850°C (1123 K) requires the

utilization of Equations (4.1) and (4.2) as follows:

NV = N exp  


 


- 
QV
kT

 = 
NAρFe

AFe
 exp  


 


- 
QV
kT

= 
(6.023 x 1023 atoms/mol)(7.65 g/cm3)

55.85 g/mol
 exp 

 



 

- 

1.08 eV/atom

(8.62 x 10-5 eV/atom-K)(1123 K)

= 1.18 x 1018 cm-3 = 1.18 x 1024 m-3

4.3  This problem calls for the computation of the activation energy for vacancy formation in silver.
Upon examination of Equation (4.1), all parameters besides Q

v
 are given except N, the total

number of atomic sites.  However, N is related to the density, (ρ), Avogadro's number (N
A

), and

the atomic weight (A) according to Equation (4.2) as

N = 
NAρPb
APb

= 
(6.023 x 1023 atoms/mol)(9.5 g/cm3)

107.9 g/mol

= 5.30 x 1022 atoms/cm3 = 5.30 x 1028 atoms/m3
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Now, taking natural logarithms of both sides of Equation (4.1), and, after some algebraic

manipulation

QV = - RT ln  


 
NV

N

= - (8.62 x 10-5 eV/atom-K)(1073 K) ln 
 


 
3.60 x 1023 m-3

5.30 x 1028 m-3

= 1.10 eV/atom

4.4  In this problem we are asked to cite which of the elements listed form with Cu the three possible

solid solution types.  For complete substitutional solubility the following criteria must be met:  1)

the difference in atomic radii between Ni and the other element (∆R%) must be less than ±15%,

2) the crystal structures must be the same, 3) the electronegativities must be similar, and 4) the

valences should be the same, or nearly the same.  Below are tabulated, for the various

elements, these criteria.

Crystal ∆Electro-

Element ∆R% Structure negativity Valence

Cu FCC 2+

C -44

H -64

O -53

Ag +13 FCC 0 1+

Al +12 FCC -0.4 3+

Co -2 HCP -0.1 2+

Cr -2 BCC -0.3 3+

Fe -3 BCC -0.1 2+

Ni -3 FCC -0.1 2+

Pd +8 FCC +0.3 2+

Pt +9 FCC +0.3 2+

Zn +4 HCP -0.3 2+
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(a)  Ni, Pd, and Pt meet all of the criteria and thus form substitutional solid solutions having

complete solubility.

(b)  Ag, Al, Co, Cr, Fe, and Zn form substitutional solid solutions of incomplete solubility.  All

these metals have either BCC or HCP crystal structures, and/or the difference between their

atomic radii and that for Ni are greater than ±15%, and/or have a valence different than 2+.

(c)  C, H, and O form interstitial solid solutions.  These elements have atomic radii that are

significantly smaller than the atomic radius of Cu.

4.5  In the drawing below is shown the atoms on the (100) face of a FCC unit cell;  the interstitial site

is at the center of the edge.

R R
2r

a

The diameter of an atom that will just fit into this site (2r) is just the difference between that unit

cell edge length (a) and the radii of the two host atoms that are located on either side of the site

(R);  that is

2r = a - 2R

However, for FCC a is related to R according to Equation (3.1) as a = 2R√ 2;  therefore, solving

for r gives

r = 
a - 2R

2
 = 

2R√ 2 - 2R
2

 = 0.41R

A (100) face of a BCC unit cell is shown below.
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R

R + r

a/4

a/2

The interstitial atom that just fits into this interstitial site is shown by the small circle.  It is situated

in the plane of this (100) face, midway between the two vertical unit cell edges, and one quarter

of the distance between the bottom and top cell edges.  From the right triangle that is defined

by the three arrows we may write

( )a
2

2
 + ( )a

4

2
 = ( )R + r 2

However, from Equation (3.3), a = 
4R

√ 3
, and, therefore, the above equation takes the form

 


 
4R

2√ 3

2
 + 

 


 
4R

4√ 3

2
 = R2 + 2Rr + r2

After rearrangement the following quadratic equation results:

r2 + 2Rr - 0.667R 2= 0

And upon solving for r, r = 0.291R.

Thus, for a host atom of radius R, the size of an interstitial site for FCC is approximately

1.4 times that for BCC.
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4.6  (a)  This problem asks that we derive Equation (4.7a).  To begin, C1 is defined according to

Equation (4.3) as

C1 = 
m1

m1 + m2
 x 100

or, equivalently

C1 = 
m '1

m '1 + m '2
 x 100

where the primed m 's indicate masses in grams.  From Equation (4.4) we may write

m '1 = nm1A1

m '2 = nm2A2

And, substitution into the C1 expression

C1 = 
nm1A1

nm1A1 + nm2A2
 x 100

From Equation (4.5) it is the case that

nm1 = 
C '1(nm1 + nm2)

100

nm2 = 
C '2(nm1 + nm2)

100

And substitution of these expressions into the above equation leads to

C1 = 
C '1A1

C '1A1 + C '2A2
 x 100

which is just Equation (4.7a).
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(b)  This problem asks that we derive Equation (4.9a).  To begin, C"1 is defined as the mass of

component 1 per unit volume of alloy, or

C"1 = 
m1
V

If we assume that the total alloy volume V  is equal to the sum of the volumes of the two
constituents--i.e., V = V1 + V2--then

C"1 = 
m1

V1 + V2

Furthermore, the volume of each constituent is related to its density and mass as

V1 = 
m1
ρ1

V2 = 
m2
ρ2

This leads to

C"1 = 
m1

m1
ρ1

 + 
m2
ρ2

From Equation (4.3), m1 and m2 may be expressed as follows:

m1 = 
C1(m1 + m2)

100

m2 = 
C2(m1 + m2)

100

Substitution of these equations into the preceding expression yields
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C"1 = 

C1(m1 + m2)

100
C1(m1 + m2)

100
ρ1

 + 

C2(m1 + m2)

100
ρ2

= 
C1

C1
ρ1

 + 
C2
ρ2

If the densities ρ1 and ρ2 are given in units of g/cm3, then conversion to units of kg/m3 requires

that we multiply this equation by 103, inasmuch as

1 g/cm3 = 103 kg/m3

Therefore, the previous equation takes the form

C"1 = 

 




 


C1

C1
ρ1

 + 
C2
ρ2

 x 103

which is the desired expression.

(c)  Now we are asked to derive Equation (4.10a).  The density of an alloy ρave  is just the total alloy

mass M divided by its volume V

ρave = 
M
V

Or, in terms of the component elements 1 and 2

ρave = 
m1 + m2
V1 + V2

Here it is assumed that the total alloy volume is equal to the separate volumes of the individual
components, which is only an approximation;  normally V will not be exactly equal to (V1 + V2).
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Each of V1 and V2 may be expressed in terms of its mass density, which when substituted into

the above equation

ρave = 
m1 + m2
m1
ρ1

 + 
m2
ρ2

Furthermore, from Equation (4.3)

m1 = 
C1(m1 + m2)

100

m2 = 
C2(m1 + m2)

100

Which, when substituted into the  above ρave  expression yields

ρave = 
m1 + m2

C1(m1 + m2)

100
ρ1

 + 

C2(m1 + m2)

100
ρ2

= 
100

C1
ρ1

 + 
C2
ρ2

(d)  And, finally, the derivation of Equation (4.11b) for Aave  is requested.  The alloy average

molecular weight is just the ratio of total alloy mass in grams M'  and the total number of moles
in the alloy Nm .  That is

Aave = 
M'
Nm

 = 
m '1 + m '2

nm1 + nm2

But using Equation (4.4) we may write

m '1 = nm1A1

m '2 = nm2A2
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Which, when substituted into the above Aave  expression yield

Aave = 
M'
Nm

 = 
nm1A1 + nm2A2

nm1 + nm2

Furthermore, from Equation (4.5)

nm1 = 
C '1(nm1 + nm2)

100

nm2 = 
C '2(nm1 + nm2)

100

Thus

Aave = 

C '1A1(nm1 + nm2)

100
 + 

C '2A2(nm1 + nm2)

100
nm1 + nm2

= 
C '1A1 + C '2A2

100

which is the desired result.

4.7  In order to compute composition, in atom percent, of a 30 wt% Zn-70 wt% Cu alloy, we employ

Equation (4.6) as

CZn'  = 
CZnACu

CZnACu + CCuAZn
 x 100

= 
(30)(63.55 g/mol)

(30)(63.55 g/mol) + (70)(65.39 g/mol)
 x 100

= 29.4 at%

CCu'  = 
CCuAZn

CZnACu + CCuAZn
 x 100
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= 
(70)(65.39 g/mol)

(30)(63.55 g/mol) + (70)(65.39 g/mol)
 x 100

= 70.6 at%

4.8  In order to compute composition, in weight percent, of a 6 at% Pb-94 at% Sn alloy, we employ

Equation (4.7) as

CPb = 
CPb' APb

CPb' APb + CSn' ASn
 x 100

= 
(6)(207.2 g/mol)

(6)(207.2 g/mol) + (94)(118.69 g/mol)
 x 100

10.0 wt%

CSn = 
CSn' ASn

CPb' APb + CSn' ASn
 x 100

= 
(94)(118.69 g/mol)

(6)(207.2 g/mol) + (94)(118.69 g/mol)
 x 100

90.0 wt%

4.9  The concentration, in weight percent, of an element in an alloy may be computed using a
modification of Equation (4.3).  For this alloy, the concentration of titanium (C

Ti
) is just

CTi = 
mTi

mTi + mAl + mV
 x 100

= 
218 kg

 218 kg + 14.6 kg + 9.7 kg
 x 100 = 89.97 wt%

Similarly, for aluminum

CAl = 
14.6 kg

 218 kg + 14.6 kg + 9.7 kg
 x 100 = 6.03 wt%

And for vanadium
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CV = 
9.7 kg

 218 kg + 14.6 kg + 9.7 kg
 x 100 = 4.00 wt%

4.10  The concentration of an element in an alloy, in atom percent, may be computed using

Equation (4.5).  With this problem, it first becomes necessary to compute the number of moles

of both Sn and Pb, for which Equation (4.4) is employed.  Thus, the number of moles of Sn is

just

nmSn
 = 

m 'Sn
ASn

 = 
98 g

118.69 g/mol
 = 0.826 mol

Likewise, for Pb

nmPb
 = 

65 g
207.2 g/mol

 = 0.314 mol

Now, use of Equation (4.5) yields

C 'Sn = 
nmSn

nmSn
 + nmPb

 x 100

= 
0.826 mol

0.826 mol + 0.314 mol
 x 100 = 72.5 at%

Also,

C 'Pb = 
0.314 mol

0.826 mol + 0.314 mol
 x 100 = 27.5 at%

4.11  In this problem we are asked to determine the concentrations, in atom percent, of the Cu-Zn-

Pb alloy.  It is first necessary to convert the amounts of Cu, Zn, and Pb into grams.

m 'Cu = (99.7 lbm)(453.6 g/lbm) = 45224 g

m 'Zn = (102 lbm)(453.6 g/lbm) = 46267 g

m 'Pb = (2.1 lbm)(453.6 g/lbm) = 953 g

These masses must next be converted into moles, as
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nmCu
 = 

m 'Cu
ACu

 = 
45224 g

63.55 g/mol
 = 711.6 mol

nmZn
 = 

46267 g
65.39 g/mol

 = 707.6 mol

nmPb
 = 

953 g
207.2 g/mol

 = 4.6 mol

Now, employment of a modified form of Equation (4.5)

C 'Cu = 
nmCu

nmCu
 + nmZn

 + nmPb
 x 100

= 
711.6 mol

711.6 mol + 707.6 mol + 4.6 mol
 x 100 = 50.0 at%

C 'Zn = 
707.6 mol

711.6 mol + 707.6 mol + 4.6 mol
 x 100 = 49.7 at%

C 'Pb = 
4.6 mol

711.6 mol + 707.6 mol + 4.6 mol
 x 100 = 0.3 at%

4.12  We are asked to compute the composition of an alloy in atom percent.  Employment of

Equation (4.6) leads to

CFe'  = 
CFeASi

CFeASi + CSiAFe
 x 100

= 
97(28.09 g/mol)

97(28.09 g/mol) + 3(55.85 g/mol)
 x 100

= 94.2 at%

CSi'  = 
CSiAFe

CSiAFe + CFeASi
 x 100

= 
3(55.85 g/mol)

3(55.85 g/mol) + 97(28.09 g/mol)
 x 100
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= 5.8 at%

4.13  This problem calls for a conversion of composition in atom percent to composition in weight

percent.  The composition in atom percent for Problem 4.11 is 50 at% Cu, 49.7 at% Zn, and 0.3

at% Pb.  Modification of Equation (4.7) to take into account a three-component alloy leads to

the following

CCu = 
CCu' ACu

CCu' ACu + CZn' AZn + CPb' APb
 x 100

= 
50(63.55 g/mol)

50(63.55 g/mol) + 49.7(65.39 g/mol) + 0.3(207.2 g/mol)
 x 100

= 49.0 wt%

CZn = 
CZn' AZn

CCu' ACu + CZn' AZn + CPb' APb
 x 100

= 
49.7(65.39 g/mol)

50(63.55 g/mol) + 49.7(65.39 g/mol) + 0.3(207.2 g/mol)
 x 100

= 50.1 wt%

CPb = 
CPb' APb

CCu' ACu + CZn' AZn + CPb' APb
 x 100

= 
0.3(207.2 g/mol)

50(63.55 g/mol) + 49.7(65.39 g/mol) + 0.3(207.2 g/mol)
 x 100

1.0 wt%

4.14  This problem calls for a determination of the number of atoms per cubic meter of aluminum.  In

order to solve this problem, one must employ Equation (4.2),

N = 
NAρAl

AAl

The density of Al (from the table inside of the front cover) is 2.71 g/cm
3

, while its atomic weight

is 26.98 g/mol.  Thus,
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N = 
(6.023 x 1023 atoms/mol)(2.71 g/cm3)

26.98 g/mol

= 6.05 x 1022 atoms/cm3 = 6.05 x 1028 atoms/m3

4.15  In order to compute the concentration in kg/m3 of C in a 0.15 wt% C-99.85 wt% Fe alloy we

must employ Equation (4.9) as

CC"  = 

 




 


CC

CC
ρC

 + 
CFe
ρFe

 x 103

The densities for carbon (graphite) and iron are taken to be 2.25 and 7.87 g/cm3, respectively;

and, therefore

CC"  = 

 




 


0.15

0.15

2.25 g/cm3 + 
99.85

7.87 g/cm3

 x 103

= 11.8 kg/m3

4.16  We are asked in this problem to determine the approximate density of a high-leaded brass that

has a composition of 64.5 wt% Cu, 33.5 wt% Zn, and 2 wt% Pb.  In order to solve this problem,

Equation (4.10a) is modified to take the following form:

ρave = 
100

 
CCu
ρCu

 + 
CZn
ρZn

 + 
CPb
ρPb

And, using the density values for Cu, Zn, and Pb appear inside the front cover of the text, the

density is computed as follows:

ρave = 
100

 
64.5 wt%

8.94 g/cm3 + 
33.5 wt%

7.13 g/cm3 + 
2 wt%

11.35 g/cm3

= 8.27 g/cm3
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4.17  This problem asks that we derive Equation (4.17), using other equations given in the chapter.
The concentration of component 1 in atom percent (C '1) is just 100c '1 where c '1  is the atom

fraction of component 1.  Furthermore, c '1  is defined as c '1  = N1 /N  where N1  and N  are,

respectively, the number of atoms of component 1 and total number of atoms per cubic

centimeter.  Thus, from the above the following holds:

N1 = 
C1' N

100

Substitution into this expression of the appropriate form of N from Equation (4.2) yields

N1 = 
C1' NAρave
100Aave

And, finally, substitution into this equation expressions for C1'  [Equation (4.6a)], ρave  [Equation

(4.10a)], Aave  [Equation (4.11a)], and realizing that C2 = (C1 - 100), and after some algebraic

manipulation we obtain the desired expression:

N1 = 
NAC1

C1A1
ρ1

 + 
A1
ρ2

( )100 - C1

4.18  This problem asks us to determine the number of gold atoms per cubic centimeter for a 10

wt% Au-90 wt% Ag solid solution.  To solve this problem, employment of Equation (4.17) is

necessary, using the following values:

C1 = CAu = 10 wt%

ρ1 = ρAu = 19.32 g/cm3

ρ2 = ρAg = 10.49 g/cm3

A1 = AAu = 196.97 g/mol

Thus

NAu = 
NACAu

CAuAAu
ρAu

 + 
AAu
ρAg

( )100 - CAu
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N1 = 
(6.023 x 1023 atoms/mol)(10)

(10)(196.97 g/mol)

(19.32 g/cm3)
 + 

196.97 g/mol

10.49 g/cm3  ( )100 - 10

= 3.36 x 1021 atoms/cm3

4.19  This problem asks us to determine the number of germanium atoms per cubic centimeter for a

15 wt% Ge-85 wt% Si solid solution.  To solve this problem, employment of Equation (4.17) is

necessary, using the following values:

C1 = CGe = 15 wt%

ρ1 = ρGe = 5.32 g/cm3

ρ2 = ρSi = 2.33 g/cm3

A1 = AGe = 72.59 g/mol

Thus

NGe = 
NACGe

CGeAGe
ρGe

 + 
AGe
ρSi

( )100 - CGe

N1 = 
(6.023 x 1023 atoms/mol)(15)

(15)(72.59 g/mol)

(5.32 g/cm3)
 + 

72.59 g/mol

2.33 g/cm3  ( )100 - 15

= 3.17 x 1021 atoms/cm3

4.20  This problem asks that we derive Equation (4.18), using other equations given in the chapter.

The number of atoms of component 1 per cubic centimeter is just equal to the atom fraction of
component 1 (c1' ) times the total number of atoms per cubic centimeter in the alloy (N).  Thus,

using the equivalent of Equation (4.2), we may write

N1 = c '1N = 
c '1NAρave

Aave

Realizing that

c '1 = 
C '1
100
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and

C '2 = 100 - C '1

and substitution of the expressions for ρave  and Aave , Equations (4.10b) and (4.11b) leads to

N1 = 
c '1NAρave

Aave

= 
NAC '1ρ1ρ2

C '1ρ2A1 + (100 - C '1)ρ1A2

And, solving for C '1

C '1 = 
100N1ρ1A2

NAρ1ρ2 - N1ρ2A1 + N1ρ1A2

Substitution of this expression for C '1 into Equation (4.7a)

C1 = 
C '1A1

C '1A1 + C '2A2

= 
C '1A1

C '1A1 + 100( )1 - C '1 A2

yields

C1 = 
100

1 + 
NAρ2
N1A1

 - 
ρ2
ρ1

the desired expression.

4.21  This problem asks us to determine the weight percent of Mo that must be added to W such

that the resultant alloy will contain 1022 Mo atoms per cubic centimeter.  To solve this problem,

employment of Equation (4.18) is necessary, using the following values:
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N1 = NMo = 1022 atoms/cm3

ρ1 = ρMo = 10.22 g/cm3

ρ2 = ρW = 19.30 g/cm3

A1 = AMo = 95.94 g/mol

A2 = AW = 183.85 g/mol

Thus

CMo = 
100

1 + 
NAρW

NMoAMo
 - 

ρW
ρMo

= 
100

1 + 
(6.023 x 2023 atoms/mole)(19.30 g/cm3)

(1022 atoms/cm3)(95.94 g/mol)
 - 

 



 

19.30 g/cm3

10.22 g/cm3

= 8.91 wt%

4.22  This problem asks us to determine the weight percent of Nb that must be added to V such that

the resultant alloy will contain 1.55 x1022 Nb atoms per cubic centimeter.  To solve this

problem, employment of Equation (4.18) is necessary, using the following values:

N1 = NNb = 1.55 x 1022 atoms/cm3

ρ1 = ρNb = 8.57 g/cm3

ρ2 = ρV = 6.10 g/cm3

A1 = ANb = 92.91 g/mol

A2 = AV = 50.94 g/mol

Thus

CNb = 
100

1 + 
NAρV

NNbANb
 - 

ρV
ρNb

= 
100

1 + 
(6.023 x 2023 atoms/mole)(6.10 g/cm3)

(1.55 x 1022 atoms/cm3)(92.91 g/mol)
 - 

 



 

6.10 g/cm3

8.57 g/cm3
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= 35.2 wt%

4.23  This problems asks that we compute the unit cell edge length for a 95 wt% Pt-5 wt% Cu alloy.

First of all, the atomic radii for Cu and Pt (Table 3.1) are 0.1278 and 0.1387 nm, respectively.

Also, using Equation (3.5) it is possible to compute the unit cell volume, and inasmuch as the

unit cell is cubic, the unit cell edge length is just the cube root of the volume.  However, it is first

necessary to calculate the density and average atomic weight of this alloy using Equations

(4.10a) and (4.11a).  For the density

ρave = 
100

CCu
ρCu

 + 
CPt
ρPt

= 
100

5 wt%

8.94 g/cm3 + 
95 wt%

21.45 g/cm3

= 20.05 g/cm3

And for the average atomic weight

Aave = 
100

 
CCu
ACu

 + 
CPt
APt

= 
100

5 wt%
63.55 g/mole

 + 
95 wt%

195.08 g/mol

= 176.79 g/mol

Now, VC  is determined from Equation (3.5) as

VC = 
nAave
ρaveNA

= 
(4 atoms/unit cell)(176.79 g/mol)

(20.05 g/cm3)(6.023 x 1023 atoms/mol)
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= 5.856 x 10-23 cm3/unit cell

And, finally

a = ( )VC
1/3

= ( )5.856 x 10-23 cm3/unit cell
1/3

= 3.883 x 10-8 cm = 0.3883 nm

4.24  The Burgers vector and dislocation line are perpendicular for edge dislocations, parallel for

screw dislocations, and neither perpendicular nor parallel for mixed dislocations.

4.25  (a)  The Burgers vector will point in that direction having the highest linear density.  From

Problem 3.42 the linear density for the [110] direction in FCC is 1.0, the maximum possible;

therefore for FCC

b = 
a
2

[110]

From Problem 3.43 the linear density for the [111] direction in BCC is also 1.0, and

therefore for BCC

b = 
a
2

[111]

For simple cubic, a unit cell of which is shown in Figure 3.22, the atom spheres touch

one another along the cube edges (i.e., in [100] directions) and therefore, the atomic packing is

greatest in these directions.  Therefore the Burgers vector is

b = 
a
2

[100]

(b)  For Al which has an FCC crystal structure, R = 0.1431 nm (Table 3.1) and a = 2R√ 2 =

0.4047 nm [Equation (3.1)];  therefore
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b = 
a
2
√h2 + k2 + l2

= 
0.4047 nm

2
 √(1)2 + (1)2 + (0)2 = 0.2862 nm

For W which has a BCC crystal structure, R = 0.1371 nm (Table 3.1) and a = 4R/√ 3 =

0.3166 nm [Equation (3.3)];  hence

b  = 
0.3166 nm

2
 √(1)2 + (1)2 + (1)2 = 0.2742 nm

4.26  (a)  The surface energy of a single crystal depends on crystallographic orientation because the

atomic packing is different for the various crystallographic planes, and, therefore, the number of

unsatisfied bonds will vary from plane to plane.

(b)  The surface energy will be greater for an FCC (100) plane than for a (111) plane because

the (111) plane is more densely packed (i.e., has more nearest neighbor atoms in the plane);

as a consequence, more atomic bonds will be satisfied for the (111) plane, giving rise to a lower

surface energy.

4.27  (a)  The surface energy will be greater than the grain boundary energy since some atoms on

one side of the boundary will bond to atoms on the other side--i.e., there will be fewer

unsatisfied bonds along a grain boundary.

(b)  The low angle grain boundary energy is lower than for a high angle one because more

atoms bond across the boundary for the low angle, and, thus, there are fewer unsatisfied

bonds.

4.28  (a)  A twin boundary is an interface such that atoms on one side are located at mirror image

positions of those atoms situated on the other boundary side.  The region on one side of this

boundary is called a twin.

(b)  Mechanical twins are produced as a result of mechanical deformation and generally occur

in BCC and HCP metals.  Annealing twins form during annealing heat treatments, most often in

FCC metals.

4.29  (a)  The interfacial defect that exists for this stacking sequence is a twin boundary, which occurs

at the following position
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A B C A B C B A C B A

The stacking sequence on one side of this position is mirrored on the other side.

(b)  The interfacial defect that exists within this FCC stacking sequence is a stacking fault,

which occurs over the region indicated

A B C A B C B C A B C 

For this region, the stacking sequence is HCP.

4.30  This problem calls for a determination of the average grain size of the specimen which

microstructure is shown in Figure 4.12b.  Seven line segments were drawn across the

micrograph, each of which was 60 mm long.  The average number of grain boundary

intersections for these lines was 8.7.  Therefore, the average line length intersected is just

60 mm
8.7

 = 6.9 mm

Hence, the average grain diameter, d , is

d = 
ave. line length intersected

 magnification
 = 

6.9 mm
100

 = 6.9 x 10-2 mm

4.31  This problem calls for a determination of the average grain size of the specimen which

microstructure is shown in Figure 9.23a.  Seven line segments were drawn across the

micrograph, each of which was 60 mm long.  The average number of grain boundary

intersections for these lines was 6.3.  Therefore, the average line length intersected is just

60 mm
6.3

 = 9.5 mm

Hence, the average grain diameter, d , is

d = 
ave. line length intersected

 magnification
 = 

9.5 mm
90

 = 0.106 mm
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4.32  (a)  We are asked for the number of grains per square inch (N) at a magnification of 100X, and

for an ASTM grain size of 4.  From Equation (4.16), n  = 4, and

N = 2(n - 1) = 2(4 - 1) = 23 = 8

(b)  This problem calls for an estimation of the grain size number (n) for the micrograph shown in

Figure 4.12b.  By observation, the number of grains per square inch (N) ranges between eight

and twelve.  Now, rearranging Equation (4.16) so that n  becomes the dependent variable yields

n = 
log N
 log 2

 + 1

For N = 8

n = 
log 8
 log 2

 + 1 = 4.0

Whereas, for N = 12

n = 
log 12
log 2

 + 1 = 4.6

Thus, the ASTM grain size number will lie between 4.0 and 4.6.

4.33  For this problem we are asked to solve for the parameter n  from Equation (4.16) given that N is

10.  Rearrangement of Equation (4.16) such that n  is the dependent variable yields

n = 
log N
 log 2

 + 1

Now, solving for n

n = 
log 10
log 2

 + 1 = 4.3

Design Problems
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4.D1  This problem calls for us to compute the concentration of lithium (in wt%) that, when added to

aluminum, will yield a density of 2.55 g/cm3.  Solution of this problem requires the use of

Equation (4.10a), which takes the form

ρave = 
100

CLi
ρLi

 + 
100 - CLi

ρAl

inasmuch as CLi  + CAl  = 100.  According to the table inside the front cover, the respective

densities of Li and Al are 0.534 and 2.71 g/cm3.  Upon solving for CLi  from the above equation

CLi = 
100ρLi( )ρAl - ρave

ρave( )ρAl - ρLi

= 
(100)(0.534 g/cm3)( )2.71 g/cm3 - 2.55 g/cm3

2.55 g/cm3( )2.71 g/cm3 - 0.534 g/cm3

= 1.537 wt%

4.D2  This problem asks that we determine the concentration (in weight percent) of V that must be

added to Fe so as to yield a unit cell edge length of 0.289 nm.  To begin, it is necessary to
employ Equation (3.5), and solve for the unit cell volume, VC , as

VC = 
nAave
ρaveNA

where A ave  and ρave  are the atomic weight and density, respectively, of the Fe-V alloy.

Inasmuch as both of these materials have the BCC crystal structure, which has cubic symmetry,
VC  is just the cube of the unit cell length, a.  That is

VC = a3 = (0.289 nm)3

= ( )2.89 x 10-8 cm
3

 = 2.414 x 10-23 cm3

It is now necessary to construct expressions for Aave and ρave in terms of the concentration of

vanadium, CV  using Equations (4.11a) and (4.10a).  For Aave we have
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Aave = 
100

CV
AV

 + 
(100 - CV)

AFe

= 
100

CV
50.94 g/mol

 + 
(100 - CV)

55.85 g/mol

whereas for ρave

ρave = 
100

CV
ρV

 + 
(100 - CV)

ρFe

= 
100

CV

6.10 g/cm3 + 
(100 - CV)

7.87 g/cm3

Within the BCC unit cell there are 2 equivalent atoms, and thus, the value of n  in Equation (3.5)

is 2;  hence, this expression may be written in terms of the concentration of V in weight percent

as follows:

VC = 2.414 x 10-23 cm3

= 
nAave
ρaveNA

= 

(2 atoms/unit cell)

 



 

100

CV
50.94 g/mol

 + 
(100 - CV)

55.85 g/mol

 





 



100

CV

6.10 g/cm3 + 
(100 - CV)

7.87g/cm3

(6.023 x 1023 atoms/mol)

And solving this expression for CV  leads to CV  = 12.9 wt%.
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CHAPTER 5

DIFFUSION

PROBLEM SOLUTIONS

5.1  Self-diffusion is atomic migration in pure metals--i.e., when all atoms exchanging positions are of

the same type.  Interdiffusion is diffusion of atoms of one metal into another metal.

5.2  Self-diffusion may be monitored by using radioactive isotopes of the metal being studied.  The

motion of these isotopic atoms may be monitored by measurement of radioactivity level.

5.3  (a)  With vacancy diffusion, atomic motion is from one lattice site to an adjacent vacancy.  Self-

diffusion and the diffusion of substitutional impurities proceed via this mechanism.  On the other

hand, atomic motion is from interstitial site to adjacent interstitial site for the interstitial diffusion

mechanism.

(b)  Interstitial diffusion is normally more rapid than vacancy diffusion because:  (1) interstitial

atoms, being smaller, are more mobile;  and (2) the probability of an empty adjacent interstitial

site is greater than for a vacancy adjacent to a host (or substitutional impurity) atom.

5.4  Steady-state diffusion is the situation wherein the rate of diffusion into a given system is just

equal to the rate of diffusion out, such that there is no net accumulation or depletion of diffusing

species--i.e., the diffusion flux is independent of time.

5.5  (a)  The driving force is that which compels a reaction to occur.

(b)  The driving force for steady-state diffusion is the concentration gradient.

5.6  This problem calls for the mass of hydrogen, per hour, that diffuses through a Pd sheet.  It first

becomes necessary to employ both Equations (5.1a) and (5.3).  Combining these expressions

and solving for the mass yields

M = JAt = - DAt 
∆C
∆x

= - (1.0 x 10-8 m2/s)(0.2 m2)(3600 s/h)
 


 
0.6 - 2.4 kg/m3

5 x 10-3 m
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= 2.6 x 10-3 kg/h

5.7  We are asked to determine the position at which the nitrogen concentration is 2 kg/m
3

.  This

problem is solved by using Equation (5.3) in the form

J = - D 
CA - CB
xA - xB

If we take C
A

 to be the point at which the concentration of nitrogen is 4 kg/m
3

, then it becomes

necessary to solve for x
B

, as

xB = xA + D  



 

CA - CB

J

Assume x
A

 is zero at the surface, in which case

xB = 0 + (6 x 10-11 m2/s) 
 


 
(4 kg/m3 - 2 kg/m3)

1.2 x 10-7 kg/m2-s

= 1 x 10-3 m = 1 mm

5.8  This problem calls for computation of the diffusion coefficient for a steady-state diffusion

situation.  Let us first convert the carbon concentrations from wt% to kg C/m3 using Equation

(4.9a).  For 0.012 wt% C

CC"  = 

 




 


CC

CC
ρC

 + 
CFe
ρFe

 x 103

= 

 




 


0.012

0.012

2.25 g/cm3 + 
99.988

7.87 g/cm3

 x 103

0.944 kg C/m3
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Similarly, for 0.0075 wt% C

CC"  = 

 




 


0.0075

0.0075

2.25 g/cm3 + 
99.9925

7.87 g/cm3

 x 103

= 0.590 kg C/m3

Now, using a form of Equation (5.3)

D = - J 
 


 
xA - xB

CA - CB

= - (1.40 x 10-8 kg/m2-s)
 


 
-10-3 m

0.944 kg/m3 - 0.590 kg/m3

= 3.95 x 10-11 m2/s

5.9  This problems asks for us to compute the diffusion flux of hydrogen gas through a 1-mm thick

plate of iron at 250°C when the pressures on the two sides are 0.15 and 7.5 MPa.  Ultimately

we will employ Equation (5.3) to solve this problem.  However, it first becomes necessary to

determine the concentration of hydrogen at each face using Equation (5.11).  At the low

pressure (or B) side

CH(B) = (1.34 x 10-2)√0.15 MPa exp ( )- 
27200 J/mol

(8.31 J/mol-K)(250 + 273 K)

9.93 x 10-6 wt%

Whereas, for the high pressure (or A) side

CH(A) = (1.34 x 10-2)√7.5 MPa exp ( )- 
27200 J/mol

(8.31 J/mol-K)(250 + 273 K)

7.02 x 10-5 wt%
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We now convert concentrations in weight percent to mass of hydrogen per unit volume of solid.

At face B  there are 9.93 x 10-6 g (or 9.93 x 10-9 kg) of hydrogen in 100 g of Fe, which is

virtually pure iron.  From the density of iron (7.87 g/cm3), the volume iron in 100 g (VB) is just

VB = 
100 g

7.87 g/cm3 = 12.7 cm3 = 1.27 x 10-5 m3

Therefore, the concentration of hydrogen at the B  face in kilograms of H per cubic meter of
alloy [CH" (B)] is just

CH" (B) = 
CH(B)

VB

= 
9.93 x 10-9 kg

1.27 x 10-5 m3 = 7.82 x 10-4 kg/m3

At the A face the volume of iron in 100 g (VA ) will also be 1.27 x 10-5 m3, and

CH" (A) = 
CH(A)

VA

= 
7.02 x 10-8 kg

1.27 x 10-5 m3 = 5.53 x 10-3 kg/m3

Thus, the concentration gradient is just the difference between these concentrations of

hydrogen divided by the thickness of the iron membrane;  that is

∆C
∆x

 = 
CH" (B) - CH" (A)

xB - xA

= 
7.82 x  10-4 kg/m3 - 5.53 x 10-3 kg/m3

 10-3 m
 = - 4.75 kg/m4

At this time it becomes necessary to calculate the value of the diffusion coefficient at 250°C

using Equation (5.8).  Thus,

D = Do exp  


 


- 
Qo
RT
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= ( )1.4 x 10-7 m2/s  exp ( )- 
13400 J/mol

(8.31 J/mol-K)(250 + 273 K)

= 6.41 x 10-9 m2/s

And, finally, the diffusion flux is computed using Equation (5.3) by taking the negative product of

this diffusion coefficient and the concentration gradient, as

J = - D 
∆C
∆x

= - (6.41 x 10-9 m2/s)(- 4.75 kg/m4) = 3.05 x 10-8 kg/m2-s

5.10  It can be shown that

Cx = 
B

√Dt
 exp -  


 
x2

4Dt

is a solution to

∂C
∂t

 = D 
∂2C

∂x2

simply by taking appropriate derivatives of the C
x

 expression.  When this is carried out,

∂C
∂t

 = D 
∂2C

∂x2 = 
B

2D1/2t3/2  


 
x2

2Dt
 - 1  exp  


 


- 
x2

4Dt

5.11  We are asked to compute the diffusion time required for a specific nonsteady-state diffusion

situation.  It is first necessary to use Equation (5.5).

Cx - Co
Cs - Co

 = 1 - erf 
 


 
x

2√Dt

wherein, C
x

 = 0.45, C
o

 = 0.20, C
s

 = 1.30, and x  = 2 mm = 2 x 10
-3

 m. Thus,
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Cx - Co
Cs - Co

 = 
0.45 - 0.20
1.30 - 0.20

 = 0.2273 = 1 - erf 
 


 
x

2√Dt

or

erf 
 


 
x

2√Dt
 = 1 - 0.2273 = 0.7727

By linear interpolation from Table 5.1

z erf(z)

0.85 0.7707

z 0.7727

0.90 0.7970

z - 0.850
0.900 - 0.850

 = 
0.7727 - 0.7707
0.7970 - 0.7707

From which

z = 0.854 = 
x

2√Dt

Now, from Table 5.2, at 1000°C (1273 K)

D = (2.3 x 10-5 m2/s) exp [ ]- 
148000 J/mol

(8.31J/mol-K)(1273 K)

= 1.93 x 10
-11

 m
2

/s

Thus,

0.854 = 
2 x 10-3 m

(2)√( )1.93 x 10-11 m2/s (t)

Solving for t yields

t = 7.1 x 10
4

 s = 19.7 h
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5.12  This problem asks that we determine the position at which the carbon concentration is 0.15
wt% after a 10-h heat treatment at 1400 K when Co  = 0.35 wt% C.  From Equation (5.5)

Cx - Co
Cs - Co

 = 
0.15 - 0.35

0 - 0.35
 =  0.5714 = 1 - erf 

 


 
x

2√Dt

Thus,

erf 
 


 
x

2√Dt
 = 0.4286

Using data in Table 5.1 and linear interpolation

z erf (z)

0.40 0.4284

z 0.4286

0.45 0.4755

z - 0.40
0.45 - 0.40

 = 
0.4286 - 0.4284
0.4755 - 0.4284

And,

z = 0.4002

Which means that
x

2√Dt
 = 0.4002

And, finally

x = 2(0.4002)√Dt = (0.8004)√(6.9 x 10-11 m2/s)(3.6 x 104 s)

= 1.26 x 10-3 m = 1.26 mm

5.13  This problem asks us to compute the nitrogen concentration (C
x

) at the 1 mm position after a

10 h diffusion time, when diffusion is nonsteady- state.  From Equation (5.5)

Cx - Co
Cs - Co

 = 
Cx - 0

0.1 - 0
 = 1 - erf 

 


 
x

2√Dt
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= 1 - erf 

 



 

10-3 m

(2)√( )2.5 x 10-11 m2/s (10 h)(3600 s/h)

= 1 - erf (0.527)

Using data in Table 5.1 and linear interpolation

z erf (z)

0.500 0.5205

0.527 y

0.550 0.5633

0.527 - 0.500
0.550 - 0.500

 = 
y - 0.5205

0.5633 - 0.5205

from which

y = erf (0.527) = 0.5436

Thus,
Cx - 0

 0.1 - 0
 = 1.0 - 0.5436

This expression gives

C
x
 = 0.046 wt% N

5.14  (a)  The solution to Fick's second law for a diffusion couple composed of two semi-infinite solids

of the same material is as follows:

Cx =  


 
C1 + C2

2
 -  


 
C1 - C2

2
 erf 

 


 
x

2√Dt

for the boundary conditions

C = C1  for x  < 0, and t = 0
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C = C2  for x  > 0, and t = 0

(b)  For this particular silver-gold diffusion couple for which C1  = 5 wt% Au and C2  = 2 wt% Au,

we are asked to determine the diffusion time at 750°C that will give a composition of 2.5 wt% Au

at the 50 µm position.  Thus, the equation in part (a) takes the form

2.5 = ( )5 + 2
2

 - ( )5 - 2
2

 erf 
 



 

50 x 10-6 m

2√Dt

It now becomes necessary to compute the diffusion coefficient at 750°C (1023 K) given that Do
= 8.5 x 10-5 m2/s and Qd = 202,100 J/mol.  From Equation (5.8) we have

D = Do exp  


 


- 
Qd
RT

= 8.5 x 10-5 m2/s exp ( )- 
202100 J/mol

(8.31 J/mol-K)(1023 K)

= 4.03 x 10-15 m2/s

Substitution of this value into the above equation leads to

2.5 = ( )5 + 2
2

 - ( )5 - 2
2

 erf 
 



 

50 x 10-6 m

2√(4.03 x 10-15 m2/s)(t)

This expression reduces to the following form:

0.6667 = erf 
 



 

393.8 √ s

√ t

Using data in Table 5.1 and linear interpolation

z erf (z)

0.650 0.6420

y 0.6667

0.700 0.6778
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y - 0.650
0.700 - 0.650

 = 
0.6667 - 0.6420
0.6779 - 0.6420

from which

y = 0.6844 = 
393.8 √ s

√ t

And, solving for t gives

t = 3.31 x 105 s = 92 h

5.15  This problem calls for an estimate of the time necessary to achieve a carbon concentration of

0.45 wt% at a point 5 mm from the surface.  From Equation (5.6b),

x2

Dt
 = constant

But since the temperature is constant, so also is D constant, and

x2

t
 = constant

or

x1
2

t1
 = 

x2
2

t2

Thus,

(2.5 mm)2

10 h
 = 

(5.0 mm)2

t2

from which
t
2

 = 40 h

5.16  We are asked to compute the diffusion coefficients of C in both α  and γ iron at 900°C.  Using

the data in Table 5.2,

Dα = (6.2 x 10-7 m2/s) exp [ ]- 
80000 J/mol

(8.31 J/mol-K)(1173 K)
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= 1.69 x 10
-10

 m
2

/s

Dγ = (2.3 x 10-5 m2/s) exp [ ]- 
148000 J/mol

(8.31 J/mol-K)(1173 K)

= 5.86 x 10
-12

 m
2

/s

The D for diffusion of C in BCC α  iron is larger, the reason being that the atomic packing

factor is smaller than for FCC γ iron (0.68 versus 0.74);  this means that there is slightly more

interstitial void space in the BCC Fe, and, therefore, the motion of the interstitial carbon atoms

occurs more easily.

5.17  This problem asks us to compute the magnitude of D for the diffusion of Zn in Cu at 650°C

(923 K).  From Table 5.2

D = (2.4 x 10-5 m2/s) exp [ ]- 
189000 J/mol

(8.31 J/mol-K)(923 K)

= 4.8 x 10
-16

 m
2

/s

5.18  We are asked to calculate the temperature at which the diffusion coefficient for the diffusion of

Cu in Ni has a value of 6.5 x 10
-17

 m
2

/s.  Solving for T from Equation (5.9a)

T = - 
Qd

R(ln D - ln Do)

and using the data from Table 5.2 for the diffusion of Cu in Ni

T = - 
256000 J/mol

(8.31 J/mol-K)[ ]ln (6.5 x 10-17) - ln (2.7 x 10-5)

= 1152 K = 879°C

5.19  For this problem we are given Do  and Qd  for the diffusion of Fe in Co, and asked to compute

the temperature at which D = 2.1 x 10-14 m2/s.  Solving for T from Equation (5.9a) yields
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T = 
Qd

R(ln Do - ln D)

= 
253300 J/mol

(8.31 J/mol-K)[ ]ln (1.1 x 10-5) - ln (2.1 x 10-14)

= 1518 K = 1245°C

5.20  In this problem we are given Qd  for the diffusion of C in Cr (i.e., 111,000 J/mol) and asked to

compute D at 1100 K given that the value of D at 1400 K is 6.25 x 10-11 m2/s.  It first becomes
necessary to solve for Do from Equation (5.8) as

Do = D exp  


 
Qd

RT

= (6.25 x 10-11 m2/s) exp [ ]111000 J/mol
(8.31 J/mol-K)(1400 K)

= 8.7 x 10-7 m2/s

Now, solving for D at 1100 K gives

D = (8.7 x 10-7 m2/s) exp [ ]- 
111000 J/mol

(8.31 J/mol-K)(1100 K)

= 4.6 x 10-12 m2/s

5.21  (a)  Using Equation (5.9a), we set up two simultaneous equations with Q
d

 and D
o

 as

unknowns.  Solving for Q
d

 in terms of temperatures T
1

 and T
2

 (1273
 
K and 1473

 
K) and D

1

and D
2

 (9.4x10
-16

 and 2.4 x 10
-14 m2/s), we get

Qd = - R 
ln D1 - ln D2
1/T1 - 1/T2

= - 
(8.31 J/mol-K)[ ]ln (9.4 x 10-16) - ln (2.4 x 10-14)

1/(1273 K) - 1/(1473 K)

= 252,400 J/mol
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Now, solving for D
o

 from Equation (5.8)

Do = D1 exp 
 



 

Qd

RT1

= (9.4 x 10-16 m2/s) exp [ ]252400 J/mol
(8.31 J/mol-K)(1273 K)

= 2.2 x 10
-5

 m
2

/s

(b)  Using these values of D
o

 and Q
d

, D at 1373
 
K is just

D = (2.2 x 10-5 m2/s) exp [ ]- 
252400 J/mol

(8.31 J/mol-K)(1373 K)

= 5.4 x 10
-15

 m
2

/s

5.22  (a)  Using Equation (5.9a), we set up two simultaneous equations with Q
d

 and D
o

 as

unknowns.  Solving for Q
d

 in terms of temperatures T
1

 and T
2

 (923
 
K [650°C] and 1173

 
K

[900°C]) and D
1

 and D
2

 (5.5 x 10
-16

 and 1.3 x  10
-13 m2/s), we get

Qd = - R   
ln D1 - ln D2
1/T1 - 1/T2

= - 
(8.31 J/mol-K)[ ]ln (5.5 x 10-16) - ln (1.3 x 10-13)

1
923 K

 - 
1

1173 K

= 196,700 J/mol

Now, solving for D
o

 from Equation (5.8)

Do = D1 exp 
 



 

Qd

RT1

= (5.5 x 10-16 m2/s) exp [ ]196700 J/mol
(8.31 J/mol-K)(923 K)
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= 7.5 x 10
-5

 m
2

/s

(b)  Using these values of D
o

 and Q
d

, D at 1148
 
K (875°C) is just

D = (7.5 x 10-5 m2/s) exp [ ]- 
196700 J/mol

(8.31 J/mol-K)(1148 K)

= 8.3 x 10
-14

 m
2

/s

5.23  This problem asks us to determine the values of Qd  and Do  for the diffusion of Fe in Cr from

the plot of log D versus 1/T.  According to Equation (5.9b) the slope of this plot is equal to -
Qd /2.3R (rather than - Qd /R since we are using log D rather than ln D) and the intercept at 1/T =

0 gives the value of log Do .  The slope is equal to

slope = 
∆(log D)

∆( )1
T

 = 
log D1 - log D2

1
T1

 - 
1

T2

Taking 1/T1 and 1/T2 as 0.65 x 10-3 and 0.60 x 10-3 K-1, respectively, then the values of log

D1 and log D2 are -15.60 and -14.74, respectively.  Therefore,

Qd = - 2.3 R 
∆(log D)

∆( )1
T

= - (2.3)(8.31 J/mol-K) 
 



 

-15.60 - (-14.74)

(0.65 x 10-3 - 0.60 x 10-3) K-1

= 329,000 J/mol

Rather than trying to make a graphical extrapolation to determine Do , a more accurate value is

obtained analytically using Equation (5.9b) taking a specific value of both D and T (from 1/T)

from the plot given in the problem;  for example, D = 1.0 x 10-15 m2/s at T = 1626 K (1/T =

0.615 x 10-3).  Therefore

Do = D exp  


 
Qd

RT
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= 1.0 x 10-15 m2/s exp [ ]329000 J/mol
(8.31 J/mol-K)(1626 K)

= 3.75 x 10-5 m2/s

5.24    This problem asks that we compute the temperature at which the diffusion flux is  1.43 x 10-9

kg/m2-s.  Combining Equations (5.3) and (5.8) yields

J = - Do 
∆C
∆x

 exp  


 


- 
Qd
RT

Solving for T from this expression leads to

T =  


 
Qd

R
 

1

ln  


 


- 
Do∆C

J∆x

= ( )80000 J/mol
8.31 J/mol-K

1

ln 
 


 
(6.2 x 10-7 m2/s)(0.35 kg/m3)

(1.43 x 10-9 kg/m2-s)(1.5 x 10-2 m)

= 1044 K = 771°C

5.25  In order to solve this problem, we must first compute the value of Do  from the data given at

1000 K;  this requires the combining of both Equations (5.3) and (5.8).  Solving for Do  from

these expressions gives

Do = - 
J

∆C/∆x
 exp  


 
Qd

RT

= - 
 



 

5.4 x 10-10 kg/m2-s

- 350 kg/m4  exp [ ]125000 J/mol
(8.31 J/mol-K)(1000 K)

= 5.26 x 10-6 m2/s

The value of the diffusion flux at 1300 K may be computed using these same two equations as

follows:
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J = - Do( )∆C
∆x

 exp  


 


- 
Qd
RT

= - (5.26 x 10-6 m2/s)(- 350 kg/m4) exp [ ]- 
125000 J/mol

(8.31 J/mol-K)(1300 K)

= 1.74 x 10-8 kg/m2-s

5.26  To solve this problem it is necessary to employ Equation (5.7) which takes on the form

(Dt)900 = (Dt)T

At 900°C, and using the data from Table 5.2

D900 = (2.3 x 10-5 m2/s) exp [ ]- 
148000 J/mol

(8.31 J/mol-K)(900 + 273 K)

= 5.9 x 10
-12

 m
2

/s

Thus,

(5.9 x 10-12 m2/s)(15 h) = DT(2 h)

And

D
T

 = 4.43 x 10
-11

 m
2

/s

Solving for T from Equation (5.9a)

T = - 
Qd

R(ln DT - ln Do)

= - 
148000 J/mol

(8.31 J/mol-K)[ ]ln (4.43 x 10-11) - ln (2.3 x 10-5)

= 1353
 
K = 1080°C

5.27  (a)  We are asked to calculate the diffusion coefficient for Cu in Al at 500°C.  Using the data in

Table 5.2
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D = Do exp  


 


- 
Qd
RT

= (6.5 x 10-5 m2/s) exp [ ]- 
136000 J/mol

(8.31 J/mol-K)(500 + 273 K)

= 4.15 x 10
-14

 m
2

/s

(b)  This portion of the problem calls for the time required at 600°C to produce the same

diffusion result as for 10 h at 500°C. Equation (5.7) is employed as

(Dt)500 = (Dt)600

Now, from Equation (5.8)

D600 = (6.5 x 10-5 m2/s) exp [ ]- 
136000 J/mol

(8.31 J/mol-K)(600 + 273 K)

= 4.69 x 10
-13

 m
2

/s

Thus,

t600 = 
(Dt)500
D600

= 
(4.15 x 10

-14
 m2/s)(10 h)

(4.69 x 10
-13

 m2/s)
 = 0.88 h

5.28  In order to determine the temperature to which the diffusion couple must be heated so as to

produce a concentration of 2.5 wt% Ni at the 2 mm position, we must first utilize Equation (5.6b)

with time t being a constant.  That is

x2

D
 = constant

Or

x2
1100

D1100
 = 

x2
T

DT
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Now, solving for DT utilizing Equation (5.8) in order to compute D1100 yields

DT = 
(x2

T) 



 



Do exp  


 


- 
Qd
RT

x2
1100

= 

(2 mm)2
 



 



(2.7 x 10-5 m2/s) exp ( )- 
256000 J/mol

(8.31 J/mol-K)(1373 K)

(3 mm)2

= 2.16 x 10-15 m2/s

We now need to find the T at which D  has this value.  This is accomplished by rearranging

Equation (5.9a) and solving for T as

T = 
Qd

R(ln Do - ln D)

= 
256000 J/mol

(8.31 J/mol-K)[ ]ln(2.7 x 10-5) - ln(2.16 x 10-15)

= 1325 K = 1052°C

5.29  In order to determine the position within the diffusion couple at which the concentration of A in

B is 3.2 wt%, we must employ Equation (5.6b) with t constant.  That is

x2

D
 = constant

Or

x2
800

D800
 = 

x2
1000

D1000

It is necessary to compute both D800 and D1000 using Equation (5.8), as follows:

D800 = (1.8 x 10-5 m2/s) exp [ ]- 
152000 J/mol

(8.31 J/mol-K)(800 K)

= 2.12 x 10-15 m2/s



91

D1000 = (1.8 x 10-5 m2/s) exp [ ]- 
152000 J/mol

(8.31 J/mol-K)(1000 K)

= 2.05 x 10-13 m2/s

Now, solving for x800 yields

x800 = x1000√D800
D1000

= (15.5 mm)√2.12 x 10-15 m2/s

2.05 x 10-13 m2/s

= 1.6 mm

5.30  In order to compute the diffusion time at 650°C to produce a carbon concentration of 0.90 wt%

at a position 1.0 mm below the surface we must employ Equation (5.6b) with position constant;

that is

Dt = constant

Or
D850t850 = D650t650

In addition, it is necessary to compute both D850 and D650 using Equation (5.8).  From Table

5.2, for the diffusion of C in α  Fe, Qd  = 80,000 J/mol and Do  = 6.2 x 10-7 m2/s.  Therefore,

D850 = (6.2 x 10-7 m2/s) exp [ ]- 
80000 J/mol

(8.31 J/mol-K)(850 + 273 K)

= 1.17 x 10-10 m2/s

D650 = (6.2 x 10-7 m2/s) exp [ ]- 
80000 J/mol

(8.31 J/mol-K)(650 + 273 K)

= 1.83 x 10-11 m2/s

Now, solving for t650 gives
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t650 = 
D850t850

D650

= 
(1.17 x 10-10 m2/s)(10 min)

1.83 x 10-11 m2/s

= 63.9 min

5.31  This problem asks us to compute the temperature at which a nonsteady-state 49.5 h diffusion

anneal was carried out in order to give a carbon concentration of 0.35 wt% C in FCC Fe at a

position 4.0 mm below the surface.  From Equation (5.5)

Cx - Co
Cs - Co

 = 
0.35 - 0.20
1.0 - 0.20

 = 0.1875 = 1 - erf 
 


 
x

2√Dt

Or

erf 
 


 
x

2√Dt
 = 0.8125

Now it becomes necessary to, using the data in Table 5.1 and linear interpolation, to determine

the value of x /2√Dt.

z erf (z)

0.90 0.7970

y 0.8125

0.95 0.8209

y - 0.90
0.95 - 0.90

 = 
0.8125 - 0.7970
0.8209 - 0.7970

From which

y = 0.9324

Thus,
x

2√Dt
 = 0.9324
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And since t = 49.5 h and x  = 4.0 mm

D = 
x2

(4t)(0.9324)2

= 
(4.0 x 10-3)2 m2

(4)(178,200 s)(0.869)
 = 2.58 x 10-11 m2/s

Now, in order to solve for the temperature at which D has the above value, we must employ

Equation (5.9a);  solving for T yields

T = 
Qd

R(ln Do - ln D)

From Table 5.2, Do  and Qd  for the diffusion of C in FCC Fe are 2.3 x 10-5 m2/s and 148,000

J/mol, respectively.  Therefore

T = 
148000 J/mol

(8.31 J/mol-K)[ ]ln(2.3 x 10-5) - ln(2.58 x 10-11)

= 1300 K = 1027°C

Design Problems

5.D1  This problem calls for us to ascertain whether or not a hydrogen-nitrogen gas mixture may be

enriched with respect to hydrogen partial pressure by allowing the gases to diffuse through an

iron sheet at an elevated temperature.  If this is possible, the temperature and sheet thickness

are to be specified;  if such is not possible, then we are to state the reasons why.  Since this

situation involves steady-state diffusion, we employ Fick's first law, Equation (5.3).  Inasmuch as

the partial pressures on the high-pressure side of the sheet are the same, and the pressure of

hydrogen on the low pressure side is five times that of nitrogen, and concentrations are
proportional to the square root of the partial pressure, the diffusion flux of hydrogen JH is the

square root of 5 times the diffusion flux of nitrogen JN--i.e.

√ 5 JH = JN
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Thus, equating the Fick's law expressions incorporating the given equations for the diffusion

coefficients and concentrations in terms of partial pressures leads to the following

√ 5 JH

= 
√ 5
∆x

 x

(584) ( )√0.1013 MPa - √0.051 MPa exp ( ) - 
27.8 kJ

RT
 (1.4 x 10-7 m2/s) exp ( )- 

13.4 kJ
RT

= JN

= 
1

∆x
 x

(2.75 x 103) ( )√0.1013 MPa - √0.01013 MPa exp ( ) - 
37.6 kJ

RT
 (3.0 x 10-7 m2/s) exp ( )- 

76.15 kJ
RT

The ∆x 's cancel out, which means that the process is independent of sheet thickness.   Now

solving the above expression for the absolute temperature T gives

T = 3694 K

which values is extremely high (surely above the vaporization point of iron).  Thus, such a

diffusion process is not possible.

5.D2  This problem calls for us to ascertain whether or not an A2-B2 gas mixture may be enriched

with respect to A partial pressure by allowing the gases to diffuse through a metal sheet at an

elevated temperature.  If this is possible, the temperature and sheet thickness are to be

specified;  if such is not possible, then we are to state the reasons why.  Since this situation

involves steady-state diffusion, we employ Fick's first law, Equation (5.3).  Inasmuch as the
partial pressures on the high-pressure side of the sheet are the same, and the pressure of A2
on the low pressure side is 2.5 times that of B2, and concentrations are proportional to the

square root of the partial pressure, the diffusion flux of A JA  is the square root of 2.5 times the

diffusion flux of nitrogen JB--i.e.

√2.5 JA = JB
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Thus, equating the Fick's law expressions incorporating the given equations for the diffusion

coefficients and concentrations in terms of partial pressures leads to the following

√2.5 JA

= 
√2.5
∆x

 x

(500) ( )√0.1013 MPa - √0.051 MPa exp ( ) - 
20.0 kJ

RT
 (5.0 x 10-7 m2/s) exp ( )- 

13.0 kJ
RT

= JB

= 
1

∆x
 x

(2.0 x 103) ( )√0.1013 MPa - √0.0203 MPa exp ( ) - 
27.0 kJ

RT
 (3.0 x 10-6 m2/s) exp ( )- 

21.0 kJ
RT

The ∆x 's cancel out, which means that the process is independent of sheet thickness.  Now

solving the above expression for the absolute temperature T gives

T = 537 K (264°C)

5.D3  This is a nonsteady-state diffusion situation; thus, it is necessary to employ Equation (5.5),

utilizing the following values for the concentration parameters:

Co = 0.002 wt% N

Cs = 0.50 wt% N

Cx = 0.10 wt% N

Therefore

Cx - Co
Cs - Co

 = 
0.10 - 0.002
0.50 - 0.002

0.1968 = 1 - erf 
 


 
x

2√Dt

And thus
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0.8032 = erf 
 


 
x

2√Dt

Using linear interpolation and the data presented in Table 5.1

z erf (z)

0.9000 0.7970

y 0.8032

0.9500 0.8209

0.8032 - 0.7970
0.8209 - 0.7970

 = 
y - 0.9000

0.9500 - 0.9000

From which

y = 
x

2√Dt
 = 0.9130

The problem stipulates that x = 0.40 mm = 4.0 x 10-4 m.  Therefore

4.0 x 10-4 m

2√Dt
 = 0.9130

Which leads to

Dt = 4.80 x 10-8 m2

Furthermore, the diffusion coefficient depends on temperature according to Equation (5.8);

and, as stipulated in the problem, Do  = 3 x 10-7 m2/s and Qd  = 76,150 J/mol.  Hence

Dt = Do exp  


 


- 
Qd
RT

(t) = 4.80 x 10-8 m2

(3.0 x 10-7 m2/s) exp [ ]- 
76150

(8.31 J/mol-K)(T)
(t) = 4.80 x 10-8 m2

And solving for the time t
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t (in s) = 
0.160

exp ( )- 
9163.7

T

Thus, the required diffusion time may be computed for some specified temperature (in K).

Below are tabulated t values for three different temperatures that lie within the range stipulated

in the problem.

_________________________________
Temperature Time

(°C) s h

_________________________________
500 22,500 6.3

550 11,000 3.1

600 5,800 1.6

__________________________________
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CHAPTER 6

MECHANICAL PROPERTIES OF METALS

PROBLEM SOLUTIONS

6.1  This problem asks that we derive Equations (6.4a) and (6.4b), using mechanics of materials

principles.  In Figure (a) below is shown a block element of material of cross-sectional area A

that is subjected to a tensile force P.  Also represented is a plane that is oriented at an angle θ

referenced to the plane perpendicular to the tensile axis;  the area of this plane is A'  = A /cos θ.

In addition, and the forces normal and parallel to this plane are labeled as P'  and V' ,

respectively.  Furthermore, on the left-hand side of this block element are shown force

components that are tangential and perpendicular to the inclined plane.  In Figure (b) are shown

the orientations of the applied stress σ, the normal stress to this plane σ', as well as the shear

stress τ ' taken parallel to this inclined plane.  In addition, two coordinate axis systems in

represented in Figure (c):  the primed x  and y  axes are referenced to the inclined plane,

whereas the unprimed x axis is taken parallel to the applied stress.

σ
σ '

τ '
θ

(b)

y

x

x'
y'

θ

(c)

θ

P'
P

Area = A

(a)

V'

A____
cos θ

A' =

θ

P cos θP sin θ

Normal and shear stresses are defined by Equations (6.1) and (6.3), respectively.

However, we now chose to express these stresses in terms (i.e., general terms) of normal and

shear forces (P and V) as

σ = 
P
A

τ = 
V
A

For static equilibrium in the x'  direction the following condition must be met:
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ΣFx' = 0

which means that

P' - P cos θ = 0

Or that

P' = P cos θ

Now it is possible to write an expression for the stress σ' in terms of P' and A'  using the above

expression and the relationship between A  and A'  [Figure (a)]:

σ' = 
P'
A'

= 
P cos θ

A
cos θ

 = 
P
A

 cos2θ

However, it is the case that P /A  = σ ;  and, after make this substitution into the above

expression, we have Equation (6.4a)--that is

σ' = σ cos2θ

Now, for static equilibrium in the y'  direction, it is necessary that

ΣFy' = 0

= -V' + P sin θ

Or

V' = P sin θ

We now write an expression for τ ' as
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τ ' = 
V'
A'

And, substitution of the above equation for V' and also the expression for A'  gives

τ ' = 
V'
A'

= 
P sin θ

A
cos θ

= 
P
A

 sin θ cos θ

= σ sin θ cos θ

which is just Equation (6.4b).

6.2 (a)  Below are plotted curves of cos2θ (for σ') and sin θ cos θ (for τ ') versus θ.
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(b)  The maximum normal stress occurs at an inclination angle of 0°.

(c)  The maximum shear stress occurs at an inclination angle of 45°.
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6.3  This problem calls for us to calculate the elastic strain that results for an aluminum specimen

stressed in tension.  The cross-sectional area is just (10 mm) x (12.7 mm) = 127 mm
2

 (= 1.27 x

10-4 m2 = 0.20 in.
2

);  also, the elastic modulus for Al is given in Table 6.1 as 69 GPa (or 69 x

109 N/m2).  Combining Equations (6.1) and (6.5) and solving for the strain yields

ε = 
σ
E

 = 
F

AoE
 = 

35500 N

(1.27 x 10-4 m2)(69 x 109 N/m2)
 = 4.1 x 10-3

6.4  We are asked to compute the maximum length of a cylindrical titanium alloy specimen that is

deformed elastically in tension.  For a cylindrical specimen

Ao = π 


 
do

2

2

where d
o

 is the original diameter.  Combining Equations (6.1), (6.2), and (6.5) and solving for lo

leads to

lo = 
Eπdo

2∆ l

4F

= 
(107 x 109 N/m2)(π)(3.8 x 10-3 m)2(0.42 x 10-3 m)

(4)(2000 N)

= 0.25 m = 250 mm (10 in.)

6.5  This problem asks us to compute the elastic modulus of steel.  For a square cross-section, A
o

 =

b
o
2

, where b
o

 is the edge length.  Combining Equations (6.1), (6.2), and (6.5) and solving for E,

leads to

E = 
Flo

bo
2∆ l

 = 
(89000 N)(100 x 10-3 m)

 (20 x 10-3 m)2(0.10 x 10-3 m)

= 223 x 109 N/m2 = 223 GPa  (31.3 x 106 psi)
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6.6  In order to compute the elongation of the Ti wire when the 500 N load is applied we must

employ Equations (6.1), (6.2), and (6.5).  Solving for ∆l and realizing that for Ti, E = 107 GPa

(Table 6.1),

∆ l  = 
Flo
EAo

 = 
Flo

Eπ 


 
do

2

2

= 
(4)(500 N)(25 m)

π(107 x 109 N/m2)(3 x 10-3 m)2
 = 0.0165 m = 16.5 mm (0.65 in.)

6.7  (a)  This portion of the problem calls for a determination of the maximum load that can be
applied without plastic deformation (F

y
).  Taking the yield strength to be 275 MPa, and

employment of Equation (6.1) leads to

Fy = σyAo = (275 x 106 N/m2)(325 x 10-6 m2)

= 89,375 N (20,000 lbf)

(b)  The maximum length to which the sample may be deformed without plastic deformation is

determined from Equations (6.2) and (6.5) as

li = lo( )1 + 
σ
E

= (115 mm)
 



 

1 + 

275 MPa

115 x 103 MPa
 = 115.28 mm (4.51 in.)

Or

∆l = li - lo = 115.28 mm - 115.00 mm = 0.28 mm (0.01 in.)

6.8  This problem asks us to compute the diameter of a cylindrical specimen to allow an elongation

of 0.50 mm.  Employing Equations (6.1), (6.2), and (6.5), assuming that deformation is entirely

elastic
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σ = 
F

Ao
 = 

F

π
 



 

do

2

4

 = E 
∆l
lo

Or

do = √4loF

πE∆l

= √(4)(380 x 10-3 m)(6660 N)

(π)(110 x 109 N/m2)(0.5 x 10-3 m)

= 7.65 x 10-3 m = 7.65 mm  (0.30 in.)

6.9  This problem asks that we calculate the elongation ∆l  of a specimen of steel the stress-strain

behavior of which is shown in Figure 6.21.  First it becomes necessary to compute the stress

when a load of 23,500 N is applied as

σ = 
F

Ao
 = 

F

π 


 
do

2

2 = 
23500 N

π 


 
10 x 10-3 m

2

2 = 300 MPa (44,400 psi)

Referring to Figure 6.21, at this stress level we are in the elastic region on the stress-strain

curve, which corresponds to a strain of 0.0013.  Now, utilization of Equation (6.2) yields

∆l = εlo = (0.0013)(75 mm) = 0.10 mm (0.004 in.)

6.10  (a)  This portion of the problem asks that the tangent modulus be determined for the gray cast

iron, the stress-strain behavior of which is shown in Figure 6.22.  The slope (i.e., ∆σ/∆ε) of a

secant drawn through this curve at 35  MPa (5000 psi) is about 100 GPa (15 x 106 psi).

(b)  The tangent modulus taken from the origin is calculated by taking the slope of the curve at

the origin, which is approximately 130 GPa (19.5 x 106 psi).

6.11  We are asked, using the equation given in the problem, to verify that the modulus of elasticity

values along [110] directions given in Table 3.3 for aluminum, copper, and iron are correct.  The

α , β, and γ parameters in the equation correspond, respectively, to the cosines of the angles

between the [110] direction and [100], [010] and [001] directions.  Since these angles are 45°,
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45°, and 90°, the values of α , β, and γ are 0.707, 0.707, and 0, respectively.  Thus, the given

equation takes the form

1
E<110>

= 
1

E<100>
 - 3

 


 
1

E<100>
 - 

1
E<111>

[ ](0.707)2(0.707)2 + (0.707)2(0)2 + (0)2(0.707)2

= 
1

E<100>
 - (0.75)

 


 
1

E<100>
 - 

1
E<111>

Utilizing the values of E<100>  and E<111>  from Table 3.3 for Al

1
E<110>

 = 
1

63.7 GPa
 - (0.75)[ ]1

63.7 GPa
 - 

1
76.1 GPa

Thus, E<110> = 72.6 GPa, which is the value given in the table.

For Cu,

1
E<110>

 = 
1

66.7 GPa
 - (0.75)[ ]1

66.7 GPa
 - 

1
191.1 GPa

from which E<110>  = 130.3 GPa, which is the value given in the table.

Similarly, for Fe

1
E<110>

 = 
1

125.0 GPa
 - (0.75)[ ]1

125.0 GPa
 - 

1
272.7 GPa

and E<110>  = 210.5 GPa, which is also the value given in the table.

6.12  This problem asks that we derive an expression for the dependence of the modulus of

elasticity, E, on the parameters A , B , and n  in Equation (6.25).  It is first necessary to take
dEN/dr  in order to obtain an expression for the force F;  this is accomplished as follows:
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F = 
dEN
dr

 = 
d( )- 

A
r

dr
 + 

d
 


 
B

rn

dr

= 
A
r2

 - 
nB

r(n + 1)

The second step is to set this dEN/dr  expression equal to zero and then solve for r (= ro).  The

algebra for this procedure is carried out in Problem 2.13, with the result that

ro = ( )A
nB

1/(1 - n)

Next it becomes necessary to take the derivative of the force (dF /dr ), which is accomplished as

follows:

dF
dr

 = 

d
 


 
A

r2

dr
 + 

d
 


 
- 

nB
r(n + 1)

dr

= - 
2A
r3

 + 
(n)(n + 1)B

r(n + 2)

Now, substitution for ro into this equation yields

( )dF
dr

ro

= - 
2A

( )A
nB

3/(1 - n)
 + 

(n)(n + 1)B

( )A
nB

(n + 2)/(1 - n)

which is the expression to which the modulus of elasticity is proportional.

6.13  This problem asks that we rank the magnitudes of the moduli of elasticity of the three

hypothetical metals X, Y, and Z.  From Problem 6.12, it was shown for materials in which the

bonding energy is dependent on the interatomic distance r  according to Equation (6.25), that

the modulus of elasticity E is proportional to

E ∝   - 
2A

( )A
nB

3/(1 - n)
 + 

(n)(n + 1)B

( )A
nB

(n + 2)/(1 - n)
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For metal X, A  = 2.5, B  = 2 x 10-5, and n  = 8.  Therefore,

E ∝  - 
(2)(2.5)

 



 

2.5

(8)(2 x 10-5)

3/(1 - 8) + 
(8)(8 + 1)(2 x 10-5)

 



 

2.5

(8)(2 x 10-5)

(8 + 2)/(1 - 8)

= 1097

For metal Y, A  = 2.3, B  = 8 x 10-6, and n  = 10.5.  Hence

E ∝  - 
(2)(2.3)

 



 

2.3

(10.5)(8 x 10-6)

3/(1 - 10.5) + 
(10.5)(10.5 + 1)(8 x 10-6)

 



 

2.3

(10.5)(8 x 10-6)

(10.5 + 2)/(1 - 10.5)

= 551

And, for metal Z, A  = 3.0, B  = 1.5 x 10-5, and n  = 9.  Thus

E ∝  - 
(2)(3.0)

 



 

3.0

(9)(1.5 x 10-5)

3/(1 - 9) + 
(9)(9 + 1)(1.5 x 10-5)

 



 

3.0

(9)(1.5 x 10-5)

(9 + 2)/(1 - 9 )

= 1024

Therefore, metal X has the highest modulus of elasticity.

6.14  (a)  We are asked, in this portion of the problem, to determine the elongation of a cylindrical

specimen of aluminum.  Using Equations (6.1), (6.2), and (6.5)

F

π
 



 

do

2

4

 = E 
∆l
lo

Or

∆l = 
4Flo

πdo
2E
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= 
(4)(48800 N)(200 x 10-3 m)

(π)(19 x 10-3 m)2(69 x 109 N/m2)
 = 0.50 mm (0.02 in.)

(b)  We are now called upon to determine the change in diameter, ∆d .  Using Equation (6.8)

ν = - 
εx
εy

 = - 
∆d/do
∆l/lo

From Table 6.1, for Al, ν = 0.33.  Now, solving for ∆d yields

∆d = - 
ν∆ldo

lo
 = - 

(0.33)(0.50 mm)(19 mm)
200 mm

= -1.6 x 10-2 mm  (-6.2 x 10-4 in.)

The diameter will decrease.

6.15  This problem asks that we calculate the force necessary to produce a reduction in diameter of

3 x  10
-3

 mm for a cylindrical bar of steel. Combining Equations (6.1), (6.5), and (6.8), realizing

that

Ao = 
πd2

o
4

  and  εx = 
∆d
do

and solving for F leads to

F = - 
do∆dπE

4ν

From Table (6.1), for steel, ν = 0.30 and E = 207 GPa.  Thus,

F = - 
(10 x 10-3 m)(-3.0 x 10-6 m)(π)(207 x 109 N/m2)

(4)(0.30)

= 16,250 N  (3770 lbf)
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6.16  This problem asks that we compute Poisson's ratio for the metal alloy.  From Equations (6.5)

and (6.1)

εz = 
σ
E

 = 
F/Ao

E
 = 

F

π 


 
do

2

2
E

 = 
4F

πdo
2E

Since the transverse strain εx is just

εx = 
∆d
do

and Poisson's ratio is defined by Equation (6.8) then

ν = - 
εx
εy

 = - 
∆d/do

 



 

4F

πdo
2E

 = - 
do∆dπE

4F

= - 
(8 x 10-3 m)(-5 x 10-6 m)(π)(140 x 109 N/m2)

(4)(15,700 N)
 = 0.280

6.17  This problem asks that we compute the original length of a cylindrical specimen that is stressed
in compression.  It is first convenient to compute the lateral strain εx  as

εx = 
∆d
do

 = 
20.025 mm - 20.000 mm

20.000 mm
 = 1.25 x 10-3

In order to determine the longitudinal strain εz we need Poisson's ratio, which may be computed

using Equation (6.9);  solving for ν yields

ν = 
E

2G
 - 1 = 

105 x 103 MPa

(2)(39.7 x 103 MPa)
 - 1 = 0.322

Now εz may be computed from Equation (6.8) as

εz = - 
εx
ν  = - 

1.25 x 10-3

0.322
 = - 3.88 x 10-3

Now solving for lo using Equation (6.2)
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lo = 
li

1 + εz

= 
74.96 mm

1 - 3.88 x 10-3 = 75.25 mm

6.18  This problem asks that we calculate the modulus of elasticity of a metal that is stressed in

tension.  Combining Equations (6.5) and (6.1) leads to

E = 
σ
εz

 = 
F/Ao

εz
 = 

F

εzπ 


 
do

2

2 = 
4F

εzπdo
2

From the definition of Poisson's ratio, [Equation (6.8)] and realizing that for the transverse strain,

εx= 
∆d
do

εz = - 
εx
ν  = - 

∆d
doν

Therefore, substitution of this expression for εz into the above equation yields

E = 
4F

εzπdo
2 = 

4Fν
πdo∆d

= 
(4)(1000 N)(0.30)

π(8 x 10-3 m)(2.8 x 10-7 m)
 = 1.705 x 1011 Pa = 170.5 GPa  (24.7 x 106 psi)

6.19  We are asked to ascertain whether or not it is possible to compute, for brass, the magnitude of

the load necessary to produce an elongation of 7.6 mm (0.30 in.).  It is first necessary to

compute the strain at yielding from the yield strength and the elastic modulus, and then the

strain experienced by the test specimen.  Then, if

ε(test) < ε(yield)

deformation is elastic, and the load may be computed using Equations (6.1) and (6.5).

However, if

ε(test) > ε(yield)
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computation of the load is not possible inasmuch as deformation is plastic and we have neither

a stress-strain plot nor a mathematical expression relating plastic stress and strain.  We

compute these two strain values as

ε(test) = 
∆l
lo

 = 
7.6 mm
250 mm

 = 0.03

and

ε(yield) = 
σy
E

 = 
275 MPa

103 x 103 MPa
 = 0.0027

Therefore, computation of the load is not possible as already explained.

6.20  (a)  This part of the problem asks that we ascertain which of the metals in Table 6.1 experience

an elongation of less than 0.072 mm when subjected to a stress of 50 MPa.  The maximum

strain which may be sustained is just

ε = 
∆l
lo

 = 
0.072 mm
150 mm

 = 4.8 x 10-4

Since the stress level is given, using Equation (6.5) it is possible to compute the minimum

modulus of elasticity which is required to yield this minimum strain.  Hence

E = 
σ
ε  = 

50 MPa

4.8 x 10-4 = 104.2 GPa

Which means that those metals with moduli of elasticity greater than this value are acceptable

candidates--namely, Cu, Ni, steel, Ti and W.

(b)  This portion of the problem further stipulates that the maximum permissible diameter

decrease is 2.3 x 10-3 mm.  Thus, the maximum possible lateral strain εx  is just

εx = 
∆d
do

 = 
- 2.3 x 10-3 mm

15.0 mm
 = -1.53 x 10-4

Since we now have maximum permissible values for both axial and lateral strains, it is possible

to determine the maximum allowable value for Poisson's ratio using Equation (6.8).  Thus

ν = - 
εx
εz

 = - 
-1.53 x 10-4

4.8 x 10-4  = 0.319
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Or, the value of Poisson's ratio must be less than 0.319.  Of the metals in Table 6.1, only steel,

Ni, and W meet both of these criteria.

6.21  (a)  This portion of the problem asks that we compute the elongation of the brass specimen.

The first calculation necessary is that of the applied stress using Equation (6.1), as

σ = 
F

Ao
 = 

F

π 


 
do

2

2
 = 

5000 N

π 


 
6 x 10-3 m

2

2
 = 177 MPa (25,000 psi)

From the stress-strain plot in Figure 6.12, this stress corresponds to a strain of about 2.0 x 10-3.

From the definition of strain, Equation (6.2)

∆l = εlo = (2.0 x 10-3)(50 mm) = 0.10 mm (4 x 10-3 in.)

(b)  In order to determine the reduction in diameter ∆d , it is necessary to use Equation (6.8) and
the definition of lateral strain (i.e., εx = ∆d/do) as follows

∆d = doεx = - doνεz = - (6 mm)(0.30)(2.0 x 10-3)

= -3.6 x 10-3 mm (-1.4 x 10-4 in.)

6.22  Elastic deformation is time-independent and nonpermanent, anelastic deformation is time-

dependent and nonpermanent, while plastic deformation is permanent.

6.23  This problem asks that we assess the four alloys relative to the two criteria presented.  The first

criterion is that the material not experience plastic deformation when the tensile load of 27,500

N is applied;  this means that the stress corresponding to this load not exceed the yield strength

of the material.  Upon computing the stress

σ = 
F

Ao
 = 

F

π 


 
do

2

2
 = 

27500 N

π 


 
10 x 10-3 m

2

2
 = 350 x 106 N/m2 = 350 MPa

Of the alloys listed in the table, the Ti and steel alloys have yield strengths greater than 350

MPa.
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Relative to the second criterion, it is necessary to calculate the change in diameter ∆d

for these two alloys.  From Equation (6.8)

ν = - 
εx
εz

 = - 
∆d/do
σ/E

Now, solving for ∆d from this expression,

∆d = - 
νσdo

E

For the steel alloy

∆d = - 
(0.27)(350 MPa)(10 mm)

207 x 103 MPa
 = - 4.57 x 10-3 mm

Therefore, the steel is a candidate.

For the Ti alloy

∆d = - 
(0.36)(350 MPa)(10 mm)

107 x 103 MPa
 = - 11.8 x 10-3 mm

Therefore, the Ti alloy is not acceptable.

6.24  This problem asks that we ascertain which of four metal alloys will not 1) experience plastic

deformation, and 2) elongate more than 0.9 mm when a tensile load is applied.  It is first

necessary to compute the stress using Equation (6.1);  a material to be used for this application

must necessarily have a yield strength greater than this value.  Thus,

σ = 
F

Ao
 = 

24500 N

π 


 
10 x 10-3 m

2

2 = 312 MPa

Of the metal alloys listed, only brass and steel have yield strengths greater than this stress.

Next, we must compute the elongation produced in both brass and steel using

Equations (6.2) and (6.5) in order to determine whether or not this elongation is less than 0.9

mm.  For brass
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∆l = 
σlo
E

 = 
(312 MPa)(380 mm)

100 x 103 MPa
 = 1.19 mm

Thus, brass is not a candidate.  However, for steel

∆l = 
σlo
E

 = 
(312 MPa)(380 mm)

207 x 103 MPa
 = 0.57 mm

Therefore, of these four alloys, only steel satisfies the stipulated criteria.

6.25  Using the stress-strain plot for a steel alloy (Figure 6.21), we are asked to determine several of

its mechanical characteristics.

(a)  The elastic modulus is just the slope of the initial linear portion of the curve;  or, from the

inset and using Equation (6.10)

E = 
σ2 - σ1
ε2 - ε1

 = 
(300 - 0) MPa

(1.20 x 10-3 - 0)
 = 250 x 103 MPa = 250 GPa  (36.3 x 106 psi)

The value given in Table 6.1 is 207  GPa.

(b)  The proportional limit is the stress level at which linearity of the stress-strain curve ends,

which is approximately 400 MPa (60,000 psi).

(c)  The 0.002 strain offset line intersects the stress-strain curve at approximately 550 MPa

(80,000 psi).

(d)  The tensile strength (the maximum on the curve) is approximately 570 MPa (82,000 psi).

6.26  We are asked to calculate the radius of a cylindrical brass specimen in order to produce an

elongation of 10.8 mm when a load of 50,000 N is applied.  It first becomes necessary to

compute the strain corresponding to this elongation using Equation (6.2) as

ε = 
∆l
lo

 = 
10.8 mm
60 mm

 = 0.18

From Figure 6.12, a stress of 420 MPa (61,000 psi) corresponds to this strain.  Since for a
cylindrical specimen, stress, force, and initial radius ro are related as

σ = 
F

πro
2
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then

ro = √ F
πσ = √50000 N

π(420 x 106 N/m2)
 = 0.0062 m = 6.2 mm (0.24 in.)

6.27  This problem asks us to determine the deformation characteristics of a steel specimen, the

stress-strain behavior of which is shown in Figure 6.21.

(a)  In order to ascertain whether the deformation is elastic or plastic, we must first compute the

stress, then locate it on the stress-strain curve, and, finally, note whether this point is on the

elastic or plastic region.  Thus,

σ = 
F

Ao
 = 

44500 N

π 


 
10 x 10-3 m

2

2
 = 565 MPa  (80,000 psi)

The 565 MPa point is past the linear portion of the curve, and, therefore, the deformation will

be both elastic and plastic.

(b)  This portion of the problem asks us to compute the increase in specimen length.  From the

stress-strain curve, the strain at 565 MPa is approximately 0.008.  Thus, from Equation (6.2)

∆l = εlo = (0.008)(500 mm) = 4 mm  (0.16 in.)

6.28  (a)  We are asked to compute the magnitude of the load necessary to produce an elongation

of 0.46 mm for the steel displaying the stress-strain behavior shown in Figure 6.21.  First,

calculate the strain, and then the corresponding stress from the plot.

ε = 
∆l
lo

 = 
0.46 mm
300 mm

 = 0.0015

This is within the elastic region;  from the inset of Figure 6.21, this corresponds to a stress of

about 320 MPa (47,500 psi).  Now,

F = σAo = σb2

in which b is the cross-section side length.  Thus,

F = (320 x 106 N/m2)(4.5 x 10-3 m)2 = 6480 N (1455 lbf)
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(b)  After the load is released there will be no deformation since the material was strained only

elastically.

6.29  This problem calls for us to make a stress-strain plot for aluminum, given its tensile load-length

data, and then to determine some of its mechanical characteristics.

(a)  The data are plotted below on two plots:  the first corresponds to the entire stress-strain

curve, while for the second, the curve extends just beyond the elastic region of deformation.
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(b)  The elastic modulus is the slope in the linear elastic region as
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E = 
∆σ
∆ε  = 

200 MPa - 0 MPa
0.0032 - 0

 = 62.5 x 103 MPa = 62.5 GPa  (9.1 x 106 psi)

(c)  For the yield strength, the 0.002 strain offset line is drawn dashed.  It intersects the stress-

strain curve at approximately 285 MPa (41,000 psi ).

(d)  The tensile strength is approximately 370 MPa (54,000 psi), corresponding to the maximum

stress on the complete stress-strain plot.

(e)  The ductility, in percent elongation, is just the plastic strain at fracture, multiplied by one-

hundred.  The total fracture strain at fracture is 0.165;  subtracting out the elastic strain (which is

about 0.005) leaves a plastic strain of 0.160.  Thus, the ductility is about 16%EL.

(f)  From Equation (6.14), the modulus of resilience is just

Ur = 
σ2

y
2E

which, using data computed in the problem yields a value of

Ur = 
(285 MPa)2

(2)(62.5 x 103 MPa)
 = 6.5 x 105 J/m3   (93.8 in.-lbf/in.3)

6.30  This problem calls for us to make a stress-strain plot for a ductile cast iron, given its tensile

load-length data, and then to determine some of its mechanical characteristics.

(a)  The data are plotted below on two plots:  the first corresponds to the entire stress-strain

curve, while for the second, the curve extends just beyond the elastic region of deformation.
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(b)  The elastic modulus is the slope in the linear elastic region as

E = 
∆σ
∆ε  = 

100 MPa - 0 psi
0.0005 - 0

 = 200 x 103 MPa = 200 GPa (29 x 106 psi)

(c)  For the yield strength, the 0.002 strain offset line is drawn dashed.  It intersects the stress-

strain curve at approximately 280 MPa (40,500 psi).

(d)  The tensile strength is approximately 410 MPa (59,500 psi), corresponding to the maximum

stress on the complete stress-strain plot.

(e)  From Equation (6.14), the modulus of resilience is just
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Ur = 
σ2

y
2E

which, using data computed in the problem yields a value of

Ur = 
( )280 x 106 N/m2 2

(2)(200 x 109 N/m2)
 = 1.96 x 105 J/m3 (28.3 in.-lbf/in.3)

(f)  The ductility, in percent elongation, is just the plastic strain at fracture, multiplied by one-

hundred.  The total fracture strain at fracture is 0.185;  subtracting out the elastic strain (which is

about 0.001) leaves a plastic strain of 0.184.  Thus, the ductility is about 18.4%EL.

6.31  This problem calls for ductility in both percent reduction in area and percent elongation.

Percent reduction in a area is computed using Equation (6.12) as

%RA = 
π 


 
do

2

2
 - π 


 
df

2

2

π 


 
do

2

2
 x 100

in which d
o

 and d
f
 are, respectively, the original and fracture cross-sectional areas.  Thus,

%RA = 
π( )12.8 mm

2

2
 - π( )6.60 mm

2

2

π( )12.8 mm
2

2  x 100 = 73.4%

While, for percent elongation, use Equation (6.11) as

%EL = 
 



 

lf - lo

lo
 x 100

= 
72.14 mm - 50.80 mm

50.80 mm
 x 100 = 42%
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6.32  This problem asks us to calculate the moduli of resilience for the materials having the stress-

strain behaviors shown in Figures 6.12 and 6.21.  According to Equation (6.14), the modulus of
resilience Ur is a function of the yield strength and the modulus of elasticity as

Ur = 
σ2

y
2E

The values for σy  and E for the brass in Figure 6.12 are 250 MPa (36,000 psi) and 93.9 GPa

(13.6 x 106 psi), respectively.  Thus

Ur = 
(250 MPa)2

(2)(93.9 x 103 MPa)
 =  3.32 x 105 J/m3  (47.6 in.-lbf/in.3)

The corresponding constants for the plain carbon steel in Figure 6.21 are 550 MPa

(80,000 psi) and 250 GPa (36.3 x 106 psi), respectively, and therefore

Ur = 
( )550 MPa

2

(2)(250 x 103 MPa)
 = 6.05 x 105 J/m3  (88.2 in.-lbf/in.3)

6.33  The moduli of resilience of the alloys listed in the table may be determined using Equation

(6.14).  Yield strength values are provided in this table, whereas the elastic moduli are tabulated

in Table 6.1.

For steel

Ur = 
σ2

y
2E

= 
( )550 x 106 N/m2 2

(2)(207 x 109 N/m2)
 = 7.31 x 105 J/m3 (107 in.-lbf/in.3)

For the brass

Ur = 
( )350 x 106 N/m2 2

(2)(97 x 109 N/m2)
 = 6.31 x 105 J/m3 (92.0 in.-lbf/in.3)

For the aluminum alloy
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Ur = 
( )250 x 106 N/m2 2

(2)(69 x 109 N/m2)
 = 4.53 x 105 J/m3 (65.7 in.-lbf/in.3)

And, for the titanium alloy

Ur = 
( )800 x 106 N/m2 2

(2)(107 x 109 N/m2)
 = 30.0 x 105 J/m3 (434 in.-lbf/in.3)

6.34  The modulus of resilience, yield strength, and elastic modulus of elasticity are related to one

another through Equation (6.14);  the value of E for brass given in Table 6.1 is 97 GPa.  Solving
for σy from this expression yields

σy = √2UrE = √(2)(0.75 MPa)(97 x 103 MPa)

= 381 MPa  (55,500 psi)

6.35  (a)  In the schematic plot shown below, curve (1) represents the tensile true stress-strain

behavior for a typical metal alloy.
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(b)  The compressive stress-strain behavior is also represented by curve (1), which is virtually the

same as that for the tensile behavior inasmuch as both compressive and tensile true stress take

into account the cross-sectional area over which deformation is occurring (i.e., within the neck

region for tensile behavior).
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(c)  Curve (2) in this plot represents the compression engineering stress-strain behavior for this

same alloy;  this curve lies below curve (1) which is for compression true stress and strain.  The
reason for this is that during compression the cross-sectional area is increasing (that is, Ai > Ao),

and since σ = F/Ao and σT = F/A i, then it follows that σT < σ.

6.36  To show that Equation (6.18a) is valid, we must first rearrange Equation (6.17) as

Ai = 
Aolo

li

Substituting this expression into Equation (6.15) yields

σT = 
F
Ai

 = 
F

Ao 



 

li

lo
 = σ

 



 

li

lo

But, from Equation (6.2)

ε = 
li
lo

 - 1

Or
li
lo

 = ε + 1

Thus,

σT = σ
 



 

li

lo
 = σ(ε + 1)

For Equation (6.18b)

εT = ln(1 + ε)

is valid since

εT = ln 
 



 

li

lo

and
li
lo

 = ε + 1
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from above.

6.37  This problem asks us to demonstrate that true strain may also be represented by

εT = ln 
 



 

Ao

Ai

Rearrangement of Equation (6.17) leads to

li
lo

 = 
Ao
Ai

Thus, Equation (6.16) takes the form

εT = ln 
 



 

li

lo
 = ln 

 



 

Ao

Ai

The expression εT = ln 
 



 

Ao

Ai
 is more valid during necking because Ai is taken as the area of the

neck.

6.38  These true stress-strain data are plotted below.
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6.39  We are asked to compute the true strain that results from the application of a true stress of

600 MPa (87,000 psi);  other true stress-strain data are also given.  It first becomes necessary

to solve for n  in Equation (6.19).  Taking logarithms of this expression and after rearrangement

we have

n = 
log σT - log K

log εT

= 
log (575 MPa) - log (860 MPa)

log (0.2)
 = 0.250

Expressing εT as the dependent variable, and then solving for its value from the data stipulated

in the problem, leads to

εT =  


 
σT

K

1/n
 = ( )600 MPa

860 MPa

1/0.25
 = 0.237

6.40  We are asked to compute how much elongation a metal specimen will experience when a true

stress of 325 MPa is applied, given the value of n  and that a given true stress produces a

specific true strain.  Solution of this problem requires that we utilize Equation (6.19).  It is first

necessary to solve for K  from the given true stress and strain.  Rearrangement of this equation

yields

K = 
σT

(εT)n
 = 

415 MPa
(0.475)0.25 = 500 MPa (72,500 psi)

Next we must solve for the true strain produced when a true stress of 415 MPa is applied, also

using Equation (6.19).  Thus

εT =  


 
σT

K

1/n
 = ( )325 MPa

500 MPa

1/0.25
 = 0.179 = ln 

 



 

li

lo

Now, solving for li gives

li = loe0.179 = (300 mm)e0.179 = 358.8 mm (14.11 in.)

And finally, the elongation ∆l is just
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∆l = li - lo = 358.8 mm - 300 mm = 58.8 mm (2.31 in.)

6.41  For this problem, we are given two values of εT and σT,
 
from which we are asked to calculate

the true stress which produces a true plastic strain of 0.25.  Employing Equation (6.19), we may

set up two simultaneous equations with two unknowns (the unknowns being K  and n), as

log (50,000 psi) = log K + n log (0.10)

log (60,000 psi) = log K + n log (0.20)

From these two expressions,

n = 
log (50,000) - log (60,000)

log (0.1) - log (0.2)
 = 0.263

log K = 4.96 or K = 91,623 psi

Thus, for εT = 0.25

σT = K(εT)2 = (91,623 psi)(0.25)0.263 = 63,700 psi (440 MPa)

6.42  For this problem we first need to convert engineering stresses and strains to true stresses and
strains so that the constants K  and n  in Equation (6.19) may be determined.  Since σT = σ(1 +

ε) then

σT1
 = (235 MPa)(1 + 0.194) = 280 MPa

σT2
 = (250 MPa)(1 + 0.296) = 324 MPa

Similarly for strains, since εT = ln(1 + ε) then

εT1
 = ln(1 + 0.194) = 0.177

εT2
 = ln(1 + 0.296) = 0.259
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Taking the logarithm of Equation (6.19), we get

log σT = log K + n log εT

which allows us to set up two simultaneous equations for the above pairs of true stresses and

true strains, with K  and n as unknowns.  Thus

log(280) = log K + n log(0.177)

log(324) = log K + n log(0.259)

Solving for these two expressions yields K  = 543 MPa and n  = 0.383.

Now, converting ε = 0.25 to true strain

εT = ln(1 + 0.25) = 0.223

The corresponding σT to give this value of εT is just

σT = KεT
n = (543 MPa)(0.223)0.383 = 306 MPa

Now converting this σT to an engineering stress

σ = 
σT

1 + ε = 
306 MPa
1 + 0.25

 = 245 MPa

6.43  This problem calls for us to compute the toughness (or energy to cause fracture).  The easiest

way to do this is to integrate both elastic and plastic regions, and then add them together.

Toughness = ∫
 

 
 σdε

= ∫
0

0.01
 Eεdε + ∫

0.01

0.75

 Kεndε

= 
Eε2

2 
0

0.01 
+ 

K
(n + 1)

 ε(n + 1)
0.10

0.75
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= 
172 x 109 N/m2

2
 (0.01)2 + 

6900 x 106 N/m2

(1.0 + 0.3)
[ ](0.75)1.3 - (0.01)1.3

=  3.65 x 109 J/m3  (5.29 x 105 in.-lbf/in.3)

6.44  This problem asks that we determine the value of εT for the onset of necking assuming that

necking begins when

dσT
dεT

 = σT

Let us take the derivative of Equation (6.19), set it equal to σT, and then solve for εT from the

resulting expression.  Thus

d[ ]K(εT)n

dεT
 = Kn(εT)(n - 1) = σT

However, from Equation (6.19) σT = K(εT)n , which, when substituted into the above expression,

yields

Kn(εT)(n - 1) = K(εT)n

Now solving for εT from this equation leads to

εT = n

as the value of the true strain at the onset of necking.

6.45  This problem calls for us to utilize the appropriate data from Problem 6.29 in order to determine
the values of n  and K  for this material.  From Equation (6.19) the slope and intercept of a log σT
versus log εT plot will yield n  and log K , respectively.  However, Equation (6.19) is only valid in

the region of plastic deformation to the point of necking;  thus, only the 7th, 8th, 9th, and 10th

data points may be utilized.  The log-log plot with these data points is given below.
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The slope yields a value of 0.136 for n , whereas the intercept gives a value of 2.7497 for log K ,

and thus K  = 562 MPa.

6.46  (a)  In order to compute the final length of the brass specimen when the load is released, it first

becomes necessary to compute the applied stress using Equation (6.1);  thus

σ = 
F

Ao
 = 

F

π 


 
do

2

2 = 
6000 N

π 


 
7.5 x 10-3 m

2

2 = 136 MPa (19,000 psi)

Upon locating this point on the stress-strain curve (Figure 6.12), we note that it is in the linear,

elastic region;  therefore, when the load is released the specimen will return to its original length

of 90 mm (3.54 in.).

(b)  In this portion of the problem we are asked to compute the final length, after load release,
when the load is increased to 16,500 N (3700 lbf).  Again, computing the stress

σ = 
16500 N

π 


 
7.5 x 10-3 m

2

2 = 373 MPa (52,300 psi)

The point on the stress-strain curve corresponding to this stress is in the plastic region.  We are

able to estimate the amount of permanent strain by drawing a straight line parallel to the linear
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elastic region;  this line intersects the strain axis at a strain of about 0.08 which is the amount of
plastic strain.  The final specimen length l i may be determined from Equation (6.2) as

li = lo(1 + ε) = (90 mm)(1 + 0.08) = 97.20 mm (3.82 in.)

6.47  (a)  We are asked to determine both the elastic and plastic strains when a tensile force of
33,400 N (7500 lbf) is applied to the steel specimen and then released.  First it becomes

necessary to determine the applied stress using Equation (6.1);  thus

σ = 
F

Ao
 = 

F
bodo

where bo and do are cross-sectional width and depth (19 mm and 3.2 mm, respectively).  Thus

σ = 
33400 N

(19 x 10-3 m)(3.2 x 10-3 m)
 = 550 MPa (80,000 psi)

From the inset portion of the figure, this point is in the plastic region so there will be both elastic
and plastic strains present.  The total strain at this point, εt , is about 0.005.  We are able to

estimate the amount of permanent strain recovery εe from Hooke's law, Equation (6.5) as

εe = 
σ
E

And, since E = 207 GPa for steel (Table 6.1)

εe = 
550 MPa

207 x 103 MPa
 = 0.0027

The value of the plastic strain, εp  is just the difference between the total and elastic strains;  that

is

εp = εt - εe = 0.0050 - 0.0027 = 0.0023

(b)  If the initial length is 460 mm (18 in.) then the final specimen length l i may be determined

from Equation (6.2) using the plastic strain value as

li = lo(1 + εp) = (460 mm)(1 + 0.0023) = 461.1 mm (18.05 in.)
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6.48  (a)  We are asked to compute the Brinell hardness for the given indentation.  It is necessary to

use the equation in Table 6.4 for HB, where P = 500 kg, d  = 1.62 mm, and D = 10 mm.  Thus,

the Brinell hardness is computed as

HB = 
2P

πD[ ]D - √D2 - d2

= 
(2)(500 kg)

(π)(10 mm)[ ]10 mm - √(10 mm)2 - (1.62 mm)2
 = 241

(b)  This part of the problem calls for us to determine the indentation diameter d  which will yield

a 450 HB when P = 500 kg.  Solving for d  from this equation in Table 6.4 gives

d = √D2 - [ ]D - 
2P

(HB)πD

2

= √(10 mm)2 - [ ]10 mm - 
(2)(500 kg)

(450)(π)(10 mm)

2
 = 1.19 mm

6.49  This problem calls for estimations of Brinell and Rockwell hardnesses.

(a)  For the brass specimen, the stress-strain behavior for which is shown in Figure 6.12, the

tensile strength is 450 MPa (65,000 psi).  From Figure 6.19, the hardness for brass

corresponding to this tensile strength is about 125 HB or 70 HRB.

(b)  The plain carbon steel (Figure 6.21) has a tensile strength of about 570 MPa (82,000 psi).

This corresponds to a hardness of about 170 HB or 91 HRB from the line for steels in Figure

6.19.

6.50  This problem calls for us to specify expressions similar to Equations (6.20a) and (6.20b) for

nodular cast iron and brass.  These equations, for a straight line, are of the form

TS = C + (E)(HB)

where TS is the tensile strength, HB  is the Brinell hardness, and C and E are constants, which

need to be determined.
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One way to solve for C and E is analytically--establishing two equations from TS and HB

data points on the plot, as

(TS)1 = C + (E)(BH)1
(TS)2 = C + (E)(BH)2

Solving for E  from these two expressions yields

E = 
(TS)1 - (TS)2
(HB)2 - (HB)1

For nodular cast iron, if we make the arbitrary choice of (HB)1 and (HB)2 as 200 and

300, respectively, then, from Figure 6.18, (TS)1 and (TS)2 take on values of 87,000 psi (600

MPa) and 160,000 psi (1100 MPa), respectively.  Substituting these values into the above

expression and solving for E gives

E = 
87000 psi - 160000 psi

200 HB - 300 HB
 = 730 psi/HB (5.0 MPa/HB)

Now, solving for C yields

C = (TS)1 - (E)(BH)1

= 87,000 psi - (730 psi/HB)(200 HB) = -59,000 psi (-400 MPa)

Thus, for nodular cast iron, these two equations take the form

TS(psi) = -59,000 + 730 x HB

TS(MPa) = -400 + 5.0 x HB

Now for brass, we take (HB)1 and (HB)2 as 100 and 200, respectively, then, from Figure

6.18, (TS)1 and (TS)2 take on values of 54,000 psi (370 MPa) and 95,000 psi (660 MPa),

respectively.  Substituting these values into the above expression and solving for E gives

E = 
54000 psi - 95000 psi

100 HB - 200 HB
 = 410 psi/HB (2.9 MPa/HB)

Now, solving for C yields
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C = (TS)1 - (E)(BH)1

= 54,000 psi - (410 psi/HB)(100 HB) = 13,000 psi (80 MPa)

Thus, for brass these two equations take the form

TS(psi) = 13,000 + 410 x HB

TS(MPa) = 80 + 2.9 x HB

6.51  The five factors that lead to scatter in measured material properties are the following:  1) test

method;  2) variation in specimen fabrication procedure;  3) operator bias;  4) apparatus

calibration;  and 5) material inhomogeneities and/or compositional differences.

6.52  The average of the given hardness values is calculated using Equation (6.21) as

HRB
___

 = 

∑
i=1

15

 HRBi

15

= 
83.3 + 88.3 + 82.8 . . . . + 86.3

15
 = 85.3

And we compute the standard deviation using Equation (6.22) as follows:

s = √∑i=1

15

 


 


HRBi - HRB
___ 2

15 - 1

=  


 
( )83.3 - 85.3

2
 + ( )88.3 - 85.3

2
 + . . .+( )86.3 - 85.3

2

14

1/2

= √60.31
14

 = 2.08



132

6.53  The criteria upon which factors of safety are based are 1) consequences of failure, 2) previous

experience, 3) accuracy of measurement of mechanical forces and/or material properties, and

4) economics.

6.54  The working stresses for the two alloys the stress-strain behaviors of which are shown in

Figures 6.12 and 6.21 are calculated by dividing the yield strength by a factor of safety, which
we will take to be 2.  For the brass alloy (Figure 6.12), since σy  = 250 MPa (36,000 psi), the

working stress is 125 MPa (18,000 psi), whereas for the steel alloy (Figure 6.21), σy  = 570 MPa

(82,000 psi), and, therefore, σw  = 285 MPa (41,000 psi).

Design Problems

6.D1  For this problem the working stress is computed using Equation (6.24) with N = 2, as

σw = 
σy
2

 = 
1030 MPa

2
 = 515 MPa (75,000 psi )

Since the force is given, the area may be determined from Equation (6.1), and subsequently
the original diameter do  may be calculated as

Ao = 
F

σw
 = π 


 
do

2

2

And

do = √4F
πσw

 = √(4)(11100 N)

π(515 x 106 N/m2)

= 5.23 x 10-3 m = 5.23 mm (0.206 in.)

6.D2  (a)  This portion of the problem asks for us to compute the wall thickness of a thin-walled

cylindrical Ni tube at 300°C through which hydrogen gas diffuses.  The inside and outside

pressures are, respectively, 1.013 and 0.01013 MPa, and the diffusion flux is to be no greater

than 1 x 10-7 mol/m2-s.  This is a steady-state diffusion problem, which necessitates that we

employ Equation (5.3).  The concentrations at the inside and outside wall faces may be

determined using Equation (6.28), and, furthermore, the diffusion coefficient is computed using

Equation (5.8).  Solving for ∆x
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∆x = - 
D∆C

J

= 
1

1 x 10-7 mol/m2/s
 x

(4.76 x 10-7) exp ( )- 
39560 J/mol

(8.31 J/mol-K)(300 + 273 K)
 x

(30.8) exp( )- 
12300 J/mol

(8.31 J/mol-K)(300 + 273 K)
( )√1.013 MPa - √0.01013 MPa

= 0.0025 m = 2.5 mm

(b)  Now we are asked to determine the circumferential stress:

σ = 
∆pr
4∆x

= 
(1.013 MPa - 0.01013 MPa)(0.1 m)

(4)(0.0025 m)

= 10 MPa

(c)  Now we are to compare this value of stress to the yield strength of Ni at 300°C, from which it

is possible to determine whether or not the 2.5 mm wall thickness is suitable.  From the

information given in the problem, we may write an equation for the dependence of yield

strength on temperature as follows:

σy = 100 MPa - 0.1 MPa (T - 20)

for temperature in degrees Celsius.  Thus, at 300°C

σy = 100 MPa - 0.1 MPa (300 - 20) = 72 MPa

Inasmuch as the circumferential stress (10 MPa) is much less than the yield strength (72 MPa),

this thickness is entirely suitable.
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(d)  And, finally, this part of the problem asks that we specify how much this thickness may be

reduced and still retain a safe design.  Let us use a working stress by dividing the yield stress by

a factor of safety, according to Equation (6.24).  On the basis of our experience, let us use a

value of 2.0 for N.  Thus

σw = 
σy
N

 = 
72 MPa

2
 = 36 MPa

Using this value for σw  and Equation (6.30), we now compute the tube thickness as

∆x = 
r∆p
4σw

(0.1 m)(1.013 MPa - 0.01013 MPa)
4(36 MPa)

= 0.0007 m = 0.7 mm

Substitution of this value into Fick's first law we calculate the diffusion flux as follows:

J = - D 
∆C
∆x

= (4.76 x 10-7) exp ( )- 
39560 J/mol

(8.31 J/mol-K)(300 + 273 K)
 x

(30.8) exp( )- 
12300 J/mol

(8.31 J/mol-K)(300 + 273 K)
( )√1.013 MPa - √0.01013 MPa

0.0007 m

= 3.63 x 10-7 mol/m2-s

Thus, the flux increases by approximately a factor of 3.5, from 1 x 10-7 to 3.63 x 10-7 mol/m2-s

with this reduction in thickness.

6.D3  This problem calls for the specification of a temperature and cylindrical tube wall thickness that

will give a diffusion flux of 5 x 10-8 mol/m2-s for the diffusion of hydrogen in nickel;  the tube

radius is 0.125 m and the inside and outside pressures are 2.026 and 0.0203 MPa,

respectively.  There are probably several different approaches that may be used;  and, of

course, there is not one unique solution.  Let us employ the following procedure to solve this
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problem:  1)  assume some wall thickness, and, then, using Fick's first law for diffusion [which

also employs Equations (5.3) and (5.8)], compute the temperature at which the diffusion flux is

that required;  2)  compute the yield strength of the nickel at this temperature using the

dependence of yield strength on temperature as stated in Problem 6.D2;  3)  calculate the

circumferential stress on the tube walls using Equation (6.30);  and 4)  compare the yield

strength and circumferential stress values--the yield strength should probably be at least twice

the stress in order to make certain that no permanent deformation occurs.  If this condition is

not met then another iteration of the procedure should be conducted with a more educated

choice of wall thickness.

As a starting point, let us arbitrarily choose a wall thickness of 2 mm (2 x 10-3 m).  The

steady-state diffusion equation, Equation (5.3), takes the form

J = - D 
∆C
∆x

= 5 x 10-8 mol/m2-s

= (4.76 x 10-7) exp ( )- 
39560 J/mol

(8.31 J/mol-K)(T)
 x

(30.8) exp( )- 
12300 J/mol

(8.31 J/mol-K)(T)
( )√2.026 MPa - √0.0203 MPa

0.002 m

Solving this expression for the temperature T gives T = 514 K = 241°C.

The next step is to compute the stress on the wall using Equation (6.30);  thus

σ = 
r∆p
4∆x

= 
(0.125 m)(2.026 MPa - 0.0203 MPa)

(4)(2 x 10-3 m)

= 31.3 MPa

Now, the yield strength of Ni at this temperature may be computed as

σy = 100 MPa - 0.1 MPa (241°C - 20°C) = 77.9 MPa
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Inasmuch as this yield strength is greater than twice the circumferential stress, wall thickness

and temperature values of 2 mm and 241°C are satisfactory design parameters.
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CHAPTER 7

DISLOCATIONS AND STRENGTHENING MECHANISMS

PROBLEM SOLUTIONS

7.1  The dislocation density is just the total dislocation length per unit volume of material (in this case

per cubic millimeters).  Thus, the total length in 1000 mm
3

 of material having a density of 10
4

mm
-2

 is just

(104 mm-2)(1000 mm3) = 107 mm = 104 m = 6.2 mi

Similarly, for a dislocation density of 10
10

 mm
-2

, the total length is

(1010 mm-2)(1000 mm3) = 1013 mm = 1010 m = 6.2 x 106 mi

7.2  When the two edge dislocations become aligned, a planar region of vacancies will exist between

the dislocations as:

7.3  It is possible for two screw dislocations of opposite sign to annihilate one another if their

dislocation lines are parallel.  This is demonstrated in the figure below.
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7.4  For the various dislocation types, the relationships between the direction of the applied shear

stress and the direction of dislocation line motion are as follows:

edge dislocation--parallel

screw dislocation--perpendicular

mixed dislocation--neither parallel nor perpendicular

7.5  (a)  A slip system is a crystallographic plane, and, within that plane, a direction along which

dislocation motion (or slip) occurs.

(b)  All metals do not have the same slip system.  The reason for this is that for most metals, the

slip system will consist of the most densely packed crystallographic plane, and within that plane

the most closely packed direction.  This plane and direction will vary from crystal structure to

crystal structure.

7.6  (a)  For the FCC crystal structure, the planar density of the (110) plane was determined to be

0.56 in Example Problem 3.9;  furthermore, the planar densities of the (100) and (111) planes

are calculated in Homework Problem 3.44, to be 0.79 and 0.91, respectively.

(b)  For the BCC crystal structure, the planar densities of the (100) and (110) planes were

determined in Homework Problem 3.45 to be 0.59 and 0.83, respectively.

For the (111) plane, that portion of the plane that passes through a BCC unit cell forms

a triangle as shown below.
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R

x

y

In terms of the atomic radius R, the length of the triangle base, x, is 
4R√ 2

√ 3
, whereas the height,

y, is 
4R

√ 2
.  Therefore, the area of this triangle, denoted as Ap , is

Ap = 
1
2

xy = 
1
2 



 

4R√ 2

√ 3  


 
4R

√ 2
 = 

8R2

√ 3

Now it becomes necessary to determine the number of equivalent atoms residing within

this plane.  One-sixth of each corner atom of the triangle belongs to the unit cell, and since

there are three corner atoms, these represent the equivalent of 1/2 of an atom.  Furthermore,

this (111) plane passes through only a portion of the center atom within the unit cell, which is

situated within the center of the triangle;  its radius is 0.75R.  Hence

Ac = 0.5(πR2) + π(0.75R)2 = 1.06πR2

and

PD = 
Ac
Ap

 = 
1.06πR2

8R2

√ 3

 = 0.72

7.7  Below is shown the atomic packing for a BCC {110} type plane.  The arrows indicate two

different <111> type directions.
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7.8  Below is shown the atomic packing for an HCP {0001} type plane.  The arrows indicate three

different <112
_

0> type directions.

7.9  Resolved shear stress  is the shear component of an applied tensile (or compressive) stress

resolved along a slip plane that is other than perpendicular or parallel to the stress axis.  The

critical resolved shear stress  is the value of resolved shear stress at which yielding begins;  it

is a property of the material.

7.10  We are asked to compute the Schmid factor  for an FCC crystal oriented with its [100] direction

parallel to the loading axis.  With this scheme, slip may occur on the (111) plane and in the

[11
_

0] direction as noted in the figure below.
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x

y

z

[100]
λ

φ

[111]

[110]
_

The angle between the [100] and [11
_

0] directions, λ , is 45°.  For the (111) plane, the

angle between its normal (which is the [111] direction) and the [100] direction, φ, is tan-1  


 
a√ 2

a

= 54.74°, therefore

cos λ cos φ = cos(45°)cos(54.74°) = 0.408

7.11  This problem calls for us to determine whether or not a metal single crystal having a specific

orientation and of given critical resolved shear stress will yield.  We are given that φ = 43.1°, λ =

47.9°, and that the values of the critical resolved shear stress and applied tensile stress are 20.7

MPa (3000 psi) and 45 MPa (6500 psi), respectively.  From Equation (7.1)

τR = σ cos φ cos λ = (45 MPa)(cos 43.1°)(cos 47.9°) = 22.0 MPa  (3181 psi)

Since the resolved shear stress (22 MPa) is greater that the critical resolved shear stress (20.7

MPa), the single crystal will yield.

7.12  We are asked to compute the critical resolved shear stress for Al.  As stipulated in the problem,

φ = 28.1°, while possible values for λ are 62.4°, 72.0°, and 81.1°.

(a)  Slip will occur along that direction for which (cos φ cos λ) is a maximum, or, in this case, for

the largest cos λ.  The cosines for the possible λ values are given below.

cos(62.4°) = 0.46

cos(72.0°) = 0.31

cos(81.1°) = 0.15
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Thus, the slip direction is at an angle of 62.4° with the tensile axis.

(b)  From Equation (7.3), the critical resolved shear stress is just

τcrss = σy(cos φ cos λ)max

= (1.95 MPa)[ ]cos(28.1°)cos(62.4°)  = 0.80 MPa  (114 psi)

7.13  This problem asks that we compute the critical resolved shear stress for silver.  In order to do

this, we must employ Equation (7.3), but first it is necessary to solve for the angles λ and φ from

the sketch below.

Direction normal to
(111) plane

(111) Plane
(Slip Plane)

[101] Direction
-

(Slip Direction)

[001] Direction

x

z

y

A

B

λ

φ

O

If the unit cell edge length is a, then

λ = tan-1 ( )a
a

 = 45°

For the angle φ, we must examine the triangle OAB .  The length of line OA
__

 is just a, whereas,

the length of AB
__

 is a√ 2.  Thus,

φ = tan-1  


 
a√ 2

a
 = 54.7°

And, finally

τcrss = σy(cos φ cos λ)
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= (1.1 MPa)[ ]cos(54.7°)cos(45°)  = 0.45 MPa  (65.1 psi)

7.14  In order to determine the maximum possible yield strength for a single crystal of Fe pulled in

tension, we simply employ Equation (7.4) as

σy = 2τcrss = (2)(27 MPa) = 54 MPa  (8000 psi)

7.15  Four major differences between deformation by twinning and deformation by slip are as

follows:  1) with slip deformation there is no crystallographic reorientation, whereas with twinning

there is a reorientation;  2) for slip, the atomic displacements occur in atomic spacing multiples,

whereas for twinning, these displacements may be other than by atomic spacing multiples;  3)

slip occurs in metals having many slip systems, whereas twinning occurs in metals having

relatively few slip systems;  and 4) normally slip results in relatively large deformations, whereas

only small deformations result for twinning.

7.16  Small-angle grain boundaries are not as effective in interfering with the slip process as are

high-angle grain boundaries because there is not as much crystallographic misalignment in the

grain boundary region for small-angle, and therefore not as much change in slip direction.

7.17  Hexagonal close packed metals are typically more brittle than FCC and BCC metals because

there are fewer slip systems in HCP.

7.18  These three strengthening mechanisms are described in Sections 7.8, 7.9, and 7.10.

7.19  (a)  Perhaps the easiest way to solve for σo  and k
y

 in Equation (7.5) is to pick two values each

of σy and d
-1/2

 from Figure 7.15, and then solve two simultaneous equations, which may be set

up.  For example

d-1/2 (mm)-1/2 σy (MPa)

4 75

12 175

The two equations are thus
75 = σo + 4ky
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175 = σo + 12ky

These yield the values of

ky = 12.5 MPa(mm)1/2  [ ]1810 psi(mm)1/2

σo = 25 MPa  (3630 psi)

(b)  When d = 1.0 x 10
-3

 mm, d
-1/2

 = 31.6 mm
-1/2

, and, using Equation (7.5),

σy = σo + kyd-1/2

= (25 MPa) + [ ]12.5 MPa(mm)1/2 (31.6 mm-1/2) = 420 MPa  (61,000 psi)

7.20  We are asked to determine the grain diameter for an iron which will give a yield strength of 205

MPa (30,000 psi).  The best way to solve this problem is to first establish two simultaneous
expressions of Equation (7.5), solve for σo  and k

y
, and finally determine the value of d  when σy

= 205 MPa.  The data pertaining to this problem may be tabulated as follows:

σy d (mm) d-1/2 (mm)-1/2

135 MPa 5 x 10
-2

4.47

260 MPa 8 x 10
-3

11.18

The two equations thus become

135 MPa = σo + (4.47)ky
260 MPa = σo + (11.18)ky

Which yield the values, σo  = 51.7 MPa and k
y

 = 18.63 MPa(mm)
1/2

.  At a yield strength of 205

MPa

205 MPa = 51.7 MPa + [ ]18.63 MPa(mm)1/2 d-1/2

or d
-1/2

 = 8.23 (mm)
-1/2

, which gives d  = 1.48 x 10
-2

 mm.
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7.21  This problem asks that we determine the grain size of the brass for which is the subject of

Figure 7.19.  From Figure 7.19(a), the yield strength of brass at 0%CW is approximately 175

MPa (26,000 psi).  This yield strength from Figure 7.15 corresponds to a d
-1/2

 value of

approximately 12.0       (mm)
-1/2

.  Thus, d  = 6.9 x 10
-3

 mm.

7.22  Below is shown an edge dislocation and where an interstitial impurity atom would be located.

Compressive lattice strains are introduced by the impurity atom.  There will be a net reduction in

lattice strain energy when  these lattice strains partially cancel tensile strains associated with the

edge dislocation;  such tensile strains exist just below the bottom of the extra half-plane of

atoms (Figure 7.4).

Interstitial Impurity
Atom

7.23  The hardness measured from an indentation that is positioned very close to a preexisting

indentation will be high.  The material in this vicinity was cold-worked when the first indentation

was made.

7.24  (a)  We are asked to show, for a tensile test, that

%CW = ( )ε
ε + 1

 x 100

From Equation (7.6)

%CW = 
 


 
Ao - Ad

Ao
 x 100 = 

 


 
1 - 

Ad
Ao

 x 100

Which is also equal to

 


 
1 - 

lo
ld

 x 100
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since A
d

/A
o

 = lo /ld , the conservation of volume stipulation in the problem.  Now, from the

definition of engineering strain [Equation (6.2)]

ε = 
ld - lo

lo
 = 

ld
lo

 - 1

Or,
lo
ld

 = 
1

ε + 1

Substitution in the %CW expression above gives

%CW = 
 


 
1 - 

lo
ld

 x 100 = [ ]1 - 
1

ε + 1
 x 100 = [ ]ε

ε + 1
 x 100

(b)  From Figure 6.12, a stress of 400 MPa (58,000 psi) corresponds to a strain of 0.13.  Using

the above expression

%CW = [ ]ε
ε + 1

 x 100 = [ ]0.13
0.13 + 1.00

 x 100 = 11.5%CW

7.25  In order for these two cylindrical specimens to have the same deformed hardness, they must

be deformed to the same percent cold work.  For the first specimen

%CW = 
Ao - Ad

Ao
 x 100 = 

πro
2 - πrd

2

πro
2  x 100

= 
π(16 mm)2 - π(11 mm)2

π(16 mm)2
 x 100 = 52.7%CW

For the second specimen, the deformed radius is computed using the above equation and
solving for rd as

rd = ro√1 - 
%CW
100

= (12 mm)√1 - 
52.7%CW

100
 = 8.25 mm
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7.26  We are given the original and deformed cross-sectional dimensions for two specimens of the

same metal, and are then asked to determine which is the hardest after deformation.  The

hardest specimen will be the one that has experienced the greatest degree of cold work.

Therefore, all we need do is to compute the %CW for each specimen using Equation (7.6).  For

the circular one

%CW = 
 


 
Ao - Ad

Ao
 x 100

= 

 




 


π( )15.2 mm

2

2
 - π( )11.4 mm

2

2

π( )15.2 mm
2

2  x 100 = 43.8%CW

For the rectangular one

%CW = [ ](125 mm)(175 mm) - (75 mm)(200 mm)
(125 mm)(175 mm)

 x 100 = 31.4%CW

Therefore, the deformed circular specimen will be harder.

7.27  This problem calls for us to calculate the precold-worked radius of a cylindrical specimen of

copper that has a cold-worked ductility of 25%EL.  From Figure 7.19(c), copper that has a

ductility of 25%EL will have experienced a deformation of about 11%CW.  For a cylindrical

specimen, Equation (7.6) becomes

%CW = 

 



 

πro

2 - πrd
2

πro
2  x 100

Since r
d

 = 10 mm (0.40 in.), solving for r
o

 yields

ro = 
rd

√1 - 
%CW
100

 = 
10 mm

√1 - 
11.0
100

 = 10.6 mm  (0.424 in.)
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7.28  (a)  We want to compute the ductility of a brass that has a yield strength of 275 MPa (40,000

psi).  In order to solve this problem, it is necessary to consult Figures 7.19(a) and (c).  From

Figure 7.19(a), a yield strength of 275 MPa for brass corresponds to 10%CW.  A brass that has

been cold-worked 10% will have a ductility of about 44%EL [Figure 7.19(c)].

(b)  This portion of the problem asks for the Brinell hardness of a 1040 steel having a yield

strength of 690 MPa (100,000 psi).  From Figure 7.19(a), a yield strength of 690 MPa for a

1040 steel corresponds to about 11%CW.  A 1040 steel that has been cold worked 11% will

have a tensile strength of about 790 MPa [Figure 7.19(b)].  Finally, using Equation (6.20a)

HB = 
TS (MPa)

3.45
 = 

790 MPa
3.45

 = 230

7.29  We are asked in this problem to compute the critical resolved shear stress at a dislocation

density of 10
7

 mm
-2

.  It is first necessary to compute the value of the constant τo  from the one

set of data as

τo = τcrss - A√ ρD

= 2.10 MPa - (6.35 x 10-3 MPa-mm)√105 mm-2 = 0.092 MPa  (13.3 psi)

Now, the critical resolved shear stress may be determined at a dislocation density of 10
7

 mm
-2

as

τcrss = τo + A√ρD

= (0.092 MPa) + (6.35 x 10-3 MPa-mm)√107 mm-2 = 20.2 MPa (2920 psi)

7.30  For recovery, there is some relief of internal strain energy by dislocation motion;  however,

there are virtually no changes in either the grain structure or mechanical characteristics.  During

recrystallization, on the other hand, a new set of strain-free grains forms, and the material

becomes softer and more ductile.

7.31  We are asked to estimate the fraction of recrystallization from the photomicrograph in Figure

7.21c.  Below is shown a square grid onto which is superimposed the recrystallized regions from

the micrograph. Approximately 400 squares lie within the recrystallized areas, and since there

are 672 total squares, the specimen is about 60% recrystallized.
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7.32  During cold-working, the grain structure of the metal has been distorted to accommodate the

deformation.  Recrystallization produces grains that are equiaxed and smaller than the parent

grains.

7.33  Metals such as lead and tin do not strain harden at room temperature because their

recrystallization temperatures lie below room temperature (Table 7.2).

7.34  (a)  The driving force for recrystallization is the difference in internal energy between the

strained and unstrained material.

(b)  The driving force for grain growth is the reduction in grain boundary energy as the total grain

boundary area decreases.

7.35  In this problem, we are asked for the length of time required for the average grain size of a

brass material to increase a specified amount using Figure 7.25.

(a)  At 500°C, the time necessary for the average grain diameter to increase from 0.01 to 0.1

mm is approximately 3500 min.

(b)  At 600°C the time required for this same grain size increase is approximately 150 min.

7.36  (a)  Using the data given and Equation (7.7) and taking n  = 2, we may set up two simultaneous
equations with d

o
 and K  as unknowns;  thus

(3.9 x 10-2 mm)2 - do
2 = (30 min)K
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(6.6 x 10-2 mm)2 - do
2 = (90 min)K

Solution of these expressions yields a value for d
o

, the original grain diameter, of

do = 0.01 mm,

and also

K = 4.73 x 10-5 mm2/min

(b)  At 150 min, the diameter is computed as

d = √do
2 + Kt

= √(0.01 mm)2 + (4.73 x 10-5 mm2/min)(150 min) = 0.085 mm

7.37  Yes, it is possible to reduce the average grain diameter of an undeformed alloy specimen from

0.040 mm to 0.010 mm.  In order to do this, plastically deform the material at room temperature

(i.e., cold work it), and then anneal it at an elevated temperature in order to allow

recrystallization and some grain growth to occur until the average grain diameter is 0.010 mm.

7.38  (a)  The temperature dependence of grain growth is incorporated into the constant K  in

Equation (7.7).

(b)  The explicit expression for this temperature dependence is of the form

K = Ko exp ( )- 
Q
RT

in which Ko  is a temperature-independent constant, the parameter Q is an activation energy,

and R and T are the gas constant and absolute temperature, respectively.

7.39  This problem calls for us to calculate the yield strength of a brass specimen after it has been

heated to an elevated temperature at which grain growth was allowed to occur;  the yield
strength was given at a grain size of 0.008 mm.  It is first necessary to calculate the constant σo

in Equation (7.5) as

σo = σy - kyd-1/2
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= 160 MPa - (12.0 MPa-mm1/2)(0.008 mm)-1/2 = 25.8 MPa (4046 psi)

Next, we must determine the average grain size after the heat treatment.  From Figure 7.25 at

600°C after 1000 s (16.7 min) the average grain size of a brass material is about 0.020 mm.
Therefore, calculating σy at this new grain size using Equation (7.5) we get

σy = σo + kyd-1/2

= 25.8 MPa + (12.0 MPa-mm1/2)(0.020 mm)-1/2 = 111 MPa  (16,300 psi)

Design Problems

7.D1  This problem calls for us to determine whether or not it is possible to cold work steel so as to

give a minimum Brinell hardness of 225 and a ductility of at least 12%EL.  According to Figure

6.19 a Brinell hardness of 225 corresponds to a tensile strength of 800 MPa (116,000 psi).

Furthermore, from Figure 7.19(b), in order to achieve a tensile strength of 800 MPa,

deformation of at least 13%CW is necessary.  Finally, if we cold work the steel to 13%CW, then

the ductility is reduced to only 14%EL from Figure 7.19(c).  Therefore, it is possible  to meet

both of these criteria by plastically deforming the steel.

7.D2  We are asked to determine whether or not it is possible to cold work brass so as to give a

minimum Brinell hardness of 120 and at the same time a ductility of at least 20%EL.  According

to Figure 6.19 a Brinell hardness of 120 corresponds to a tensile strength of 440 MPa (63,500

psi.)  Furthermore, from Figure 7.19(b), in order to achieve a tensile strength of 440 MPa,

deformation of at least 26%CW is necessary.  Finally, if we are to achieve a ductility of at least

20%EL, then a maximum deformation of 23%CW is possible from Figure 7.19(c).  Therefore, it

is not  possible  to meet both of these criteria by plastically deforming brass.

7.D3  (a)  For this portion of the problem we are to determine the ductility of cold-worked steel that

has an Brinell hardness of 250.  From Figure 6.19, an Brinell hardness of 250 corresponds to a

tensile strength of 860 MPa (125,000 psi), which, from Figure 7.19(b), requires a deformation of

25%CW.  Furthermore, 25%CW yields a ductility of about 11%EL for steel, Figure 7.19(c).

(b)  We are now asked to determine the radius after deformation if the uncold-worked radius is 5

mm (0.20 in.).  From Equation (7.6) and for a cylindrical specimen
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%CW = 

 



 

πro

2 - πrd
2

πro
2  x 100

Now, solving for rd from this expression, we get

rd = ro√1 - 
%CW
100

= (5 mm)√1 - 
25

100
 = 4.33 mm  (0.173 in.)

7.D4  This problem asks us to determine which of copper, brass, and a 1040 steel may be cold-

worked so as to achieve a minimum yield strength of 345 MPa (50,000 psi) while maintaining a

minimum ductility of 20%EL. For each of these alloys, the minimum cold work necessary to

achieve the yield strength may be determined from Figure 7.19(a), while the maximum possible

cold work for the ductility is found in Figure 7.19(c).  These data are tabulated below.

Yield Strength Ductility

(> 345 MPa) (> 20%EL)

Steel Any %CW < 5%CW

Brass > 20%CW < 23%CW

Copper > 54%CW < 15%CW

Thus, both the 1040 steel and brass are possible candidates since for these alloys there is an

overlap of percent coldworks to give the required minimum yield strength and ductility values.

7.D5  This problem calls for us to explain the procedure by which a cylindrical rod of steel may be

deformed so as to produce a given final diameter, as well as a specific tensile strength and

ductility.  First let us calculate the percent cold work and attendant tensile strength and ductility if

the drawing is carried out without interruption.  From Equation (7.6)

%CW = 
π 


 
do

2

2
 - π 


 
dd

2

2

π 


 
do

2

2  x 100
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= 
π( )15.2 mm

2

2
 - π( )10 mm

2

2

π( )15.2 mm
2

2  x 100 = 56%CW

At 56%CW, the steel will have a tensile strength on the order of 920 MPa (133,000 psi) [Figure

7.19(b)], which is adequate;  however, the ductility will be less than 10%EL [Figure 7.19(c)],

which is insufficient.

Instead of performing the drawing in a single operation, let us initially draw some fraction

of the total deformation, then anneal to recrystallize, and, finally, cold-work the material a

second time in order to achieve the final diameter, tensile strength, and ductility.

Reference to Figure 7.19(b) indicates that 20%CW is necessary to yield a tensile

strength of 840 MPa (122,000 psi).  Similarly, a maximum of 21%CW is possible for 12%EL

[Figure 7.19(c)].  The average of these extremes is 20.5%CW.  If the final diameter after the first
drawing is do' , then

20.5%CW = 
π 


 
do'

2

2
 - π( )10 mm

2

2

π 


 
do'

2

2  x 100

And, solving for do' , yields do'  = 11.2 mm  (0.45 in.).

7.D6  Let us first calculate the percent cold work and attendant yield strength and ductility if the

drawing is carried out without interruption.  From Equation (7.6)

%CW = 
π 


 
do

2

2
 - π 


 
dd

2

2

π 


 
do

2

2  x 100

= 
π( )16 mm

2

2
 - π( )11.3 mm

2

2

π( )16 mm
2

2  x 100 = 50%CW
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At 50%CW, the copper will have a yield strength on the order of 330 MPa (48,000 psi), Figure

7.19(a), which is adequate;  however, the ductility will be about 4%EL, Figure 7.19(c), which is

insufficient.

Instead of performing the drawing in a single operation, let us initially draw some fraction

of the total deformation, then anneal to recrystallize, and, finally, cold work the material a

second time in order to achieve the final diameter, yield strength, and ductility.

Reference to Figure 7.19(a) indicates that 21%CW is necessary to give a yield strength

of 250 MPa.  Similarly, a maximum of 23%CW is possible for 12%EL [Figure 7.19(c)].  The

average of these two values is 22%CW, which we will use in the calculations.  If the final
diameter after the first drawing is do' , then

22%CW = 
π 


 
do'

2

2
 - π( )11.3

2

2

π 


 
do'

2

2  x 100

And, solving for do'  yields do'  = 12.8 mm (0.50 in.).

7.D7  This problem calls for us to cold work some 1040 steel stock that has been previously cold

worked in order to achieve minimum tensile strength and ductility values of 865 MPa (125,000

psi) and 10%EL, respectively, while the final diameter must be 6.0 mm (0.25 in.).  Furthermore,

the material may not be deformed beyond 40%CW.  Let us start by deciding what percent

coldwork is necessary for the minimum tensile strength and ductility values, assuming that a

recrystallization heat treatment is possible.  From Figure 7.19(b), at least 25%CW is required for

a tensile strength of 865 MPa.  Furthermore, according to Figure 7.19(c), 10%EL corresponds a

maximum of 30%CW.  Let us take the average of these two values (i.e., 27.5%CW), and

determine what previous specimen diameter is required to yield a final diameter of 6.0 mm.  For

cylindrical specimens, Equation (7.6) takes the form

%CW = 
π 


 
do

2

2
 - π 


 
dd

2

2

π 


 
do

2

2  x 100

Solving for the original diameter do yields
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do = 
dd

√1 - 
%CW
100

 = 
6.0 mm

√1 - 0.275
 = 7.05 mm  (0.278 in.)

Now, let us determine its undeformed diameter realizing that a diameter of 7.94 mm
(0.313 in.) corresponds to 20%CW.  Again solving for d o  using the above equation and

assuming dd  = 7.94 mm yields

do = 
dd

√1 - 
%CW
100

 = 
7.94 mm

√1 - 0.20
 = 8.88 mm (0.350 in.)

At this point let us see if it is possible to deform the material from 8.88 mm to 7.05 mm without

exceeding the 40%CW limit.  Again employing Equation (7.6)

%CW = 
π( )8.88 mm

2

2
 - π( )7.07 mm

2

2

π( )8.88 mm
2

2  x 100 = 36.6%CW

In summary, the procedure which can be used to produce the desired material would be

as follows:  cold work the as-received stock to 7.05 mm (0.278 in.), heat treat it to achieve

complete recrystallization, and then cold work the material again to 6.0 mm (0.25 in.), which will

give the desired tensile strength and ductility.
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CHAPTER 8

FAILURE

PROBLEM SOLUTIONS

8.1  Several situations in which the possibility of failure is part of the design of a component or

product are as follows:  (1)  the pull tab on the top of aluminum beverage cans;  (2)  aluminum

utility/light poles that reside along freeways--a minimum of damage occurs to a vehicle when it

collides with the pole;  and (3)  in some machinery components, shear pin are used to connect

a gear or pulley to a shaft--the pin is designed shear off before damage is done to either the

shaft or gear in an overload situation.

8.2  The theoretical cohesive strength of a material is just E/10, where E is the modulus of elasticity.

For the ceramic materials listed in Table 13.5, all we need do is divide E by 10, and therefore

Si3N4--30.4 GPa (4.4 x 106 psi)

ZrO2--20.5 GPa (3.0 x 106 psi)

SiC--34.5 GPa (5.0 x 106 psi)

Al2O3--39.3 GPa (5.7 x 106psi)

Glass ceramic--12.0 GPa (1.7 x 106 psi)

Mullite--14.5 GPa (2.1 x 106 psi)

MgAl2O4--26 GPa (3.8 x 106 psi)

MgO--22.5 GPa (3.3 x 106 psi)

Fused silica--7.3 GPa (1.1 x 106 psi)

Soda-lime glass--6.9 GPa (1.0 x 106 psi )

8.3  This problem asks that we compute the magnitude of the maximum stress that exists at the tip

of an internal crack.  Equation (8.1b) is employed to solve this problem, as

σm = 2σo 


 
a

ρt

1/2

= (2)(170 MPa)
 


 
(2.5 x 10-2 mm)/2

2.5 x 10-4 mm

1/2
 = 2404 MPa  (354,000 psi)



155

8.4  In order to estimate the theoretical fracture strength of this material it is necessary to calculate

σm  using Equation (8.1b) given that σo  = 1200 MPa, a = 0.25 mm, and ρt  = 1.2 x 10-3 mm.

Thus,

σm = 2σo√ a
ρt

= (2)(1200 MPa)√0.25 mm

1.2 x 10-3 mm
 = 3.5 x 104 MPa  (5.1 x 106 psi)

8.5  In order to determine whether or not this ceramic material will fail we must compute its

theoretical fracture (or cohesive) strength;  if the maximum strength at the tip of the most severe

flaw is greater than this value then fracture will occur--if less than, then there will be no fracture.

The theoretical fracture strength is just E/10 or 30 GPa (4.35 x 106 psi), inasmuch as E = 300

GPa (43.5 x 106 psi).

The magnitude of the stress at the most severe flaw may be determined using Equation

(8.1b) as

σm = 2σo√ a
ρt

= (2)(900 MPa)√(0.3 mm)/2

 5 x 10-4 mm
 = 31.2 GPa  (4.5 x 106 psi)

Therefore, fracture will  occur since this value is greater than E/10.

8.6  We may determine the critical stress required for the propagation of a surface crack in soda-lime

glass using Equation (8.3);  taking the value of 69 GPa (Table 13.5) as the modulus of elasticity,

we get

σc = √2Eγs
πa

= √(2)(69 x 109 N/m2)(0.30 N/m)

(π)(5 x 10-5 m)
 = 16.2 x 106 N/m2 = 16.2 MPa

8.7  The maximum allowable surface crack length for polystyrene may be determined using Equation

(8.3);  taking the value of 3.0 GPa as the modulus of elasticity, and solving for a, leads to
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a = 
2Eγs

πσ2
c

 = 
(2)(3.0 x 109 N/m2)(0.50 N/m)

(π)( )1.25 x 106 N/m2 2

= 6.1 x 10-4 m = 0.61 mm  (0.024 in.)

8.8  This problem calls for us to calculate the normal σx  and σy  stresses in front on a surface crack

of length 2.5 mm at various positions when a tensile stress of 75 MPa is applied.  Substitution

for K = σ√πa into Equations (8.7a) and (8.7b) leads to

σx = σfx(θ)√ a
2r

σy = σfy(θ)√ a
2r

where fx(θ) and fy(θ) are defined in the accompanying footnote 2.  For θ = 30°, fx(θ) = 0.79 and

fy(θ) = 1.14, whereas for θ = 60°, fx(θ) = 0.43 and fy(θ) = 1.30.

(a)  For r = 0.15 mm and θ = 30°,

σx = σ(0.79)√ a
2r

 = (75 MPa)(0.79)√2.5 mm
(2)(0.15 mm)

 = 171 MPa  (25,000 psi)

σy = σ(1.14)√ a
2r

 = (75 MPa)(1.14)√2.5 mm
(2)(0.15 mm)

 = 247 MPa  (35,800 psi)

(b)  For r = 0.15 mm and θ = 60°,

σx = σ(0.43)√ a
2r

 = (75 MPa)(0.43)√2.5 mm
(2)(0.15 mm)

 = 93 MPa  (13,500 psi)

σy = σ(1.30)√ a
2r

 = (75 MPa)(1.30)√2.5 mm
(2)(0.15 mm)

 = 281 MPa  (40,800 psi)

(c)  For r = 0.75 mm and θ = 30°,

σx = σ(0.79)√ a
2r

 = (75 MPa)(0.79)√2.5 mm
(2)(0.75 mm)

 = 76.5 MPa  (11,100 psi)
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σy = σ(1.14)√ a
2r

 = (75 MPa)(1.14)√2.5 mm
(2)(0.75 mm)

 = 110 MPa  (16,000 psi)

(d)  For r = 0.75 mm and θ = 60°,

σx = σ(0.43)√ a
2r

 = (75 MPa)(0.43)√2.5 mm
(2)(0.75 mm)

 = 41.6 MPa  (6050 psi)

σy = σ(1.30)√ a
2r

 = (75 MPa)(1.30)√2.5 mm
(2)(0.75 mm)

 = 126 MPa  (18,300 psi)

8.9  (a)  In this portion of the problem we are asked to determine the radial position at which σx  =

110 MPa (16,000 psi) for θ = 45°, a = 3.0 mm, and σ = 100 MPa (14,500 psi).  Substitution for

K  into Equation (8.7a) leads to

σx = σfx(θ)√ a
2r

Now, solving for r from this expression yields

r = 
a
2

 
 



 

σfx(θ)

σx

2

For θ = 45°, fx(θ) = 0.60, and therefore

r = 
3 mm

2 [ ](100 MPa)(0.60)
110 MPa

2

 = 0.45 mm

(b)  Now we are asked to compute σy at this position.  This is done by using Equation (8.7b);

for θ = 45°, fy(θ) = 1.25, and therefore

σy = σfy(θ)√ a
2r

= (100 MPa)(1.25)√3.0 mm
(2)(0.45 mm)

 = 228 MPa  (33,000 psi)

8.10  (a)  In this portion of the problem it is necessary to compute the stress at point P when the

applied stress is 100 MPa (14,500 psi).  In order to determine the stress concentration it is
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necessary to consult Figure 8.8c.  From the geometry of the specimen, w /h  = (25 mm)/(20 mm)

= 1.25;  furthermore, the r /h  ratio is (3 mm)/(20 mm) = 0.15.  Using the w /h  = 1.25 curve in

Figure 8.8c, the Kt value at r/h = 0.15 is 1.7.  And since Kt = 
σm
σo

, then

σm = Ktσo = (1.7)(100 MPa) = 170 MPa (24,650 psi)

(b)  Now it is necessary to determine how much r must be increased to reduce σm  by 20%;  this

reduction corresponds to a stress of (0.80)(170 MPa) = 136 MPa (19,720 psi).  The value of Kt

is therefore, Kt = 
σm
σo

 = 
136 MPa
100 MPa

 = 1.36.  Using the w /h  = 1.25 curve in Figure 8.8c, the value of

r/h  for Kt = 1.36 is about 0.43.  Therefore

r = (0.43)h = (0.43)(20 mm) = 8.60 mm

Or, r  must be increased from 3 mm to 8.6 mm in order to reduce the stress concentration by

20%.

8.11  (a)  This portion of the problem calls for us to compute the stress at the edge of a circular

through-the-thickness hole in a steel sheet when a tensile stress is applied in a length-wise

direction.  We first must utilize Figure 8.8a for d/w  = 
25 mm

100 mm
 = 0.25.  From the figure and using

this value, Kt = 2.4.  Since Kt = 
σm
σo

 and σo  = 50 MPa (7250 psi) then

σm = Ktσo = (2.4)(50 MPa) = 120 MPa  (17,400 psi)

(b)  Now it becomes necessary to compute the stress at the hole edge when the external stress

is applied in a width-wise direction;  this simply means that w  = 400 mm.  The d /w  then is 25
mm/400 mm = 0.0625. From Figure 8.8a, Kt is about 2.8.  Therefore, for this situation

σm = Ktσo = (2.8)(50 MPa) = 140 MPa  (20,300 psi)

8.12  The stress intensity factor is a parameter used in expressions such as Equations (8.7);  its

value is variable and dependent on applied stress and crack length according to the expression

provided in Problem 8.8.  On the other hand, plane strain and plane stress fracture

toughnesses represent unique and critical values of K  at which crack propagation occurs.
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However, plane strain fracture toughness is this critical value for specimens thicker than some

minimum threshold thickness, while plane stress is for specimens thinner than this threshold.

8.13  This problem calls for us to determine the value of B , the minimum component thickness for

which the condition of plane strain is valid using Equation (8.12) for the metal alloys listed in

Table 8.1.

For the 7075-T651 aluminum alloy

B = 2.5 
 



 

KIc

σy

2
 = (2.5) 


 
24 MPa√m

495 MPa

2
 = 0.0059 m = 5.9 mm  (0.23 in.)

For the 2024-T3 aluminum alloy

B = 2.5 
 



 

KIc

σy

2
 = (2.5) 


 
44 MPa√m

345 MPa

2
 = 0.041 m = 41 mm  (1.60 in.)

For the Ti-6Al-4V titanium alloy

B = (2.5) 


 
55 MPa√m

910 MPa

2
 = 0.0091 m = 9.1 mm  (0.36 in.)

For the 4340 alloy steel tempered at 260°C

B = (2.5) 


 
50 MPa√m

1640 MPa

2
 = 0.0023 m = 2.3 mm  (0.09 in.)

For the 4340 alloy steel tempered at 425°C

B = (2.5) 


 
87.4 MPa√m

1420 MPa

2
 = 0.0095 m = 9.5 mm  (0.38 in.)

8.14  This problem asks us to determine whether or not the 4340 steel alloy specimen will fracture
when exposed to a stress of 1000 MPa, given the values of KIc, Y, and the largest value of a in

the material.  This requires that we solve for σc from Equation (8.13).  Thus

σc = 
KIc

Y√πa
 = 

45 MPa√m
(1)√(π)(0.75 x 10-3 m)

 = 927 MPa  (133,500 psi)
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Therefore, fracture will most likely occur because this specimen will tolerate a stress of 927 MPa

(133,500 psi) before fracture, which is less than the applied stress of 1000 MPa (145,000 psi).

8.15  We are asked to determine if an aircraft component will fracture for a given fracture toughness

(35 MPa√m), stress level (325 MPa), and maximum internal crack length (1.0 mm), given that

fracture occurs for the same component using the same alloy for another stress level and

internal crack length.  It first becomes necessary to solve for the parameter Y for the conditions

under which fracture occurred using Equation (8.11).  Therefore,

Y = 
KIc

σ√πa
 = 

35 MPa√m

(250 MPa)√(π) 


 
2 x 10-3 m

2

 = 2.50

Now we will solve for the product Yσ√πa for the other set of conditions, so as to ascertain
whether or not this value is greater than the KIc for the alloy.  Thus,

Yσ√πa = (2.50)(325 MPa)√(π) 


 
1 x 10-3 m

2

= 32.2 MPa√m  (29.5 ksi√in.)

Therefore, fracture will not  occur since this value (32.3 MPa√m) is less than the K Ic  of the

material--35 MPa√m.

8.16  This problem asks us to determine the stress level at which an aircraft component will fracture

for a given fracture toughness (40 MPa√m) and maximum internal crack length (4.0 mm), given

that fracture occurs for the same component using the same alloy at one stress level and

another internal crack length.  It first becomes necessary to solve for the parameter Y for the

conditions under which fracture occurred using Equation (8.11).  Therefore,

Y = 
KIc

σ√πa
 = 

40 MPa√m

(365 MPa)√(π) 


 
2.5 x 10-3 m

2

 = 1.75

Now we will solve for σc using Equation (8.13) as
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σc = 
KIc

Y√πa
 = 

40 MPa√m

(1.75)√(π) 


 
4 x 10-3 m

2

 = 288 MPa  (41,500 psi)

8.17  For this problem, we are given values of K Ic , σ, and Y  for a large plate and are asked to

determine the minimum length of a surface crack that will lead to fracture.  All we need do is to
solve for ac  using Equation (8.14);  therefore

ac = 
1
π  


 
KIc

Yσ

2

 = 
1
π  




 

55 MPa√m

(1)(200 MPa)

2

 = 0.024 m = 24 mm  (0.95 in.)

8.18  This problem asks us to calculate the maximum internal crack length allowable for the 7075-

T651 aluminum alloy in Table 8.1 given that it is loaded to a stress level equal to one-half of its

yield strength.  For this alloy, KIc = 24 MPa√m (22 ksi√in.) and σ = σy /2 = (495 MPa)/2 = 248

MPa (36,000 psi).  Now solving for 2ac using Equation (8.14) yields

2ac = 
2
π  


 
KIc

Yσ

2

 = 
2
π  




 

24 MPa√m

(1.35)(248 MPa)

2

 = 0.0033 m = 3.3 mm  (0.13 in.)

8.19  This problem asks that we determine whether or not a critical flaw in a wide plate is subject to

detection given the limit of the flaw detection apparatus (4.0 mm), the value of K Ic  (77

MPa√m), the design stress (σy /2) in which σy  = 1400 MPa, and Y  = 1.0.  We first need to

compute the value of ac  using Equation (8.14);  thus

ac = 
1
π  


 
KIc

Yσ

2

 = 
1
π 

 



 

77 MPa√m

(1.0)( )1400 MPa
2

2

 = 0.0039 m = 3.9 mm  (0.15 in.)

Therefore, the critical flaw is not  subject to detection since this value of ac  is less than the 4.0

mm resolution limit.

8.20  We are asked in this problem to determine whether or not it is possible to compute the critical

length of a surface flaw within the flat plate given its thickness (12.5 mm), yield strength (350

MPa), plane strain fracture toughness (33 MPa√m), and the value of Y (1.75).  The first thing

we must do is to ascertain whether or not conditions of plane strain exist for this plate by using

Equation (8.12) as
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B = 2.5 
 



 

KIc

σy

2
 = (2.5) 


 
33 MPa√m

350 MPa

2
 = 0.022 m = 22 mm  (0.87 in.)

The situation is not one of plane strain since the thickness of the plate (12.5 mm) is less than

this calculated B  (22 mm).  Therefore, solution of this problem is not possible.

8.21  The student should do this problem on his/her own.

8.22  (a)  The plot of impact energy versus temperature is shown below.
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(b)  The average of the maximum and minimum impact energies from the data is

Average = 
124 J + 6 J

2
 = 65 J

As indicated on the plot by the one set of dashed lines, the ductile-to-brittle transition

temperature according to this criterion is about -105°C.

(c)  Also as noted on the plot by the other set of dashed lines, the ductile-to-brittle transition

temperature for an impact energy of 80 J is about -95°C.

8.23  The plot of impact energy versus temperature is shown below.
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(b)  The average of the maximum and minimum impact energies from the data is

Average = 
89.3 J + 25 J

2
 = 57.2 J

As indicated on the plot by the one set of dashed lines, the ductile-to-brittle transition

temperature according to this criterion is about -75°C.

(c)  Also as noted on the plot by the other set of dashed lines, the ductile-to-brittle transition

temperature for an impact energy of 70 J is about -55°C.

8.24  With decreasing temperature, FCC metals do not experience a ductile-to-brittle transition

because a relatively large number of slip systems remain operable even to very low

temperatures.  On the other hand, BCC and HCP metals normally experience this transition

because the number of operable slip systems decreases with decreasing temperature.

8.25  (a)  Given the values of σm  (50 MPa) and σa (225 MPa) we are asked to compute σmax  and

σmin .  From Equation (8.21)

σm = 
σmax + σmin

2
 = 50 MPa

Or,
σmax + σmin = 100 MPa

Furthermore, utilization of Equation (8.23) yields
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σa = 
σmax - σmin

2
 = 225 MPa

Or,
σmax - σmin = 450 MPa

Simultaneously solving these two expressions leads to

σmax = 275 MPa  (40,000 psi)

σmin = -175 MPa  (-25,500 psi)

(b)  Using Equation (8.24) the stress ratio R is determined as follows:

R = 
σmin
σmax

 = 
-175 MPa
275 MPa

 = -0.64

(c)  The magnitude of the stress range σr is determined using Equation (8.22) as

σr = σmax - σmin = 275 MPa - (-175 MPa) = 450 MPa  (65,500 psi)

8.26  This problem asks that we determine the minimum allowable bar diameter to ensure that

fatigue failure will not occur for a 1045 steel that is subjected to cyclic loading for a load
amplitude of 22,000 N (4950 lbf).  From Figure 8.42, the fatigue limit stress amplitude for this

alloy is 310 MPa (45,000 psi).  Stress is defined in Equation (6.1) as σ = 
F

Ao
.  For a cylindrical

bar

Ao = π 


 
do

2

2

Now we may solve for do  from these expressions, taking stress as the fatigue limit divided by

the factor of safety.  Thus

do = 2√ F

π( )σ
2
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= (2)√22000 N

(π) 


 
310 x 106 N/m2

2

) = 13.4 x 10-3 m = 13.4 mm  (0.53 in.)

8.27  We are asked to determine the fatigue life for a cylindrical red brass rod given its diameter (8.0

mm) and the maximum tensile and compressive loads (+7500 N and -7500 N, respectively).
The first thing that is necessary is to calculate values of σmax  and σmin  using Equation (6.1).

Thus

σmax = 
Fmax

Ao
 = 

Fmax

π 


 
do

2

2

 = 
7500 N

(π) 


 
8.0 x 10-3 m

2

2 = 150 x 106 N/m2 = 150 MPa  (22,500 psi)

σmin = 
Fmin

π 


 
do

2

2

= 
-7500 N

(π) 


 
8.0 x 10-3 m

2

2 = -150 x 106 N/m2 = -150 MPa  (-22,500 psi)

Now it becomes necessary to compute the stress amplitude using Equation (8.23) as

σa = 
σmax - σmin

2
 = 

150 MPa - (-150 MPa)
2

 = 150 MPa  (22,500 psi)

From Figure 8.42 for the red brass, the number of cycles to failure at this stress amplitude is

about 1 x 105 cycles.

8.28  This problem asks that we compute the maximum and minimum loads to which a 12.5 mm

diameter 2014-T6 aluminum alloy specimen may be subjected in order to yield a fatigue life of

1.0 x 107 cycles;  Figure 8.42 is to be used assuming that data were taken for a mean stress of

50 MPa.  Upon consultation of Figure 8.42, a fatigue life of 1.0 x 107 cycles corresponds to a

stress amplitude of 160 MPa (23,200 psi).  Or, from Equation (8.23)
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σmax - σmin = 2σa = (2)(160 MPa) = 320 MPa  (46,400 psi)

Since σm  = 50 MPa, then from Equation (8.21)

σmax + σmin = 2σm = (2)(50 MPa) = 100 MPa  (14,500 psi)

Simultaneous solution of these two expressions for σmax  and σmin  yields

σmax  = +210 MPa  (+30,400 psi) and σmin  = -110 MPa  (-16,000 psi).  Now, inasmuch as σ =

F
Ao

 [Equation (6.1)], and Ao  = π 


 
do

2

2
 then

Fmax = 
σmaxπd2

o
4

 = 
(210 x 106 N/m2)(π)(12.5 x 10-3 m)2

4
 = 25,800 N  (6000 lbf)

Fmin = 
σminπd2

o
4

 = 
(-110 x 106 N/m2)(π)(12.5 x 10-3 m)2

4
 = -13,500 N  (-3140 lbf)

8.29  (a)  The fatigue data for this alloy are plotted below.
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(b)  As indicated by one set of dashed lines on the plot, the fatigue strength at 5 x 105 cycles

[log (5 x 105) = 5.7] is about 250 MPa.

(c)  As noted by the other set of dashed lines, the fatigue life for 200 MPa is about 2 x 106

cycles (i.e., the log of the lifetime is about 6.3).
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8.30  We are asked to compute the maximum torsional stress amplitude possible at each of several

fatigue lifetimes for the brass alloy the fatigue behavior of which is given in Problem 8.29.  For

each lifetime, first compute the number of cycles, and then read the corresponding fatigue

strength from the above plot.

(a)  Fatigue lifetime = (1 yr)(365 day/yr)(24 h/day)(60 min/h)(1500 cycles/min) = 7.9 x 10
8

 cycles.

The stress amplitude corresponding to this lifetime is about 130 MPa.

(b)  Fatigue lifetime = (30 days)(24 h/day)(60 min/h)(1200 cycles/min) = 6.5 x 107 cycles.  The

stress amplitude corresponding to this lifetime is about 145 MPa.

(c)  Fatigue lifetime = (24 h)(60 min/h)(1200 cycles/min) = 2.2 x 10
6

 cycles.  The stress

amplitude corresponding to this lifetime is about 195 MPa.

(d)  Fatigue lifetime = (2 h)(60 min/h)(1500 cycles/min) = 180,000 cycles. The stress amplitude

corresponding to this lifetime is about 315 MPa.

8.31  (a)  The fatigue data for this alloy are plotted below.
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(b)  The fatigue limit is the stress level at which the curve becomes horizontal, which is 193 MPa

(28,000 psi).

(c)  From the plot, the fatigue lifetimes at a stress amplitude of 230 MPa (33,500 psi) is about

500,000 cycles (log N  = 5.7).  At 175 MPa (25,000 psi) the fatigue lifetime is essentially an

infinite number of cycles since this stress amplitude is below the fatigue limit.

(d)  Also from the plot, the fatigue strengths at 2 x 105 cycles (log N = 5.30) and 6 x 106 cycles

(log N = 6.78) are 240 MPa (35,000 psi) and 205 MPa (30,000 psi), respectively.
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8.32  This problem asks that we determine the maximum lifetimes of continuous driving that are

possible at an average rotational velocity of 750 rpm for the alloy the fatigue data of which is

provided in Problem 8.31 and at a variety of stress levels.

(a)  For a stress level of 250 MPa (36,250 psi), the fatigue lifetime is approximately 90,000

cycles.  This translates into (90,000 cycles)(1 min/750 cycles) = 120 min.

(b)  For a stress level of 215 MPa (31,000 psi), the fatigue lifetime is approximately 2 x 106

cycles.  This translates into (2 x 106 cycles)(1 min/750 cycles) = 2670 min = 44.4 h.

(c)  For a stress level of 200 MPa (29,000 psi), the fatigue lifetime is approximately 1 x 107

cycles.  This translates into (1 x 107 cycles)(1 min/750 cycles) = 1.33 x 104 min = 222 h.

(d)  For a stress level of 150 MPa (21,750 psi), the fatigue lifetime is essentially infinite since we

are below the fatigue limit.

8.33  For this problem we are given, for three identical fatigue specimens of the same material,
σmax  and σmin  data and are asked to rank the lifetimes from the longest to the shortest.  In

order to do this it is necessary to compute both the mean stress and stress amplitude for each

specimen.  Since from Equation (8.21)

σm = 
σmax + σmin

2

σm(A) = 
450 MPa + (-350 MPa) 

2
 = 50 MPa

σm(B) = 
400 MPa + (-300 MPa) 

2
 = 50

σm(C) = 
340 MPa + (-340 MPa) 

2
 = 0 MPa

Furthermore, using Equation (8.23)

σa = 
σmax - σmin

2

σa(A) = 
450 MPa - (-350 MPa) 

2
 = 400 MPa

σa(B) = 
400 MPa - (-300 MPa) 

2
 = 350 MPa
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σa(C) = 
340 MPa - (-340 MPa) 

2
 = 340 MPa

On the basis of these results, the fatigue lifetime for specimen C will be greater than specimen

B which in turn will be greater than specimen A.  This conclusion is based upon the following S-
N plot on which curves are plotted for two σm  values.
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8.34  Five factors that lead to scatter in fatigue life data are 1) specimen fabrication and surface

preparation, 2) metallurgical variables, 3) specimen alignment in the test apparatus, 4) variation

in mean stress, and 5) variation in test cycle frequency.

8.35  For a stress ratio (R) of +1, then, from Equation (8.24),

σmax = σmin

This is to say that the stress remains constant (or does not fluctuate) with time.  Thus, the

fatigue plot would appear as
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8.36  This question asks us to demonstrate that increasing R produces a decrease in σa.  From

Equation (8.24)
σmin = Rσmax

Furthermore, Equation (8.23) is

σa = 
σmax - σmin

2

Incorporation of the former expression into the latter gives

σa = 
σmax - Rσmax

2
 = 

σmax
2

 (1 - R)

Therefore, as the magnitude of R increases (or becomes more positive) the magnitude of σa

decreases.

8.37  To crystallize means to become crystalline.  Thus, the statement "The metal fractured because

it crystallized" is erroneous inasmuch as the metal was crystalline prior to being stressed (virtually

all metals are crystalline).

8.38  (a)  With regard to size, beachmarks are normally of macroscopic dimensions and may be

observed with the naked eye;  fatigue striations are of microscopic size and it is necessary to

observe them using electron microscopy.

(b)  With regard to origin, beachmarks result from interruptions in the stress cycles;  each fatigue

striation is corresponds to the advance of a fatigue crack during a single load cycle.

8.39  Four measures that may be taken to increase the fatigue resistance of a metal alloy are:
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1)  Polish the surface to remove stress amplification sites.

2)  Reduce the number of internal defects (pores, etc.) by means of altering processing and

fabrication techniques.

3)  Modify the design to eliminate notches and sudden contour changes.

4)  Harden the outer surface of the structure by case hardening (carburizing, nitriding) or shot

peening.

8.40  Creep becomes important at 0.4T
m

, T
m

 being the absolute melting temperature of the metal.

For Ni, 0.4T
m

 = (0.4)(1455 + 273) = 691
 
K or 418°C (785°F)

For Cu, 0.4T
m

 = (0.4)(1085 + 273) = 543
 
K or 270°C (518°F)

For Fe, 0.4T
m

 = (0.4)(1538 + 273) = 725
 
K or 450°C (845°F)

For W, 0.4T
m

 = (0.4)(3410 + 273) = 1473
 
K or 1200°C (2190°F)

For Pb, 0.4T
m

 = (0.4)(327 + 273) = 240
 
K or -33°C (-27°F)

For Al, 0.4T
m

 = (0.4)(660 + 273) = 373
 
K or 100°C (212°F)

8.41  Schematic creep curves at both constant stress and constant load are shown below.
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With increasing time, the constant load curve becomes progressively higher than the constant

stress curve.  Since these tests are tensile ones, the cross-sectional area diminishes as

deformation progresses. Thus, in order to maintain a constant stress, the applied load must

correspondingly be diminished since stress = load/area.

8.42  These creep data are plotted below
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The steady-state creep rate (∆ε/∆t) is the slope of the linear region as

∆ ε
∆t

 = 
0.230 - 0.09

30 min - 10 min
 = 7.0 x 10-3 min-1

8.43  This problem asks that we determine the total elongation of a low carbon-nickel alloy that is

exposed to a tensile stress of 40 MPa (5800 psi) at 538°C for 5000 h;  the instantaneous and

primary creep elongations are 1.5 mm (0.06 in.).

From the 538°C line in Figure 8.39, the steady state creep rate, ε
.
s , is about 0.15

%/1000 h (or 1.5 x 10-4 %/h) at 40 MPa.  The steady state creep strain, εs , therefore, is just the

product of ε
.
s  and time as

εs = ε
.
s x (time)

= (1.5 x 10-4 %/h)(5000 h) = 0.75 % = 7.5 x 10-3

Strain and elongation are related as in Equation (6.2);  solving for the steady state elongation,
∆ls , leads to

∆ls = loεs = (750 mm)(7.5 x 10-3) = 5.6 mm  (0.23 in.)

Finally, the total elongation is just the sum of this ∆ls  and the total of both instantaneous and

primary creep elongations [i.e., 1.5 mm (0.06 in.)].  Therefore, the total elongation is 7.1 mm

(0.29 in.).
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8.44  We are asked to determine the tensile load necessary to elongate a 500 mm long low carbon-

nickel alloy specimen 3.2 mm after 10,000 h at 427°C.  It is first necessary to calculate the

steady state creep rate so that we may utilize Figure 8.39 in order to determine the tensile
stress.  The steady state elongation, ∆ls , is just the difference between the total elongation and

the sum of the instantaneous and primary creep elongations;  that is,

∆ls = 3.2 mm - 0.8 mm = 2.4 mm  (0.10 in.)

Now the steady state creep rate, ε
.
s is just

ε
.
s = 

∆ε
∆t

 = 
∆ls/lo

∆t
 = 

(2.4 mm)/(500 mm)
10000 h

= 4.8 x 10-7 (h)-1 = 0.048 %/1000 h

Employing the 427°C line in Figure 8.39, a steady state creep rate of 0.048 %/1000 h

corresponds to a stress σ of about 70 MPa (10,000 psi).  From this we may compute the tensile

load using Equation (6.1) as

F = σAo = σπ 


 
do

2

2

= (70 x 106 N/m2)(π) 


 
10.0 x 10-3 m

2

2
 = 5500 N  (1250 lbf)

8.45  This problem asks us to calculate the rupture lifetime of a component fabricated from a low

carbon-nickel alloy exposed to a tensile stress of 60 MPa at 538°C.  All that we need do is read

from the 538°C line in Figure 8.38 the rupture lifetime at 60 MPa;  this value is about 36,000 h.

8.46  We are asked in this problem to determine the maximum load that may be applied to a

cylindrical low carbon-nickel alloy component which must survive 500 h at 649°C.  From Figure

8.38, the stress corresponding to 500 h is 55 MPa (8000 psi).  Since stress is defined in

Equation (6.1) as σ = F/Ao, and for a cylindrical specimen, Ao = πro
2, then

F = σAo = σπ 


 
do

2

2
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= (55 x 106 N/m2)(π) 


 
12 x 10-3 m

2

2
 = 6220 N  (1570 lbf)

8.47  The slope of the line from a log ε
.
s  versus log σ plot yields the value of n  in Equation (8.33);

that is

n = 
∆ log ε

.
s

 ∆ log σ

We are asked to determine the values of n  for the creep data at the three temperatures in

Figure 8.39.  This is accomplished by taking ratios of the differences between two log ε
.
s  and log

σ values.  Thus for 427°C

n = 
∆ log ε

.
s

 ∆ log σ  = 
log(10-1) - log(10-2)

log(85 MPa) - log(55 MPa)
 = 5.3

While for 538°C

n = 
∆ log ε

.
s

 ∆ log σ  = 
log(1.0) - log(10-2)

log(59 MPa) - log(23 MPa)
 = 4.9

And at 649°C

n = 
∆ log ε

.
s

 ∆ log σ  = 
log(1.0) - log(10-2)

log(15 MPa) - log(8.3 MPa)
 = 7.8

8.48  (a)  We are asked to estimate the activation energy for creep for the low carbon-nickel alloy

having the steady-state creep behavior shown in Figure 8.39, using data taken at σ = 55 MPa

(8000 psi) and temperatures of 427°C and 538°C.  Since σ is a constant, Equation (8.34) takes

the form

ε
.
s = K2σnexp  


 


- 
Qc
RT

 = K2' exp  


 


- 
Qc
RT
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where K2'  is now a constant.  (Note:  the exponent n  has about the same value at these two

temperatures per Problem 8.47.)  Taking natural logarithms of the above expression

ln ε
.
s = ln K2'  - 

Qc
RT

For the case in which we have creep data at two temperatures (denoted as T1 and T2) and their

corresponding steady-state creep rates (ε
.
s1

 and ε
.
s2

), it is possible to set up two simultaneous

equations of the form as above, with two unknowns, namely K2'  and Qc.  Solving for Qc yields

Qc = - 

R 
 


 
ln ε

.
s1

 - ln ε
.
s2

 



 

1

T1
 - 

1
T2

Let us choose T1 as 427°C (700 K) and T2 as 538°C (811 K);  then from Figure 8.39, at σ = 55

MPa, ε
.
s 1

 = 0.01 %/1000 h = 1 x 10-7 (h)-1 and ε
.
s 2

 = 0.8 %/1000 h = 0.8 x 10-5 (h)-1.

Substitution of these values into the above equation leads to

Qc = - 
(8.31 J/mol-K)[ ]ln( )10-7  - ln( )0.8 x 10-5

[ ]1
700 K

 - 
1

811 K

= 186,200 J/mol

(b)  We are now asked to calculate ε
.
s  at 649°C (922 K).  It is first necessary to determine the

value of K2' , which is accomplished using the first expression above, the value of Qc , and one

value each of ε
.
s  and T (say ε

.
s1

 and T1).  Thus,

K2'  = ε
.
s1

exp 
 



 

Qc

RT1

= [ ]10-7 (h)-1 exp [ ]186200 J/mol
(8.31 J/mol-K)(700 K)

 = 8.0 x 106 (h)-1
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Now it is possible to calculate ε
.
s  at 922 K as follows:

ε
.
s = K2' exp  


 


- 
Qc
RT

= [ ]8.0 x 106 (h)-1 exp [ ]- 
186200 J/mol

(8.31 J/mol-K)(922 K)

= 2.23 x 10-4 (h)-1 = 22.3 %/1000 h

8.49  This problem gives ε
.
s   values at two different stress levels and 1000°C, and the activation

energy for creep, and asks that we determine the steady-state creep rate at 850°C and 25 MPa

(3625 psi).

Taking the natural logarithm of Equation (8.34) yields

ln ε
.
s = ln K2 + n ln σ - 

Qc
RT

With the given data there are two unknowns in this equation--namely K2 and n .  Using the data

provided in the problem we can set up two independent equations as follows:

ln[ ]1.0 x 10-4 (s)-1  = ln K2 + n ln(15 MPa) - 
272000 J/mol

(8.31 J/mol-K)(1273 K)

ln[ ]1.0 x 10-6 (s)-1  = ln K2 + n ln(4.5 MPa) - 
272000 J/mol

(8.31 J/mol-K)(1273 K)

Now, solving simultaneously for K2 and n  leads to n  = 3.825 and K2 = 466 (s)-1.  Thus it is now

possible to solve for ε
.
s  at 25 MPa and 1123 K using Equation (8.34) as

ε
.
s = K2σnexp  


 


- 
Qc
RT

ε
.
s = [ ]466 (s)-1 (25 MPa)3.825exp( )- 

272000 J/mol
(8.31 J/mol-K)(1123 K)

2.28 x 10-5 (s)-1
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8.50  This problem gives ε
.
s  values at two different temperatures and 70 MPa (10,000 psi), and the

stress exponent n = 7.0, and asks that we determine the steady-state creep rate at a stress of

50 MPa (7250 psi) and 1250 K.

Taking the natural logarithm of Equation (8.34) yields

ln ε
.
s = ln K2 + n ln σ - 

Qc
RT

With the given data there are two unknowns in this equation--namely K2 and Qc .  Using the

data provided in the problem we can set up two independent equations as follows:

ln[ ]1.0 x 10-5 (h)-1  = ln K2 + (7.0)ln(70 MPa) - 
Qc

(8.31 J/mol-K)(977 K)

ln[ ]2.5 x 10-3 (h)-1  = ln K2 + (7.0)ln(70 MPa) - 
Qc

(8.31 J/mol-K)(1089 K)

Now, solving simultaneously for K2 and Qc  leads to K2 = 2.55 x 105  (h)-1 and Qc  = 436,000

J/mol.  Thus it is now possible to solve for ε
.
s  at 50 MPa and 1250 K using Equation (8.34) as

ε
.
s = K2σnexp  


 


- 
Qc
RT

ε
.
s = [ ]2.55 x 105 (h)-1 (50 MPa)7.0exp( )- 

436000 J/mol
(8.31 J/mol-K)(1250 K)

0.118 (h)-1

8.51  Three metallurgical/processing techniques that are employed to enhance the creep resistance

of metal alloys are 1) solid solution alloying, 2) dispersion strengthening by using an insoluble

second phase, and 3) increasing the grain size or producing a grain structure with a preferred

orientation.

Design Problems
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8.D1  This problem asks us to calculate the minimum KIc  necessary to ensure that failure will not

occur for a flat plate given an expression from which Y(a/W) may be determined, the internal

crack length, 2a (20 mm), the plate width, W (90 mm), and the value of σ (375 MPa).  First we

must compute the value of Y(a/W) using Equation (8.10), as follows:

Y(a/W) = [ ]W
πa

 tan 
πa
W

1/2

= [ ]90 mm
(π)(10 mm)

 tan 
(π)(10 mm)

90 mm

1/2
 = 1.021

Now, using Equation (8.11) it is possible to determine KIc;  thus

KIc = Y(a/W)σ√πa

= (1.021)(375 MPa)√(π)(10 x 10-3 m) = 67.9 MPa√m  (62.3 ksi√in.)

8.D2  For this problem we are asked to determine the critical crack length for a flat plate containing a
centrally positioned, through-thickness crack as shown in Figure 8.12;  for this plate, KIc  = 38

MPa√m, W = 50 mm, and the design stress σ = 300 MPa.  The plane-strain fracture toughness

is defined by Equation (8.11);  furthermore, for this case, Y is a function of crack length a and

plate width W according to Equation (8.10).  Combining these expressions leads to

KIc = Y(a/W) σ√πa

= 
 



 

( )W

πa
 tan ( )πa

W

1/2
σ√πa

= σ 
 



 



W tan ( )πa
W

1/2

Now solving this expression for a which is just the critical crack length ac yields

ac = ( )W
π  tan-1 

 


 
KI

2
c

σ2W
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=  


 
50 x 10-3 m

π  tan-1 
 


 
( )38 MPa√m 2

(300 MPa)2(50 x 10-3 m)

= 4.94 x 10-3 m = 4.94 mm  (0.20 in.)

8.D3  This problem asks that we determine, for a steel plate having a through-thickness edge crack,

to determine the minimum allowable plate width to ensure that fracture will not occur if the
minimum crack length that is subject to detection is 2 mm (0.08 in.).  We are also given that KIc
= 80 MPa√m and that the plate may be loaded to half its yield strength, where σy  = 825 MPa.

First of all the applied stress is just

σ = 
σy
2

 = 
825 MPa

2
 = 412.5 MPa (62,500 psi)

Now, using Equation (8.11) we solve for the value of Y assuming that a = 2.0 mm as

Y = 
KIc

σ√πa

= 
80 MPa√m

(412.5 MPa)√π(2 x 10-3 m)
 = 2.45

In Figure 8.13a is plotted Y versus a/W for the crack-plate geometry of this problem;  from this

plot, for Y  = 2.45, a/W  = 0.45.  Since the minimum crack length for detection is 2 mm, the

minimum width allowable is just

W = 
a

0.45
 = 

2 mm
 0.45

 = 4.4 mm  (0.18 in.)

8.D4  This problem asks that we consider a steel plate having a through-thickness edge crack, and
to determine if fracture will occur given the following:  W  = 75 mm, B  = 12.0 mm, K Ic  = 80

MPa√m, σy  = 1200 MPa, σ = 300 MPa, and a = 15 mm.  The first thing to do is determine

whether conditions of plane strain exist.  From Equation (8.12),

2.5 
 



 

KIc

σy

2
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= 2.5  


 
80 MPa√m

1200 MPa

2
 = 0.011 m = 11 mm  (0.43 in.)

Inasmuch as the plate thickness is 12 mm (which is greater than 11 mm), the situation is a

plane strain one.  Next, we must determine the a/W  ratio, which is just 15 mm/75 mm = 0.20.

From this ratio and using Figure 8.13a, Y  = 1.35.  At this point it becomes necessary to

determine the value of the Yσ√πa product;  if it is greater than KIc then fracture will occur.  Thus

Yσ√πa = (1.35)(300 MPa)√π(15 x 10-3 m)

= 87.9 MPa√m  ( )80.6 ksi√in.

Therefore, fracture will occur since this value (87.9 MPa√m) is greater than the KIc  for the steel

(80 MPa√m).

8.D5  We are to determine the maximum load that may be applied without failure to a thin bar of

rectangular cross-section that is loaded in three-point bending per Figure 8.13c.  It first becomes

necessary to determine the value of Y  for the given geometry, which is possible using this

figure;  however, this determination necessitates the computation of a/W and S/W ratios as

a
W

 = 
0.25 mm

1 mm
 = 0.25

S
W

 = 
8 mm
1 mm

 = 8

From Figure 8.13c, Y = 1.04 from the S/W  = 8 curve and for a/W  = 0.25.  Now solving for the

applied load F using the equation also provided in this figure

F = 
4KIcW2B

3SY√πa

= 
4( )0.45 MPa√m (1 x 10-3 m)2(4 x 10-3 m)

3(8 x 10-3 m)(1.04)√π(2.5 x 10-4 m)

= 1.03 x 10-5 MN = 10.3 N  (2.45 lbf)
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8.D6  (a)  This portion of the problem calls for us to rank four polymers relative to critical crack length

in the wall of a spherical pressure vessel.  In the development of Design Example 8.1, it was
noted that critical crack length is proportional to the square of the K I c -σy  ratio.  Values of K I c
and σy  as taken from Tables B.4 and B.5 are tabulated below.  (Note:  when a range of σy  or

K I c  values is given, the average value is used.)

Material KIc (MPa√m) σy (MPa)

Nylon 6,6 2.75 51.7

Polycarbonate 2.2 62.1

Polyethylene terephthlate 5.0 59.3

Polymethyl methacrylate 1.2 63.5

On the basis of these values,  the five polymers are ranked per the squares of the K I c -σy  ratios

as follows:

Material
 



 

KIc

σy

2
 (mm)

PET 7.11

Nylon 6,6 2.83

PC 1.26

PMMA 0.36

These values are smaller than those for the metal alloys given in Table 8.2, which range from

0.93 to 43.1 mm.

(b)  Relative to the leak-before-break criterion, the K I
2

c -σy  ratio is used.  The five polymers are

ranked according to values of this ratio as follows:

Material
KI

2
c

σy
  (MPa-m)

PET 0.422

Nylon 6,6 0.146

PC 0.078

PMMA 0.023



182

These values are all smaller than those for the metal alloys given in Table 8.3, which values

range from1.2 to 11.2 MPa-m.

8.D7  We are asked in this problem to estimate the maximum tensile stress that will yield a fatigue

life of 2.5 x 107 cycles, given values of ao , ac , m, A , and Y.  Since Y is independent of crack

length we may utilize Equation (8.31) which, upon integration, takes the form

Nf = 
1

Aπm/2(∆σ)mYm ∫
ao

ac

 a-m/2da

And for m  = 3.5

Nf = 
1

Aπ1.75(∆σ)3.5Y3.5 ∫
ao

ac

 a-1.75da

= - 
1.33

Aπ1.75(∆σ)3.5Y3.5 
 



 

1

ac
0.75 - 

1
ao

0.75

Now, solving for ∆σ from this expression yields

∆σ = 
 



 

1.33

NfAπ1.75Y3.5
 



 

1

ao
0.75 - 

1
ac

0.75

1/3.5

=  
 



 

1.33

(2.5 x 107)(2 x 10-14)(π)1.75(1.4)3.5
 


 
1

( )1.5 x 10-4 0.75
 - 

1

( )4.5 x 10-3 0.75

1/3.5

= 178 MPa

This 178 MPa will be the maximum tensile stress since we can show that the minimum stress is
a compressive one--when σmin  is negative, ∆σ is taken to be σmax .  If we take σmax  = 178

MPa, and since σm  is stipulated in the problem to have a value of 25 MPa, then from Equation

(8.21)

σmin = 2σm - σmax = 2(25 MPa) -178 MPa = -128 MPa
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Therefore σmin  is negative and we are justified in taking σmax  to be 178 MPa.

8.D8  This problem calls for us to estimate the fatigue life of a large flat plate given that σa = 100

MPa, ao  = 0.30 mm, KIc = 55 MPa√m, m  = 3.0, A  = 2 x 10-11, and Y = 1.45.  It first becomes

necessary to compute the critical crack length, ac .  Employment of Equation (8.14), and

assuming a stress level of 100 MPa, since this is the maximum tensile stress, leads to

ac = 
1
π  


 
KIc

σY

2

= 
1
π  


 
55 MPa√m

(100 MPa)(1.45)

2
 = 4.58 x 10-2 m

We now want to solve Equation (8.31) using a lower integration limit, ao  of 3.0 x 10-4 m as

stated in the problem;  also, the value ∆σ is 100 MPa.  Therefore, integration yields for Nf

Nf = 
1

Aπm/2(∆σ)mYm ∫
ao

ac

 a-m/2da

And for m  = 3.0

Nf = 
1

Aπ3/2(∆σ)3Y3 ∫
ao

ac

 a-3/2da

= 
1

Aπ1.5(∆σ)3Y3( )- 
1

0.50
a-0.50

ac

ao

= 
-2

(2 x 10-11)(π)1.5(100)3(1.45)3
 

 


 
1

( )4.58 x 10-2 0.50
 - 

1

( )3.0 x 10-4 0.50

= 3.1 x 105 cycles

8.D9  We are asked in this problem to estimate the critical surface crack length that will yield a

fatigue life of 1 x 107 cycles, given that ao  = 1.0 x 10-2 in., σmax  = 15,000 psi, m = 2.5, A  = 1.5
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x 10-18, and Y = 1.75.  Since Y is independent of crack length we may utilize Equation (8.31)

which, upon integration, takes the form

Nf = 
1

Aπm/2(∆σ)mYm ∫
ao

ac

 a-m/2da

And for m  = 2.5

Nf = 
1

Aπ2.5/2(∆σ)2.5Y2.5 ∫
ao

ac

 a-2.5/2da

=  
1

Aπ1.25(∆σ)2.5Y2.5( )1
-0.25

 [ ](ac)-0.25 - (ao)-0.25

Solving for ac from this expression leads to

ac =  



 

- NfAπ1.25(∆σ)2.5Y2.5

4
 + ao

- 0.25
-1/0.25

=  



 

- (1 x 107)(1.5 x 10-18)π1.25(15000)2.5(1.75)2.5

4
 + ( )1 x 10-2 -0.25

-4

= 0.25 in.

8.D10  This problem asks that we estimate the fatigue life of a flat plate that has a centrally
positioned through-thickness crack, given that W = 20 mm, 2ao  = 0.20 mm, 2ac  = 8.0 mm, m  =

4.0, and A  = 5 x 10-12.  Furthermore, inasmuch as reverse stress cycling is to be used ∆σ = 125

MPa.  For this plate and crack geometry, the parameter Y  in Equation (8.11) is defined by
Equation (8.10), and, therefore, is dependent on crack length.  Hence, the equation for Nf

[Equation (8.31)] now takes the form

Nf = 
1

Aπm/2(∆σ)m

 ⌡

⌠

ao

ac

 
da

am/2( )W
πa

 tan 
πa
W

m/2
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= 
1

AWm/2(∆σ)m  ⌡

⌠

ao

ac

 cotm/2( )πa
W

da

For m  = 4, this equation takes the form

Nf = 
1

AW2(∆σ)4  ⌡

⌠

ao

ac

 cot2( )πa
W

da

Which, upon integration, leads to the solution

Nf = 
1

AW2(∆σ)4 



 



-( )W
π cot( )πa

W
 - a 

ac

ao

= 
1

(5 x 10-12)( )20 x 10-3 2
(125)4

  



 



-  


 
20 x 10-3

π  cot( )4π
20

 - 4 x 10-3

 + 
1

(5 x 10-12)( )20 x 10-3 2
(125)4

  



 



 


 
20 x 10-3

π  cot( )0.1π
20

 + 1 x 10-4

= 8.04 x 105 cycles

8.D11  For this problem we are given an expression for Y(a/W) for an edge crack of finite width

(Figure 8.13a), and are asked to estimate the fatigue life for a tension-compression reversed

cycle situation given the following:

W = 60 mm (0.06 m)

ao = 5 mm (5 x 10-3 m)

ac = 12 mm (1.2 x 10-2 m)

m = 3.5

A = 1.5 x 10-12

Since it is a reversed stress cycle and given that σmin  = -135 MPa, it is the case that σmax  =

+135 MPa;  this also means that ∆σ in Equation (8.31) is also 135 MPa.  Upon substitution the
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expression for Y(a/W) [Equation (8.36)] into Equation (8.31), the fatigue life is equal to the

following expression:

Nf = 
1

(1.5 x 10-12)(π)1.75(135)3.5

 ⌡


⌠

ao

ac
a-1.75da

 




 


1.1( )1 - 

0.2a
W

( )1 - 
a
W

3/2

3.5

Nf  may now be determined using the E-Z Solve  equation solver.

After opening E-Z Solve , the following text is entered into the workspace of the window

that appears:

a = t

T' = 1/K * a^(-1.75) / (1.1 * (1 - 0.2 * a / W) / (1 - a / W)^(3/2))^3.5

K = 1.5e-12 * pi^1.75 * 135^3.5

W = 0.06

It is next necessary to click on the calculator icon ("Solve new run") located on the tool bar near

the top of the window.  At this time another window appears within which the integration limits

are specified.  In the "IC" window, under the "Independent Variable" column, in the "Start" box
is entered "5e-3", which is the lower limit of the integral (i.e., ao).  Furthermore, in the "End" box

is entered the upper integration limit (ac ), which is "1.2e-2", and in the "# Points" box is entered

the value "1".  Under the "Initial Conditions" column, in the "t"  box is again entered the lower

integration limit--"5e-3";  in the "T" box is left the default value of "0".  It is now necessary to click

on the "Solve New Run" box at the bottom of this window, at which time the equation solver is

engaged.  Finally, at the bottom of the first window now appears the data that has been
entered as well as the solution.  The value for the fatigue life (Nf ) is given as the nonzero value

that appears in the T column--i.e., 4.17 x 104 cycles.

8.D12  This problem asks that we derive an expression for the fatigue life of the spherical tank shown

in Figure 8.15 that is alternately pressurized and depressurized between atmospheric pressure

and a positive pressure p .  For Y being independent of crack length a, Equation (8.31) takes the

form
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Nf = 
1

Aπm/2(∆σ)mYm ∫
ao

ac

 a-m/2da

But ∆σ is just equal to the expression for σ in Equation (8.15).  Making this substitution into the

above equation leads to

Nf = 
1

Aπm/2( )pr
2t

m
Ym

∫
ao

ac

 a-m/2da

= 
2mtm

Aπm/2(pr)mYm ∫
ao

ac

 a-m/2da

This expression must next be integrated which yields

Nf = 
2(m + 1)tm

A(2 - m)πm/2(pr)mYm[ ]ac
{1 - m/2} - ao

{ 1 - m/2}

which is the desired result.

8.D13  This problem asks that we compute the maximum allowable stress level to give a rupture

lifetime of 100 days for an S-590 iron component at 773 K.  It is first necessary to compute the

value of the Larson-Miller parameter as follows:

T(20 + log tr) = (773 K){20 + log[(100 days)(24 h/day)]}

= 18.1 x 103

From the curve in Figure 8.40, this value of the Larson-Miller parameter corresponds to a stress

level of about 530 MPa (77,000 psi).

8.D14  We are asked in this problem to calculate the temperature at which the rupture lifetime is 500

h when an S-590 iron component is subjected to a stress of 200 MPa (29,000 psi).  From the
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curve shown in Figure 8.40, at 200 MPa, the value of the Larson-Miller parameter is 22.5 x 103

(K-h).  Thus,

22.5 x 103 (K-h) = T(20 + log tr)

= T[20 + log(500 h)]

Or, solving for T yields T = 991 K (718°C).

8.D15  This problem asks that we determine, for an 18-8 Mo stainless steel, the time to rupture for a

component that is subjected to a stress of 80 MPa (11,600 psi) at 700°C (973 K).  From Figure

8.43, the value of the Larson-Miller parameter at 80 MPa is about 23.5 x 103, for T in K and tr

in h.  Therefore,

23.5 x 103 = T(20 + log tr)

= 973(20 + log tr)

And, solving for tr

24.15 = 20 + log tr

which leads to tr = 1.42 x 104 h = 1.6 yr.

8.D16  We are asked in this problem to calculate the stress levels at which the rupture lifetime will be

5 years and 20 years when an 18-8 Mo stainless steel component is subjected to a temperature

of 500°C (773 K).  It first becomes necessary, using the specified temperature and times, to
calculate the values of the Larson-Miller parameter at each temperature.  The values of t r

corresponding to 5 and 20 years are 4.38 x 104 h and 1.75 x 105 h, respectively.  Hence, for a

lifetime of 5 years

T(20 + log tr) = 773[20 + log (4.38 x 104)] = 19.05 x 103

And for tr = 20 years

T(20 + log tr) = 773[20 + log (1.75 x 105)] = 19.51 x 103
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Using the curve shown in Figure 8.43, the stress values corresponding to the five- and twenty-

year lifetimes are approximately 260 MPa (37,500 psi) and 225 MPa (32,600 psi), respectively.
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CHAPTER 9

PHASE DIAGRAMS

PROBLEM SOLUTIONS

9.1  Three variables that determine the microstructure of an alloy are 1) the alloying elements

present, 2) the concentrations of these alloying elements, and 3) the heat treatment of the

alloy.

9.2  In order for a system to exist in a state of equilibrium the free energy must be a minimum for

some specified combination of temperature, pressure, and composition.

9.3  Diffusion occurs during the development of microstructure in the absence of a concentration

gradient because the driving force is different than for steady state diffusion as described in

Section 5.3;  for the development of microstructure, the driving force is a decrease in free

energy.

9.4  For the condition of phase equilibrium the free energy is a minimum, the system is completely

stable meaning that over time the phase characteristics are constant.  For metastability, the

system is not at equilibrium, and there are very slight (and often imperceptible) changes of the

phase characteristics with time.

9.5  This problem asks that we cite the phase or phases present for several alloys at specified

temperatures.

(a)  For an alloy composed of 90 wt% Zn-10 wt% Cu and at 400°C, from Figure 9.17, ε and η

phases are present, and
Cε = 87 wt% Zn-13 wt% Cu

Cη = 97 wt% Zn-3 wt% Cu

(b)  For an alloy composed of 75 wt% Sn-25 wt% Pb and at 175°C, from Figure 9.7, α  and β

phases are present, and

Cα = 15 wt% Sn-85 wt% Pb

Cβ = 98 wt% Sn-2 wt% Pb
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(c)  For an alloy composed of 55 wt% Ag-45 wt% Cu and at 900°C, from Figure 9.6, only the

liquid phase is present;  its composition is 55 wt% Ag-45 wt% Cu.

(d)  For an alloy composed of 30 wt% Pb-70 wt% Mg and at 425°C, from Figure 9.18, only the α

phase is present;  its composition is 30 wt% Pb-70 wt% Mg.

(e)  For an alloy composed of 2.12 kg Zn and 1.88 kg Cu and at 500°C, we must first determine

the Zn and Cu concentrations, as

CZn = 
2.12 kg

2.12 kg + 1.88 kg
 x 100 = 53 wt%

CCu = 
1.88 kg

2.12 kg + 1.88 kg
 x 100 = 47 wt%

From Figure 9.17, β + γ phases are present, and

Cβ = 49 wt% Zn-51 wt% Cu

Cγ = 57 wt% Zn-43 wt% Cu

(f)  For an alloy composed of 37 lbm Pb and 6.5 lbm Mg and at 400°C, we must first determine

the Pb and Mg concentrations, as

CPb = 
37 lbm

37 lbm + 6.5 lbm
 x 100 = 85 wt%

CMg = 
6.5 lbm

37 lbm + 6.5 lbm
 x 100 = 15 wt%

From Figure 9.18, Mg2Pb and L  phases are present, and

CMg2Pb = 81 wt% Pb-19 wt% Mg

CL = 93 wt% Pb-7 wt% Mg

(g)  For an alloy composed of 8.2 mol Ni and 4.3 mol Cu and at 1250°C, it is first necessary to

determine the Ni and Cu concentrations, which we will do in wt% as follows:
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mNi'  = nmNi
ANi = (8.2 mol)(58.69 g/mol) = 481.3 g

mCu'  = nmCu
ACu = (4.3 mol)(63.55 g/mol) = 273.3 g

CNi = 
481.3 g

481.3 g + 273.3 g
 x 100 = 63.8 wt%

CCu = 100 wt% - 63.8 wt% = 36.2 wt%

From Figure 9.2a, only the α phase is present;  its composition is 63.8 wt% Ni-36.2 wt% Cu.

(h)  For an alloy composed of 4.5 mol Sn and 0.45 mol Pb and at 200°C, it is first necessary to

determine the Sn and Pb concentrations, which we will do in weight percent as follows:

mSn'  = nmSn
ASn = (4.5 mol)(118.69 g/mol) = 534.1 g

mPb'  = nmPb
APb = (0.45 mol)(207.2 g/mol) = 93.2 g

CSn = 
534.1 g

534.1 g + 93.2 g
 x 100 = 85 wt%

CPb = 
93.2 g

534.1 g + 93.2 g
 x 100 = 15 wt%

From Figure 9.7, β and liquid phases are present;  and

Cβ = 98 wt% Sn-2 w% Pb

CL = 74 wt% Sn-26 wt% Pb

9.6  This problem asks us to determine the phases present and their concentrations at several

temperatures, as an alloy of composition 74 wt% Zn- 26 wt% Cu is cooled.  From Figure 9.17:

At 850°C, a liquid phase is present;  C
L

 = 74 wt% Zn-26 wt% Cu

At 750°C, γ and liquid phases are present;  Cγ = 76 wt% Zn-24 wt% Cu;  CL  = 68 wt%

Zn-32 wt% Cu
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At 680°C, δ and liquid phases are present;  Cδ = 74 wt% Zn-26 wt% Cu;  CL  = 82 wt%

Zn-18 wt% Cu

At 600°C, the δ phase is present;  Cδ = 74 wt% Zn-26 wt% Cu

At 500°C, γ and ε phases are present;  Cγ = 69 wt% Zn-31 wt% Cu;  Cε = 78 wt% Zn-22

wt% Cu

9.7  This problem asks that we determine the phase mass fractions for the alloys and temperatures

in Problem 9.5.

(a)

Wε = 
Cη - Co
Cη - Cε

 = 
97 - 90
97 - 87

 = 0.70

Wη = 
Co - Cε
Cη - Cε

 = 
90 - 87
97 - 87

 = 0.30

(b)

Wα = 
Cβ - Co
Cβ - Cα

 = 
98 - 75
98 - 15

 = 0.28

Wβ = 
Co - Cα
Cβ - Cα

 = 
75 - 15
98 - 15

 = 0.72

(c) WL = 1.0

(d) Wα  = 1.0

(e)

Wβ = 
Cγ - Co
Cγ - Cβ

 = 
57 - 53
57 - 49

 = 0.50

Wγ = 
Co - Cβ
Cγ - Cβ

 = 
53 - 49
57 - 49

 = 0.50

(f)
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WMg2Pb = 
CL - Co

CL - CMg2Pb
 = 

93 - 85
93 - 81

 = 0.67

WL = 
Co - CMg2Pb
CL - CMg2Pb

 = 
85 - 81
93 - 81

 = 0.33

(g) Wα  = 1.0

(h)

Wβ = 
Co - CL
Cβ - CL

 = 
85 - 74
98 - 74

 = 0.46

WL = 
Cβ - Co
Cβ - CL

 = 
98 - 85
98 - 74

 = 0.54

9.8  (a)  In this problem we are asked to derive Equation (9.6a), which is used to convert from phase
weight fraction to phase volume fraction.  Volume fraction of phase α , Vα , is defined by

Equation (9.5) as

Vα  = 
vα

vα  + vβ
(9.S1)

where v α  and v α  are the volumes of the respective phases in the alloy.  Furthermore, the

density of each phase is equal to the ratio of its mass and volume, or upon rearrangement

vα  = 
mα
ρα

(9.S2a)

vβ = 
mβ
ρβ

(9.S2b)

Substitution of these expressions into Equation (9.S1) leads to

Vα  = 

mα
ρα

mα
ρα

 + 
mβ
ρβ

(9.S3)
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in which m 's and ρ's denote masses and densities, respectively.  Now, the mass fractions of the
α  and β phases (i.e., Wα  and Wβ) are defined in terms of the phase masses as

Wα  = 
mα

mα  + mβ
(9.S4a)

Wβ = 
mβ

mα  + mβ
(9.S4b)

Which, upon rearrangement yield

mα  = Wα(mα  + mβ) (9.S5a)

mβ = Wβ(mα + mβ) (9.S5b)

Incorporation of these relationships into Equation (9.S3) leads to the desired expression

Vα  = 

Wα
ρα

Wα
ρα

 + 
Wβ
ρβ

(9.S6)

(b)  For this portion of the problem we are asked to derive Equation (9.7a), which is used to convert

from phase volume fraction to mass fraction.  Mass fraction of the α  phase is defined as

Wα  = 
mα

mα  + mβ
(9.S7)

From Equations (9.S2a) and (9.S2b)

mα  = vαρα (9.S8a)

mβ = vβρβ (9.S8b)

Substitution of these expressions into Equation (9.S7) yields

Wα  = 
vαρα

vαρα + vβρβ
(9.S9)
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From Equation (9.S1) and its equivalent for Vβ the following may be written

vα  = Vα(vα  + vβ) (9.S10a)

vβ = Vβ(vα + vβ) (9.S10b)

Substitution of Equations (9.S10a) and (9.S10b) into Equation (9.S9) yields the desired

expression

Wα  = 
Vαρα

Vαρα + Vβρβ
(9.S11)

9.9  This problem asks that we determine the phase volume fractions for the alloys and

temperatures in Problem 9.5a, b, and c.  This is accomplished by using the technique illustrated

in Example Problem 9.3, and the results of Problem 9.7.

(a)  This is a Cu-Zn alloy at 400°C, wherein

Cε = 87 wt% Zn-13 wt% Cu

Cη = 97 wt% Zn-3 wt% Cu

Wε = 0.70

Wη = 0.30

ρCu = 8.77 g/cm3

ρZn = 6.83 g/cm3

Using this data it is first necessary to compute the densities of the ε and η  phases using

Equation (4.10a).  Thus

ρε = 
100

CZn(ε)
ρZn

 + 
CCu(ε)

ρCu

= 
100

87

6.83 g/cm3 + 
13

8.77 g/cm3

 = 7.03 g/cm3
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ρη = 
100

CZn(η)
ρZn

 + 
CCu(η)

ρCu

= 
100

97

6.83 g/cm3 + 
3

8.77 g/cm3

 = 6.88 g/cm3

Now we may determine the Vε and Vη values using Equation 9.6.  Thus,

Vε = 

Wε
ρε

Wε
ρε

 + 
Wη
ρη

= 

0.70

7.03 g/cm3

0.70

7.03 g/cm3 + 
0.30

6.88 g/cm3

 = 0.70

Vη = 

Wη
ρη

Wε
ρε

 + 
Wη
ρη

= 

0.30

6.88 g/cm3

0.70

7.03 g/cm3 + 
0.30

6.88 g/cm3

 = 0.30

(b)  This is a Pb-Sn alloy at 175°C, wherein

Cα = 15 wt% Sn-85 wt% Pb

Cβ = 98 wt% Sn-2 wt% Pb

Wα  = 0.28

Wβ = 0.72

ρSn = 7.22 g/cm3

ρPb = 11.20 g/cm3

Using this data it is first necessary to compute the densities of the α  and β phases.  Thus
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ρα = 
100

CSn(α)
ρSn

 + 
CPb(α)

ρPb

= 
100

15

7.22 g/cm3 + 
85

11.20 g/cm3

 = 10.34 g/cm3

ρβ = 
100

CSn(β)
ρSn

 + 
CPb(β)

ρPb

= 
100

98

7.22 g/cm3 + 
2

11.20 g/cm3

 = 7.27 g/cm3

Now we may determine the Vα  and Vβ values using Equation (9.6).  Thus,

Vα  = 

Wα
ρα

Wα
ρα

 + 
Wβ
ρβ

= 

0.28

10.34 g/cm3

0.28

10.34 g/cm3 + 
0.72

7.27 g/cm3

 = 0.21

Vβ = 

Wβ
ρβ

Wα
ρα

 + 
Wβ
ρβ

= 

0.72

7.27 g/cm3

0.28

10.34 g/cm3 + 
0.72

7.27 g/cm3

 = 0.79

(c)  This is a Ag-Cu alloy at 900°C, wherein only the liquid phase is present.  Therefore, VL  =

1.0.
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9.10  (a)  Spreading salt on ice will lower the melting temperature, since the liquidus line decreases

from 0°C to the eutectic temperature at about -21°C.  Thus, ice at a temperature below 0°C

(and above -21°C) can be made to form a liquid phase by the addition of salt.

(b)  We are asked to compute the concentration of salt necessary to have a 50% ice-50% brine

solution at -10°C (14°F).  At -10°C,

C
ice

 = 0 wt% NaCl-100 wt% H
2

O

C
brine

 = 13 wt% NaCl-87 wt% H
2

O

Thus,

Wice = 0.5 = 
Cbrine - Co

Cbrine - Cice
 = 

13 - Co
 13 - 0

Solving for C
o

 (the concentration of salt) yields a value of 6.5 wt% NaCl-93.5 wt% H
2

O.

9.11  (a)  This part of the problem calls for us to cite the temperature to which a 90 wt% Pb-10 wt%

Sn alloy must be heated in order to have 50% liquid.  Probably the easiest way to solve this

problem is by trial and error--that is, moving vertically at the given composition, through the α  +

L  region until the tie-line lengths on both sides of the given composition are the same (Figure

9.7).  This occurs at approximately 300°C (570°F).

(b)  We can also produce a 50% liquid solution at 250°C, by adding Sn to the alloy.  At 250°C

and within the α  + L phase region

Cα = 13 wt% Sn-87 wt% Pb

CL = 39 wt% Sn-61 wt% Pb

Let C
o

 be the new alloy composition to give Wα  = WL  = 0.5.  Then,

Wα = 0.5 = 
CL - Co
CL - Cα

 = 
39 - Co
39 - 13

And solving for C
o

 gives 26 wt% Sn.  Now, let m
Sn

 be the mass of Sn added to the alloy to

achieve this new composition.  The amount of Sn in the original alloy is

(0.10)(1.5 kg) = 0.15 kg
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Then, using a modified form of Equation (4.3)

 


 
0.15 kg + mSn

1.5 kg + mSn
 x 100 = 26

And, solving for m
Sn

 yields m
Sn

 = 0.324 kg.

9.12  (a)  We are asked to determine how much sugar will dissolve in 1500 g of water at 90°C.  From

the solubility limit curve in Figure 9.1, at 90°C the maximum concentration of sugar in the syrup

is about 77 wt%.  It is now possible to calculate the mass of sugar using Equation (4.3) as

Csugar(wt%) = 
msugar

msugar + mwater
 x 100

77 wt% = 
msugar

msugar + 1500 g
 x 100

Solving for msugar  yields msugar  = 5022 g

(b)  Again using this same plot, at 20°C the solubility limit (or the concentration of the saturated

solution) is about 64 wt% sugar.
(c)  The mass of sugar in this saturated solution at 20°C (msugar ') may also be calculated using

Equation (4.3) as follows:

64 wt% = 
msugar'

msugar' + 1500 g
 x 100

which yields a value for m sugar ' of 2667 g.  Subtracting the latter from the former of these

sugar concentrations yields the amount of sugar that precipitated out of the solution upon
cooling msugar " ;  that is

msugar" = msugar - msugar' = 5022 g - 2667 g = 2355 g

9.13  This problem asks us to consider a specimen of ice I which is at -10°C and 1 atm pressure.

(a)  In order to determine the pressure at which melting occurs at this temperature, we move

vertically at this temperature until we cross the Ice I-Liquid phase boundary of Figure 9.34.  This
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occurs at approximately 570 atm;  thus the pressure of the specimen must be raised from 1 to

570 atm.

(b)  In order to determine the pressure at which sublimation occurs at this temperature, we move

vertically downward from 1 atm until we cross the Ice I-Vapor phase boundary of Figure 9.34.

This intersection occurs at approximately 0.0023 atm.

9.14  The melting and boiling temperatures for ice I  at a pressure of 0.01 atm may be determined

by moving horizontally across the pressure-temperature diagram of Figure 9.34 at this pressure.

The temperature corresponding to the intersection of the Ice I-Liquid phase boundary is the

melting temperature, which is approximately 1°C.  On the other hand, the boiling temperature is

at the intersection of the horizontal line with the Liquid-Vapor phase boundary--approximately

28°C.

9.15  (a)  This portion of the problem asks that we calculate, for a Pb-Mg alloy, the mass of lead in

5.5 kg of the solid α  phase at 200°C just below the solubility limit.  From Figure 9.18, the

composition of an alloy at this temperature is about 5 wt% Pb.  Therefore, the mass of Pb in the

alloy is just (0.05)(5.5 kg) = 0.28 kg.

(b)  At 350°C, the solubility limit of the α  phase increases to approximately 25 wt% Pb.  In order
to determine the additional amount of Pb that may be added (mPb ), we utilize a modified form

of Equation (4.3) as

CPb = 25 wt% = 
0.28 kg + mPb
5.5 kg + mPb

 x 100

Solving for mPb  yields mPb  = 1.46 kg.

9.16  (a)  Coring is the phenomenon whereby concentration gradients exist across grains in

polycrystalline alloys, with higher concentrations of the component having the lower melting

temperature at the grain boundaries.  It occurs, during solidification, as a consequence of

cooling rates that are too rapid to allow for the maintenance of the equilibrium composition of

the solid phase.

(b)  One undesirable consequence of a cored structure is that, upon heating, the grain

boundary regions will melt first and at a temperature below the equilibrium phase boundary from

the phase diagram;  this melting results in a loss in mechanical integrity of the alloy.
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9.17  This problem asks if a noncold-worked Cu-Ni solid solution alloy is possible having a minimum

tensile strength of 350 MPa (50,750 psi) and also a ductility of at least 48%EL.  From Figure

9.5a, a tensile strength greater than 350 MPa is possible for compositions between about 22.5

and 98 wt% Ni.  On the other hand, according to Figure 9.5b, ductilities greater than 48%EL

exist for compositions less than about 8 wt% and greater than about 98 wt% Ni.  Therefore, the

stipulated criteria are met only at a composition of 98 wt% Ni.

9.18  It is  possible to have a Cu-Ag alloy, which at equilibrium consists of a β phase of composition

92 wt% Ag-8 wt% Cu and a liquid phase of composition 76 wt% Ag-24 wt% Cu.  From Figure 9.6

a horizontal tie line can be constructed across the β + L  phase region at about 800°C which

intersects the L-(β + L) phase boundary at 76 wt% Ag, and also the (β + L)-β phase boundary at

92 wt% Ag.

9.19  It is  not  possible to have a Cu-Zn alloy, which at equilibrium consists of an ε phase of

composition 80 wt% Zn-20 wt% Cu and also a liquid phase of composition 95 wt% Zn-5 wt% Cu.

From Figure 9.17 a single tie line does not exist within the ε + L  region which intersects the

phase boundaries at the given compositions.  At 80 wt% Zn, the ε-(ε + L) phase boundary is at

about 575°C, whereas at 95 wt% Zn the (ε + L)-L  phase boundary is at about 490°C.

9.20  Upon heating a copper-nickel alloy of composition 70 wt% Ni-30 wt% Cu from 1300°C and

utilizing Figure 9.2a:

(a)  The first liquid forms at the temperature at which a vertical line at this composition intersects

the α-(α  + L) phase boundary--i.e., about 1350°C;

(b)  The composition of this liquid phase corresponds to the intersection with the (α + L)-L phase

boundary, of a tie line constructed across the α + L  phase region at 1350°C--i.e., 59 wt% Ni;

(c)  Complete melting of the alloy occurs at the intersection of this same vertical line at 70 wt%

Ni with the (α + L)-L phase boundary--i.e., about 1380°C;

(d)  The composition of the last solid remaining prior to complete melting corresponds to the

intersection with α -(α  + L) phase boundary, of the tie line constructed across the α  + L  phase

region at 1380°C--i.e., about 78 wt% Ni.

9.21  Upon cooling a 50 wt% Pb-50 wt% Mg alloy from 700°C and utilizing Figure 9.18:

(a)  The first solid phase forms at the temperature at which a vertical line at this composition

intersects the L-(α + L) phase boundary--i.e., about 550°C;
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(b)  The composition of this solid phase corresponds to the intersection with the α-(α  + L) phase

boundary, of a tie line constructed across the α  + L  phase region at 550°C--i.e., 22 wt% Pb-78

wt% Mg;

(c)  Complete solidification  of the alloy occurs at the intersection of this same vertical line at 50

wt% Pb with the eutectic isotherm--i.e., about 465°C;

(d)  The composition of the last liquid phase remaining prior to complete solidification

corresponds to the eutectic composition--i.e., about 66 wt% Pb-34 wt% Mg.

9.22  (a)  In order to determine the temperature of a 90 wt% Ag-10 wt% Cu alloy for which β and

liquid phases are present with the liquid phase of composition 85 wt% Ag, we need to construct

a tie line across the β + L  phase region of Figure 9.6 that intersects the liquidus line at 85 wt%

Ag;  this is possible at about 850°C.

(b)  The composition of the β phase at this temperature is determined from the intersection of

this same tie line with solidus line, which corresponds to about 95 wt% Ag.

(c)  The mass fractions of the two phases are determined using the lever rule, Equations (9.1)
and (9.2) with Co = 90 wt% Ag, CL  = 85 wt% Ag, and Cβ = 95 wt% Ag, as

Wβ = 
Co - CL
Cβ - CL

 = 
90 - 85
95 - 85

 = 0.50

WL = 
Cβ - Co
Cβ - CL

 = 
95 - 90
95 - 85

 = 0.50

9.23  The germanium-silicon phase diagram is constructed below.
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9.24  (a)  We are given that the mass fractions of α  and liquid phases are both 0.5 for a 30 wt% Sn-

70 wt% Pb alloy and asked to estimate the temperature of the alloy.  Using the appropriate

phase diagram, Figure 9.7, by trial and error with a ruler, a tie line within the α  + L  phase region

that is divided in half for an alloy of this composition exists at about 230°C

(b)  We are now asked to determine the compositions of the two phases.  This is accomplished

by noting the intersections of this tie line with both the solidus and liquidus lines.  From these
intersections, Cα = 15 wt% Sn, and CL  = 42 wt% Sn.

9.25  The problem is to solve for compositions at the phase boundaries for both α  and β phases
(i.e., Cα  and Cβ).  We may set up two independent lever rule expressions, one for each

composition, in terms of Cα and Cβ as follows:

Wα1 = 0.57 = 
Cβ - Co1
Cβ - Cα

 = 
Cβ - 60

Cβ - Cα

Wα2 = 0.14 = 
Cβ - Co2
Cβ - Cα

 = 
Cβ - 30

Cβ - Cα

In these expressions, compositions are given in wt% A.  Solving for Cα  and Cβ from these

equations, yield

Cα = 90 (or 90 wt% A-10 wt% B)
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Cβ = 20.2 (or 20.2 wt% A-79.8 wt% B)

9.26  For this problem

Co = 55 (or 55 wt% B-45 wt% A)

Cβ = 90 (or 90 wt% B-10 wt% A)

Wα  = Wβ = 0.5

If we set up the lever rule for Wα

Wα = 0.5 = 
Cβ - Co
Cβ - Cα

 = 
90 - 55
90 - Cα

And solving for Cα
Cα = 20 (or 20 wt% B-80 wt% A)

9.27  It is not  possible to have a Cu-Ag alloy of composition 50 wt% Ag-50 wt% Cu which consists of
mass fractions Wα  = 0.60 and Wβ = 0.40.  Using the appropriate phase diagram, Figure 9.6,

and, using Equations (9.1) and (9.2) let us determine Wα  and Wβ at just below the eutectic

temperature and also at room temperature.  At just below the eutectic, Cα  = 8.0 wt% Ag and Cβ

= 91.2 wt% Ag;  thus,

Wα =  
Cβ - Co
Cβ - Cα

 = 
91.2 - 50
 91.2 - 8

 = 0.50

Wβ = 1.0 - Wα  = 1.0 - 0.5 = 0.50

Furthermore, at room temperature, Cα  = 0 wt% Ag and Cβ = 100 wt% Ag;  employment of

Equations (9.1) and (9.2) yields

Wα =  
Cβ - Co
Cβ - Cα

 = 
100 - 50
 100 - 0

 = 0.50
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And, Wβ = 0.50.  Thus, the mass fractions of the α  and β phases, upon cooling through the α  +

β phase region will remain approximately constant at about 0.5, and will never have values of
Wα  = 0.60 and Wβ = 0.40 as called for in the problem.

9.28  Yes, it is possible to have a 30 wt% Pb-70 wt% Mg alloy which has masses of 7.39 kg and
3.81 kg for the α  and Mg2Pb phases, respectively.  In order to demonstrate this, it is first

necessary to determine the mass fraction of each phase as follows:

Wα  = 
mα

mα  + mMg2Pb
 = 

7.39 kg
7.39 kg + 3.81 kg

 = 0.66

WMg2Pb = 1.00 - 0.66 = 0.34

Now, if we apply the lever rule expression for Wα

Wα  = 

CMg2Pb - Co

CMg2Pb - Cα

Since the Mg2Pb phase exists only at 81 wt% Pb, and Co  = 30 wt% Pb

Wα  = 0.66 = 
81 - 30
81 - Cα

Solving for Cα  from this expression yields Cα   = 3.7 wt% Pb.  The position along the α−(α  +

Mg2Pb) phase boundary of Figure 9.18 corresponding to this composition is approximately

190°C.

9.29  (a)  From Figure 9.6, the maximum solubility of Cu in Ag at 700°C corresponds to the position

of the β-(α  + β) phase boundary at this temperature, or to about 6 wt% Cu.

(b)  From this same figure, the maximum solubility of Ag in Cu corresponds to the position of the

α-(α  + β) phase boundary at this temperature, or about 5 wt% Ag.

9.30  We are asked to determine the approximate temperature from which a Pb-Mg alloy was
quenched, given the mass fractions of α  and Mg

2
Pb phases. We can write a lever-rule

expression for the mass fraction of the α  phase as



206

Wα  = 0.65 = 

CMg2Pb - Co

CMg2Pb - Cα

The value of C
o

 is stated as 45 wt% Pb-55 wt% Mg, and C
Mg2Pb

 is 81 wt% Pb-19 wt% Mg,

which is independent of temperature (Figure 9.18);  thus,

0.65 = 
81 - 45
81 - Cα

which yields
Cα  = 25.6 wt% Pb

The temperature at which the α-(α  + Mg2Pb) phase boundary (Figure 9.18) has a value of 25.6

wt% Pb is about 360°C (680°F).

9.31  This problem asks if it is possible to have a Cu-Ag alloy for which the mass fractions of primary

β and total β are 0.68 and 0.925, respectively at 775°C.  In order to make this determination we

need to set up the appropriate lever rule expression for each of these quantities.  From Figure
9.6 and at 775°C, Cα  = 8.0 wt% Ag, Cβ = 91.2 wt% Ag, and Ceutectic  = 71.9 wt% Ag

For primary β

Wβ' = 
Co - Ceutectic
 Cβ - Ceutectic

 = 
Co - 71.9

91.2 - 71.9
 = 0.68

Solving for Co gives Co = 85 wt% Ag.

Now the analogous expression for total β

Wβ = 
Co - Cα
Cβ - Cα

 = 
Co - 8.0

91.2 - 8.0
 = 0.925

And this value of Co  is 85 wt% Ag.  Therefore, since these two Co  values are the same, this

alloy is possible.

9.32  This problem asks if it is possible to have a Mg-Pb alloy for which the masses of primary α  and

total α  are 4.23 kg and 6.00 kg, respectively in 6.7 kg total of the alloy at 460°C.  In order to

make this determination we first need to convert these masses to mass fractions.  Thus,
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Wα ' = 
4.23 kg
6.7 kg

 = 0.631

Wα  = 
6.00 kg
6.7 kg

 = 0.896

Next it is necessary to set up the appropriate lever rule expression for each of these quantities.

From Figure 9.18 and at 460°C, Cα  = 41 wt% Pb, CMg 2Pb  = 81 wt% Pb, and Ceutectic  = 66

wt% Pb

For primary α

Wα ' = 
Ceutectic - Co
Ceutectic - Cα

 = 
66 - Co
66 - 41

 = 0.631

Solving for Co gives Co = 50.2 wt% Pb.

Now the analogous expression for total α

Wα  = 
CMg2Pb - Co

CMg2Pb - Cα
 = 

81 - Co
81 - 41

 = 0.896

And this value of Co  is 45.2 wt% Pb.  Therefore, since these two Co  values are different, this

alloy is not  possible.

9.33  (a)  This portion of the problem asks that we determine the mass fractions of α  and β phases

for an 25 wt% Ag-75 wt% Cu alloy (at 775°C).  In order to do this it is necessary to employ the

lever rule using a tie line that extends entirely across the α  + β phase field (Figure 9.6), as

follows:

Wα = 
Cβ - Co
Cβ - Cα

 = 
91.2 - 25
91.2 - 8.0

 = 0.796

Wβ = 
Co - Cα
Cβ - Cα

 = 
25 - 8.0

91.2 - 8.0
 = 0.204

(b)  Now it is necessary to determine the mass fractions of primary α  and eutectic

microconstituents for this same alloy.  This requires us to utilize the lever rule and a tie line that
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extends from the maximum solubility of Ag in the α  phase at 775°C (i.e., 8.0 wt% Ag) to the

eutectic composition (71.9 wt% Ag).  Thus

Wα ' = 
Ceutectic - Co
Ceutectic - Cα

 = 
71.9 - 25
71.9 - 8.0

 = 0.734

We = 
Co - Cα

Ceutectic - Cα
 = 

25 - 8.0
71.9 - 8.0

 = 0.266

(c)  And, finally, we are asked to compute the mass fraction of eutectic α , Weα .  This quantity is

simply the difference between the mass fractions of total α  and primary α  as

Weα  = Wα  - Wα ' = 0.796 - 0.734 = 0.062

9.34  This problem asks that we determine the composition of a Pb-Sn alloy at 180°C given that Wβ'
= 0.57 and We = 0.43.  Since there is a primary β microconstituent present, then we know that

the alloy composition, Co  is between 61.9 and 97.8 wt% Sn (Figure 9.7).  Furthermore, this

figure also indicates that Cβ = 97.8 wt% Sn and Ceutectic  = 61.9 wt% Sn.  Applying the

appropriate lever rule expression for Wβ'

Wβ' = 
Co - Ceutectic
Cβ - Ceutectic

 = 
 Co - 61.9

97.8 - 61.9
 = 0.57

 and solving for Co yields Co = 82.4 wt% Sn.

9.35  We are given a hypothetical eutectic phase diagram for which Ceutectic  = 47 wt% B, Cβ = 92.6

wt% B at the eutectic temperature, and also that Wα ' = 0.356 and Wα  = 0.693;  from this we

are asked to determine the composition of the alloy.  Let us write lever rule expressions for Wα '
and Wα

Wα = 
Cβ - Co
Cβ - Cα

 = 
92.6 - Co
92.6 - Cα

 = 0.693

Wα ' = 
Ceutectic - Co
Ceutectic - Cα

 = 
47 - Co
47 - Cα

 = 0.356

Thus, we have two simultaneous equations with Co  and Cα  as unknowns.  Solving them for Co
gives Co = 32.6 wt% B.
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9.36  Upon solidification, an alloy of eutectic composition forms a microstructure consisting of

alternating layers of the two solid phases because during the solidification atomic diffusion must

occur, and with this layered configuration the diffusion path length for the atoms is a minimum.

9.37  Schematic sketches of the microstructures that would be observed for an 85 wt% Pb-15 wt%

Mg alloy at temperatures of 600°C, 500°C, 270°C, and 200°C are shown below.  The phase

compositions are also indicated.

9.38  Schematic sketches of the microstructures that would be observed for a 68 wt% Zn-32 wt% Cu

alloy at temperatures of 1000°C, 760°C, 600°C, and 400°C are shown below.  The phase

compositions are also indicated.
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9.39  Schematic sketches of the microstructures that would be observed for a 30 wt% Zn-70 wt% Cu

alloy at temperatures of 1100°C, 950°C, 900°C, and 700°C are shown below.  The phase

compositions are also indicated.
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9.40  The principal difference between congruent and incongruent phase transformations is that for

congruent no compositional changes occur with any of the phases that are involved in the

transformation.  For incongruent there will be compositional alterations of the phases.

9.41  In this problem we are asked to specify temperature-composition points for all eutectics,

eutectoids, peritectics, and congruent phase transformations for the aluminum-neodymium

system.

There are two eutectics on this phase diagram.  One exists at 12 wt% Nd-88 wt% Al and

632°C.  The reaction upon cooling is

L →  Al + Al11Nd3

The other eutectic exists at about 97 wt% Nd-3 wt% Al and 635°C.  This reaction upon cooling is

L →  AlNd3 + Nd

There are four peritectics.  One exists at 59 wt% Nd-41 wt% Al and 1235°C.  Its reaction

upon cooling is as follows:



212

L + Al2Nd →  Al11Nd3

The second peritectic exists at 84 wt% Nd-16 wt% Al and 940°C.  This reaction upon cooling is

L + Al2Nd → AlNd

The third peritectic exists at 91 wt% Nd-9 wt% Al and 795°C.  This reaction upon cooling is

L + AlNd →  AlNd2

The fourth peritectic exists at 94 wt% Nd-6 wt% Al and 675°C.  This reaction upon cooling is

L + AlNd2 →  AlNd3

There is one congruent melting point at about 73 wt% Nd-27 wt% Al and 1460°C.  Its

reaction upon cooling is

L →  Al2Nd

No eutectoids are present.

9.42  In this problem we are asked to specify temperature-composition points for all eutectics,

eutectoids, peritectics, and congruent phase transformations for a portion of the titanium-copper

phase diagram.

There is one eutectic on this phase diagram, which exists at about 51 wt% Cu-49 wt% Ti

and 960°C.  Its reaction upon cooling is

L →  Ti2Cu + TiCu

There is one eutectoid for this system.  It exists at about 7.5 wt% Cu-92.5 wt% Ti and

790°C.  This reaction upon cooling is

β →  α + Ti2Cu

There is one peritectic on this phase diagram.  It exists at about 40 wt% Cu-60 wt% Ti

and 1005°C.  The reaction upon cooling is
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β + L →  Ti2Cu

There is a single congruent melting point that exists at about 57.5 wt% Cu-42.5 wt% Ti

and 982°C.  The reaction upon cooling is

L →  TiCu

9.43  This problem asks for us to compute the maximum number of phases that may be present for

a ternary system assuming that pressure is held constant.  For a ternary system (C  = 3) at

constant pressure (N = 1), Gibbs phase rule, Equation (9.16), becomes

P + F = C + N = 3 + 1 = 4

Or,

P = 4 - F

Thus, when F = 0, P will have its maximum value of 4, which means that the maximum number

of phases present for this situation is 4.

9.44  We are asked to specify the value of F for Gibbs phase rule at points A, B, and C on the
pressure-temperature diagram for H2O.  Gibbs phase rule in general form is

P + F = C + N

For this system, the number of components, C , is 1, whereas N , the number of

noncompositional variables, is 2--viz. temperature and pressure.  Thus, the phase rule now

becomes

P + F = 1 + 2 = 3

Or

F = 3 - P

where P is the number of phases present at equilibrium.

At point A, three phases are present (viz. ice I, ice III, and liquid) and P = 3;  thus, the

number of degrees of freedom is zero since
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F = 3 - P = 3 - 3 = 0

Thus, point A is an invariant point (in this case a triple point), and we have no choice in the

selection of externally controllable variables in order to define the system.

At point B on the figure, only a single (vapor) phase is present (i.e., P = 1), or

F = 3 - P = 3 - 1 = 2

which means that both temperature and pressure are necessary to define the system.

And, finally, at point C which is on the phase boundary between liquid and ice I phases,

two phases are in equilibrium (P = 2);  hence

F = 3 - P = 3 - 2 = 1

Or that we need to specify the value of either temperature or pressure, which determines the

value of the other (pressure or temperature).

9.45  Below is shown the phase diagram for these two A and B metals.
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9.46  This problem gives us the compositions in weight percent for the two intermetallic compounds
AB and AB2, and then asks us to identify element B if element A is potassium.  Probably the

easiest way to solve this problem is to first compute the ratio of the atomic weights of these two

elements using Equation (4.6a);  then, since we know the atomic weight of potassium (39.10

g/mol), it is possible to determine the atomic weight of element B, from which an identification

may be made.

First of all, consider the AB intermetallic compound;  inasmuch as it contains the same

numbers of A and B atoms, its composition in atomic percent is 50 at% A-50 at% B.  Equation

(4.6a) may be written in the form:

CB'  = 
CBAA

CAAB + CBAA
 x 100

where AA  and A B  are the atomic weights for elements A and B, and CA  and CB  are their

compositions in weight percent.  For this AB compound, and making the appropriate

substitutions in the above equation leads to
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50 at% B = 
(65.7 wt% B)(AA)

(34.3 wt% A)(AB) + (65.7 wt% B)(AA)
 x 100

Now, solving this expression yields,

AB = 1.916 AA

Since potassium is element A and it has an atomic weight of 39.10 g/mol, the atomic weight of

element B is just

AB = (1.916)(39.10 g/mol) = 74.92 g/mol

Upon consultation of the period table of the elements (Figure 2.6) we note that arsenic has an

atomic weight of 74.92 g/mol;  therefore, element B is arsenic.

9.47  This problem asks that we compute the mass fractions of ferrite and cementite in pearlite.  The

lever-rule expression for ferrite is

Wα = 

CFe3C - Co

CFe3C - Cα

and, since C
Fe3C

 = 6.70 wt% C, C
o

 = 0.76 wt% C, and Cα = 0.022 wt% C

Wα  = 
6.70 - 0.76

 6.70 - 0.022
 = 0.89

Similarly, for cementite

WFe3C = 
Co - Cα

CFe3C - Cα
 = 

0.76 - 0.022
 6.70 - 0.022

 = 0.11

9.48  A phase  is a homogeneous portion of the system having uniform physical and chemical

characteristics, whereas a microconstituent  is an identifiable element of the microstructure (that

may consist of more than one phase).
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9.49  (a)  A hypoeutectoid  steel has a carbon concentration less than the eutectoid;  on the other

hand, a hypereutectoid  steel has a carbon content greater than the eutectoid.

(b)  For a hypoeutectoid steel, the proeutectoid ferrite is a microconstituent that formed above

the eutectoid temperature.  The eutectoid ferrite is one of the constituents of pearlite that

formed at a temperature below the eutectoid.  The carbon concentration for both ferrites is

0.022 wt% C.

9.50  A proeutectoid phase normally forms along austenite grain boundaries because there is an

interfacial energy associated with these boundaries.  When a proeutectoid phase forms within

austenite, an interfacial energy also exists at the interface between the two phases.  A lower net

interfacial energy increase results when the proeutectoid phase forms along the existing

austenite grain boundaries than when the proeutectoid phase forms within the interior of the

grains.

9.51  This problem asks that we compute the carbon concentration of an iron- carbon alloy for which

the fraction of total ferrite is 0.94.  Application of the lever rule [of the form of Equation (9.12)]

yields

Wα = 0.94 = 

CFe3C - Co'

CFe3C - Cα
 = 

6.70 - Co'

 6.70 - 0.022

and solving for Co'

Co'  = 0.42 wt% C

9.52  In this problem we are given values of Wα  and WFe3C  for an iron-carbon alloy and then are

asked to specify the proeutectoid phase.  Employment of the lever rule for total α  leads to

Wα = 0.92 = 

CFe3C - Co

CFe3C - Cα
 = 

6.70 - Co
 6.70 - 0.022

Now, solving for Co , the alloy composition, leads to Co  = 0.56 wt% C.  Therefore, the

proeutectoid phase is α-ferrite since Co is less than 0.76 wt% C.
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9.53  This problem asks us to consider various aspects of 1.0 kg of austenite containing 1.15 wt% C

that is cooled to below the eutectoid.
(a)  The proeutectoid phase will be Fe

3
C since 1.15 wt% C is greater than the eutectoid (0.76

wt% C).

(b)  For this portion of the problem, we are asked to determine how much total ferrite and

cementite form.  Application of the appropriate lever rule expression yields

Wα = 

CFe3C - Co

CFe3C - Cα
 = 

6.70 - 1.15
6.70 - 0.022

 = 0.83

which, when multiplied by the total mass of the alloy (1.0 kg), gives 0.83 kg of total ferrite.

Similarly, for total cementite,

WFe3C = 
Co - Cα

CFe3C - Cα
 = 

1.15 - 0.022
6.70 - 0.022

 = 0.17

And the mass of total cementite that forms is (0.17)(1.0 kg) = 0.17 kg.

(c)  Now we are asked to calculate how much pearlite and the proeutectoid phase (cementite)
form.  Applying Equation (9.22), in which C1'  = 1.15 wt% C

Wp = 
6.70 - C1'

 6.70 - 0.76
 = 

6.70 - 1.15
 6.70 - 0.76

 = 0.93

which corresponds to a mass of 0.93 kg.  Likewise, from Equation (9.23)

WFe3C' = 
C1'  - 0.76

5.94
 = 

1.15 - 0.76
5.94

 = 0.07

which is equivalent to 0.07 kg of the total 1 kg mass.

(d)  Schematically, the microstructure would appear as:
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9.54  We are called upon to consider various aspects of 2.5 kg of austenite containing 0.65 wt% C,

that is cooled to below the eutectoid.

(a)  Ferrite is the proeutectoid phase since 0.65 wt% C is less than 0.76 wt% C.

(b)  For this portion of the problem, we are asked to determine how much total ferrite and

cementite form.  Application of the appropriate lever rule expression yields

Wα = 

CFe3C - Co

CFe3C - Cα
 = 

6.70 - 0.65
6.70 - 0.022

 = 0.91

which corresponds to (0.91)(2.5 kg) = 2.26 kg of total ferrite.

Similarly, for total cementite,

WFe3C = 
Co - Cα

CFe3C - Cα
 = 

0.65 - 0.022
6.70 - 0.022

 = 0.09

Or (0.09)(2.5 kg) = 0.24 kg of total cementite form.

(c)  Now consider the amounts of pearlite and proeutectoid ferrite. Using Equation (9.20)

Wp = 
Co'  - 0.022

 0.74
 = 

0.65 - 0.022
 0.74

 = 0.85

This corresponds to (0.85)(2.5 kg) = 2.12 kg of pearlite.

Also, from Equation (9.21),

Wα ' = 
0.76 - 0.65

0.74
 = 0.15
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Or, there are (0.15)(2.5 kg) = 0.38 kg of proeutectoid ferrite.

(d)  Schematically, the microstructure would appear as:

9.55  The mass fractions of proeutectoid ferrite and pearlite that form in a 0.25 wt% C iron-carbon

alloy are considered in this problem.  From Equation (9.20)

Wp = 
Co'  - 0.022

 0.74
 = 

0.25 - 0.022
 0.74

 = 0.31

And, from Equation (9.21)

Wα ' = 
0.76 - Co'

0.74
 = 

0.76 - 0.25
0.74

 = 0.69

9.56  This problem asks that we determine the carbon concentration in an iron- carbon alloy, given

the mass fractions of proeutectoid ferrite and pearlite.  From Equation (9.20)

Wp = 0.714 = 
Co'  - 0.022

 0.74

which yields Co'  = 0.55 wt% C.

9.57  In this problem we are given values of Wα  and WFe3C  for an iron-carbon alloy (0.88 and 0.12,

respectively) and then are asked to specify whether the alloy is hypoeutectoid or hypereutectoid.

Employment of the lever rule for total α  leads to
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Wα = 0.88 = 

CFe3C - Co

CFe3C - Cα
 = 

6.70 - Co
 6.70 - 0.022

Now, solving for Co , the alloy composition, leads to Co  = 0.82 wt% C.  Therefore, the alloy is

hypereutectoid since Co is greater than 0.76 wt% C.

9.58  We are asked in this problem to determine the concentration of carbon in an alloy for which
W α '  = 0.20 and W p  = 0.80.  If we let C o  equal the carbon concentration in the alloy,

employment of the appropriate lever rule expression, Equation (9.20), leads to

Wp = 
Co - 0.022

0.76 - 0.022
 = 0.80

Solving for Co yields Co = 0.61 wt% C.

9.59  In this problem we are asked to consider 2.0 kg of a 99.6 wt% Fe-0.4 wt% C alloy that is cooled

to a temperature below the eutectoid.

(a)  Equation (9.21) must be used in computing the amount of proeutectoid ferrite that forms.

Thus,

Wα ' = 
0.76 - Co'

0.74
 = 

0.76 - 0.40
0.74

 = 0.49

Or, (0.49)(2.0 kg) = 0.99 kg of proeutectoid ferrite forms.

(b)  In order to determine the amount of eutectoid ferrite, it first becomes necessary to compute
the amount of total ferrite using the lever rule applied entirely across the α  + Fe3C phase field,

as

Wα = 

CFe3C - Co'

CFe3C - Cα
 = 

6.70 - 0.40
6.70 - 0.022

 = 0.94

which corresponds to (0.94)(2.0 kg) = 1.89 kg.  Now, the amount of eutectoid ferrite is just the

difference between total and proeutectoid ferrites, or

1.89 kg - 0.99 kg = 0.90 kg



222

(c)  With regard to the amount of cementite that forms, again application of the lever rule across
the entirety of the α  + Fe3C phase field, leads to

WFe3C = 
Co'  - Cα

CFe3C - Cα
 = 

0.40 - 0.022
6.70 - 0.022

 = 0.06

which amounts to (0.06)(2 kg) = 0.11 kg cementite in the alloy.

9.60  This problem asks that we compute the maximum mass fraction of proeutectoid cementite

possible for a hypereutectoid iron-carbon alloy.  This requires that we utilize Equation (9.23) with
C1'  = 2.14 wt% C, the maximum solubility of carbon in austenite.  Thus,

WFe3C' = 
C1'  - 0.76

5.94
 = 

2.14 - 0.76
5.94

 = 0.232

9.61  This problem asks if it is possible to have an iron-carbon alloy for which Wα  = 0.846 and

WFe3C '  = 0.049.  In order to make this determination, it is necessary to set up lever rule

expressions for these two mass fractions in terms of the alloy composition, then to solve for the

alloy composition of each;  if both alloy composition values are equal, then such an alloy is

possible.  The expression for the mass fraction of total ferrite is

Wα = 

CFe3C - Co

CFe3C - Cα
 = 

6.70 - Co
6.70 - 0.022

 = 0.846

Solving for this Co yields Co = 1.05 wt% C.  Now for WFe3C ' we utilize Equation (9.23) as

WFe3C' = 
C1'  - 0.76

5.94
 = 0.049

This expression leads to C1'  = 1.05 wt% C.  And, since Co = C1' , this alloy is possible.

9.62  This problem asks if it is possible to have an iron-carbon alloy for which WFe3C  = 0.039 and

Wp  = 0.417.  In order to make this determination, it is necessary to set up lever rule expressions

for these two mass fractions in terms of the alloy composition, then to solve for the alloy

composition of each;  if both alloy composition values are equal, then such an alloy is possible.

The expression for the mass fraction of total cementite is
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WFe3C = 
Co - Cα

CFe3C - Cα
 = 

Co - 0.022

6.70 - 0.022
 = 0.039

Solving for this Co yields Co = 0.28 wt% C.  Now for Wp we utilize Equation (9.20) as

Wp = 
Co'  - 0.022

0.74
 = 0.417

This expression leads to Co'  = 0.33 wt% C.  Since Co and Co' , are different, this alloy is not

possible.

9.63  This problem asks that we compute the mass fraction of eutectoid ferrite in an iron-carbon alloy

that contains 0.43 wt% C.  In order to solve this problem it is necessary to compute mass

fractions of total and proeutectoid ferrites, and then to subtract the latter from the former.  To

calculate the mass fraction of total ferrite, it is necessary to use the lever rule and a tie line that
extends across the entire α  + Fe3C phase field as

Wα = 

CFe3C - Co

CFe3C - Cα
 = 

6.70 - 0.43
6.70 - 0.022

 = 0.939

Now, for the mass fraction of proeutectoid ferrite we use Equation (9.21)

Wα ' = 
0.76 - Co'

0.74
 = 

0.76 - 0.43
0.74

 = 0.446

And, finally, the mass fraction of eutectoid ferrite Wα ''  is just

Wα '' = Wα  - Wα ' = 0.939 - 0.446 = 0.493

9.64  This problem asks whether or not it is possible to determine the composition of an iron-carbon

alloy for which the mass fraction of eutectoid cementite is 0.104;  and if so, to calculate the

composition.  Yes, it is possible to determine the alloy composition;  and, in fact, there are two

possible answers.  For the first, the eutectoid cementite exists in addition to proeutectoid
cementite.  For this case the mass fraction of eutectoid cementite (W F e3C '' ) is just the

difference between total cementite and proeutectoid cementite mass fractions;  that is
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WFe3C'' = WFe3C - WFe3C'

Now, it is possible to write expressions for WF e3C  and W F e3C '  in terms of C o , the alloy

composition.  Thus,

WFe3C'' = 
Co - Cα

CFe3C - Cα
 - 

Co - 0.76

5.93

= 
Co - 0.022

6.70 - 0.022
 - 

Co - 0.76

5.94
 = 0.104

And, solving for Co yields Co = 1.11 wt% C.

For the second possibility, we have a hypoeutectoid alloy wherein all of the cementite is

eutectoid cementite.  Thus, it is necessary to set up a lever rule expression wherein the mass

fraction of total cementite is 0.104.  Therefore,

WFe3C = 
Co - Cα

CFe3C - Cα
 = 

Co - 0.022

6.70 - 0.022
 = 0.104

And, solving for Co yields Co = 0.72 wt% C.

9.65  This problem asks whether or not it is possible to determine the composition of an iron-carbon

alloy for which the mass fraction of eutectoid ferrite is 0.82;  and if so, to calculate the

composition.  Yes, it is possible to determine the alloy composition;  and, in fact, there are two

possible answers.  For the first, the eutectoid ferrite exists in addition to proeutectoid ferrite.  For
this case the mass fraction of eutectoid ferrite (Wα '' ) is just the difference between total ferrite

and proeutectoid ferrite mass fractions;  that is

Wα '' = Wα  - Wα '

Now, it is possible to write expressions for Wα  and Wα ' in terms of Co , the alloy composition.

Thus,

Wα '' = 

CFe3C - Co

CFe3C - Cα
 - 

0.76 - Co
0.74
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= 
6.70 - Co

6.70 - 0.022
 - 

0.76 - Co
0.74

 = 0.82

And, solving for Co yields Co = 0.70 wt% C.

For the second possibility, we have a hypereutectoid alloy wherein all of the ferrite is

eutectoid ferrite.  Thus, it is necessary to set up a lever rule expression wherein the mass

fraction of total ferrite is 0.82.  Therefore,

Wα = 

CFe3C - Co

CFe3C - Cα
 = 

6.70 - Co
6.70 - 0.022

 = 0.82

And, solving for Co yields Co = 1.22 wt% C.

9.66  Schematic microstructures for the iron-carbon alloy of composition 5 wt% C-95 wt% Fe and at

temperatures of 1175°C, 1145°C, and 700°C are shown below;  approximate phase

compositions are also indicated.
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9.67  This problem asks that we determine the approximate Brinell hardness of a 99.8 wt% Fe-0.2

wt% C alloy.  First, we compute the mass fractions of pearlite and proeutectoid ferrite using

Equations (9.20) and (9.21), as

Wp = 
Co'  - 0.022

 0.74
 = 

0.20 - 0.022
 0.74

 = 0.24

Wα ' = 
0.76 - Co'

0.74
 = 

0.76 - 0.20
0.74

 = 0.76

Now, we compute the Brinell hardness of the alloy as

HBalloy = HBα 'Wα ' + HBpWp

= (80)(0.76) + (280)(0.24) = 128

9.68  We are asked in this problem to estimate the composition of the Pb-Sn alloy which

microstructure is shown in Figure 9.15.  Primary α  and eutectic microconstituents are present in

the photomicrograph, and it is given that their densities are 11.2 and 8.7 g/cm3, respectively.

Below is shown a square grid network onto which is superimposed outlines of the primary α

phase areas.

The area fraction of this primary α  phase may be determined by counting squares.

There are a total of 644 squares, and of these, approximately 104 lie within the primary α  phase

particles.  Thus, the area fraction of primary α  is 104/644 = 0.16, which is also assumed to be

the volume fraction.
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We now want to convert the volume fractions into mass fractions in order to employ the

lever rule to the Pb-Sn phase diagram.  To do this, it is necessary to utilize Equations (9.7a) and

(9.7b) as follows:

Wα ' = 
Vα 'ρα '

Vα 'ρα ' + Veutecticρeutectic

= 
(0.16)(11.2 g/cm3)

(0.16)(11.2 g/cm3) + (0.84)(8.7 g/cm3)
 = 0.197

Weutectic = 
Veutecticρeutectic

Vα 'ρα ' + Veutecticρeutectic

= 
(0.84)(8.7 g/cm3)

(0.16)(11.2 g/cm3) + (0.84)(8.7 g/cm3)
 = 0.803

From Figure 9.7, we want to use the lever rule and a tie-line that extends from the eutectic

composition (61.9 wt% Sn) to the α -(α  + β) phase boundary at 180°C (about 18.3 wt% Sn).

Accordingly

Wα ' = 0.197 = 
61.9 - Co

61.9 - 18.3

wherein C
o

 is the alloy composition (in wt% Sn).  Solving for C
o

 yields C
o

 = 53.3 wt% Sn.

9.69  This problem asks us to consider an alloy of composition 97.5 wt% Fe, 2.0 wt% Mo, and 0.5

wt% C.

(a)  From Figure 9.32, the eutectoid temperature for 2.0 wt% Mo is approximately 850°C.

(b)  From Figure 9.33, the eutectoid composition is approximately 0.22 wt% C.

(c)  Since the carbon concentration of the alloy (0.5 wt%) is greater than the eutectoid,

cementite is the proeutectoid phase.

9.70  We are asked to consider a steel alloy of composition 93.8 wt% Fe, 6.0 wt% Ni, and 0.2 wt% C.

(a)  From Figure 9.32, the eutectoid temperature for 6 wt% Ni is approximately 650°C (1200°F).

(b)  From Figure 9.33, the eutectoid composition is approximately 0.62 wt% C.  Since the carbon

concentration in the alloy (0.2 wt%) is less than the eutectoid, the proeutectoid phase is ferrite.
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(c)  Assume that the α -(α  + Fe3C) phase boundary is at a negligible carbon concentration.

Modifying Equation (9.21) leads to

Wα ' = 
0.62 - Co'

0.62 - 0
 = 

0.62 - 0.20
0.62

 = 0.68

Likewise, using a modified Equation (9.20)

Wp = 
Co'  - 0

 0.62 - 0
 = 

0.20
0.62

 = 0.32
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CHAPTER 10

PHASE TRANSFORMATIONS IN METALS

PROBLEM SOLUTIONS

10.1  The two stages involved in the formation of particles of a new phase are nucleation and

growth.  The nucleation process involves the formation of normally very small particles of the

new phase(s) which are stable and capable of continued growth.  The growth stage is simply the

increase in size of the new phase particles.

10.2  This problem calls for us to compute the length of time required for a reaction to go to 99%

completion.  It first becomes necessary to solve for the parameter k  in Equation (10.1).

Rearrangement of this equation leads to

k = - 
ln(1 - y)

 tn
 = - 

ln(1 - 0.5)
(100 s)1.7 = 2.76 x 10-4

Now, solving for the time to go to 99% completion

t = [ ]- 
ln(1 - y)

k

1/n

= 
 



 

- 

ln(1 - 0.99)

2.76 x 10-4

1/1.7
 = 305 s

10.3  This problem asks that we compute the rate of some reaction given the values of n and k in

Equation (10.1).  Since the reaction rate is defined by Equation (10.2), it is first necessary to
determine t0.5, or the time necessary for the reaction to reach y = 0.5.  Solving for t0.5 from

Equation (10.1) leads to

t0.5 = [ ]- 
ln(1 - 0.5)

k

1/n

= 
 



 

- 

ln(1 - 0.5)

7 x 10-3

1/3
 = 4.63 s
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Now, the rate is just

rate = 
1

t0.5
 = 

1
4.63 s

 = 0.216 (s)-1

10.4  This problem gives us the value of y (0.40) at some time t (200 min), and also the value of n

(2.5) for the recrystallization of an alloy at some temperature, and then asks that we determine

the rate of recrystallization at this same temperature.  It is first necessary to calculate the value

of k in Equation (10.1) as

k = -  
ln(1 - y)

tn

= - 
ln(1 - 0.4)

(200 min)2.5 = 9.0 x 10-7

At this point we want to compute t0.5, the value of t for y = 0.5, also using Equation (10.1).

Thus

t0.5 = [ ]- 
ln(1 - 0.5)

k

1/n

= 
 



 

- 

ln(1 - 0.5)

9.0 x 10-7

1/2.5
 = 226.3 min

And, therefore, from Equation (10.2), the rate is just

rate = 
1

t0.5
 = 

1
226.3 min

 = 4.42 x 10-3 (min)-1

10.5  For this problem, we are given, for the austenite-to-pearlite transformation, two values of y and

two values of the corresponding times, and are asked to determine the time required for 95% of

the austenite to transform to pearlite.

The first thing necessary is to set up two expressions of the form of Equation (10.1), and

then to solve simultaneously for the values of n and k.  Rearrangement of Equation (10.1) and

taking natural logarithms twice, leads to

ln 
 



 



ln [ ]1
1 - y

 = ln k + n ln t
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The two equations are thus

ln 
 



 



ln [ ]1
1 - 0.2

 = ln k + n ln(12.6 s)

ln 
 



 



ln [ ]1
1 - 0.8

 = ln k + n ln(28.2 s)

Solving these two expressions simultaneously for n and k yields n = 2.453 and k = 4.46 x 10-4.

Now it becomes necessary to solve for the value of t at which y = 0.95.  Algebraic

manipulation of Equation (10.1) leads to an expression in which t is the dependent parameter

as

t = [ ]- 
ln(1 - y)

k

1/n

= 
 



 

- 

ln(1 - 0.95)

4.64 x 10-4

1/2.453 
=

 
35.7 s

10.6  For this problem, we are given, for the recrystallization of steel, two values of y and two values

of the corresponding times, and are asked to determine the fraction recrystallized after a total

time of 22.8 min.

The first thing necessary is to set up two expressions of the form of Equation (10.1), and

then to solve simultaneously for the values of n and k.  Rearrangement of Equation (10.1) and

taking natural logarithms twice, leads to

ln 
 



 



ln [ ]1
1 - y

 = ln k + n ln t

The two equations are thus

ln 
 



 



ln [ ]1
1 - 0.2

 = ln k + n ln(13.1 min)

ln 
 



 



ln [ ]1
1 - 0.7

 = ln k + n ln(29.1 min)
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Solving these two expressions simultaneously for n and k yields n = 2.112 and k = 9.75 x 10-4.

Now it becomes necessary to solve for y when t = 22.8 min.  Application of Equation

(10.1) leads to

y = 1 - exp( )- ktn

= 1 - exp[ ]- (9.75 x 10-4)(22.8 min)2.112  = 0.51

10.7  This problem asks us to consider the percent recrystallized versus logarithm of time curves for

copper shown in Figure 10.2.

(a)  The rates at the different temperatures are determined using Equation (10.2), which rates

are tabulated below:

Temperature (°C) Rate (min)
-1

135 0.105

119 4.4 x 10
-2

113 2.9 x 10
-2

102 1.25 x 10
-2

88 4.2 x 10
-3

43 3.8 x 10
-5

(b)  These data are plotted below.
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The activation energy, Q, is related to the slope of the line drawn through the data points as

Q = - Slope(R)

where R is the gas constant.  The slope of this line is -1.126 x 10
4

 K, and thus

Q = - (-1.126 x 104 K)(8.31 J/mol-K)

= 93,600 J/mol

(c)  At room temperature (20°C), 1/T = 3.41 x 10
-3 

K
-1

.  Extrapolation of the data in the plot to

this 1/T value gives

ln (rate) ≅  -12.8

which leads to

rate ≅  exp (- 12.8) = 2.76 x 10-6 (min)-1

But since

rate = 
1

t0.5

t0.5 = 
1

rate
 = 

1
2.76 x 10-6 (min)-1

= 3.62 x 105 min = 250 days

10.8  Two limitations of the iron-iron carbide phase diagram are:

1)  The nonequilibrium martensite does not appear on the diagram;  and

2)  The diagram provides no indication as to the time-temperature relationships for the

formation of pearlite, bainite, and spheroidite, all of which are composed of the equilibrium

ferrite and cementite phases.

10.9  (a)  Superheating and supercooling correspond, respectively, to heating or cooling above or

below a phase transition temperature without the occurrence of the transformation.
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(b)  They occur because right at the phase transition temperature, the driving force is not

sufficient to cause the transformation to occur.  The driving force is enhanced during

superheating or supercooling.

10.10  We are called upon to consider the isothermal transformation of an iron- carbon alloy of

eutectoid composition.

(a)  From Figure 10.14, a horizontal line at 550°C intersects the 50% and reaction completion

curves at about 2.5 and 6 seconds, respectively;  these are the times asked for in the problem.

(b)  The pearlite formed will be fine pearlite.  From Figure 10.22(a), the hardness of an alloy of

composition 0.76 wt% C that consists of fine pearlite is about 265 HB (27 HRC).

10.11  The reaction rate for the austenite-to-pearlite transformation at temperatures just below the

eutectoid decreases with increasing temperature because the reaction rate is controlled by the

rate of nucleation of pearlite;  the rate of nucleation decreases with rising temperature because

the activation energy in Equation (10.3) increases with increasing temperature.

10.12  The microstructures of pearlite, bainite, and spheroidite all consist of α-ferrite and cementite

phases.  For pearlite, the two phases exist as layers which alternate with one another.  Upper

bainite consists of very fine and parallel needles of ferrite that are separated by elongated

particles of cementite;  lower bainite consists of very thin plates of ferrite within which are

situated very thin and parallel cementite particles.  For spheroidite, the matrix is ferrite, and the

cementite phase is in the shape of spheroidal-shaped particles.

Bainite is harder and stronger than pearlite, which, in turn, is harder and stronger than

spheroidite.

10.13  The driving force for the formation of spheroidite is the net reduction in ferrite-cementite

phase boundary area.

10.14  This problem asks us to determine the nature of the final microstructure of an iron-carbon

alloy of eutectoid composition, that has been subjected to various isothermal heat treatments.

Figure 10.14 is used in these determinations.

(a)  50% coarse pearlite and 50% martensite

(b)  100% spheroidite

(c)  50% fine pearlite, 25% bainite (upper), and 25% martensite

(d)  100% martensite

(e)  40% bainite (upper) and 60% martensite
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(f)  100% bainite (upper)

(g)  100% fine pearlite

(h)  100% tempered martensite

10.15  Below is shown an isothermal transformation diagram for a eutectoid iron-carbon alloy, with

time-temperature paths that will produce (a) 100% coarse pearlite;  (b) 100% tempered

martensite;  and (c) 50% coarse pearlite, 25% bainite, and 25% martensite.

10.16  We are asked to determine which microconstituents are present in a 0.45 wt% C iron-carbon

alloy that has been subjected to various isothermal heat treatments.

(a)  Martensite

(b)  Proeutectoid ferrite and martensite

(c)  Bainite

(d)  Spheroidite

(e)  Ferrite, medium pearlite, bainite, and martensite

(f)  Bainite and martensite

(g)  Proeutectoid ferrite, pearlite, and martensite

(h)  Proeutectoid ferrite and fine pearlite
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10.17  This problem asks us to determine the approximate percentages of the microconstituents that

form for five of the heat treatments described in Problem 10.16.

(a)  100% martensite

(c)  100% bainite

(d)  100% spheroidite

(f)  70% bainite and 30% martensite

(h)  After holding for 10 s at 625°C, the specimen has completely transformed to proeutectoid

ferrite and fine pearlite;  no further reaction will occur at 400°C.  Therefore, we can calculate the

mass fractions using the appropriate lever rule expressions, Equations (9.20) and (9.21), as

follows:

Wα ' = 
0.76 - Co'

0.74
 = 

0.76 - 0.45
0.74

 = 0.42 or 42%

Wp = 
Co'  - 0.022

0.74
 = 

0.45 - 0.022
0.74

 = 0.58 or 58%

10.18  Below is shown an isothermal transformation diagram for a 0.45 wt% C iron-carbon alloy, with

time-temperature paths that will produce (a) 42% proeutectoid ferrite and 58% coarse pearlite;

(b)  50% fine pearlite and 50% bainite;  (c)  100% martensite;  and (d) 50% martensite and 50%

austenite.
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10.19  We are called upon to name the microstructural products that form for specimens of an iron-

carbon alloy of eutectoid composition that are continuously cooled to room temperature at a

variety of rates.  Figure 10.19 is used in these determinations.

(a)  At a rate of 200°C/s, only martensite forms.

(b)  At a rate of 100°C/s, both martensite and pearlite form.

(c)  At a rate of 20°C/s, only fine pearlite forms.

10.20  Below is shown a continuous cooling transformation diagram for a 1.13 wt% C iron-carbon

alloy, with continuous cooling paths that will produce (a) fine pearlite and proeutectoid

cementite;  (b)  martensite;  (c)  martensite and proeutectoid cementite;  (d)  coarse pearlite and

proeutectoid cementite;  and (e)  martensite, fine pearlite, and proeutectoid cementite.
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10.21  Two major differences between martensitic and pearlitic transformations are 1) atomic

diffusion is necessary for the pearlitic transformation, whereas the martensitic transformation is

diffusionless;  and 2) relative to transformation rate, the martensitic transformation is virtually

instantaneous, while the pearlitic transformation is time-dependent.

10.22  Two important differences between continuous cooling transformation diagrams for plain

carbon and alloy steels are: 1) for an alloy steel, a bainite nose will be present, which nose will

be absent for plain carbon alloys;  and 2) the pearlite-proeutectoid noses for plain carbon steel

alloys are positioned at shorter times than for the alloy steels.

10.23  There is no bainite transformation region on the continuous cooling transformation diagram

for an iron-carbon alloy of eutectoid composition (Figure 10.17) because by the time a cooling

curve has passed into the bainite region, the entirety of the alloy specimen will have

transformed to pearlite.

10.24  This problem asks for the microstructural products that form when specimens of a 4340 steel

are continuously cooled to room temperature at several rates.  Figure 10.20 is used for these

determinations.

(a)  At a cooling rate of 10°C/s, only martensite forms.

(b)  At a cooling rate of 1°C/s, both martensite and bainite form.

(c)  At a cooling rate of 0.1°C/s, martensite, proeutectoid ferrite, and bainite form.
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(d)  At a cooling rate of 0.01°C/s, martensite, proeutectoid ferrite, pearlite, and bainite form.

10.25  This problem asks that we briefly describe the simplest continuous cooling heat treatment

procedure that would be used in converting a 4340 steel from one microstructure to another.

Solutions to this problem require the use of Figure 10.20.

(a)  In order to convert from (martensite + bainite) to (ferrite + pearlite) it is necessary to heat

above about 720°C, allow complete austenitization, then cool to room temperature at a rate

slower than 0.006°C/s.

(b)  To convert from (martensite + bainite) to spheroidite the alloy must be heated to about

700°C for several hours.

(c)  In order to convert from (martensite + bainite) to (martensite + bainite + ferrite) it is necessary

to heat to above about 720°C, allow complete austenitization, then cool to room temperature at

a rate between 0.3°C/s and 0.02°C/s.

10.26  For moderately rapid cooling, the time allowed for carbon diffusion is not as great as for

slower cooling rates.  Therefore, the diffusion distance is shorter, and thinner layers of ferrite and

cementite form (i.e., fine pearlite forms).

10.27  (a)  Spheroiditic microstructures are more stable than pearlitic ones.

(b)  Since pearlite transforms to spheroidite, the latter is more stable.

10.28  The hardness and strength of iron-carbon alloys that have microstructures consisting of α -

ferrite and cementite phases depend on the boundary area between the two phases.  The

greater this area, the harder and stronger the alloy inasmuch as these boundaries impede the

motion of dislocations.  Fine pearlite is harder and stronger than coarse pearlite because the

alternating ferrite-cementite layers are thinner for fine, and therefore, there is more phase

boundary area.  The phase boundary area between the sphere-like cementite particles and the

ferrite matrix is less in spheroidite than for the alternating layered microstructure found in coarse

pearlite.

10.29  Two reasons why martensite is so hard and brittle are:  1)  there are relatively few operable

slip systems for the body-centered tetragonal crystal structure, and 2) virtually all of the carbon is

in solid solution, which produces a solid-solution hardening effect.

10.30  This problem asks us to rank four iron-carbon alloys of specified composition and

microstructure according to tensile strength.  This ranking is as follows:



238

0.6 wt% C, fine pearlite

0.6 wt% C, coarse pearlite

0.25 wt% C, coarse pearlite

0.25 wt% C, spheroidite

The 0.25 wt% C, coarse pearlite is stronger than the 0.25 wt% C, spheroidite since coarse

pearlite is stronger than spheroidite;  the composition of the alloys is the same.  The 0.6 wt% C,

coarse pearlite is stronger than the 0.25 wt% C, coarse pearlite, since increasing the carbon

content increases the strength.  Finally, the 0.6 wt% C, fine pearlite is stronger than the 0.6 wt%

C, coarse pearlite inasmuch as the strength of fine pearlite is greater than coarse pearlite

because of the many more ferrite-cementite phase boundaries in fine pearlite.

10.31  This question asks for an explanation as to why the hardness of tempered martensite

diminishes with tempering time (at constant temperature) and with increasing temperature (at

constant tempering time).  The hardness of tempered martensite depends on the ferrite-

cementite phase boundary area;  since these phase boundaries are barriers to dislocation

motion, the greater the area the harder the alloy.  The microstructure of tempered martensite

consists of small sphere-like particles of cementite embedded within a ferrite matrix.  As the size

of the cementite particles increases, the phase boundary area diminishes, and the alloy

becomes softer.  Therefore, with increasing tempering time, the cementite particles grow, the

phase boundary area decreases, and the hardness diminishes.  As the tempering temperature

is increased, the rate of cementite particle growth also increases, and the alloy softens, again,

because of the decrease in phase boundary area.

10.32  In this problem we are asked to describe the simplest heat treatment that would be required

to convert a eutectoid steel from one microstructure to another.  Figure 10.19 is used to solve

the several parts of this problem.

(a)  For spheroidite to tempered martensite, austenitize at a temperature of about 760°C,

quench to room temperature at a rate greater than about 140°C, then isothermally heat at a

temperature between 250 and 650°C.

(b)  For tempered martensite to pearlite, austenitize at a temperature of about 760°C, then cool

to room temperature at a rate less than about 35°C/s.

(c)  For bainite to martensite, first austenitize at a temperature of about 760°C, then quench to

room temperature at a rate greater than about 140°C/s.
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(d)  For martensite to pearlite, first austenitize at a temperature of about 760°C, then cool to

room temperature at a rate less than about 35°C/s.

(e)  For pearlite to tempered martensite, first austenitize at a temperature of about 760°C, then

rapidly quench to room temperature at a rate greater than about 140°C/s, then isothermally

heat treat (temper) at a temperature between 250 and 650°C.

(f)  For tempered martensite to pearlite, first austenitize at a temperature of about 760°C, then

cool to room temperature at a rate less than about 35°C/s.

(g)  For bainite to tempered martensite, first austenitize at a temperature of about 760°C, then

rapidly quench to room temperature at a rate greater than about 140°C/s, then isothermally

heat treat (temper) at a temperature between 250 and 650°C.

(h)  For tempered martensite to spheroidite simply heat at about 700°C for approximately 20 h.

10.33  (a)  Both tempered martensite and spheroidite have sphere-like cementite particles within a

ferrite matrix;  however, these particles are much larger for spheroidite.

(b)  Tempered martensite is harder and stronger inasmuch as there is much more ferrite-

cementite phase boundary area for the smaller particles;  thus, there is greater reinforcement of

the ferrite phase, and more phase boundary barriers to dislocation motion.

10.34  This problem asks for estimates of Rockwell hardness values for specimens of an iron-carbon

alloy of eutectoid composition that have been subjected to some of the heat treatments

described in Problem 10.14.

(b)  The microstructural product of this heat treatment is 100% spheroidite.  According to Figure

10.22(a) the hardness of a 0.76 wt% C alloy with spheroidite is about 87 HRB.

(d)  The microstructural product of this heat treatment is 100% martensite.  According to Figure

10.24, the hardness of a 0.76 wt% C alloy consisting of martensite is about 64 HRC.

(f)  The microstructural product of this heat treatment is 100% bainite.  From Figure 10.23, the

hardness of a 0.76 wt% C alloy consisting of bainite is about 385 HB.  And, conversion from

Brinell to Rockwell hardness using Figure 6.18 leads to a hardness of 36 HRC.

(g)  The microstructural product of this heat treatment is 100% fine pearlite.  According to Figure

10.22(a), the hardness of a 0.76 wt% C alloy consisting of fine pearlite is about 27 HRC.

(h)  The microstructural product of this heat treatment is 100% tempered martensite.  According

to Figure 10.27, the hardness of a water-quenched eutectoid alloy that was tempered at 315°C

for one hour is about 57 HRC.
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10.35  This problem asks for estimates of Brinell hardness values for specimens of an iron-carbon

alloy of composition 0.45 wt% C that have been subjected to some of the heat treatments

described in Problem 10.16.

(a)  The microstructural product of this heat treatment is 100% martensite.  According to Figure

10.24, the hardness of a 0.45 wt% C alloy consisting of martensite is about 630 HB.

(d)  The microstructural product of this heat treatment is 100% spheroidite.  According to Figure

10.22(a) the hardness of a 0.45 wt% C alloy with spheroidite is about 150 HB.

(h)  The microstructural product of this heat treatment is proeutectoid ferrite and fine pearlite.

According to Figure 10.22(a), the hardness of a 0.45 wt% C alloy consisting of fine pearlite is

about 200 HB.

10.36  This problem asks for estimates of tensile strength values for specimens of an iron-carbon

alloy of eutectoid composition that have been subjected to some of the heat treatments

described in Problem 10.19.

(a)  The microstructural product of this heat treatment is 100% martensite.  According to Figure

10.24, the hardness of a 0.76 wt% C alloy is about 690 HB. For steel alloys, hardness and

tensile strength are related through Equations (6.20a), and therefore

TS (MPa) = 3.45 x HB = (3.45)(690 HB) = 2380 MPa  (345,000 psi)

(c)  The microstructural product of this heat treatment is 100% fine pearlite.  According to Figure

10.22(a), the hardness of a 0.76 wt% C alloy consisting of fine pearlite is about 265 HB.

Therefore, the tensile strength is

TS (MPa) = 3.45 x HB = (3.45)(265 HB) = 915 MPa (132,500 psi)

10.37  For this problem we are asked to describe isothermal heat treatments required to yield

specimens having several Brinell hardnesses.

(a)  From Figure 10.22(a), in order for a 0.76 wt% C alloy to have a Rockwell hardness of 93

HRB, the microstructure must be coarse pearlite.  Thus, utilizing the isothermal transformation

diagram for this alloy, Figure 10.14, we must rapidly cool to a temperature at which coarse

pearlite forms (i.e., to about 675°C), allow the specimen to isothermally and completely

transform to coarse pearlite.  At this temperature an isothermal heat treatment for at least 200 s

is required.
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(b)  This portion of the problem asks for a hardness of 40 HRC the microstructure could consist

of either (1) about 75% fine pearlite and 25% martensite (Figure 10.24), or (2) tempered

martensite (Figure 10.27).

For case (1), after austenitizing, rapidly cool to about 580°C (Figure 10.14), hold at this

temperature for about 4 s (to obtain 75% fine pearlite), and then rapidly quench to room

temperature.

For case (2), after austenitizing, rapidly cool to room temperature in order to achieve

100% martensite.  Then temper this martensite for about 2000 s at 535°C (Figure 10.27).

(c)  From Figure 10.22(a), in order for a 0.76 wt% C alloy to have a Rockwell hardness of 27

HRC, the microstructure must be fine pearlite.  Thus, utilizing the isothermal transformation

diagram for this alloy, Figure 10.14, we must rapidly cool to a temperature at which fine pearlite

forms (i.e., at about 580°C), allow the specimen to isothermally and completely transform to fine

pearlite.  At this temperature an isothermal heat treatment for at least 7 s is required.

10.38  The (a) and (b) portions of the problem ask that we make  schematic plots on the same graph

for the tensile strength versus composition for copper-silver alloys at both room temperature and

600°C;  such a graph is shown below.
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(c)  Upon consultation of the Cu-Ag phase diagram (Figure 9.6) we note that silver is virtually

insoluble in copper (i.e., there is no α  phase region at the left extremity of the phase diagram);

the same may be said the solubility of copper in silver and for the β phase.  Thus, only the α

and β phase will exist for all compositions at room temperature;  in other words, there will be no



242

solid solution strengthening effects at room temperature.  All other things being equal, the

tensile strength will depend (approximately) on the tensile strengths of each of the α  and β

phases as well as their phase fractions in a manner described by the equation given in Problem

9.67 for the elastic modulus.  That is, for this problem

(TS)alloy ≅  (TS)αVα + (TS)βVβ

in which TS and V denote tensile strength and volume fraction, respectively, and the subscripts

represent the alloy/phases.  Also, mass fractions of the α  and β phases change linearly with

changing composition (according to the lever rule).  Furthermore, inasmuch as the densities of

both Cu and Ag are similar, weight and volume fractions of the α  and β phases will also be

similar [see Equation (9.6)].  In summary, the previous discussion explains the linear

dependence of the room temperature tensile strength on composition as represented in the

above plot given that the TS of pure copper is greater than for pure silver (as stipulated in the

problem statement).

At 600°C, the curve will be shifted to significantly lower tensile strengths inasmuch as

tensile strength diminishes with increasing temperature (Section 6.6, Figure 6.14).  In addition,

according to Figure 9.6, about 4% of silver will dissolve in copper (i.e., in the α  phase), and

about 4% of copper will dissolve in silver (i.e., in the β phase).  Therefore, solid solution

strengthening will occur over these compositions ranges, as noted in the graph shown above.

Furthermore, between 4% Ag and 96% Ag, the curve will be approximately linear for the same

reasons noted in the previous paragraph.

Design Problems

10.D1  This problem inquires as to the possibility of producing an iron-carbon alloy of eutectoid

composition that has a minimum hardness of 90 HRB and a minimum ductility of 35%RA.  If the

alloy is possible, then the continuous cooling heat treatment is to be stipulated.

According to Figures 10.22(a) and (b), the following is a tabulation of Rockwell B

hardnesses and percents area reduction for fine and coarse pearlites and spheroidite for a 0.76

wt% C alloy.

Microstructure HRB %RA

Fine pearlite > 100 22

Coarse pearlite 93 29
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Spheroidite 88 68

Therefore, none of the microstructures meets both of these criteria.  Both fine and coarse

pearlites are hard enough, but lack the required ductility.  Spheroidite is sufficiently ductile, but

does not meet the hardness criterion.

10.D2  This problem asks if it is possible to produce an iron-carbon alloy that has a minimum tensile

strength of 690 MPa (100,000 psi) and a minimum ductility of 40%RA.  If such an alloy is

possible, its composition and microstructure are to be stipulated.

From Equation (6.20a), this tensile strength corresponds to a Brinell hardness of

HB = 
TS(MPa)

3.45
 = 

690 MPa
3.45

 = 200

According to Figures 10.22(a) and (b), the following is a tabulation of the composition ranges for

fine and coarse pearlites and spheroidite which meet the stipulated criteria.

Compositions for Compositions for

Microstructure HB ≥ 200 %RA ≥ 40%

Fine pearlite > 0.45 %C < 0.48 %C

Coarse pearlite > 0.67 %C < 0.56 %C

Spheroidite not possible 0-1.0 %C

Therefore, only fine pearlite has a composition range overlap for both of the hardness and

ductility restrictions; the fine pearlite would necessarily have to have a carbon content between

0.45 and 0.48 wt% C.

10.D3  This problem inquires as to the possibility of producing a iron-carbon alloy having a minimum

hardness of 175 HB and a minimum ductility of 52%RA.  The composition and microstructure

are to be specified;  possible microstructures include fine and coarse pearlites and spheroidite.

To solve this problem, we must consult Figures 10.22(a) and (b).  The following is a

tabulation of the composition ranges for fine and coarse pearlites and spheroidite which meet

the stipulated criteria.

Compositions for Compositions for

Microstructure HB ≥ 175 %RA ≥ 52%

Fine pearlite > 0.37 %C < 0.34 %C

Coarse pearlite > 0.44 %C < 0.40 %C
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Spheroidite > 0.70 %C <0-1.0 %C

Thus, only spheroidite has a composition overlap for both of hardness and ductility restrictions;

the spheroidite would necessarily have to have a carbon content greater than 0.70 wt% C.

10.D4  This problem asks us to consider the tempering of a water-quenched 1080 steel to achieve a

hardness of 50 HRC.  It is necessary to use Figure 10.27.

(a)  The time necessary at 425°C is about 650 s.

(b)  At 315°C, the time required (by extrapolation) is approximately 4 x 106 s (about 50 days).

10.D5  We are to consider the tempering of an oil-quenched 4340 steel.  From Figure 10.26, for a

minimum tensile strength of 1380 MPa (200,000 psi) a tempering temperature of less than

450°C (840°F) is required.  Also, for a minimum ductility of 43%RA, tempering must be carried

out at a temperature greater than 400°C (760°F).  Therefore, tempering must occur at between

400 and 450°C (750 and 840°F) for 1 h.

10.D6  This problem asks if it is possible to produce an oil-quenched and tempered 4340 steel that

has a minimum yield strength of 1400 MPa (203,000 psi) and a minimum ductility of 42%RA,

and, if possible, to describe the tempering heat treatment.  In Figure 10.26 is shown the

tempering characteristics of this alloy.  According to this figure, in order to achieve a minimum

yield strength of 1400 MPa a tempering temperature of less that about 425°C is required.  On

the other hand, tempering must be carried out at greater than about 380°C for a minimum

ductility of 42%RA.  Therefore, an oil-quenched and tempered 4340 alloy possessing these

characteristics is possible;  tempering would be carried out at between 380°C and 425°C for 1 h.
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CHAPTER 11

TTTTHHHHEEEERRRRMMMMAAAALLLL    PPPPRRRROOOOCCCCEEEESSSSSSSSIIIINNNNGGGG    OOOOFFFF    MMMMEEEETTTTAAAALLLL    AAAALLLLLLLLOOOOYYYYSSSS

PROBLEM SOLUTIONS

11.1  Full annealing--Heat to between 15 and 40∞C above the AAAA
3333
 line (if the concentration of

carbon is less than the eutectoid) or above the AAAA
1111
 line (if the concentration of carbon is

greater than the eutectoid) until the alloy comes to equilibrium;  then furnace cool to room

temperature.  The final microstructure is coarse pearlite.

Normalizing--Heat to between 55 and 85∞C above the upper critical temperature until the

specimen has fully transformed to austenite, then cool in air.  The final microstructure is fine

pearlite.

Quenching--Heat to a temperature within the austenite phase region and allow the specimen

to fully austenitize, then quench to room temperature in oil or water.  The final

microstructure is martensite.

Tempering--Heat a quenched (martensitic) specimen, to a temperature between 450 and

650∞C, for the time necessary to achieve the desired hardness.  The final microstructure is

tempered martensite.

11.2  Three sources of residual stresses in metal components are plastic deformation processes,

nonuniform cooling of a piece that was cooled from an elevated temperature, and a phase

transformation in which parent and product phases have different densities.

Two adverse consequences of these stresses are distortion (or warpage) and

fracture.

11.3  This question asks that we cite the temperature range over which it is desirable to

austenitize several iron-carbon alloys during a normalizing heat treatment.
(a)  For 0.20 wt% C, heat to between 890 and 920∞C (1635 and 1690∞F) since the AAAA

3333

temperature is 835∞C (1535∞F).
(b)  For 0.76 wt% C, heat to between 782 and 812∞C (1440 and 1494∞F) since the AAAA

3333

temperature is 727∞C (1340∞F).
(c)  For 0.95 wt% C, heat to between 840 and 870∞C (1545 and 1600∞F) since AAAA

ccccmmmm
 is

785∞C (1445∞F).
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11.4  We are asked for the temperature range over which several iron-carbon alloys should be

austenitized during a full-anneal heat treatment.
(a)  For 0.25 wt% C, heat to between 845 and 870∞C (1555 and 1600∞F) since the AAAA

3333

temperature is 830∞C (1525∞F).
(b)  For 0.45 wt% C, heat to between 790 and 815∞C (1450 and 1500∞F) since the AAAA

3333

temperature is 775∞C (1425∞F).
(c)  For 0.85 wt% C, heat to between 742 and 767∞C (1368 and 1413∞F) since the AAAA

1111

temperature is 727∞C (1340∞F).
(d)  For 1.10 wt% C, heat to between 742 and 767∞C (1368 and 1413∞F) since the AAAA

1111

temperature is 727∞C (1340∞F).

11.5  The purpose of a spheroidizing heat treatment is to produce a very soft and ductile steel

alloy having a spheroiditic microstructure.  It is normally used on medium- and high-carbon

steels, which, by virtue of carbon content, are relatively hard and strong.

11.6  Hardness is a measure of a material's resistance to localized surface deformation, whereas

hardenability is a measure of the depth to which a ferrous alloy may be hardened by the

formation of martensite. Hardenability is determined from hardness tests.

11.7  The presence of alloying elements (other than carbon) causes a much more gradual

decrease in hardness with position from the quenched end for a hardenability curve.  The

reason for this effect is that alloying elements retard the formation of pearlitic and bainitic

structures which are not as hard as martensite.

11.8  A decrease of austenite grain size will decrease the hardenability. Pearlite normally

nucleates at grain boundaries, and the smaller the grain size, the greater the grain boundary

area, and, consequently, the easier it is for pearlite to form.

11.9  The three factors that influence the degree to which martensite is formed are as follows:

1)  Alloying elements;  adding alloying elements increases the extent to which martensite

forms.

2)  Specimen size and shape;  the extent of martensite formation increases as the

specimen cross-section decreases and as the degree of shape irregularity increases.

3)  Quenching medium;  the more severe the quench, the more martensite is formed.

Water provides a more severe quench than does oil, which is followed by air.  Agitating the

medium also enhances the severity of quench.
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11.10  The two thermal properties of a liquid medium that influence its quenching effectiveness

are thermal conductivity and heat capacity.

11.11  (a)  This part of the problem calls for us to construct a radial hardness profile for a 50

mm (2 in.) diameter cylindrical specimen of an 8640 steel that has been quenched in

moderately agitated oil.  In the manner of Example Problem 11.1, the equivalent distances

and hardnesses tabulated below were determined from Figures 11.5 and 11.8.

Radial Equivalent HRC

Position Distance, mm (in.) Hardness

Surface 7 (5/16) 54

3/4 R 11 (7/16) 50

Midradius 14 (9/16) 45

Center 16 (10/16) 44

The resulting profile is plotted below.
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(b)  The radial hardness profile for a 75 mm (3 in.) diameter specimen of a 5140 steel that

has been quenched in moderately agitated oil is desired.  The equivalent distances and

hardnesses for the various radial positions are tabulated below.

Radial Equivalent HRC

Position Distance, mm (in.) Hardness

Surface 13 (1/2) 41

3/4 R 19 (3/4) 35
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Midradius 22 (14/16) 33

Center 25 (1) 31

The resulting profile is plotted below.
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(c)  The radial hardness profile for a 65 mm (2-1/2 in.) diameter specimen of an 8620 steel

that has been quenched in moderately agitated water is desired.  The equivalent distances

and hardnesses for the various radial positions are tabulated below.

Radial Equivalent HRC

Position Distance, in. (mm) Hardness

Surface 2.5 (1/8) 43

3/4 R 7 (1/4) 33

Midradius 11 (7/16) 26

Center 13 (17/32) 24.5

The resulting profile is plotted below.
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(d)  The radial hardness profile for a 70 mm (2-3/4 in.) diameter specimen of a 1040 steel

that has been quenched in moderately agitated water is desired.  The equivalent distances

and hardnesses for the various radial positions are tabulated below.

Radial Equivalent HRC

Position Distance, in. (mm) Hardness

Surface 3 (1/8) 50

3/4 R 8 (5/16) 32

Midradius 12 (1/2) 25

Center 15 (19/32) 22

The resulting profile is plotted below.

2.001.000.000.00
20

30

40

50

PPPPoooossssiiiittttiiiioooonnnn

HHHH
aaaa r
rrr dddd

nnnn
eeee
ssss ssss

    ((((
HHHH

RRRR
CCCC

))))



249

11.12  We are asked to compare the effectiveness of quenching in moderately agitated water

and oil by graphing, on a single plot, hardness profiles for a 65 mm (2-1/2 in.) diameter

cylindrical specimen of an 8630 steel that has been quenched in both media.

For moderately agitated water, the equivalent distances and hardnesses for the

several radial positions [Figures 11.8(a) and 11.6] are tabulated below.

Radial Equivalent HRC

Position Distance, mm Hardness

Surface 2.5 52

3/4 R 7 43

Midradius 11 36

Center 13 33

While for moderately agitated oil, the equivalent distances and hardnesses for the several

radial positions [Figures 11.8(b) and 11.6] are tabulated below.

Radial Equivalent HRC

Position Distance, mm Hardness

Surface 10 37

3/4 R 15 32

Midradius 18 29

Center 20 28

These data are plotted below.
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11.13  This problem asks us to compare various aspects of precipitation hardening, and the

quenching and tempering of steel.

(a)  With regard to the total heat treatment procedure, the steps for the hhhhaaaarrrrddddeeeennnniiiinnnngggg    ooooffff

sssstttteeeeeeeellll are as follows:

1)  Austenitize above the upper critical temperature.

2)  Quench to a relatively low temperature.

3)  Temper at a temperature below the eutectoid.

4)  Cool to room temperature.

With regard to pppprrrreeeecccciiiippppiiiittttaaaattttiiiioooonnnn    hhhhaaaarrrrddddeeeennnniiiinnnngggg, the steps are as follows:

1)  Solution heat treat by heating into the solid solution phase region.

2)  Quench to a relatively low temperature.

3)  Precipitation harden by heating to a temperature that is within the solid two-phase

region.

4)  Cool to room temperature.

(b)  For the hhhhaaaarrrrddddeeeennnniiiinnnngggg    ooooffff    sssstttteeeeeeeellll, the microstructures that form at the various heat

treating stages in part (a) are:

1)  Austenite

2)  Martensite

3)  Tempered martensite

4)  Tempered martensite

For pppprrrreeeecccciiiippppiiiittttaaaattttiiiioooonnnn    hhhhaaaarrrrddddeeeennnniiiinnnngggg, the microstructures that form at the various heat treating

stages in part (a) are:

1)  Single phase

2)  Single phase--supersaturated

3)  Small plate-like particles of a new phase within a matrix of the original phase.

4)  Same as 3)

(c)  For the hhhhaaaarrrrddddeeeennnniiiinnnngggg    ooooffff    sssstttteeeeeeeellll, the mechanical characteristics for the various steps in

part (a) are as follows:

1)  Not important

2)  The steel becomes hard and brittle upon quenching.

3)  During tempering, the alloy softens slightly and becomes more ductile.

4)  No significant changes upon cooling to or maintaining at room temperature.

For pppprrrreeeecccciiiippppiiiittttaaaattttiiiioooonnnn    hhhhaaaarrrrddddeeeennnniiiinnnngggg, the mechanical characteristics for the various steps in

part (a) are as follows:

1)  Not important
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2)  The alloy is relatively soft.

3)  The alloy hardens with increasing time (initially), and becomes more brittle;  it may

soften with overaging.

4)  The alloy may continue to harden or overage at room temperature.

11.14  For precipitation hardening, natural aging is allowing the precipitation process to occur at

the ambient temperature;  artificial aging is carried out at an elevated temperature.

Design Problems

11.D1  A one-inch diameter steel specimen is to be quenched in moderately agitated oil.  We are

to decide which of five different steels will have surface and center hardnesses of at least

55 and 50 HRC, respectively.

In moderately agitated oil, the equivalent distances from the quenched end for a

one-inch diameter bar for surface and center positions are 3 mm (1/8 in.) and 8 mm

(11/32 in.), respectively [Figure 11.8(b)].  The hardnesses at these two positions for the

alloys cited (as determined using Figure 11.5) are given below.

Surface Center

Alloy Hardness (HRC) Hardness (HRC)

1040 50 30

5140 55 47

4340 57 57

4140 56 54

8640 56 52.5

Thus, alloys 4340, 4140, and 8640 will satisfy the criteria for both surface and center

hardnesses.

11.D2  (a)  This problem calls for us to decide which of 8660, 8640, 8630, and 8620 alloys

may be fabricated into a cylindrical piece 75 mm (3 in.) in diameter which, when quenched in

mildly agitated water, will produce a minimum hardness of 40 HRC throughout the entire

piece.



252

The center of the steel cylinder will cool the slowest and therefore will be the softest.

In moderately agitated water the equivalent distance from the quenched end for a 75 mm

diameter bar for the center position is about 17 mm (11/16 in.) [Figure 11.8(a)].  The

hardnesses at this position for the alloys cited are given below.

Center

Alloy Hardness (HRC)

8660 59

8640 42

8630 30

8620 22

Therefore, only 8660 and 8640 alloys will have a minimum of 40 HRC at the center, and

therefore, throughout the entire cylinder.

(b)  This part of the problem asks us to do the same thing for moderately agitated oil.  In

moderately agitated oil the equivalent distance from the quenched end for a 75 mm

diameter bar at the center position is about 25.5 mm (1-1/32 in.) [Figure 11.8(b)].  The

hardnesses at this position for the alloys cited are given below.

Center

Alloy Hardness (HRC)

8660 53

8640 37

8630 26

8620 <20

Therefore, only the 8660 alloy will have a minimum of 40 HRC at the center, and therefore,

throughout the entire cylinder.

11.D3  A thirty eight millimeter diameter cylindrical steel specimen is to be heat treated such that

the microstructure throughout will be at least 80% martensite.  We are to decide which of

several alloys will satisfy this criterion if the quenching medium is moderately agitated (a) oil,

and (b) water.

(a)  Since the cooling rate is lowest at the center, we want a minimum of 80% martensite at

the center position.  From Figure 11.8(b), the cooling rate is equal to an equivalent distance

from the quenched end of 12 mm (1/2 in.).  According to Figure 11.5, the hardness

corresponding to 80% martensite for these alloys is 50 HRC.  Thus, all we need do is to
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determine which of the alloys have a 50 HRC hardness at an equivalent distance from the

quenched end of 12 mm (1/2 in.).  At an equivalent distance of 12 mm (1/2 in.), the

following hardnesses are determined from Figure 11.5 for the various alloys.

Alloy Hardness (HRC)

4340 55

4140 52

8640 48

5140 42

1040 25

Thus, only alloys 4340 and 4140 will qualify.

(b)  For moderately agitated water, the cooling rate at the center of a 38 mm diameter

specimen is 8 mm (5/16 in.) equivalent distance from the quenched end [Figure 11.8(a)].

At this position, the following hardnesses are determined from Figure 11.5 for the several

alloys.

Alloy Hardness (HRC)

4340 56

4140 55

8640 54

5140 49

1040 32

It is still necessary to have a hardness of 50 HRC or greater at the center;  thus,

alloys 4340, 4140, and 8640 qualify.

11.D4  A ninety millimeter (three and one-half inch) diameter cylindrical steel specimen is to be

quenched in moderately agitated water.  We are to decide which of eight different steels will

have surface and center hardnesses of at least 55 and 40 HRC, respectively.

In moderately agitated water, the equivalent distances from the quenched end for a

90 mm diameter bar for surface and center positions are 3 mm (1/8 in.) and 20 mm

(13/16 in.), respectively [Figure 11.8(a)].  The hardnesses at these two positions for the

alloys cited are given below.

Surface Center
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Alloy Hardness (HRC) Hardness (HRC)

1040 50 <20

5140 55.5 34

4340 57 53

4140 56 47

8620 42 <20

8630 52 28

8640 56 40

8660 64 57

Thus, alloys 4340, 4140, 8640, and 8660 will satisfy the criteria for both surface and

center hardnesses.

11.D5  We are asked to determine the maximum diameter possible for a cylindrical piece of

4140 steel that is to be quenched in moderately agitated oil such that the microstructure

will consist of at least 50% martensite throughout the entire piece.  From Figure 11.5, the

equivalent distance from the quenched end of a 4140 steel to give 50% martensite (or a

42.5 HRC hardness) is 26 mm (1-1/16 in.).  Thus, the quenching rate at the center of the

specimen should correspond to this equivalent distance.  Using Figure 11.8(b), the center

specimen curve takes on a value of 26 mm (1-1/16 in.) equivalent distance at a diameter

of about 75 mm (3 in.).

11.D6  In this problem we are asked to describe a heat treatment that may be used on a 45 mm

diameter steel shaft of a 1040 steel such that it will have a uniform tensile strength of at

least 620 MPa across the entirety of its cross-section.  First of all, if the steel is heat treated

so as to produce martensite or tempered martensite, there will undoubtedly be a variation

of tensile strength over the cross-section.  A better heat treatment would be an isothermal

one.  From Equation (6.20a) a tensile strength of 620 MPa corresponds to a Brinell

hardness of about 180.  Upon consultation of Figure 10.22(a), we note that for an alloy of

composition of 0.40 wt% C, in order to achieve a hardness of 180 BHN, a microstructure of

fine pearlite is required.  In Figure 10.29 is shown an isothermal transformation diagram for

a 0.45 wt% C alloy, which would be very similar to that for a 1040 steel.  According to this

diagram, we would want to austenitize the alloy at approximately 800∞C, rapidly cool to

about 600∞C, and hold the alloy at this temperature for on the order of at least 3 s, after

which it is cooled to room temperature.
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11.D7  We are to determine, for a cylindrical piece of 8640 steel, the minimum allowable

diameter possible in order yield a surface hardness of 49 HRC, when the quenching is carried

out in moderately agitated oil.

From Figure 11.6, the equivalent distance from the quenched end of an 8640 steel

to give a hardness of 49 HRC is about 12 mm (15/32 in.).  Thus, the quenching rate at the

surface of the specimen should correspond to this equivalent distance.  Using Figure

11.8(b), the surface specimen curve takes on a value of 12 mm equivalent distance at a

diameter of about 70 mm (2.75 in.).

11.D8  This problem is concerned with the precipitation-hardening of copper-rich Cu-Be alloys.  It

is necessary for us to use the Cu-Be phase diagram (Figure 11.17).

(a)  The range of compositions over which these alloys may be precipitation hardened is

between approximately 0.2 wt% Be (the maximum solubility of Be in Cu at about 300∞C)

and 2.7 wt% Be (the maximum solubility of Be in Cu at 866∞C).

(b)  The heat treatment procedure, of course, will depend on the composition chosen.  First

of all, the solution heat treatment must be carried out at a temperature within the aaaa phase

region, after which, the specimen is quenched to room temperature. Finally, the precipitation
heat treatment is conducted at a temperature within the aaaa + gggg2222 phase region.

For example, for a 1.5 wt% Be-98.5 wt% Cu alloy, the solution heat treating

temperature must be between about 600∞C (1110∞F) and 900∞C (1650∞F), while the

precipitation heat treatment would be below 600∞C (1110∞F), and probably above 300∞C

(570∞F).  Below 300∞C, diffusion rates are low, and heat treatment times would be

relatively long.

11.D9  We are asked to specify a practical heat treatment for a 2014 aluminum alloy that will

produce a minimum tensile strength of 450 MPa (65,250 psi), and a minimum ductility of

15%EL.  From Figure 11.16(a), the following heat treating temperatures and time ranges

are possible to the give the required tensile strength.

Temperature (∞C) Time Range (h)

260 0.02-0.3

204 0.02-10

149 3-600

121 > 35-?

With regard to temperatures and times to give the desired ductility:
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Temperature (∞C) Time Range (h)

260 <0.01, >100

204 <0.15

149 <10

121 <400

From these tabulations, the following may be concluded:

It is not possible to heat treat this alloy at 260∞C so as to produce the desired set of

properties--there is no overlap of the two sets of time ranges.

At 204∞C, the heat treating time would be between 0.02 and 0.15 h;  times lying

within this range are impractically short.

At 149∞C, the time would be 10 h.

Finally, at 121∞C, the time range is 35 to about 400 h.

11.D10  This problem inquires as to the possibility of producing a precipitation-hardened 2014

aluminum alloy having a minimum tensile strength of 425 MPa (61,625 psi) and a ductility

of at least 12%EL.  In order to solve this problem it is necessary to consult Figures 11.16(a)

and (b).  Below are tabulated the times required at the various temperatures to achieve the

stipulated tensile strength.

Temperature (∞C) Time Range (h)

260 <0.5

204 <15

149 1-1000

121 >35-?

With regard to temperatures and times to give the desired ductility:

Temperature (∞C) Time Range (h)

260 <0.02, >10

204 <0.4, >350

149 <20

121 <1000

From these tabulations, the following may be concluded:
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At 260∞C, the heat treating time would need to be less than 0.02 h (1.2 min), which

is impractically short.

At 204∞C, the heat treatment would need to be less than 0.4 h (24 min), which is a

little on the short side.

At 149∞C, the time range would be between 1 and 20 h.

Finally, at 121∞C, this property combination is possible for virtually all times less than

about 1000 h.
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CHAPTER 12

METAL ALLOYS

PROBLEM SOLUTIONS

12.1  The advantages of cold working are:

1)  A high quality surface finish.

2)  The mechanical properties may be varied.

3)  Close dimensional tolerances.

The disadvantages of cold working are:

1)  High deformation energy requirements.

2)  Large deformations must be accomplished in steps, which may be expensive.

3)  A loss of ductility.

The advantages of hot working are:

1)  Large deformations are possible, which may be repeated.

2)  Deformation energy requirements are relatively low.

The disadvantages of hot working are:

1)  A poor surface finish.

2)  A variety of mechanical properties is not possible.

12.2 (a)  The advantages of extrusion over rolling are as follows:

1)  Pieces having more complicated cross-sectional geometries may be formed.

2)  Seamless tubing may be produced.

(b)  The disadvantages of extrusion over rolling are as follows:

1)  Nonuniform deformation over the cross-section.

2)  A variation in properties may result over a cross-section of an extruded piece.

12.3  Four situations in which casting is the preferred fabrication technique are:

1)  For large pieces and/or complicated shapes.

2)  When mechanical strength is not an important consideration.

3)  For alloys having low ductilities.

4)  When it is the most economical fabrication technique.

12.4  This question asks us to compare sand, die, investment, and continuous casting techniques.
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For sand casting, sand is the mold material, a two-piece mold is used, ordinarily the

surface finish is not an important consideration, the sand may be reused (but the mold may

not), casting rates are low, and large pieces are usually cast.

For die casting, a permanent mold is used, casting rates are high, the molten metal is

forced into the mold under pressure, a two-piece mold is used, and small pieces are normally

cast.

For investment casting, a single-piece mold is used, which is not reusable; it results in

high dimensional accuracy, good reproduction of detail, and a fine surface finish;  and casting

rates are low.

For continuous casting, at the conclusion of the extraction process, the molten metal is

cast into a continuous strand having either a rectangular or circular cross-section;  these shapes

are desirable for subsequent secondary metal-forming operations.  The chemical composition

and mechanical properties are relatively uniform throughout the cross-section.

12.5  (a)  Some of the advantages of powder metallurgy over casting are as follows:

1)  It is used for alloys having high melting temperatures.

2)  Better dimensional tolerances result.

3)  Porosity may be introduced, the degree of which may be controlled (which is desirable in

some applications such as self-lubricating bearings).

(b)  Some of the disadvantages of powder metallurgy over casting are as follows:

1)  Production of the powder is expensive.

2)  Heat treatment after compaction is necessary.

12.6  This question asks for the principal differences between welding, brazing, and soldering.

For welding, there is melting of the pieces to be joined in the vicinity of the bond;  a filler

material may or may not be used.

For brazing, a filler material is used which has a melting temperature in excess of about

425°C (800°F);  the filler material is melted, whereas the pieces to be joined are not melted.

For soldering, a filler material is used which has a melting temperature less than about

425°C (800°F);  the filler material is melted, whereas the pieces to be joined are not.

12.7  This problem asks that we specify and compare the microstructures and mechanical properties

in the heat-affected weld zones for 1080 and 4340 alloys assuming that the average cooling

rate is 10°C/s.  Figure 10.19 shows the continuous cooling transformation diagram for an iron-

carbon alloy of eutectoid composition (1080), and, in addition, cooling curves that delineate

changes in microstructure.  For a cooling rate of 10°C/s (which is less than 35°C/s) the resulting
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microstructure will be totally pearlite--probably a reasonably fine pearlite.  On the other hand, in

Figure 10.20 is shown the CCT diagram for a 4340 steel.  From this diagram it may be noted

that a cooling rate of 10°C/s produces a totally martensitic structure.  Pearlite is softer and more

ductile than martensite, and, therefore, is most likely more desirable.

12.8  If a steel weld is cooled very rapidly, martensite may form, which is very brittle.  In some

situations, cracks may form in the weld region as it cools.

12.9  This question asks that we list four classifications of steels, and, for each, to describe properties

and cite typical applications.

Low Carbon Steels

Properties:  nonresponsive to heat treatments;  relatively soft and weak;  machinable

and weldable.

Typical applications:  automobile bodies, structural shapes, pipelines, buildings, bridges,

and tin cans.

Medium Carbon Steels

Properties:  heat treatable, relatively large combinations of mechanical characteristics.

Typical applications:  railway wheels and tracks, gears, crankshafts, and machine parts.

High Carbon Steels

Properties:  hard, strong, and relatively brittle.

Typical applications:  chisels, hammers, knives, and hacksaw blades.

High Alloy Steels (Stainless and Tool)

Properties:  hard and wear resistant;  resistant to corrosion in a large variety of

environments.

Typical applications:  cutting tools, drills, cutlery, food processing, and surgical tools.

12.10  (a)  Ferrous alloys are used extensively because:

1)  Iron ores exist in abundant quantities.

2)  Economical extraction, refining, and fabrication techniques are available.

3)  The alloys may be tailored to have a wide range of properties.

(b)  Disadvantages of ferrous alloys are:

1)  They are susceptible to corrosion.

2)  They have a relatively high density.

3)  They have relatively low electrical conductivities.
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12.11  Ferritic and austenitic stainless steels are not heat treatable since "heat treatable" is taken to

mean that martensite may be made to form with relative ease upon quenching austenite from

an elevated temperature.

For ferritic stainless steels, austenite does not form upon heating, and, therefore, the

austenite-to-martensite transformation is not possible.

For austenitic stainless steels, the austenite phase field extends to such low

temperatures that the martensitic transformation does not occur.

12.12  The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form

very hard and wear-resistant carbide compounds.

12.13  We are asked to compute the volume percent graphite in a 3.5 wt% C cast iron.  It first

becomes necessary to compute mass fractions using the lever rule.  From the iron-carbon

phase diagram (Figure 12.5), the tie-line in the α  and graphite phase field extends from

essentially 0 wt% C to 100 wt% C.  Thus, for a 3.5 wt% C cast iron

Wα = 
CGr - Co
CGr - Cα

 = 
100 - 3.5
100 - 0

 = 0.965

WGr = 
Co - Cα
CGr - Cα

 = 
3.5 - 0
100 - 0

 = 0.035

Conversion from weight fraction to volume fraction of graphite is possible using Equation

(9.6a) as

VGr = 

WGr
ρGr

Wα
ρα

 + 
WGr
ρGr

= 

0.035

2.3 g/cm3

0.965

7.9 g/cm3 + 
0.035

2.3 g/cm3

= 0.111 or 11.1 vol%
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12.14  Gray iron is weak and brittle in tension because the tips of the graphite flakes act as points of

stress concentration.

12.15  This question asks us to compare various aspects of gray and malleable cast irons.

(a)  With respect to composition and heat treatment:

Gray iron--2.5 to 4.0 wt% C and 1.0 to 3.0 wt% Si.  For most gray irons there is no heat

treatment after solidification.

Malleable iron--2.5 to 4.0 wt% C and less than 1.0 wt% Si.  White iron is heated in a

nonoxidizing atmosphere and at a temperature between 800 and 900°C for an extended time

period.

(b)  With respect to microstructure:

Gray iron--Graphite flakes are embedded in a ferrite or pearlite matrix.

Malleable iron--Graphite clusters are embedded in a ferrite or pearlite matrix.

(c)  With respect to mechanical characteristics:

Gray iron--Relatively weak and brittle in tension;  good capacity for damping vibrations.

Malleable iron--Moderate strength and ductility.

12.16  Yes, it is possible to produce cast irons that consist of a martensite matrix in which graphite is

embedded in either flake, nodule, or rosette form.  For graphite flakes, gray cast iron is formed

(as described in Section 12.6), which is then heated to a temperature at which the ferrite

transforms to austenite;  the austenite is then rapidly quenched, which transforms to martensite.

For graphite nodules and rosettes, nodular and malleable cast irons are first formed (again as

described in Section 12.6), which are then austenitized and rapidly quenched.

12.17   This question asks us to compare white and nodular cast irons.

(a)  With regard to composition and heat treatment:

White iron--2.5 to 4.0 wt% C and less than 1.0 wt% Si.  No heat treatment;  however,

cooling is rapid during solidification.

Nodular cast iron--2.5 to 4.0 wt% C, 1.0 to 3.0 wt% Si, and a small amount of Mg or

Ce.  A heat treatment at about 700°C may be necessary to produce a ferritic matrix.

(b)  With regard to microstructure:

White iron--There are regions of cementite interspersed within pearlite.

Nodular cast iron--Nodules of graphite are embedded in a ferrite or pearlite matrix.

(c)  With respect to mechanical characteristics:

White iron--Extremely hard and brittle.

Nodular cast iron--Moderate strength and ductility.
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12.18  It is not possible to produce malleable iron in pieces having large cross-sectional dimensions.

White cast iron is the precursor of malleable iron, and a rapid cooling rate is necessary for the

formation of white iron, which may not be accomplished at interior regions of thick cross-

sections.

12.19  The principal difference between wrought and cast alloys is as follows:  wrought alloys are

ductile enough so as to be hot or cold worked during fabrication, whereas cast alloys are brittle

to the degree that shaping by deformation is not possible and they must be fabricated by

casting.

12.20  Both brasses and bronzes are copper-based alloys.  For brasses, the principal alloying

element is zinc, whereas the bronzes are alloyed with other elements such as tin, aluminum,

silicon, or nickel.

12.21  Rivets of a 2017 aluminum alloy must be refrigerated before they are used because, after

being solution heat treated, they precipitation harden at room temperature.  Once precipitation

hardened, they are too strong and brittle to be driven.

12.22  Strengthening of a 3003 aluminum alloy is accomplished by cold working.  Welding a

structure of a cold-worked 3003 alloy will cause it to experience recrystallization, and a resultant

loss of strength.

12.23  The chief difference between heat-treatable and nonheat-treatable alloys is that heat-

treatable alloys may be strengthened by a heat treatment wherein a precipitate phase is formed

(precipitation hardening) or a martensitic transformation occurs.  Nonheat-treatable alloys are

not amenable to strengthening by such treatments.

12.24  This question asks us for the distinctive features, limitations, and applications of several alloy

groups.

Titanium Alloys

Distinctive features:  relatively low density, high melting temperatures, and high

strengths are possible.

Limitation:  because of chemical reactivity with other materials at elevated temperatures,

these alloys are expensive to refine.
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Applications:  aircraft structures, space vehicles, and in chemical and petroleum

industries.

Refractory Metals

Distinctive features:  extremely high melting temperatures; large elastic moduli,

hardnesses, and strengths.

Limitation:  some experience rapid oxidation at elevated temperatures.

Applications:  extrusion dies, structural parts in space vehicles, incandescent light

filaments, x-ray tubes, and welding electrodes.

Superalloys

Distinctive features:  able to withstand high temperatures and oxidizing atmospheres for

long time periods.

Applications:  aircraft turbines, nuclear reactors, and petrochemical equipment.

Noble Metals

Distinctive features:  highly resistant to oxidation, especially at elevated temperatures;

soft and ductile.

Limitation:  expensive.

Applications:  jewelry, dental restoration materials, coins, catalysts, and thermocouples.

Design Problems

12.D1  This question provides us with a list of several metal alloys, and then asks us to pick those

that may be strengthened by heat treatment, by cold work, or both.  Those alloys that may be

heat treated are either those noted as "heat treatable" (Tables 12.6 through 12.9), or as

martensitic stainless steels (Table 12.4).  Alloys that may be strengthened by cold working must

not be exceptionally brittle, and, furthermore, must have recrystallization temperatures above

room temperature (which immediately eliminates lead).

Heat Treatable Cold Workable Both

6150 Steel 6150 Steel 6150 Steel

C17200 Be-Cu C17200 Be-Cu C17200 Be-Cu

6061 Al 6061 Al 6061 Al

304 Stainless Steel

R50500 Ti

C51000 Phosphor Bronze

AZ31B Mg
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12.D2  This problem asks us to select from four alloys (brass, steel, titanium, and aluminum), the one
that will support a 50,000 N (11,250 lbf) load without plastically deforming, and having the

minimum weight.  From Equation (6.1), the cross-sectional area (A
o

) must necessarily carry the

load (F) without exceeding the yield strength (σy), as

Ao = 
F
σy

Now, given the length l, the volume of material required (V) is just

V = lAo = 
lF
σy

Finally, the mass of the member (m) is

m = Vρ = 
ρlF
σy

in which ρ 
is the density.  Using the values given for these alloys

m(brass) = 
(8.5 g/cm3)(10 cm)(50,000 N)

(415 x 106 N/m2)
 


 
1 m

102 cm

2  = 102 g

m(steel) = 
(7.9 g/cm3)(10 cm)(50,000 N)

(860 x 106 N/m2)
 


 
1 m

102 cm

2  = 46 g

m(aluminum) = 
(2.7 g/cm3)(10 cm)(50,000 N)

(310 x 106 N/m2)
 


 
1 m

102 cm

2  = 43.5 g

m(titanium) = 
(4.5 g/cm3)(10 cm)(50,000 N)

(550 x 106 N/m2)
 


 
1 m

102 cm

2  = 40.9 g

Thus, titanium would have the minimum weight (or mass), followed by aluminum, steel, and

brass.
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12.D3  This question asks for us to decide whether or not it would be advisable to hot-work or cold-

work several metals and alloys.

Tin would almost always be hot-worked.  Even deformation at room temperature would

be considered hot-working inasmuch as its recrystallization temperature is below room

temperature (Table 7.2).

Tungsten  is hard and strong at room temperature, has a high recrystallization

temperature, and experiences oxidation at elevated temperatures.  Cold-working is difficult

because of its strength, and hot-working is not practical because of oxidation problems.  Most

tungsten articles are fabricated by powder metallurgy, or by using cold-working followed by

annealing cycles.

Most aluminum alloys may be cold-worked since they are ductile and have relatively

low yield strengths.

Magnesium alloys are normally hot-worked inasmuch as they are quite brittle at room

temperature.  Also, magnesium alloys have relatively low recrystallization temperatures.

A 4140 steel could be cold-worked in an over-tempered state which leaves it soft and

relatively ductile, after which quenching and tempering heat treatments may be employed to

strengthen and harden it. This steel would probably have a relatively high recrystallization

temperature, and hot-working may cause oxidation.

12.D4  This problem calls for us to select, from a list, the best alloy for each of several applications

and then to justify each choice.

(a)  Gray cast iron would be the best choice for a milling machine base because it effectively

absorbs vibrations and is inexpensive.

(b)  Stainless steel would be the best choice for the walls of a steam boiler because it is

corrosion resistant to the steam and condensate.

(c)  Titanium alloys are the best choice for high-speed aircraft because they are light weight,

strong, and easily fabricated.  However, one drawback is their cost.

(d)  A tool steel would be the best choice for a drill bit because it is very hard and wear resistant,

and, thus, will retain a sharp cutting edge.

(e)  For a cryogenic (low-temperature) container, an aluminum alloy would be the best choice;

aluminum alloys have an FCC crystal structure, and therefore, are ductile down to very low

temperatures.

(f)  As a pyrotechnic in flares and fireworks, magnesium is the best choice because it ignites

easily and burns readily in air.
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(g)  Platinum is the best choice for high-temperature furnace elements to be used in oxidizing

atmospheres because it is very ductile, has a relatively high melting temperature, and is highly

resistant to oxidation.

12.D5  (a)  Important characteristics required of metal alloys that are used for coins are as follows:

they must be hard, somewhat ductile, corrosion and oxidation resistant, and nontoxic.

(b)  Some of the metals and alloys that are used and have been used for coins are gold, silver,

copper, nickel, copper-nickel alloys, and brass alloys.
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CHAPTER 13

STRUCTURES AND PROPERTIES OF CERAMICS

PROBLEM SOLUTIONS

13.1  The two characteristics of component ions that determine the crystal structure are:  1) the

magnitude of the electrical charge on each ion; and 2) the relative sizes of the cations and

anions.

13.2  In this problem we are asked to show that the minimum cation-to-anion radius ratio for a

coordination number of four is 0.225.  If lines are drawn from the centers of the anions, then a

tetrahedron is formed.  The tetrahedron may be inscribed within a cube as shown below.

A

B

C

D
E

F Anion (r
A

)

a

a

Cation (r C )

The spheres at the apexes of the tetrahedron are drawn at the corners of the cube, and

designated as positions A, B, C, and D.  (These are reduced in size for the sake of clarity.)  The

cation resides at the center of the cube, which is designated as point E.  Let us now express the

cation and anion radii in terms of the cube edge length, designated as a.  The spheres located

at positions A and B touch each other along the bottom face diagonal.  Thus,

AB
__

 = 2rA

But
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(AB
__

)2 = a2 + a2 = 2a2

or

AB
__

 = a√ 2 = 2rA

And

a = 
2rA

√ 2

There will also be an anion located at the corner, point F (not drawn), and the cube

diagonal AEF will be related to the ionic radii as

AEF
___

 = 2(rA + rC)

(The line AEF has not been drawn to avoid confusion.)  From the triangle ABF

(AB
__

)2 + (FB
__

)2 = (AEF
___

)2

But,

FB
__

 = a = 
2rA

√ 2

and

(AB
__

) = 2rA

from above.  Thus,

( )2rA
2

 + 
 



 

2rA

√ 2

2
 = [ ]2(rA + rC)

2

Solving for the r
C

/r
A

 ratio leads to

rC
rA

 = 
√ 6 - 2

2
 = 0.225

13.3  Below is shown one of the faces of the rock salt crystal structure in which anions and cations

just touch along the edges, and also the face diagonals.



268

G H

F

r
C

r
A

From triangle FGH,

GF
__

 = 2rA   and   FH
__

 = GH
__

 = rA + rC

Since FGH is a right triangle

(GH
__

)2 + (FH
__

)2 = (FG
__

)2

or

( )rA + rC
2

 + ( )rA + rC
2

 = ( )2rA
2

which leads to

rA + rC = 
2rA

√ 2

Or, solving for r
C

/r
A

rC
rA

 = 
 


 
2

√ 2
 - 1  = 0.414

13.4  This problem asks us to show that the minimum cation-to-anion radius ratio for a coordination

number of 8 is 0.732.  From the cubic unit cell shown below
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x

y

2r
A

the unit cell edge length is 2rA, and from the base of the unit cell

x2 = (2rA)2 + (2rA)2 = 8rA
2

Or

x = 2rA√ 2

Now from the triangle that involves x, y, and the unit cell edge

x2 + (2rA)2 = y2 = (2rA + 2rC)2

(2rA√ 2)2 + 4rA
2 = (2rA + 2rC)2

Which reduces to

2rA
( )√ 3 - 1  = 2rC

Or
rC
rA

 = √ 3 - 1 = 0.732

13.5  This problem calls for us to predict crystal structures for several ceramic materials on the basis

of ionic charge and ionic radii.

(a)  For CsI, from Table 13.3

rCs+
rI-

 = 
0.170 nm
0.220 nm

 = 0.773
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Now, from Table 13.2, the coordination number for each cation (Cs
+

) is eight, and, using Table

13.4, the predicted crystal structure is cesium chloride.

(b)  For NiO, from Table 13.3

rNi2+
rO2-

 = 
0.069 nm
0.140 nm

 = 0.493

The coordination number is six (Table 13.2), and the predicted crystal structure is sodium

chloride (Table 13.4).

(c)  For KI, from Table 13.3

rK+
rI-

 = 
0.138 nm
0.220 nm

 = 0.627

The coordination number is six (Table 13.2), and the predicted crystal structure is sodium

chloride (Table 13.4).

(d)  For NiS, from Table 13.3

rNi2+
rS2-

 = 
0.069 nm
0.184 nm

 = 0.375

The coordination number is four (Table 13.2), and the predicted crystal structure is zinc blende

(Table 13.4).

13.6  We are asked to cite the cations in Table 13.3 which would form iodides having the cesium

chloride crystal structure.  First of all, the possibilities would include only the monovalent cations

Cs+, K+, and Na+.  Furthermore, the coordination number for each cation must be 8, which
means that 0.732 < rC/rA < 1.0 (Table 13.2).  From Table 13.3 the rC/rA ratios for these three

cations are as follows:

rCs+
rI-

 = 
0.170 nm
0.220 nm

 = 0.77

rK+
rI-

 = 
0.138 nm
0.220 nm

 = 0.63
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rNa+
rI-

 = 
0.102 nm
0.220 nm

 = 0.46

Thus, only cesium will form the CsCl crystal structure with iodine.

13.7  This problem asks that we compute the atomic packing factor for cesium chloride when r
C

/r
A

 =

0.732.  From Equation (3.2)

APF = 
VS
VC

With regard to the sphere volume, V
S

, there is one cation and one anion sphere per unit cell.

Thus,

VS = (1)( )4
3

πrA
3  + (1)( )4

3
πrC

3

But, since r
C

/r
A

 = 0.732

VS = 
4
3

 πrA
3[ ]1 + (0.732)3  = (5.83)rA

3

Now, for r
C

/r
A

 = 0.732 the corner anions in Table 13.2 just touch one another along the cubic

unit cell edges such that

VC = a3 = (2rA)3 = 8rA
3

Thus

APF = 
VS
VC

 = 
(5.83)rA

3

8rA
3  = 0.73

13.8  We are asked to describe the crystal structure for K
2

O, and then explain why it is called the

antifluorite structure.  First, let us find the coordination number of each O
2-

 ion for K
2

O.  Taking

the cation-anion radii ratio
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rK+
rO2-

 = 
0.138 nm
0.140 nm = 0.985

From Table 13.2, the coordination number for oxygen is eight.  According to Table 13.4, for a

coordination number of eight for both cations and anions, the crystal structure should be cesium

chloride.  However, there are twice as many K
+

 as O
2-

 ions.  Therefore, the centers of the K
+

ions are positioned at the corners of cubic unit cells, while half of the cube centers are occupied

by O
2-

 ions.

This structure is called the antifluorite crystal structure because anions and cations are

interchanged with one another from the fluorite structure (Figure 13.5).

13.9  This question is concerned with the zinc blende crystal structure in terms of close-packed

planes of anions.

(a)  The stacking sequence of close-packed planes of anions for the zinc blende crystal structure

will be the same as FCC (and not HCP) because the anion packing is FCC (Table 13.4).

(b)  The cations will fill tetrahedral positions since the coordination number for cations is four

(Table 13.4).

(c)  Only one-half of the tetrahedral positions will be occupied because there are two tetrahedral

sites per anion, and yet only one cation per anion.

13.10  This question is concerned with the corundum crystal structure in terms of close-packed

planes of anions.

(a)  For this crystal structure, two-thirds of the octahedral positions will be filled with Al
3+

 ions

since there is one octahedral site per O
2-

 ion, and the ratio of Al
3+

 to O
2-

 ions is two-to-three.

(b)  Two close-packed O
2-

 planes and the octahedral positions that will be filled with Al
3+

 ions

are sketched below.
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13.11  (a)  This portion of the problem asks that we specify which type of interstitial site the Fe2+ ions

will occupy in FeS if the  S2- ions form an HCP arrangement.  Since, from Table 13.3, rS2- =

0.184 nm and rFe2+ = 0.077 nm, then

rFe2+
rS2-

 = 
0.077 nm
0.184 nm

 = 0.418

Since rC/rA is between 0.414 and 0.732, the coordination number for Fe2+ is 6 (Table 13.2);

therefore, octahedral interstitial positions are occupied.

(b)  We are now asked what fraction of these available interstitial sites are occupied by Fe2+

ions.  Since there is 1 octahedral site per S2- ion, and the ratio of Fe2+ to S2- is 1:1, all of these

sites are occupied with Fe2+ ions.

13.12  (a)  We are first of all asked to cite, for Mg2SiO4, which type of interstitial site the Mg2+ ions

will occupy.  From Table 13.3, the cation-anion radius ratio is

rMg2+
rO2-

 = 
0.072 nm
0.140 nm

 = 0.514

Since this ratio is between 0.414 and 0.732, the Mg2+ ions will occupy octahedral sites (Table

13.2).

(b)  Similarly, for the Si4+ ions

rSi4+
rO2-

 = 
0.040 nm
0.140 nm

 = 0.286
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Since this ratio is between 0.225 and 0.414, the Si4+ ions will occupy tetrahedral sites.

(c)  For every Mg2SiO4 formula unit, there are four O2- ions, and, therefore, eight tetrahedral

sites;  furthermore, since there is one Si4+ ion per four O2- ions, one-eighth of the tetrahedral

sites will be occupied.

(d)  Also, inasmuch as the Mg2+ to O2- ratio is 1:2, and there is one octahedral site per O2- ion,

one-half of these sites will be filled.

13.13  The unit cell for PbO is to be generated on the CD-ROM.

13.14  We are asked to calculate the density of FeO.  This density may be computed using Equation

(13.1) as

ρ = 
n'( )AFe + AO

VCNA

Since the crystal structure is rock salt, n' = 4 formula units per unit cell, and

VC = a3 = ( )2rFe2+ + 2rO2-
3

 = [ ]2(0.077 nm) + 2(0.140 nm) 3

= 0.0817 
nm3

unit cell
 = 8.17 x 10-23 cm3

unit cell

Thus,

ρ = 
(4 formula units/unit cell)(55.85 g/mol + 16.00 g/mol)

(8.17 x 10-23 cm3/unit cell)(6.023 x 1023 formula units/mol)

= 5.84 g/cm3

13.15  This problem calls for us to determine the unit cell edge length for MgO.  The density of MgO

is 3.58 g/cm
3

 and the crystal structure is rock salt.

(a)  From Equation (13.1)

ρ = 
n'( )AMg + AO

VCNA
 = 

n'( )AMg + AO

a3NA
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Or,

a = 
 


 
n'( )AMg + AO

ρNA

1/3

= 
 



 

(4 formula units/unit cell)( )24.31 g/mol + 16.00 g/mol

(3.58 g/cm3)(6.023 x 1023 formula units/mol)

1/3

= 4.21 x 10-8 cm = 0.421 nm

(b)  The edge length is determined from the Mg
2+

 and O
2-

 radii for this portion of the problem.

Now

a = 2rMg2+ + 2rO2-

From Table 13.3

a = 2(0.072 nm) + 2(0.140 nm) = 0.424 nm

13.16  This problem asks that we compute the theoretical density of diamond given that the C--C

distance and bond angle are 0.154 nm and 109.5°, respectively.  The first thing we need do is

to determine the unit cell edge length from the given C--C distance.  The drawing below shows

the cubic unit cell with those carbon atoms that bond to one another in one-quarter of the unit

cell.

θ
x

y
φ

a

From this figure, φ is one-half of the bond angle or φ = 109.5°/2 = 54.75°, which means that

θ = 90° - 54.75° = 35.25°
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since the triangle shown is a right triangle.  Also, y = 0.154 nm, the carbon-carbon bond

distance.  Furthermore, x = a/4, and therefore,

x = 
a
4

 = y sin θ

Or

a = 4y sin θ = (4)(0.154 nm)(sin 35.25°) = 0.356 nm

= 3.56 x 10-8 cm

The unit cell volume, VC is just a3, that is

VC = a3 = (3.56 x 10-8 cm)3 = 4.51 x 10-23 cm3

We must now utilize a modified Equation (13.1) since there is only one atom type.  There are 8

equivalent atoms per unit cell, and therefore

ρ = 
n'AC

VCNA

= 
(8 atoms/unit cell)(12.01 g/g-atom)

(4.51 x 10-23 cm3/unit cell)(6.023 x 1023 atoms/g-atom)

= 3.54 g/cm3

The measured density is 3.51 g/cm3.

13.17  This problem asks that we compute the theoretical density of ZnS given that the Zn--S

distance and bond angle are 0.234 nm and 109.5°, respectively.  The first thing we need do is

to determine the unit cell volume from the given Zn--S distance.  From the previous problem,

the unit cell volume VC is just a3, a being the unit cell edge length, and

VC = [ ]4y sin θ 3 = [ ](4)(0.234 nm)(sin 35.25°)
3

= 0.1576 nm3 = 1.576 x 10-22 cm3
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Now we must utilize Equation (13.1) with n' = 4 formula units, and AZn and AS being 65.39 and

32.06 g/mol, respectively.  Thus

ρ = 
n'(AZn + AS)

VCNA

= 
(4 formula units/unit cell)(65.39 + 32.06 g/mol)

(1.576 x 10-22 cm3/unit cell)(6.023 x 1023 formula units/mol)

= 4.11 g/cm3

The measured value of the density is 4.10 g/cm3.

13.18  We are asked to determine the number of Cd
2+

 and S
2-

 ions per unit cell for cadmium

sulfide (CdS).  For CdS, a = 0.582 nm and ρ = 4.82 g/cm
3

.  Using Equation (13.1)

n' = 
ρVCNA

ACd + AS
 = 

ρa3NA
ACd + AS

= 
(4.82 g/cm3)(5.82 x 10-8 cm)3(6.023 x 1023 formula units/mol)

(112.40 g/mol + 32.06 g/mol)

= 3.96 or almost 4

Therefore, there are four Cd
2+

 and four S
2-

 per unit cell.

13.19  (a)  We are asked to compute the density of CsCl.  Modifying the result of Problem 3.4, we

get

a = 
2rCs+ + 2rCl-

√ 3
 = 

2(0.170 nm) + 2(0.181 nm)

√ 3

= 0.405 nm = 4.05 x 10-8 cm

From Equation (13.1)
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ρ = 
n'( )ACs + ACl

VCNA
 = 

n'( )ACs + ACl

a3NA

For the CsCl crystal structure, n' = 1 formula unit/unit cell, and thus

ρ = 
(1 formula unit/unit cell)(132.91 g/mol + 35.45 g/mol)

( )4.05 x 10-8 cm 3/unit cell(6.023 x 1023 formula units/mol)

= 4.20 g/cm
3

(b)  This value of the density is greater than the measured density. The reason for this

discrepancy is that the ionic radii in Table 13.3, used for this computation, were for a

coordination number of six, when, in fact, the coordination number of both Cs
+

 and Cl-
 
is eight.

The ionic radii should be slightly greater, leading
 
to a larger V

C
 value, and a lower density.

13.20  This problem asks that we compute the density of CaF
2

.  A unit cell of the fluorite structure is

shown in Figure 13.5.  It may be seen that there are four CaF
2

 units per unit cell (i.e., n' = 4

formula units/unit cell).  Assume that for each of the eight small cubes in the unit cell

a = 
2rCa2+ + 2rF-

√ 3

and, from Table 13.3

a = 
2(0.100 nm) + 2(0.133 nm)

√ 3
 = 0.269 nm = 2.69 x 10-8 cm

The volume of the unit cell is just

VC = (2a)3 = [ ](2)(2.69 x 10-8 cm)
3

 = 1.56 x 10-22 cm3

Thus, from Equation (13.1)

ρ = 
n'( )ACa + 2AF

VCNA
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= 
(4 formula units/unit cell)[40.08 g/mol + (2)(19.00 g/mol)]

(1.56 x 10-22 cm3/unit cell)(6.023 x 1023 formula units/mol)

= 3.33 g/cm3

The measured density is 3.18 g/cm
3

.

13.21  We are asked to specify possible crystal structures for an AX type of ceramic material given its

density (2.65 g/cm3), that the unit cell has cubic symmetry with edge length of 0.43 nm, and the

atomic weights of the A and X elements (86.6 and 40.3 g/cm3, respectively).  Using Equation

(13.1) and solving for n' yields

n' = 
ρVCNA

∑AC + ∑AA

= 
(2.65 g/cm3)(4.30 x 10-8 cm)3/unit cell(6.023 x 1023 formula units/mol)

(86.6 + 40.3) g/mol

= 1.00 formula units/unit cell

Of the three possible crystal structures, only cesium chloride has one formula unit per unit cell,

and therefore, is the only possibility.

13.22  This problem asks us to compute the atomic packing factor for MgFe2O4 given its density

and unit cell edge length.  It is first necessary to determine the number of formula units in the

unit cell in order to calculate the sphere volume.  Solving for n' from Equation (13.1) leads to

n' = 
ρVCNA

∑AC + ∑AA

= 
(4.52 g/cm3)(8.36 x 10-8 cm)3/unit cell(6.023 x 1023 formula units/mol)

(1)(24.31 g/mol) + (2)(55.85 g/mol) + (4)(16.00 g/mol)

= 7.95 or 8.0 formula units/unit cell
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Thus, in each unit cell there are 8 Mg2+, 16 Fe3+, and 32 O2- ions.  From Table 13.3, rMg2+ =

0.072 nm, rFe3+ = 0.069 nm, and rO2- = 0.140 nm.  Thus, the total sphere volume, VS  in

Equation (3.2), is just

VS = (8)( )4
3

π (7.2 x 10-9 cm)3 + (16)( )4
3

π (6.9 x 10-9 cm)3

+ (32)( )4
3

π (1.40 x 10-8 cm)3

= 4.02 x 10-22 cm3

Now, the unit cell volume (VC) is just

VC = a3 = (8.36 x 10-8 cm)3 = 5.84 x 10-22 cm3

Finally, the atomic packing factor (APF) from Equation (3.2) is just

APF = 
VS
VC

 = 
4.02 x 10-22 cm3

5.84 x 10-22 cm3 = 0.688

13.23  This problem asks for us to calculate the atomic packing factor for alumina given values for

the a and c lattice parameters, and the density.  It first becomes necessary to determine the
value of n' in Equation (13.1).  This necessitates that we calculate the value of VC, the unit cell

volume.  In Problem 3.7 it was shown that the area of the hexagonal base (AREA) is related to

a as

AREA = 6( )a
2

2
√ 3 = 1.5a2√ 3

= (1.5)(4.759 x 10-8 cm)2(1.732) = 5.88 x 10-15 cm2

The unit cell volume now is just

VC = (AREA)(c) = (5.88 x 10-15 cm2)(1.2989 x 10-7 cm)

= 7.64 x 10-22 cm3
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Now, solving for n' yields

n' = 
ρNAVC

∑AC + ∑AA

= 
(3.99 g/cm3)(6.023 x 1023 formula units/mol)(7.64 x 10-22 cm3/unit cell)

(2)(26.98 g/mol) + (3)(16.00 g/mol)

= 18.0 formula units/unit cell

Or, there are 18 Al2O3 units per unit cell, or 36 Al3+ ions and 54 O2- ions.  From Table 13.3,

the radii of these two ion types are 0.053 and 0.140 nm, respectively.  Thus, the total sphere
volume, VS in Equation (3.2), is just

VS = (36)( )4
3

π (5.3 x 10-9 cm)3 + (54)( )4
3

π (1.4 x 10-8 cm)3

= 6.43 x 10-22 cm3

Finally, the APF is just

APF = 
VS
VC

 = 
6.43 x 10-22 cm3

7.64 x 10-22 cm3 = 0.842

13.24  We are asked in this problem to compute the atomic packing factor for the diamond cubic

crystal structure, given that the angle between adjacent bonds is 109.5°.  The first thing that we
must do is to determine the unit cell volume VC in terms of the atomic radius r.  From Problem

13.16 the following relationship was developed

a = 4y sin θ

in which y = 2r and θ = 35.25°.  Furthermore, since the unit cell is cubic, VC = a3;  therefore

VC = (4y sin θ)3 = [ ](4)(2r)(sin 35.25°)
3

 = 98.43r3
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Now, it is necessary to determine the sphere volume in the unit cell, VS, in terms of r.  For this

unit cell (Figure 13.15) there are 4 interior atoms, 6 face atoms, and 8 corner atoms.  The

entirety of the interior atoms, one-half of each face atom, and one-eighth of each corner atom

belong to the unit cell.  Therefore, there are 8 equivalent atoms per unit cell;  hence

VS = (8)( )4
3

πr3  = 33.51r3

Finally, the atomic packing factor is just

APF =  
VS
VC

  = 
33.51r3

98.43r3
 = 0.340

13.25  We are asked in this problem to compute the atomic packing factor for the CsCl crystal

structure.  This requires that we take the ratio of the sphere volume within the unit cell and the

total unit cell volume.  From Figure 13.3 there is the equivalent of one Cs and one Cl ion per

unit cell;  the ionic radii of these two ions are 0.170 nm and 0.181 nm, respectively (Table 13.3).
Thus, the sphere volume, VS, is just

VS = 
4
3

(π)[ ](0.170 nm)3 + (0.181 nm)3  = 0.0454 nm3

For CsCl the unit cell edge length, a, in terms of the atomic radii is just

a = 
2rCs+ + 2rCl-

√ 3
 = 

2(0.170 nm) + 2(0.181 nm)

√ 3

= 0.405 nm

Since VC = a3

VC = (0.405 nm)3 = 0.0664 nm3

And, finally the atomic packing factor is just

APF = 
VS
VC

 = 
0.0454 nm3

0.0664 nm3 = 0.684
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13.26  This problem asks that we represent specific crystallographic planes for various ceramic crystal

structures.

(a)  A (100) plane for the rock salt crystal structure would appear as

Na+

Cl
-

(b)  A (110) plane for the cesium chloride crystal structure would appear as

Cl
-

Cs
+

(c)  A (111) plane for the zinc blende crystal structure would appear as

S
2-

Zn
2+

(d)  A (110) plane for the perovskite crystal structure would appear as
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O
2-

Ba
2+

Ti
4+

13.27  The silicate materials have relatively low densities because the atomic bonds are primarily

covalent in nature (Table 13.1), and, therefore, directional.  This limits the packing efficiency of

the atoms, and therefore, the magnitude of the density.

13.28  This problem asks for us to determine the angle between covalent bonds in an SiO4
4

-

tetrahedron.  Below is shown one such tetrahedron situated within a cube.

a

a

y

x

θ

φ

Now if we extend the base diagonal from one corner to the other, it is the case that

(2y)2 = a2 + a2 = 2a2

or

y = 
a√ 2

2

Furthermore, x = a/2, and



285

tan θ = 
x
y
 = 

a/2

a√ 2/2
 = 

1

√ 2

From which

θ = tan-1 

 


 
1

√ 2
 = 35.26°

Now, solving for the angle φ

φ = 180° - 90° - 35.26° = 54.74°

Finally, the bond angle is just 2φ, or 2φ = (2)(54.74°) = 109.48°.

13.29  (a)  The chemical formula for kaolinite clay may also be written as Al2O3-2SiO2-2H2O.  Thus,

if we remove the chemical water, the formula becomes Al2O3-2SiO2.  The formula weight for

Al2O3 is just (2)(26.98 g/mol) + (3)(16.00 g/mole) = 101.96 g/mol; and for SiO2 the formula

weight is 28.09 g/mol + (2)(16.00 g/mol) = 60.09 g/mol.  Thus, the composition of this product,
in terms of the concentration of Al2O3, CAl2O3

, in weight percent is just

CAl2O3
 = 

101.96 g/mol
101.96 g/mol + (2)(60.09 g/mol)

 x 100 = 45.9 wt%

(b)  The liquidus and solidus temperatures for this material as determined from the SiO2-Al2O3

phase diagram, Figure 13.26, are 1800°C and 1587°C, respectively.

13.30  Frenkel defects for anions would not exist in appreciable concentrations because the anion is

quite large and is highly unlikely to exist as an interstitial.

13.31  Stoichiometric means having exactly the ratio of anions to cations as specified by the

chemical formula for the compound.

13.32  (a)  For a Cu2+O2- compound in which a small fraction of the Cu2+ ions exist as Cu+, for

each Cu+ formed there is one less positive charge introduced (or one more negative charge).

In order to maintain charge neutrality, we must either add an additional positive charge or

subtract a negative charge.  This may be accomplished be either creating Cu2+ interstitials or

O2- vacancies.
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(b)  There will be two Cu+ ions required for each of these defects.
(c)  The chemical formula for this nonstoichiometric material is Cu1+xO or CuO1-x , where x is

some 

small fraction.

13.33  (a)  For Li
+

 substituting for Ca
2+

 in CaO, oxygen vacancies would be created.  For each Li
+

substituting for Ca
2+

, one positive charge is removed;  in order to maintain charge neutrality, a

single negative charge may be removed.  Negative charges are eliminated by creating oxygen

vacancies, and for every two Li
+

 ions added, a single oxygen vacancy is formed.

(b)  For Cl
-
 substituting for O

2-
 in CaO, calcium vacancies would be created.  For each Cl

-

substituting for an O
2-

, one negative charge is removed;  in order to maintain charge neutrality,

two Cl
-
 ions will lead to the formation of one calcium vacancy.

13.34  For every Mg
2+

 ion that substitutes for Al
3+

 in Al
2

O
3

, a single positive charge is removed.

Thus, in order to maintain charge neutrality, either a positive charge must be added or a

negative charge must be removed.

Positive charges are added by forming Al
3+

 interstitials, and one Al
3+

 interstitial would

be formed for every three Mg
2+

 ions added.

Negative charges may be removed by forming O
2-

 vacancies, and one oxygen vacancy

would be formed for every two Mg
2+

 ions added.

13.35  There is only one eutectic for the portion of the ZrO2-CaO system shown in Figure 13.25,

which, upon cooling, is

Liquid →  cubic ZrO2 + CaZrO3

There are two eutectoids, which reactions are as follows:

tetragonal →  monoclinic ZrO2 + cubic ZrO2

cubic →  monoclinic ZrO2 + CaZr4O9

13.36  (a)  For this portion of the problem we are to determine the type of vacancy defect that is
produced on the Al2O3-rich side of the spinel phase field (Figure 13.24) and the percentage of

these vacancies at the maximum nonstoichiometry (82 mol% Al2O3).  On the alumina-rich side

of this phase field, there is an excess of Al3+ ions, which means that some of the Al3+  ions
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substitute for Mg2+ ions.  In order to maintain charge neutrality, Mg2+ vacancies are formed,

and for every Mg2+ vacancy formed, two Al3+ ions substitute for three Mg2+ ions.

Now, we will calculate the percentage of Mg2+ vacancies that exist at 82 mol% Al2O3.

Let us arbitrarily choose as our basis 50 MgO-Al2O3 units of the stoichiometric material which

consists of 50 Mg2+ ions and 100 Al3+ ions.  Furthermore, let us designate the number of

Mg2+ vacancies as x, which means that 2x Al3+ ions have been added and 3x Mg2+ ions

have been removed (two of which are filled with Al3+ ions).  Using our 50 MgO-Al2O3 unit basis,

the number of moles of Al2O3 in the nonstoichiometric material is (100 + 2x)/2;  similarly the

number of moles of MgO is (50 - 3x).  Thus, the expression for the mol% of Al2O3 is just

mol% Al2O3 = 

 





 



100 + 2x

2
100 + 2x

2
 + (50 - 3x)

 x 100

If we solve for x when the mol% of Al2O3 = 82, then x = 12.1.  Thus, adding 2x or (2)(12.1) =

24.2 Al3+ ions to the original material consisting of 100 Al3+ and 50 Mg2+ ions will produce

12.1 Mg2+ vacancies.  Therefore, the percentage of vacancies is just

% vacancies = 
12.1

100 + 50
 x 100 = 8.1%

(b)  Now, we are asked to make the same determinations for the MgO-rich side of the spinel

phase field, for 40 mol% Al2O3.  In this case, Mg2+ ions are substituting for Al3+ ions.  Since

the Mg2+ ion has a lower charge than the Al3+ ion, in order to maintain charge neutrality,

negative charges must be eliminated, which may be accomplished by introducing O2 -

vacancies.  For every 2 Mg2+ ions that substitute for 2 Al3+ ions, one O2- vacancy is formed.

Now, we will calculate the percentage of O2- vacancies that exist at 40 mol% Al2O3.

Let us arbitrarily choose as our basis 50 MgO-Al2O3 units of the stoichiometric material which

consists of 50 Mg2+ ions 100 Al3+ ions.  Furthermore, let us designate the number of O2-

vacancies as y, which means that 2y Mg2+ ions have been added and 2y Al3+ ions have been
removed.  Using our 50 MgO-Al2O 3 unit basis, the number of moles of Al2O 3 in the

nonstoichiometric material is (100 - 2y)/2;  similarly the number of moles of MgO is (50 + 2y).
Thus, the expression for the mol% of Al2O3 is just

mol% Al2O3 = 

 





 



100 - 2y

2
100 - 2y

2
 + (50 + 2y)

 x 100
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If we solve for y when the mol% of Al2O3 = 40, then y = 7.14.  Thus, 7.14 O2- vacancies are

produced in the original material that had 200 O2- ions.  Therefore, the percentage of vacancies

is just

% vacancies = 
7.14
200

 x 100 = 3.57%

13.37  (a)  There may be significant scatter in the fracture strength for some given ceramic material

because the fracture strength depends on the probability of the existence of a flaw that is

capable of initiating a crack;  this probability varies from specimen to specimen of the same

material.

(b)  The fracture strength increases with decreasing specimen size because as specimen size

decreases, the probably of the existence of a flaw of that is capable of initiating a crack

diminishes.

13.38  We are asked for the critical crack tip radius for an Al
2

O
3

 material. From Equation (8.1b)

σm = 2σo 


 
a

ρt

1/2

Fracture will occur when σm  reaches the fracture strength of the material, which is given as

E/10;  thus

E
10

 = 2σo 


 
a

ρt

1/2

Or, solving for ρt

ρt = 
400aσo

2

E2

From Table 13.5, E = 393 GPa, and thus,

ρt = 
(400)(2 x 10-3 mm)(275 MPa)2

(393 x 103 MPa)2
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= 3.9 x 10-7 mm = 0.39 nm

13.39  This problem asks that we compute the crack tip radius ratio before and after etching.  Let

ρt = original crack tip radius, and

ρt'  = etched crack tip radius

Also,

σf'  = σf

a' = 
a
3

σo'  = 8σo

Solving for 
ρt'

ρt
 from

σf = 2σo 


 
a

ρt

1/2
 = σf'  = 2σo'  


 
a'

ρt'

1/2

yields

ρt'

ρt
 = 

 



 

σo'

σo

2

( )a'
a

 = 
 



 

8σo

σo

2

( )a/3
a

 = 21.3

13.40  (a)  For this portion of the problem we are asked to compute the flexural strength for a glass

specimen that is subjected to a three-point bending test.  The flexural strength is just

σfs = 
3FfL

2bd2

for a rectangular cross-section.  Using the values given in the problem,

σfs = 
(3)(290 N)(45 x 10-3 m)

(2)(10 x 10-3 m)(5 x 10-3 m)2
 = 78.3 MPa  (10,660 psi)
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(b)  We are now asked to compute the maximum deflection.  From Table 13.5, the elastic

modulus (E) for glass is 69 GPa (10 x 10
6

 psi).  Also, the moment of inertia for a rectangular

cross section (Figure 13.28) is just

I = 
bd3

12

Thus,

∆y = 
FL3

48E(bd3/12)
 = 

FL3

4Ebd3

= 
(266 N)(45 x 10-3 m)3

(4)(69 x 109 N/m2)(10 x 10-3 m)(5 x 10-3 m)3

= 7.0 x 10-5 m = 7.0 x 10-2 mm  (2.5 x 10-3 in.)

13.41  We are asked to calculate the maximum radius of a circular specimen that is loaded using

three-point bending.  Solving for R from Equation (13.3b)

R = 
 


 
FfL

σfsπ

1/3

which, when substituting the parameters stipulated in the problem, yields

R = 
 


 
(425 N)(50 x 10-3 m)

(105 x 106 N/m2)(π)

1/3

= 4.0 x 10-3 m = 4.0 mm  (0.16 in.)

13.42  For this problem, the load is given at which a circular specimen of aluminum oxide fractures

when subjected to a three-point bending test;  we are then are asked to determine the load at

which a specimen of the same material having a square cross-section fractures.  It is first

necessary to compute the flexural strength of the alumina using Equation (13.3b), and then,
using this value, we may calculate the value of Ff in Equation (13.3a).  From Equation (13.3b)

σfs = 
FfL

πR3
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= 
(950 N)(50 x 10-3 m)

(π)(3.5 x 10-3 m)3
 = 352 x 106 N/m2 = 352 MPa  (50,000 psi)

Now, solving for Ff from Equation (13.3a), realizing that b = d = 12 mm, yields

Ff = 
2σfsd3

3L

= 
(2)(352 x 106 N/m2)(12 x 10-3 m)3

(3)(40 x 10-3 m)
 = 10,100 N  (2165 lbf)

13.43  (a)  This portion of the problem asks that we determine whether or not a cylindrical specimen

of aluminum oxide having a flexural strength of 390 MPa (56,600 psi) and a radius of 2.5 mm

will fracture when subjected to a load of 620 N in a three-point bending test;  the support point

separation is given as 30 mm.  Using Equation (13.3b) we will calculate the value of σ;  if this
value is greater than σfs (390 MPa), then fracture is expected to occur.  Employment of

Equation (13.3b) yields

σ = 
FL

πR3 = 
(620 N)(30 x 10-3 m)

(π)(2.5 x 10-3 m)3
 = 379 x 106 N/m2 = 379 MPa  (53,500 psi)

Since this value is less than the given value of σfs (390 MPa), then fracture is not predicted.

(b)  The certainty of this prediction is not 100% because there is always some variability in the
flexural strength for ceramic materials, and since this value of σ is relatively close to σfs then

there is some chance that fracture will occur.

13.44  Crystalline ceramics are harder yet more brittle than metals because they (ceramics) have

fewer slip systems, and, therefore, dislocation motion is highly restricted.

13.45  (a)  This portion of the problem requests that we compute the modulus of elasticity for

nonporous BeO given that E = 310 GPa for a material having 5 vol% porosity.  Thus, we solve
Equation (13.5) for Eo, using P = 0.05, which gives

Eo = 
E

1 - 1.9P + 0.9P2

= 
310 GPa

 1 - (1.9)(0.05) + (0.9)(0.05)2
 = 342 GPa  (49.6 x 106 psi )
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(b)  Now we are asked to determine the value of E at P = 10 vol%.  Using Equation (13.5) we

get

E = Eo(1 - 1.9P + 0.9P2)

= (342 GPa)[ ]1 - (1.9)(0.10) + (0.9)(0.1)2  = 280 GPa (40.6 x 106 psi)

13.46  (a)  This portion of the problem requests that we compute the modulus of elasticity for

nonporous B4C given that E = 290 GPa (42 x 106 psi) for a material having 5 vol% porosity.

Thus, we solve Equation (13.5) for Eo, using P = 0.05, which gives

Eo = 
E

1 - 1.9P + 0.9P2

= 
290 GPa

 1 - (1.9)(0.05) + (0.9)(0.05)2
 = 320 GPa  (46.3 x 106 psi )

(b)  Now we are asked to compute the volume percent porosity at which the elastic modulus of

B4C is 235 MPa (34 x 106 psi).  Since from part (a), Eo = 320 GPa, and using Equation (13.5)

we get

E
Eo

 = 
235 MPa
320 MPa

 = 0.734 = 1 - 1.9P + 0.9P2

Or

0.9P2 - 1.9P + 0.266 = 0

Now, solving for the value of P using the quadratic equation solution yields

P = 
1.9 ± √(-1.9)2 - (4)(0.9)(0.266)

(2)(0.9)

The positive and negative roots are

P+ = 1.960

P- = 0.151
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Obviously, only the negative root is physically meaningful, and therefore the value of the

porosity to give the desired modulus of elasticity is 15.1 vol%.

13.47  (a)  This part of the problem asks us to determine the flexural strength of nonporous MgO

assuming that the value of n in Equation (13.6) is 3.75.  Taking natural logarithms of both sides

of Equation (13.6) yields

ln σfs = ln σo - nP

In Table 13.5 it is noted that for P = 0.05, σfs = 105 MPa.  For the nonporous material P = 0

and,   ln σo = ln σfs.  Solving for ln σo from the above equation gives and using these data

gives

ln σo = ln σfs + nP

= ln (105 MPa) + (3.75)(0.05) = 4.841

or σo = e4.841 = 127 MPa (18,100 psi)

(b)  Now we are asked to compute the volume percent porosity to yield a σfs of 62 MPa (9000

psi).  Taking the natural logarithm of Equation (13.6) and solving for P leads to

P = 
ln σo - ln σfs

n

= 
ln (127 MPa) - ln (62 MPa)

3.75

= 0.19 or 19 vol%

13.48  (a)  Given the flexural strengths at two different volume fraction porosities, we are asked to

determine the flexural strength for a nonporous material.  If the natural logarithm is taken of

both sides of Equation (13.6), then

ln σfs = ln σo - nP

Using the data provided in the problem, two simultaneous equations may be written as
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ln (100 MPa) = ln σo - (0.05)n

ln (50 MPa) = ln σo - (0.20)n

Solving for n and σo leads to n = 4.62 and σo = 126 MPa.  For the nonporous material, P = 0,

and, from Equation (13.6), σo = σfs.  Thus, σfs for P = 0 is 126 MPa.

(b)  Now, we are asked for σfs at P = 0.1 for this same material.  Utilizing Equation (13.6) yields

σfs = σo exp (-nP)

= (126 MPa) exp [ ]- (4.62)(0.1)

= 79.4 MPa

Design Problems

13.D1  This problem asks that we determine the concentration (in weight percent) of GaP that must

be added to GaAs to yield a unit cell edge length of 0.5570 nm.  The densities of GaAs and

GaP were given in the problem as 5.307 and 4.130 g/cm3, respectively.  To begin, it is
necessary to employ Equation (13.1), and solve for the unit cell volume, VC , for the GaP-GaAs

alloy as

VC = 
n'Aave
ρaveNA

where Aave and ρave are the atomic weight and density, respectively, of the GaAs-GaP alloy.

Inasmuch as both of these materials have the zinc blende crystal structure, which has cubic
symmetry, VC  is just the cube of the unit cell length, a.  That is

VC = a3 = (0.5570 nm)3

= ( )5.570 x 10-8 cm
3

 = 1.728 x 10-22 cm3

It is now necessary to construct expressions for Aave and ρave in terms of the concentration of

gallium phosphide, CGaP using Equations (4.11a) and (4.10a).  For Aave we have
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Aave = 
100

CGaP
AGaP

 + 
(100 - CGaP)

AGaAs

= 
100

CGaP
100.69 g/mol

 + 
(100 - CGaP)

144.64 g/mol

whereas for ρave

ρave = 
100

CGaP
ρGaP

 + 
(100 - CGaP)

ρGaAs

= 
100

CGaP

4.130 g/cm3 + 
(100 - CGaP)

5.307 g/cm3

Within the zinc blende unit cell there are four formula units, and thus, the value of n' in Equation

(13.1) is 4;  hence, this expression may be written in terms of the concentration of GaP in weight

percent as follows:

VC = 1.728 x 10-22 cm3

= 
n'Aave
ρaveNA

= 

(4 fu/unit cell)

 



 

100

CGaP
100.69 g/mol

 + 
(100 - CGaP)

144.64 g/mol

 





 



100

CGaP

4.130 g/cm3 + 
(100 - CGaP)

5.307 g/cm3

(6.023 x 1023 fu/mole)

And solving this expression for CGaP leads to CGaP = 34 wt%.

13.D2  This problem asks for us to determine which of the materials in Table 13.5, when fabricated

into cylindrical specimens and stressed in three-point loading, will not fracture when a load of
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275 N (62 lbf) is applied, and also will not experience a center-point deflection of more than 6.2

x 10-2 mm (2.4 x 10-3 in.).  The first of these criteria is met by those materials which have

flexural strengths greater than the stress calculated using Equation (13.3b).  According to this

expression

σfs= 
FL

πR3

= 
(275 N)(45 x 10-3 m)

(π)(2.5 x 10-3 m)3
 = 252 MPa  (35,000 psi)

Of the materials in Table 13.5 the following have flexural strengths greater than this value:
ZrO2, Al2O3, Si3N4, and SiC.

For the second criterion we must solve for the magnitude of the modulus of elasticity, E,

from the equation given in Problem 13.40 where the expression for the cross-sectional moment

of inertia appears in Figure 13.28;  that is, for a circular cross-section I = 
πR4

4
.  Solving for E from

these two expressions

E = 
FL3

12πR4∆y

= 
(275 N)(45 x 10-3 m)3

(12)(π)(2.5 x 10-3 m)4(6.2 x 10-5 m)

= 274 GPa  (38 x 106 psi)

Of those materials that satisfy the first criterion, only Al2O3, Si3N4, and SiC have moduli of

elasticity greater than this value, and, therefore, are possible candidates.
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CHAPTER 14

APPLICATIONS AND PROCESSING OF CERAMICS

PROBLEM SOLUTIONS

14.1  The two desirable characteristics of glasses are optical transparency and ease of fabrication.

14.2  We are asked to compute the weight of soda ash and limestone that must be added to 100
lbm of SiO

2
 to yield a glass composition of 75 wt% SiO

2
, 15 wt% Na

2
O, and 10 wt% CaO.

Inasmuch as the concentration of SiO2 in the glass is 75wt%, the final weight of the glass

(mglass) is just

mglass = 
100 lbm

0.75
 = 133.3 lbm

Therefore, the weights of Na2O (mNa2O) and CaO (mCaO) are as follows:

mNa2O = ( )15 wt%
100

 (133.3 lbm) = 20.0 lbm

and

mCaO = ( )10 wt%
100

 (133.3 lbm) = 13.3 lbm

In order to compute the weights of Na
2

CO
3

 and CaCO
3

 we must employ molecular weights, as

mNa2CO3
 = (20.0 lbm)

 



 

molecular wt. Na2CO3

molecular wt. Na2O

= (20.0 lbm)( )105.99 g/mol
61.98 g/mol

 = 34.2 lbm

and

mCaCO3
 = (13.3 lbm) 


 
molecular wt. CaCO3

molecular wt. CaO

= (13.3 lbm)( )100.09 g/mol
56.08 g/mol

 = 23.8 lbm
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14.3  The glass transition temperature is, for a noncrystalline ceramic, that temperature at which

there is a change of slope for the specific volume versus temperature curve (Figure 14.3).

The melting temperature is, for a crystalline material, that temperature at which there is

a sudden and discontinuous decrease in the specific volume versus temperature curve.

14.4  In order to be drawn into fibers, a material must exist as a viscous fluid.  Crystalline aluminum

oxide is a solid below its melting temperature and a nonviscous fluid above.  On the other hand,

a glass will be a viscous fluid as a supercooled liquid.

14.5  The annealing point is that temperature at which the viscosity of the glass is 10
12

 Pa-s (10
13

P).  From Figure 14.4, these temperatures for the several glasses are as follows:

Glass Annealing Temperature

Soda-lime 500°C (930°F)

Borosilicate 570°C (1060°F)

96% Silica 930°C (1705°F)

Fused Silica 1170°C (2140°F)

14.6  The softening point of a glass is that temperature at which the viscosity is 4 x 106 Pa-s;  from

Figure 14.4, these temperatures for the 96% silica, borosilicate, and soda-lime glasses are

1540°C (2800°F), 830°C (1525°F), and 700°C (1290°F), respectively.

14.7  (a)  Below is shown the logarithm viscosity versus reciprocal of temperature plot for the

borosilicate glass, using the data in Figure 14.4.

1.30e-31.20e-31.10e-31.00e-39.00e-48.00e-4
10
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40

ln
 V

is
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si
ty

 (
P
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(b)  The activation energy, Q
vis

, may be computed from this plot according to

Qvis = R 

 



 

∆lnη

∆( )1
T

where R is the gas constant, and ∆lnη /∆(1/T) is the slope of the line that has been constructed.

The value of this slope is 4.36 x 104.  Therefore,

Qvis = (8.31 J/mol-K)(4.36 x 104)

= 362,000 J/mol

14.8  This problem calls for us to determine the maximum temperature to which a cylindrical

specimen of soda-lime glass may be heated in order that its deformation be less than 1 mm

over a week's time.  According to Equation (6.1)

σ = 
F

Ao
 = 

1 N

π 


 
5 x 10-3 m

2

2 = 5.1 x 104 Pa

Also,

dε
dt

 = 
d(∆l/lo)

dt

= 
1 mm/100 mm

(1 wk)(7 day/week)(24 h/day)(3600 s/h)
 = 1.653 x 10-8 s-1

Thus,

η = 
σ

dε/dt
 = 

5.1 x 104 Pa

1.653 x 10-8 s-1 = 3.1 x 1012 Pa-s

From Figure 14.4, the temperature at which the viscosity of the soda- lime glass is 3.1 x 10
12

Pa-s is about 500°C (930°F).
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14.9  (a)  Residual thermal stresses are introduced into a glass piece when it is cooled because

surface and interior regions cool at different rates, and, therefore, contract different amounts;

since the material will experience very little, if any deformation, stresses are established.

(b)  Yes, thermal stresses will be introduced because of thermal expansion upon heating for the

same reason as for thermal contraction upon cooling.

(c)  The thinner the thickness of a glass ware the lower the thermal stresses that are introduced

when it is either heated or cooled.  The reason for this is that the difference in temperature

across the cross-section of the ware, and, therefore, the difference in the degree of expansion

or contraction will decrease with a decrease in thickness.

14.10  Borosilicate glasses and fused silica are resistant to thermal shock because they have

relatively low coefficients of thermal expansion;  therefore, upon heating or cooling, the

difference in the degree of expansion or contraction across a cross-section of a ware that is

constructed from these materials will be relatively low.

14.11  Thermal tempering of glasses is described in Section 14.4.

14.12  Chemical tempering will be accomplished by substitution, for Na
+

, another monovalent cation

with a slightly larger diameter.  From Table 13.3, both K
+

 and Cs
+

 fill these criteria, having ionic

radii of 0.138 and 0.170 nm, respectively.  In fact, soda-lime glasses are tempered by a K
+

-Na
+

ion exchange.

14.13  (a)  Devitrification is the process whereby a glass material is caused to transform to a

crystalline solid, usually by a heat treatment.

(b)  Two properties that may be improved by devitrification are 1) a lower coefficient of thermal

expansion, and 2) a higher thermal conductivity.  Two properties that may be impaired are 1) a

loss of optical transparency, and 2) a lowering of mechanical strength when stresses are

introduced from volume changes that attend the transformation.  In some cases, however,

strength may actually be improved.

14.14  Glass-ceramics may not be transparent because they are polycrystalline.  Light will be

scattered at grain boundaries in polycrystalline materials if the index of refraction is anisotropic,

and when those grains adjacent to the boundary have different crystallographic orientations.

This phenomenon is discussed in Section 22.10.
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14.15  Two desirable characteristics of clay minerals relative to fabrication processes are 1) they

become hydroplastic (and therefore formable) when mixed with water;  and 2) during firing, clays

melt over a range of temperatures, which allows some fusion and bonding of the ware without

complete melting and a loss of mechanical integrity and shape.

14.16  Clays become hydroplastic when water is added because the water molecules fill in the

regions between the layered molecular sheets;  these water molecules essentially eliminate the

secondary molecular bonds between adjacent sheets, and also form a thin film around the clay

particles.  The net result is that the clay particles are relatively free to move past one another,

which is manifested as the hydroplasticity phenomenon.

14.17  Thick ceramic wares are more likely to crack upon drying than thin wares because of the

differential in shrinkage from the surface to the interior of a cross-section will be greater for a

thick ware.  The reason for this is that the water being eliminated during drying has a longer

distance to travel from the interior to the surface for the thicker ware.

14.18  The phenomenon of hydroplasticity results when water molecules form a thin film around the

small clay particles.  During firing, these individual particles become fused together by the

viscous liquid that fills in the pore volume between the particles--the pore volume occupied by

water in the hydroplastic state.  This viscous liquid forms a glass matrix on subsequent cooling.

14.19  (a)  The three components of a whiteware ceramic are clay, quartz, and a flux.

(b)  With regard to the role that each component plays:

Quartz acts as a filler material.

Clay facilitates the forming operation since, when mixed with water, the mass may be

made to become either hydroplastic or form a slip. Also, since clays melt over a range of

temperatures, the shape of the piece being fired will be maintained.

The flux facilitates the formation of a glass having a relatively low melting temperature.

14.20  (a)  It is important to control the rate of drying inasmuch as if the rate of drying is too rapid,

there will be nonuniform shrinkage between surface and interior regions, such that warping

and/or cracking of the ceramic ware will result.

(b)  Three factors that affect the rate of drying are temperature, humidity, and rate of air flow.

The rate of drying is enhanced by increasing both the temperature and rate of air flow, and by

decreasing the humidity of the air.
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14.21  The reason that drying shrinkage is greater for products having smaller clay particles is that

there is more particle surface area, and, consequently, more water will surround a given volume

of particles.  The drying shrinkage will thus be greater as this water is removed, and as the

interparticle separation decreases.

14.22  (a)  Three factors that influence the degree to which vitrification occurs in clay-based ceramic

wares are:  1) the composition (especially the concentration of flux present);  2) the temperature

of firing;  and 3) the time at the firing temperature.

(b)  Density will increase with degree of vitrification since the total remaining pore volume

decreases.

Firing distortion will increase with degree of vitrification since more liquid phase will be

present at the firing temperature.

Strength will also increase with degree of vitrification inasmuch as more of the liquid

phase forms, which fills in a greater fraction of pore volume.  Upon cooling, the liquid forms a

glass matrix of relatively high strength.

Corrosion resistance normally increases also, especially at service temperatures below

that at which the glass phase begins to soften.  The rate of corrosion is dependent on the

amount of surface area exposed to the corrosive medium;  hence, decreasing the total surface

area by filling in some of the surface pores, diminishes the corrosion rate.

Thermal conductivity will increase with degree of vitrification. The glass phase has a

higher conductivity than the pores that it has filled.

14.23  For refractory ceramic materials, three characteristics that improve with increasing porosity are

decreased thermal expansion and contraction upon thermal cycling, improved thermal

insulation, and resistance to thermal shock.  Two characteristics that are adversely affected are

load-bearing capacity and resistance to attack by corrosive materials.

14.24  (a)  From Figure 13.24, the maximum temperature without a liquid phase corresponds to the
temperature of the eutectic isotherm on the Al2O3-rich side of the phase diagram, which is

approximately 2000°C (3630°F).
(b)  This maximum temperature lies at the phase boundary between MgAl

2
O

4
(ss)-MgAl

2
O

4
 +

Liquid phase fields (just slightly to the left of the congruent melting point at which the two phase

boundaries become tangent);  this temperature is approximately 2030°C (3685°F).
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14.25  For each section of this problem two SiO2-Al2O3 compositions are given;  we are to decide,

on the basis of the SiO2-Al2O3 phase diagram (Figure 13.26), which is the more desirable as a

refractory and then justify the choice.
(a)  The 25 wt% Al2O3-75 wt% SiO2 will be more desirable because the liquidus temperature will

be greater for this composition;  therefore, at any temperature within the mullite + liquid region

on the phase diagram, there will be a lower fraction of the liquid phase present than for the 20
wt% Al2O3-80 wt% SiO2 composition, and, thus, the mechanical integrity will be greater.

(b)  The 80 wt% Al2O3-20 wt% SiO2 composition will be more desirable because, for this

composition, a liquid phase does not form until about 1890°C, whereas, for the 70 wt% Al2O3-

30 wt% SiO2 material, a liquid phase forms at a much lower temperature--1587°C.

14.26  This problem calls for us to compute the mass fractions of liquid for four refractory materials at
1600°C. In order to solve this problem it is necessary that we use the SiO2-Al2O3 phase

diagram (Figure 13.26), in conjunction with tie-lines and the lever rule at 1600°C.
(a)  For Co = 6 wt% Al2O3 the mass fraction of liquid WL is just

WL = 
Co - CSiO2
CL - CSiO2

= 
6 - 0
7 - 0

 = 0.86

(b)  For Co = 10 wt% Al2O3 the mass fraction of liquid WL is just

WL = 
Cmullite - Co
Cmullite - CL

= 
72 - 10
72 - 8

 = 0.97

(c)  For Co = 30 wt% Al2O3 the mass fraction of liquid WL is just

WL = 
Cmullite - Co
Cmullite - CL

= 
72 - 30
72 - 8

 = 0.66
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(d)  For Co = 80 wt% Al2O3 and at 1600°C only alumina and mullite phases are present;  thus,

WL = 0.

14.27  (a)  This portion of the problem asks that we specify, for the SiO2-Al2O3 system, the

maximum temperature possible without the formation of a liquid phase.  According to Figure

13.26 this maximum temperature is 1890°C, which is possible for compositions between about
77 and virtually 100 wt% Al2O3.

(b)  For the MgO-Al2O3 system, Figure 13.24, the maximum temperature without the formation

of a liquid phase is approximately 2800°C which is possible for pure MgO.

14.28  The principal disadvantage of hot-isostatic pressing is that it is expensive.  The pressure is

applied on a pre-formed green piece by a gas.  Thus, the process is slow, and the equipment

required to supply the gas and withstand the elevated temperature and pressure is costly.

14.29  For clay-based aggregates, a liquid phase forms during firing, which infiltrates the pores

between the unmelted particles;  upon cooling, this liquid becomes a glass, that serves as the

bonding phase.

With cements, the bonding process is a chemical, hydration reaction between the water

that has been added and the various cement constituents.  The cement particles are bonded

together by reactions that occur at the particle surfaces.

14.30  It is important to grind cement into a fine powder in order to increase the surface area of the

particles of cement.  The hydration reactions between water and the cement occur at the

surface of the cement particles.  Therefore, increasing the available surface area allows for more

extensive bonding.

Design Question

14.D1  (a)  Important characteristics that are required of a ceramic material to be used for kitchen

cookware are:  1) it must have a high resistance to thermal shock (Section 20.5) in order to

withstand relatively rapid changes in temperature;  2) it must have a relatively high thermal

conductivity;  3)  it must be relatively strong and tough in order to endure normal kitchen use;

and 4) it must be nontoxic.

(b)  Possible materials worth considering are a common soda-lime glass, a borosilicate (Pyrex)

glass, and a glass ceramic.  These materials and some of their characteristics are discussed in
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this chapter.  Using Equation (20.9) a comparison of the resistance to thermal shock may be

made.  The student will need to obtain cost information.

(c)  It is left to the student to make this determination and justify the decision.
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CHAPTER 15

POLYMER STRUCTURES

PROBLEM SOLUTIONS

15.1  Polymorphism is when two or more crystal structures are possible for a material of given

composition.  Isomerism is when two or more polymer molecules or mer units have the same

composition, but different atomic arrangements.

15.2  The mer structures called for are sketched below.

(a)  Polyvinyl fluoride

H H

C C

H F

(b)  Polychlorotrifluoroethylene

F F

C C

F Cl

(c)  Polyvinyl alcohol

H H

C C

H OH

15.3  Mer weights for several polymers are asked for in this problem.
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(a)  For polyvinyl chloride, each mer unit consists of two carbons, three hydrogens, and one
chlorine (Table 15.3).  If A

C
, A

H
, and A

Cl
 represent the atomic weights of carbon, hydrogen,

and chlorine, respectively, then

m = 2(AC) + 3(AH) + 1(A
Cl

)

= (2)(12.01 g/mol) + (3)(1.008 g/mol) + 35.45 g/mole = 62.49 g/mol

(b)  For polyethylene terephthalate, from Table 15.3, each mer unit has ten carbons, eight

hydrogens, and four oxygens.  Thus,

m = 10(AC) + 8(AH) + 4(AO)

= (10)(12.01 g/mol) + (8)(1.008 g/mol) + (4)(16.00 g/mol) = 192.16 g/mol

(c)  For polycarbonate, from Table 15.3, each mer unit has sixteen carbons, fourteen

hydrogens, and three oxygens.  Thus,

m = 16(AC) + 14(AH) + 3(AO)

= (16)(12.01 g/mol) + (14)(1.008 g/mol) + (3)(16.00 g/mol)

= 254.27 g/mol

(d)  For polydimethylsiloxane, from Table 15.5, each mer unit has two carbons, six hydrogens,

one silicon, and one oxygen.  Thus,

m = 2(AC) + 6(AH) + (ASi) + (AO)

= (2)(12.01 g/mol) + (6)(1.008 g/mol) + (28.09 g/mol)

+ (16.00 g/mol) = 74.16 g/mol

15.4  We are asked to compute the number-average degree of polymerization for polypropylene,

given that the number-average molecular weight is 1,000,000 g/mol.  The mer molecular weight

of polypropylene is just
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m = 3(AC) + 6(AH)

= (3)(12.01 g/mol) + (6)(1.008 g/mol) = 42.08 g/mol

If we let n
n

 represent the number-average degree of polymerization, then from Equation (15.4a)

nn = 
M
_

n
m

 = 
106 g/mol

42.08 g/mol
 = 23,700

15.5  (a)  The mer molecular weight of polystyrene is called for in this portion of the problem.  For

polystyrene, from Table 15.3, each mer unit has eight carbons and eight hydrogens.  Thus,

m = 8(AC) + 8(AH)

= (8)(12.01 g/mol) + (8)(1.008 g/mol) = 104.14 g/mol

(b)  We are now asked to compute the weight-average molecular weight. Since the weight-
average degree of polymerization, n

w
, is 25,000, using Equation (15.4b)

M
_

w = nwm = (25,000)(104.14 g/mol) = 2.60 x 106 g/mol

15.6  (a)  From the tabulated data, we are asked to compute M
_

n, the number- average molecular

weight.  This is carried out below.

Molecular wt
Range Mean M

i
x
i

x
i
M

i

8,000-16,000 12,000 0.05 600

16,000-24,000 20,000 0.16 3200

24,000-32,000 28,000 0.24 6720

32,000-40,000 36,000 0.28 10,080

40,000-48,000 44,000 0.20 8800

48,000-56,000 52,000 0.07 3640

____________________________

M
_

n = ΣxiMi = 33,040 g/mol
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(b)  From the tabulated data, we are asked to compute M
_

w, the weight- average molecular

weight.

Molecular wt.
Range Mean M

i
w

i
w

i
M

i

8,000-16,000 12,000 0.02 240

16,000-24,000 20,000 0.10 2000

24,000-32,000 28,000 0.20 5600

32,000-40,000 36,000 0.30 10,800

40,000-48,000 44,000 0.27 11,880

48,000-56,000 52,000 0.11 5720

___________________________

M
_

w = ΣwiMi = 36,240 g/mol

(c)  Now we are asked to compute n
n

 (the number-average degree of polymerization), using the

Equation (15.4a).  For polypropylene,

m = 3(AC) + 6(AH)

= (3)(12.01 g/mol) + (6)(1.008 g/mol) = 42.08 g/mol

And

nn = 
M
_

n
m

 = 
33040 g/mol
42.08 g/mol

 = 785

(d)  And, finally, we are asked to compute n
w

, the weight-average degree of polymerization, as

nw = 
M
_

w
m

 = 
36240 g/mol
42.08 g/mol

 = 861

15.7  (a)  From the tabulated data, we are asked to compute M
_

n, the number-average molecular

weight.  This is carried out below.
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Molecular wt.
Range Mean M

i
x
i

x
i
M

i

15,000-30,000 22,500 0.04 900

30,000-45,000 37,500 0.07 2625

45,000-60,000 52,500 0.16 8400

60,000-75,000 67,500 0.26 17,550

75,000-90,000 82,500 0.24 19,800

90,000-105,000 97,500 0.12 11,700

105,000-120,000 112,500 0.08 9000

120,000-135,000 127,500 0.03 3825

_________________________

M
_

n = ΣxiMi = 73,800 g/mol

(b)  From the tabulated data, we are asked to compute M
_

w, the weight- average molecular

weight.

Molecular wt.
Range Mean M

i
w

i
w

i
M

i

15,000-30,000 22,500 0.01 225

30,000-45,000 37,500 0.04 1500

45,000-60,000 52,500 0.11 5775

60,000-75,000 67,500 0.24 16,200

75,000-90,000 82,500 0.27 22,275

90,000-105,000 97,500 0.16 15,600

105,000-120,000 112,500 0.12 13,500

120,000-135,000 127,500 0.05 6375

_________________________

M
_

w = ΣwiMi = 81,450 g/mol

(c)  We are now asked if the weight-average degree of polymerization is 780, which of the

polymers in Table 15.3 is this material?  It is necessary to compute m
_

 in Equation (15.4b) as
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m
_

 = 
M
_

w
nw

 = 
81450 g/mol

780
 = 104.42 g/mol

The mer molecular weights of the polymers listed in Table 15.3 are as follows:

Polyethylene--28.05 g/mol

Polyvinyl chloride--62.49 g/mol

Polytetrafluoroethylene--100.02 g/mol

Polypropylene--42.08 g/mol

Polystyrene--104.14 g/mol

Polymethyl methacrylate--100.11 g/mol

Phenol-formaldehyde--133.16 g/mol

Nylon 6,6--226.32 g/mol

PET--192.16 g/mol

Polycarbonate--254.27 g/mol

Therefore, polystyrene is the material since its mer molecular weight is closest to that calculated

above.

(d)  The number-average degree of polymerization may be calculated using Equation (15.4a),

since M
_

n and m
_

 were computed in portions (a) and (c) of this problem.  Thus

nn = 
M
_

n
m

 = 
73800 g/mol
104.42 g/mol

 = 707

15.8  This problem asks if it is possible to have a polymethyl methacrylate homopolymer with the

given molecular weight data and a weight-average degree of polymerization of 585.  The

appropriate data are given below along with a computation of the weight-average molecular

weight.

Molecular wt.
Range Mean M

i
w

i
w

i
M

i

8,000-20,000 14,000 0.01 140

20,000-32,000 26,000 0.05 1300

32,000-44,000 38,000 0.12 4560

44,000-56,000 50,000 0.25 12,500
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56,000-68,000 62,000 0.27 16,740

68,000-80,000 74,000 0.21 15,540

80,000-92,000 86,000 0.09 7740
_________________________

M
_

w = ΣwiMi = 58,520 g/mol

For PMMA, from Table 15.3, each mer unit has five carbons, eight hydrogens, and two

oxygens.  Thus,

m = 5(AC) + 8(AH) + 2(AO)

= (5)(12.01 g/mol) + (8)(1.008 g/mol) + (2)(16.00 g/mol) = 100.11 g/mol

Now, we will compute nw from Equation (15.4b) as

nw = 
M
_

w
m

 = 
58520 g/mol
100.11 g/mol

 = 585

Thus, such a homopolymer is possible since the calculated nw is 585.

15.9  (a)  For chlorinated polyethylene, we are asked to determine the weight percent of chlorine

added for 5% Cl substitution of all original hydrogen atoms.  Consider 50 carbon atoms;  there

are 100 possible side-bonding sites.  Ninety-five are occupied by hydrogen and five are
occupied by Cl.  Thus, the mass of these 50 carbon atoms, m

C
, is just

mC = 50(AC) = (50)(12.01 g/mol) = 600.5 g

Likewise, for hydrogen and chlorine,

mH = 95(AH)  = (95)(1.008 g/mol) = 95.76 g

mCl = 5(ACl) = (5)(35.45 g/mol) = 177.25 g

Thus, the concentration of chlorine, C
Cl

, is just
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CCl = 
177.25 g

600.5 g + 95.76 g + 177.25 g
 x 100 = 20.3 wt%

(b)  Chlorinated polyethylene differs from polyvinyl chloride, in that, for PVC, 1) 25% of the side-

bonding sites are substituted with Cl, and 2) the substitution is probably much less random.

15.10  Relative to polymer chains, the difference between configuration and conformation is that

conformation is used in reference to the outline or shape of the chain molecule, whereas,

configuration refers to the arrangement of atom positions along the chain that are not alterable

except by the breaking and reforming of primary bonds.

15.11  This problem first of all asks for us to calculate, using Equation (15.11), the average total

chain length, L, for a linear polytetrafluoroethylene polymer having a number-average molecular

weight of 500,000 g/mol.   It is necessary to calculate the number-average degree of
polymerization, nn, using Equation (15.4a).  For PTFE, from Table 15.3, each mer unit has two

carbons and four fluorines.  Thus,

m = 2(AC) + 4(AF)

= (2)(12.01 g/mol) + (4)(19.00 g/mol) = 100.02 g/mol

and

nn = 
M
_

n
m

 = 
500000 g/mol
100.02 g/mol

 = 5000

which is the number of mer units along an average chain.  Since there are two carbon atoms

per mer unit, there are two C--C chain bonds per mer, which means that the total number of

chain bonds in the molecule, N, is just (2)(5000) = 10,000 bonds.  Furthermore, assume that for

single carbon-carbon bonds, d  = 0.154 nm and θ = 109° (Section 15.4);  therefore, from

Equation (15.11)

L = Nd sin ( )θ
2

= (10,000)(0.154 nm)
 



 



sin ( )109°
2

 = 1254 nm
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It is now possible to calculate the average chain end-to-end distance, r, using Equation

(15.12) as

r = d√ N = (0.154 nm)√10000 = 15.4 nm

15.12  (a)  This portion of the problem asks for us to calculate the number-average molecular weight

for a linear polyethylene for which L in Equation (15.11) is 2500 nm.  It is first necessary to

compute the value of N using this equation, where, for the C--C chain bond, d = 0.154 nm, and

θ = 109°.  Thus

N = 
L

d sin ( )θ
2

= 
2500 nm

(0.154 nm) sin ( )109°
2

 = 19,940

Since there are two C--C bonds per polyethylene mer unit, there is an average of N /2 or

19,940/2 = 9970 mer units per chain, which is also the number-average degree of

polymerization, nn.  In order to compute the value of M
_

n using Equation (15.4a), we must first

determine m  for polyethylene.  Each polyethylene  mer unit consists of two carbon and four

hydrogen atoms, thus

m = 2(AC) + 4(AH)

= (2)(12.01 g/mol) + (4)(1.008 g/mol) = 28.05 g/mol

Therefore

M
_

n = nnm = (9970)(28.05 g/mol) = 280,000 g/mol

(b)  Next, we are to determine the number-average molecular weight for r = 20 nm.  Solving for

N from Equation (15.12) leads to

N = 
r2

d2 = 
(20 nm)2

(0.154 nm)2
 = 16,900
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which is the total number of bonds per average molecule.  Since there are two C--C bonds per
mer unit, then nn = N/2 = 16,900/2 = 8450.  Now, from Equation (15.4a)

M
_

n = nnm = (8450)(28.05 g/mol) = 237,000 g/mol

15.13  We are asked to sketch portions of a linear polypropylene molecule for different

configurations.

(a)  Syndiotactic polystyrene

H C6 H5 H H H C6 H5 H H H C6 H5

H H H C6 H5 H H H C6 H5 H H

C C C C C C C C C C

(b)  Atactic polystyrene

H H H H H C6 H5 H H H C6 H5

C C C C C C C C C C

H C6 H5 H C6 H5 H H H C6 H5 H H

(c)  Isotactic polystyrene

H C6 H5 H C6 H5 H C6 H5 H C6 H5 H C6 H5

C C C C C C C C C C

H H H H H H H H H H

15.14  (a)  The structure of cis polybutadiene is

H H H H

C C C C

H H

The structure of trans butadiene is
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H H H

C C C C

H H H

(b)  The structure of cis chloroprene is

H Cl H H

C C C C

H H

The structure of trans chloroprene is

H Cl H

C C C C

H H H

15.15  This problem asks for sketches of the mer structures for several alternating copolymers.

(a)  For poly(butadiene-chloroprene)

H H H H H Cl H H

C C C C C C C C

H H H H

(b)  For poly(styrene-methacrylate)

H H H CH 3

C C C C

H C6 H5 H C2 H3 O2

(c)  For poly(acrylonitrile-vinyl chloride)

H H H H

C C C C

H CN H Cl
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15.16  For a poly(styrene-butadiene) alternating copolymer with a number-average molecular weight

of 1,350,000 g/mol, we are asked to determine the average number of styrene and butadiene

mer units per molecule.

Since it is an alternating copolymer, the number of both types of mer units will be the

same.  Therefore, consider them as a single mer unit, and determine the number-average

degree of polymerization.  For the styrene mer, there are eight carbon atoms and eight

hydrogen atoms, while the butadiene mer consists of four carbon atoms and six hydrogen

atoms.  Therefore, the styrene-butadiene combined mer weight is just

m = 12(AC) + 14(AH)

= (12)(12.01 g/mol) + (14)(1.008 g/mol) = 158.23 g/mol

From Equation (15.4a), the number-average degree of polymerization is just

nn = 
M
_

n
m

 = 
1350000 g/mol
158.23 g/mol

 = 8530

Thus, there is an average of 8530 of both mer types per molecule.

15.17  This problem asks for us to calculate the number-average molecular weight of a random nitrile

rubber copolymer.  For the acrylonitrile mer there are three carbon, one nitrogen, and three

hydrogen atoms. Thus, its mer molecular weight is

mAc = 3(AC) + (AN) + 3(AH)

= (3)(12.01 g/mol) + 14.01 g/mol + (3)(1.008 g/mol) = 53.06 g/mol

The butadiene mer is composed of four carbon and six hydrogen atoms. Thus, its mer

molecular weight is

mBu = 4(AC) + 6(AH)

= (4)(12.01 g/mol) + (6)(1.008 g/mol) = 54.09 g/mol

From Equation (15.5), the average mer molecular weight is just
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m
_

 = fAcmAc + fBumBu

= (0.70)(53.06 g/mol) + (0.30)(54.09 g/mol) = 53.37 g/mol

Since n
n

 = 2000 (as stated in the problem), M
_

n may be computed using Equation (15.4a) as

M
_

n= m
_

nn = (53.37 g/mol)(2000) = 106,740 g/mol

15.18  For an alternating copolymer which has a number-average molecular weight of 250,000 g/mol

and a number-average degree of polymerization of 3420, we are to determine one of the mer

types if the other is styrene.  It is first necessary to calculate m
_

 using Equation (15.4a) as

m
_

 = 
M
_

n
nn

 = 
250000 g/mol

3420
 = 73.10 g/mol

Since this is an alternating copolymer we know that chain fraction of each mer type is 0.5;  that
is fs = fx = 0.5, fs and fx being, respectively, the chain fractions of the styrene and unknown

mers.  Also, the mer molecular weight for styrene is

ms = 8(AC) + 8(AH)

= 8(12.01 g/mol) + 8(1.008 g/mol) = 104.14 g/mol

Now, using Equation (15.5), it is possible to calculate the mer weight of the unknown mer type,
mx.  Thus

mx = 
m
_

 - fsms
fx

= 
73.1 g/mol - (0.5)(104.14 g/mol)

0.5
 = 42.06 g/mol
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Finally, it is necessary to calculate the mer molecular weights for each of the possible other mer

types.  These are calculated below:

methylene = 2(AC) + 4(AH) = 2(12.01 g/mol) + 4(1.008 g/mol) = 28.05 g/mol

mpropylene = 3(AC) + 6(AH) = 3(12.01 g/mol) + 6(1.008 g/mol) = 42.08 g/mol

mTFE = 2(AC) + 4(AF) = 2(12.01 g/mol) + 4(19.00 g/mol) = 100.02 g/mol

mVC = 2(AC) + 3(AH) + (ACl) = 2(12.01 g/mol) + 3(1.008 g/mol) + 35.45 g/mol = 62.49

g/mol

Therefore, propylene is the other mer type since its m  is almost exactly the same as the
calculated mx.

15.19  (a)  This portion of the problem asks us to determine the ratio of butadiene to styrene mers in

a copolymer having a weight-average molecular weight of 350,000 g/mol and a weight-average

degree of polymerization of 4425.  It first becomes necessary to calculate the average mer

molecular weight of the copolymer, m
_

, using Equation (15.4b) as

m
_

 = 
M
_

w
nw

 = 
350000 g/mol

4425
 = 79.10 g/mol

If we designate fb as the chain fraction of butadiene mers, since the copolymer consists of only

two mer types, the chain fraction of styrene mers fs is just 1 - fb.  Now, Equation (15.5) for this

copolymer may be written in the form

m
_

 = fbmb + fsms = fbmb + (1 - fb)ms

in which mb and ms are the mer molecular weights for butadiene and styrene, respectively.

These values are calculated as follows:

mb = 4(AC) + 6(AH) = 4(12.01 g/mol) + 6(1.008 g/mol) = 54.09 g/mol

ms = 8(AC) + 8(AH) = 8(12.01 g/mol) + 8(1.008 g/mol) = 104.14 g/mol.

Solving for fb in the above expression yields
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fb = 
m
_

 - ms
mb - ms

 = 
79.10 g/mol - 104.14 g/mol
54.09 g/mol - 104.14 g/mol

 = 0.50

Furthermore, fs = 1 - fb = 1 - 0.50 = 0.50;  or the ratio is just

fb
fs

 = 
0.50
0.50

 = 1.0

(b)  Of the possible copolymers, the only one for which there is a restriction on the ratio of mer

types is alternating;  the ratio must be 1:1.  Therefore, on the basis of the result in part (a), the

possibilities for this copolymer are not only alternating, but also random, graft, and block.

15.20  For a copolymer consisting of 60 wt% ethylene and 40 wt% propylene, we are asked to

determine the fraction of both mer types.

In 100 g of this material, there are 60 g of ethylene and 40 g of propylene.  The
ethylene (C

2
H

4
) molecular weight is

m(ethylene) = 2(AC) + 4(AH)

= (2)(12.01 g/mol) + (4)(1.008 g/mol) = 28.05 g/mol

The propylene (C
3

H
6

) molecular weight is

m(propylene) = 3(AC) + 6(AH)

= (3)(12.01 g/mol) + (6)(1.008 g/mol) = 42.08 g/mol

Therefore, in 100 g of this material, there are

60 g
 28.05 g/mol

 = 2.14 mol of ethylene

and
40 g

 42.08 g/mol
 = 0.95 mol of propylene

Thus, the fraction of the ethylene mer, f(ethylene), is just
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f(ethylene) = 
2.14 mol

 2.14 mol + 0.95 mol
 = 0.69

Likewise,

f(propylene) = 
0.95 mol

2.14 mol + 0.95 mol
 = 0.31

15.21  For a random poly(isobutylene-isoprene) copolymer in which M
_

w  = 200,000
 
g/mol and n

w
 =

3000, we are asked to compute the fraction of isobutylene and isoprene mers.

From Table 15.5, the isobutylene mer has four carbon and eight hydrogen atoms.

Thus,

mib = (4)(12.01 g/mol) + (8)(1.008 g/mol) = 56.10 g/mol

Also, from Table 15.5, the isoprene mer has five carbon and eight hydrogen atoms, and

mip = (5)(12.01 g/mol) + (8)(1.008 g/mol) = 68.11 g/mol

From Equation (15.5)

m
_

 = fibmib + fipmip

Now, let x = f
ib

, such that

m
_

 = 56.10x + 68.11(1 - x)

since f
ib

 + f
ip

 = 1.  Also, from Equation (15.4b)

nw = M
_

w/m
_

Or

3000 = 
200000 g/mol

[56.10x + 68.11(1 - x)] g/mol

Solving for x leads to x = f
ib

 = f(isobutylene) = 0.12.  Also,
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f(isoprene) = 1 - x = 1 - 0.12 = 0.88

15.22  (a)  For crystalline metals, the individual atoms are positioned in a periodic or ordered

arrangement over relatively large atomic distances.  The long-range order in polymer crystals

results from the packing of adjacent polymer chains.

(b)  For noncrystalline ceramic glasses, the atomic randomness exists outside the SiO
4
4-

 unit.

The disorder in polymers results from chain misalignment.

15.23  The tendency of a polymer to crystallize decreases with increasing molecular weight because

as the chains become longer it is more difficult for all regions along adjacent chains to align so

as to produce the ordered atomic array.

15.24  For four pairs of polymers, we are asked to 1) state whether it is possible to decide which is

more likely to crystallize;  2)  if so, which is more likely and why;  and 3)  it is not possible to

decide then why.

(a)  Yes, for these two polymers it is possible to decide.  The linear and syndiotactic polyvinyl

chloride is more likely to crystallize;  the phenyl side-group for PS is bulkier than the Cl side-

group for PVC.  Syndiotactic and isotactic isomers are equally likely to crystallize.

(b)  No, it is not possible to decide for these two polymers.  Both heavily crosslinked and network

polymers are not likely to crystallize.

(c)  Yes, it is possible to decide for these two polymers.  The linear polyethylene is more likely to

crystallize.  The mer structure for PP is chemically more complicated than is the mer structure for

PE.  Furthermore, branched structures are less likely to crystallize than are linear structures.

(d)  Yes, it is possible to decide for these two copolymers.  The alternating poly(styrene-

ethylene) copolymer is more likely to crystallize.  Alternating copolymers crystallize more easily

than do random copolymers.

15.25  Given that polyethylene has an orthorhombic unit cell with two equivalent mer units, we are

asked to compute the density of totally crystalline polyethylene.  In order to solve this problem it

is necessary to employ Equation (3.5), in which n represents the number of mer units within the

unit cell (n = 2), and A is the mer molecular weight, which for polyethylene is just

A = 2(AC) + 4(AH)
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= (2)(12.01 g/mol) + (4)(1.008 g/mol) = 28.05 g/mol

Also, VC is the unit cell volume, which is just the product of the three unit cell edge lengths in

Figure 15.10.  Thus,

ρ = 
nA

VCNA

= 
(2 mers/uc)(28.05 g/mol)

(7.41 x 10-8 cm)(4.94 x 10-8 cm)(2.55 x 10-8 cm)/uc(6.023 x 1023 mers/mol)

= 0.998 g/cm3

15.26  For this problem we are given the density of polypropylene (0.946 g/cm3), an expression for

the volume of its unit cell, and the lattice parameters, and are asked to determine the number

of mer units per unit cell.  This computation necessitates the use of Equation (3.5), in which we
solve for n.  Before this can be carried out we must first calculate VC, the unit cell volume, and A

the mer molecular weight.  For VC

VC = abc sin β

= (0.666)(2.078)(0.650) sin (99.62°)

= 0.8869 nm3 = 8.869 x 10-22 cm3

The mer unit for polypropylene is shown in Table 15.3, from which the value of A  may be

determined as follows:

A = 3(AC) + 6(AH)

= 3(12.01 g/mol) + 6(1.008 g/mol)

= 42.08 g/mol

Finally, solving for n from Equation (3.5) leads to



323

n = 
ρVCNA

A

= 
(0.946 g/cm3)(8.869 x 10-22 cm3/unit cell)(6.023 x 1023 mers/mol)

42.08 g/mol

= 12.0 mers/unit cell

15.27  (a)  We are asked to compute the densities of totally crystalline and totally amorphous
polytetrafluoroethylene [ρc and ρa from Equation (15.10)].  From Equation (15.10) let C = (%

crystallinity)/100, such that

C = 
ρc(ρs - ρa)

ρs(ρc - ρa)

Rearrangement of this expression leads to

ρc(Cρs - ρs) + ρcρa - Cρsρa = 0

in which ρc and ρa are the variables for which solutions are to be found.  Since two values of ρs

and C are specified in the problem, two equations may be constructed as follows:

ρc(C1ρs1 - ρs1) + ρcρa - C1ρs1ρa = 0

ρc(C2ρs2 - ρs2) + ρcρa - C2ρs2ρa = 0

In which ρs1 = 2.144 g/cm3, ρs2 = 2.215 g/cm3, C
1

 = 0.513, and C
2

 = 0.742.  Solving the

above two equations leads to

ρa = 
ρs1ρs2(C1 - C2)

C1ρs1 - C2ρs2

= 
(2.144 g/cm3)(2.215 g/cm3)(0.513 - 0.742)

(0.513)(2.144 g/cm3) - (0.742)(2.215 g/cm3)
 = 2.000 g/cm3

And
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ρc = 
ρs1ρs2(C2 - C1)

ρs2(C2 - 1) - ρs1(C1 - 1)

= 
(2.144 g/cm3)(2.215 g/cm3)(0.742 - 0.513)

(2.215 g/cm3)(0.742 - 1.0) - (2.144 g/cm3)(0.513 - 1.0)
 = 2.301 g/cm3

(b)  Now, determine the % crystallinity for ρs = 2.26 g/cm3.  Again, using Equation (15.10)

% crystallinity = 
ρc(ρs - ρa)

ρs(ρc - ρa)
 x 100

= 
(2.301 g/cm3)( )2.260 g/cm3 - 2.000 g/cm3

(2.260 g/cm3)( )2.301 g/cm3 - 2.000 g/cm3
 x 100

= 87.9%

15.28  (a)  We are asked to compute the densities of totally crystalline and totally amorphous nylon

6,6 [ρc and ρa from Equation (15.10)].  From Equation (15.10) let C = 
% crystallinity

100
, such that

C = 
ρc(ρs - ρa)

ρs(ρc - ρa)

Rearrangement of this expression leads to

ρc(Cρs - ρs) + ρcρa - Cρsρa = 0

in which ρc and ρa are the variables for which solutions are to be found.  Since two values of ρs

and C are specified in the problem, two equations may be constructed as follows:

ρc(C1ρs1 - ρs1) + ρcρa - C1ρs1ρa = 0

ρc(C2ρs2 - ρs2) + ρcρa - C2ρs2ρa = 0

In which ρs1 = 1.188 g/cm3, ρs2 = 1.152 g/cm3, C
1

 = 0.673, and C
2

 = 0.437.  Solving the

above two equations leads to
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ρa = 
ρs1ρs2(C1 - C2)

C1ρs1 - C2ρs2

= 
(1.188 g/cm3)(1.152 g/cm3)(0.673 - 0.437)

(0.673)(1.188 g/cm3) - (0.437)(1.152 g/cm3)
 = 1.091 g/cm3

And

ρc = 
ρs1ρs2(C2 - C1)

ρs2(C2 - 1) - ρs1(C1 - 1)

= 
(1.188 g/cm3)(1.152 g/cm3)(0.437 - 0.673)

(1.152 g/cm3)(0.437 - 1.0) - (1.188 g/cm3)(0.673 - 1.0)
 = 1.242 g/cm3

(b)  Now we are asked to determine the density of a specimen having 55.4% crystallinity.
Solving for ρs from Equation (15.10) and substitution for ρa and ρc which were computed in part

(a) yields

ρs = 
- ρcρa

C(ρc - ρa) - ρc

= 
- (1.242 g/cm3)(1.091 g/cm3)

(0.554)( )1.242 g/cm3 - 1.091 g/cm3  - 1.242 g/cm3

= 1.170 g/cm3



326

CHAPTER 16

CHARACTERISTICS, APPLICATIONS, AND PROCESSING

OF POLYMERS

PROBLEM SOLUTIONS

16.1  From Figure 16.3, the elastic modulus is the slope in the elastic linear region of the 20°C curve,

which is

E = 
∆(stress)
∆(strain)

 = 
30 MPa - 0 MPa

9 x 10-3  - 0
 = 3.3 GPa  (483,000 psi)

The value range cited in Table 16.1 is 2.24 to 3.24 GPa (325,000 to 470,000 psi).  Thus, the

plotted value is a little on the high side.

The tensile strength corresponds to the stress at which the curve ends, which is 52 MPa

(7500 psi).  This value lies within the range cited in the table--48.3 to 72.4 MPa (7,000 to

10,500 psi).

16.2  (a) and (b)  The mechanisms by which semicrystalline polymers elastically and plastically

deform are described in Section 16.3.

(c)  The explanation of the mechanism by which elastomers elastically deform is provided in

Section 16.8.

16.3  (a)  The tensile modulus is not directly influenced by a polymer's molecular weight.

(b)  Tensile modulus increases with increasing degree of crystallinity for semicrystalline polymers.

This is due to enhanced secondary interchain bonding which results from adjacent aligned

chain segments as percent crystallinity increases.  This enhanced interchain bonding inhibits

relative interchain motion.

(c)  Deformation by drawing also increases the tensile modulus.  The reason for this is that

drawing produces a highly oriented molecular structure, and a relatively high degree of

interchain secondary bonding.

(d)  When an undeformed semicrystalline polymer is annealed below its melting temperature,

the tensile modulus is increased.
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(e)  An drawn semicrystalline polymer that is annealed experiences a decrease in tensile

modulus as a result of a reduction in chain-induced crystallinity, and a reduction in interchain

bonding forces.

16.4  (a)  The tensile strength of a semicrystalline polymer increases with increasing molecular

weight.  This effect is explained by increased chain entanglements at higher molecular

weights.

(b)  Increasing the degree of crystallinity of a semicrystalline polymer leads to an enhancement

of the tensile strength.  Again, this is due to enhanced interchain bonding and forces;  in

response to applied stresses, interchain motions are thus inhibited.

(c)  Deformation by drawing increases the tensile strength of a semicrystalline polymer.  This

effect is due to the highly oriented chain structure that is produced by drawing, which gives

rise to higher interchain secondary bonding forces.

(d)  Annealing an undeformed semicrystalline polymer produces an increase in its tensile

strength.

16.5  Normal butane has a higher melting temperature as a result of its molecular structure (Section

15.2).  There is more of an opportunity for van der Waals bonds to form between two

molecules in close proximity to one another than for isobutane because of the linear nature of

each normal butane molecule.

16.6  This problem gives us the tensile strengths and associated number-average molecular weights

for two polymethyl methacrylate materials and then asks that we estimate the tensile strength

for \O(M,
_

)n  = 30,000 g/mol.  Equation (16.1) provides the dependence of the tensile

strength on M
_

n .  Thus, using the data provided in the problem, we may set up two

simultaneous equations from which it is possible to solve for the two constants TS∞ and A .

These equations are as follows:

107 MPa = TS∞ - 
A

40000 g/mol

170 MPa = TS∞ - 
A

60000 g/mol

Thus, the values of the two constants are:  TS∞ = 296 MPa and A  = 7.56 x 106 MPa-g/mol.

Substituting these values into an equation for which M
_

n  = 30,000 g/mol leads to



328

TS = TS∞ - 
A

30000 g/mol

= 296 MPa -   
7.56 x 106 MPa-g/mol

30000

= 44 MPa

16.7  This problem gives us the tensile strengths and associated number-average molecular weights

for two polyethylene materials and then asks that we estimate the M
_

n  that is required for a

tensile strength of 195 MPa.  Equation (16.1) provides the dependence of the tensile strength

on M
_

n .  Thus, using the data provided in the problem, we may set up two simultaneous

equations from which it is possible to solve for the two constants TS∞  and A .  These

equations are as follows:

85 MPa = TS∞ - 
A

12700 g/mol

150 MPa = TS∞ - 
A

28500 g/mol

Thus, the values of the two constants are:  TS∞ = 202 MPa and A  = 1.489 x 106 MPa-g/mol.

Solving for M
_

n  in Equation (16.1) and substituting TS = 195 MPa as well as the above values

for TS∞ and A  leads to

M
_

n = 
A

TS∞ - TS

= 
1.489 x 106 MPa-g/mol

202 MPa - 195 MPa
 = 213,000 g/mol

16.8  For each of four pairs of polymers, we are to do the following:  1) determine whether or not it is

possible to decide which has the higher tensile modulus;  2)  if so, note which has the higher

tensile modulus and then state the reasons for this choice;  and 3)  if it is not possible to

decide, then state why.

(a)  No, it is not possible.  Both syndiotactic and isotactic polystyrene have a tendency to

crystallize, and, therefore, we assume that they have approximately the same crystallinity.
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Furthermore, since tensile modulus is virtually independent of molecular weight, we would

expect both materials to have approximately the same modulus.

(b)  Yes, it is possible.  The linear and isotactic polyvinyl chloride will display a greater tensile

modulus.  Linear polymers are more likely to crystallize that branched ones.  In addition,

polymers having isotactic structures will normally have a higher degree of crystallinity that

those having atactic structures. Increasing a polymer's crystallinity leads to an increase in its

tensile modulus.  In addition, tensile modulus is independent of molecular weight--the

atactic/branched material has the higher molecular weight.

(c)  Yes, it is possible.  The block styrene-butadiene copolymer with 10% of possible sites

crosslinked will have the higher modulus.  Block copolymers normally have higher degrees of

crystallinity than random copolymers of the same material.  A higher degree of crystallinity

favors larger moduli.  In addition, the block copolymer also has a higher degree of

crosslinking;  increasing the amount of crosslinking also enhances the tensile modulus.

(d)  No, it is not possible.  Branched polyethylene will tend to have a low degree of crystallinity

since branched polymers don't normally crystallize.  The atactic polypropylene probably also

has a relatively low degree of crystallinity;  atactic structures also don't tend to crystallize, and

polypropylene has a more complex mer structure than does polyethylene.  Tensile modulus

increases with degree of crystallinity, and it is not possible to determine which polymer is more

crystalline.  Furthermore, tensile modulus is independent of molecular weight.

16.9  For each of four pairs of polymers, we are to do the following:  1) determine whether or not it is

possible to decide which has the higher tensile strength;  2)  if so, note which has the higher

tensile strength and then state the reasons for this choice;  and 3)  if it is not possible to

decide, to state why.

(a)  Yes, it is possible.  The syndiotactic polystyrene has the higher tensile strength.  Both

syndiotactic and isotactic polymers tend to crystallize, and, therefore, we assume that both

materials have approximately the same crystallinity.  However, tensile modulus increases with

increasing molecular weight, and the syndiotactic PS has the higher molecular weight

(600,000 g/mol versus 500,000 g/mol for the isotactic material).

(b)  Yes, it is possible.  The linear and isotactic material will have the higher tensile strength.

Both linearity and isotacticity favor a higher degree of crystallinity than do branching and

atacticity;  and tensile strength increases with increasing degree of crystallinity.  Furthermore,

the molecular weight of the linear/isotactic material is higher (100,000 g/mol versus 75,000

g/mol), and tensile strength increases with increasing molecular weight.

(c)  No, it is not possible.  Alternating copolymers tend to be more crystalline than graft

copolymers, and tensile strength increases with degree of crystallinity.  However, the graft
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material has a higher degree of crosslinking, and tensile strength increases with the

percentage of crosslinks.

(d)  Yes it is possible.  The network polyester will display a greater tensile strength.  Relative

chain motion is much more restricted than for the lightly branched polytetrafluoroethylene

since there are many more of the strong covalent bonds for the network structure.

16.10  The strength of a polychlorotrifluoroethylene having the mer structure

F F

C C

F Cl

will be greater than for a polytetrafluoroethylene having the same molecular weight and

degree of crystallinity.  The replacement of one fluorine atom within the PTFE mer with a

chlorine atom leads to a higher interchain attraction, and, thus, a stronger polymer.

Furthermore, polyvinyl chloride is stronger than polyethylene (Table 16.1) for the same reason.

16.11  (a)  Shown below are the stress-strain curves for the two polypropylene materials.  These

materials will display the stress-strain behavior of a normal plastic, curve B  of Figure 16.1.

However, the isotactic/linear will have a higher degree of crystallinity (since isotactic are more

likely to crystallize than atactic/linear), and therefore, will have a higher tensile modulus and

strength.  Furthermore, the isotactic/linear also has a higher molecular weight which also leads

to an increase in strength.
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(b)  Shown below are the stress-strain curves for the two polyvinyl chloride materials.  The

branched PVC will probably display the stress-strain behavior of a plastic, curve B  in Figure

16.1.  However, the heavily crosslinked PVC will undoubtedly have a higher tensile modulus,

and, also a higher strength, and will most likely fail in a brittle manner--as curve A , Figure 16.1;

these are the typical characteristics of a heavily crosslinked polymer.

(c)  Shown below are the stress-strain curves for the two poly(styrene-butadiene) random

copolymers.  The copolymer tested at 20°C will display elastomeric behavior (curve C of Figure

16.1) inasmuch as it is a random copolymer that is lightly crosslinked;  furthermore, the

temperature of testing is above its glass transition temperature.  On the other hand, since

-85°C is below the glass transition temperature of the poly(styrene-butadiene) copolymer, the

stress-strain behavior under these conditions is as curve A  of Figure 16.1.
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(d)  Shown below are the stress-strain curves for the two polyisoprene materials, both of which

have a molecular weight of 100,000 g/mol.  These two materials are elastomers and will have

curves similar to curve C  in Figure 16.1.  However, the curve for the material having the

greater number of crosslinks (20%) will have a higher elastic modulus at all strains.

16.12  The reason that it is not necessary to specify specimen gauge length when citing percent

elongation for semicrystalline polymers is because, for semicrystalline polymers that

experience necking, the neck normally propagates along the entire gauge length prior to

fracture;  thus, there is no localized necking as with metals and the magnitude of the percent

elongation is independent of gauge length.

16.13  (a)  Shown below are the specific volume-versus-temperature curves for the polypropylene

and polystyrene materials.  Since both polymers are 25% crystalline, they will exhibit behavior

similar to curve B  in Figure 16.8.  However, polystyrene will have higher melting and glass

transition temperatures due to the bulkier side group in its mer structure, and since it has a

higher weight-average molecular weight.
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(b)  Shown below are the specific volume-versus-temperature curves for the graft and random

poly(styrene-butadiene) copolymers.  Since these materials are graft and random copolymers,

both will be highly noncrystalline, and, thus, will display the behavior similar to curve A  in

Figure 16.8.  However, since the random has the greater degree of crosslinking, it will also

have the higher glass transition temperature.
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(c)  Shown below are the specific volume-versus-temperature curves for the two polyethylene

materials.  The polyethylene having a density of 0.985 g/cm3 will be highly crystalline, and,

thus, will exhibit a behavior similar to curve C in Figure 16.8.  On the other hand, the other

material, of lower density will have some branching and also be semicrystalline;  thus, its

behavior will be similar to curve B  of Figure 16.8.  In addition, the melting temperature of the

higher density material will be greater since it has less branching and a higher number-

average degree of polymerization.
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16.14  (a)  Yes, it is possible to determine which of the two polystyrenes has the higher Tm .  The

isotactic polystyrene will have the higher melting temperature because it has a higher density

(i.e., less branching) and also the greater weight-average molecular weight.

(b)  Yes, it is possible to determine which polymer has the higher melting temperature.  The
polypropylene will have the higher Tm  because it has a bulky phenyl side group in its mer

structure, which is absent in the polyethylene,  Furthermore, the polypropylene has a higher

number-average degree of polymerization.

(c)  No, it is not possible to determine which of the two polymers has the higher melting

temperature.  The polystyrene has a bulkier side group than the polypropylene;  on the basis
of this effect alone, the polystyrene should have the greater Tm .  However, the polystyrene

has more branching and a lower weight-average degree of polymerization;  both of these

factors lead to a lowering of the melting temperature.

16.15  For an amorphous polymer, the elastic modulus may be enhanced by increasing the number

of crosslinks (while maintaining the molecular weight constant);  this will also enhance the

glass transition temperature.  Thus, the modulus-glass transition temperature behavior would

appear as
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Glass-Transition Temperature

16.16  This question asks us to name which, of several polymers, would be suitable for the

fabrication of cups to contain hot coffee.  At its glass transition temperature, an amorphous

polymer begins to soften. The maximum temperature of hot coffee is probably slightly below

100°C (212°F).  Of the polymers listed, only polystyrene and polycarbonate have glass

transition temperatures of 100°C or above (Table 16.2), and would be suitable for this

application.

16.17  In order for a polymer to be suited for use as an ice cube tray it must have a glass-transition

temperature below 0°C.  Of those polymers listed in Table 16.2 only low-density and high-

density polyethylene, PTFE, and polypropylene satisfy this criterion.

16.18  This question asks for comparisons of thermoplastic and thermosetting polymers.

(a)  Thermoplastic polymers soften when heated and harden when cooled, whereas

thermosetting polymers, harden upon heating, while further heating will not lead to softening.

(b)  Thermoplastic polymers have linear and branched structures, while for thermosetting

polymers, the structures will normally be network or crosslinked.

16.19  Thermosetting polyesters will be crosslinked, while thermoplastic ones will have linear

structures without any appreciable crosslinking.

16.20  (a)  It is not possible to grind up and reuse phenol-formaldehyde because it is a network

thermoset polymer and, therefore, is not amenable to remolding.

(b)  Yes, it is possible to grind up and reuse polypropylene since it is a thermoplastic polymer,

will soften when reheated, and, thus, may be remolded.

16.21  The explanation of viscoelasticity is given in Section 16.7.
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16.22  This problem asks for a determination of the relaxation modulus of a viscoelastic material,

which behavior is according to Equation (16.10)--i.e.,

σ(t) = σ(0) exp ( )- 
t
τ

We want to determine σ(10), but it is first necessary to compute τ  from the data provided in

the problem.  Thus,

τ = 
- t

ln [ ]σ(t)
σ(0)

 = 
- 60 s

ln [ ]1.72 MPa
2.76 MPa

 = 127 s

Therefore,

σ(10) = (2.76 MPa) exp( )- 
10 s

127 s
 = 2.55 MPa

Now, using Equation (16.2)

Er(10) = 
σ(10)

εo
 = 

2.55 MPa
0.6

 = 4.25 MPa  (616 psi)

16.23  Below is plotted the logarithm of Er(10) versus temperature.
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The glass-transition temperature is that temperature corresponding to the abrupt decrease in
log Er(10), which for this polyisobutylene material is about -60°C.

16.24  We are asked to make schematic strain-time plots for various polystyrene materials and at

several temperatures.

(a)  Amorphous polystyrene at 120°C behaves a rubbery material (Figure 16.13, curve C);

therefore, the strain-time behavior would be as Figure 16.10(c).

(b)  Crosslinked polystyrene at 150°C behaves as a viscoelastic material (Figure 16.13, curve B);

therefore, the strain-time behavior will be as Figure 16.10(c).

(c)  Crystalline polystyrene at 230°C behaves as a viscous liquid (Figure 16.13, curve A );

therefore, the strain-time behavior will be as Figure 16.10(d).

(d)  Crosslinked polystyrene at 50°C behaves in a glassy manner (Figure 16.13, curve B );

therefore, the strain-time behavior will be as Figure 16.10(b).

16.25  (a)  Stress relaxation tests are conducted by rapidly straining the material elastically in tension,

holding the strain level constant, and then measuring the stress as a function of time.  For

viscoelastic creep tests, a stress (usually tensile) is applied instantaneously and maintained

constant while strain is measured as a function of time.

(b)  The experimental parameters of interest from the stress relaxation and viscoelastic creep

tests are the relaxation modulus and creep modulus, respectively.  The relaxation modulus is

the ratio of stress measured after 10 s and strain [Equation (16.2)];  creep modulus is the ratio

of stress and strain taken at a specific time [Equation (16.3)].

16.26  (a)  This portion of the problem calls for a plot of log Er(10) versus temperature demonstrating

how the behavior changes with increased molecular weight.  Such a plot is given below.

Increasing molecular weight increases both glass-transition and melting temperatures.
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(b)  We are now called upon to make a plot of log Er(10) versus temperature demonstrating

how the behavior changes with increased crosslinking.  Such a plot is given below.  Increasing

the degree of crosslinking will increase the modulus in both glassy and rubbery regions.
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16.27  For thermoplastic polymers, five factors that favor brittle fracture are as follows:  a reduction in

temperature, an increase in strain rate, the presence of a sharp notch, increased specimen

thickness, and modifications of the polymer structure.

16.28  (a)  The fatigue limits for polystyrene and the cast iron are 10.5 MPa (1500 psi) and 193 MPa

(28,000 psi), respectively.

(b)  At 10
6

 cycles, the fatigue strengths of PET and red brass are 15 MPa (2175 psi) and 115

MPa (16,700 psi ), respectively.
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16.29  For addition polymerization, the reactant species have the same chemical composition as the

monomer species in the molecular chain. This is not the case for condensation

polymerization, wherein there is a chemical reaction between two or more monomer species,

producing the repeating mer unit.  There is often a low molecular weight by-product for

condensation polymerization;  such is not found for addition polymerization.

16.30  In this question we are asked to cite whether the molecular weight of a polymer that is

synthesized by addition polymerization is relatively high, medium, or low for four situations.

(a)  For rapid initiation, slow propagation, and rapid termination the molecular weight will be

relatively low.

(b)  For slow initiation, rapid propagation, and slow termination the molecular weight will be

relatively high.

(c)  For rapid initiation, rapid propagation, and slow termination a medium molecular weight will

be achieved.

(d)  For slow initiation, slow propagation, and rapid termination the molecular weight will be low

or medium.

16.31  (a)  This problem asks that we determine how much adipic acid must be added to 50.0 kg of

ethylene glycol to produce a linear chain structure of polyester according to Equation 16.8.

Since the chemical formulas are provided in this equation we may calculate the molecular

weights of each of these materials as follows:

A(adipic) = 6(AC) + 10(AH) + 4(AO)

= 6(12.01 g/mol) + 10(1.008 g/mol) + 4(16.00 g/mol) = 146.14 g/mol

A(glycol) = 2(AC) + 6(AH) + 2(AO)

= 2(12.01 g/mol) + 6(1.008 g/mol) + 2(16.00 g/mol) = 62.07 g/mol

The 50.0 kg mass of ethylene glycol equals 50,000 g or 
50000 g

62.07 g/mol
 = 805.5 mol.  Since,

according to Equation (16.8), each mole of adipic acid used requires one mole of ethylene

glycol, which is equivalent to (805.5 mol)(146.14 g/mol) = 1.177 x 105 g = 117.7 kg.

(b)  Now we are asked for the mass of the resulting polyester.  Inasmuch as one mole of water

is given off for every mer unit produced, this corresponds to 805.5 moles or (805.5 mol)(18.02

g/mol) = 14500 g or 14.5 kg since the molecular weight of water is 18.02 g/mol.  The mass of
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polyester is just the sum of the masses of the two reactant materials (as computed in part a)

minus the mass of water released, or

mass(polyester) = 50.0 kg + 117.7 kg - 14.5 kg = 153.2 kg

16.32  The following represents the reaction between hexamethylene diamine and adipic acid to

produce nylon 6,6 with water as a by-product.

16.33  This problem asks for us to calculate the masses of hexamethylene diamine and adipic acid

necessary to yield 37.5 kg of completely linear nylon 6,6.  Let us first calculate the molecular

weights of these molecules.  (The chemical formula for hexamethylene diamine is given in

Problem 16.32.)

A(adipic) = 6(AC) + 10(AH) + 4(AO)

= 6(12.01 g/mol) + 10(1.008 g/mol) + 4(16.00 g/mol) = 146.14 g/mol

A(hexamethylene) = 6(AC) + 16(AH) + 2(AN)

= 6(12.01 g/mol) + 16(1.008 g/mol) + 2(14.01 g/mol) = 116.21 g/mol

A(nylon) = 12(AC) + 22(AH) + 2(AN) + 2(AO)
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= 12(12.01 g/mol) + 22(1.008 g/mol) + 2(14.01 g/mol) + 2(16.00 g/mol)

= 226.32 g/mol

The mass of 37.5 kg of nylon 6,6 equals 37,500 g or

m(nylon) = 
37500 g

226.32 g/mol
 = 165.7 mol.

Since, according to the chemical equation in Problem 16.32, each mole of nylon 6,6 that is

produced requires one mole each of adipic acid and hexamethylene diamine, with two moles

of water as the by-product.  The masses corresponding to 165.7 moles of adipic acid and

hexamethylene diamine are as follows:

m(adipic) = (165.7 mol)(146.14 g/mol) = 24215 g = 24.215 kg

m(hexamethylene) = (165.7 mol)(116.21 g/mol) = 19256 g = 19.256 kg

16.34  (a)  If the vapor pressure of a plasticizer is not relatively low, the plasticizer may vaporize,

which will result in an embrittlement of the polymer.

(b)  The crystallinity of a polymer to which has been added a plasticizer will be diminished,

inasmuch as the plasticizer molecules fit in between the polymer molecules, which will cause

more misalignment of the latter.

(c)  It would be difficult for a crosslinked polymer to be plasticized since the plasticizer molecules

must fit between the chain molecules.  This necessarily forces apart adjacent molecules,

which the crosslinked bonds between the chains will resist.

(d)  The tensile strength of a polymer will be diminished when a plasticizer is added.  As the

plasticizer molecules force the polymer chain molecules apart, the magnitude of the

secondary interchain bonds are lessened, which weakens the material since strength is a

function of the magnitude of these bonds.

16.35  The distinction between dye and pigment colorants is that a dye dissolves within and

becomes a part of the polymer structure, whereas a pigment does not dissolve, but remains

as a separate phase.

16.36  Four factors that determine what fabrication technique is used to form polymeric materials

are:  1) whether the polymer is thermoplastic or thermosetting;  2) if thermoplastic, the
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softening temperature;  3) atmospheric stability;  and 4) the geometry and size of the finished

product.

16.37  This question requests that we compare polymer molding techniques.  For compression

molding, both heat and pressure are applied after the polymer and necessary additives are

situated between the mold members.  For transfer molding, the solid materials (normally

thermosetting in nature) are first melted in the transfer chamber prior to being forced into the

die.  And, for injection molding (normally used for thermoplastic materials), the raw materials

are impelled by a ram through a heating chamber, and finally into the die cavity.

16.38  This problem asks that we compute the fraction of possible crosslink sites in 10 kg of

polybutadiene when 4.8 kg of S is added, assuming that, on the average, 4.5 sulfur atoms

participate in each crosslink bond.  Given the butadiene mer unit in Table 15.5, we may

calculate its molecular weight as follows:

A(butadiene) = 4(AC) + 6(AH)

= (4)(12.01 g/mol) + 6(1.008 g/mol) = 54.09 g/mol

Which means that in 10 kg of butadiene there are 
10000 g

54.09 g/mol
 = 184.9 mol.

For the vulcanization polybutadiene, there are two possible crosslink sites per mer--one

for each of the two carbon atoms that are doubly bonded.  Furthermore, each of these

crosslinks forms a bridge between two mers.  Therefore, we can say that there is the

equivalent of one crosslink per mer.  Therefore, let us now calculate the number of moles of
sulfur (nsulfur ) that react with the butadiene, take the mole ratio of sulfur to butadiene, and

then divide this ratio by 4.5 atoms per crosslink;  this yields the fraction of possible sites that

are crosslinked.  Thus

nsulfur = 
4800 g

32.06 g/mol
 = 149.7 mol

And

fraction sites crosslinked = 

149.7 mol
184.9 mol

4.5
 = 0.180
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16.39  For an alternating chloroprene-acrylonitrile copolymer, we are asked to compute the weight

percent sulfur necessary for complete crosslinking, assuming that, on the average, five sulfur

atoms participate in each crosslink.  The chloroprene and acrylonitrile mers are shown in Table

15.5, from which it may be noted that there are two possible crosslink sites on each

chloroprene mer (one site at each of the two carbon atoms that are doubly bonded), and no

possible sites for acrylonitrile;  also, since it is an alternating copolymer, the ratio of

chloroprene to acrylonitrile mers is 1:1.  Thus, for each pair of combined chloroprene-

acrylonitrile mers which crosslink, ten sulfur atoms are required, or, for complete crosslinking,

the sulfur-to-(chloroprene-acrylonitrile) ratio is 5:1.

Now, let us consider as our basis, one mole of the combined chloroprene-acrylonitrile

mers.  In order for complete crosslinking, five moles of sulfur are required.  Thus, for us to

convert this composition to weight percent, it is necessary to convert moles to mass.  The

acrylonitrile mer consists of three carbon atoms, three hydrogen atoms, and one nitrogen

atom;  the chloroprene mer is composed of four carbons, five hydrogens, and one chlorine.

This gives a molecular weight for the combined mer of

m(chloroprene-acrylonitrile) = 3(AC) + 3(AH) + AN + 4(AC) + 5(AH) + ACl

= 7(12.01 g/mol) + 8(1.008 g/mol)  + 14.007 g/mol + 35.45 g/mol = 141.59 g/mol

Or, in one mole of this combined mer, there are 141.59 g.  Furthermore, for complete

crosslinking 5.0 mol of sulfur is required, which amounts to (5.0 mol)(32.06 g/mol) = 160.3 g.
Thus, the concentration of S in weight percent CS is just

CS = 
160.3 g

160.3 g + 141.59 g
 x 100 = 53.1 wt%

16.40  This problem asks for us to determine how many crosslinks form per isoprene mer when 57

wt% sulfur is added.  If we arbitrarily consider 100 g of the vulcanized material, 57 g will be

sulfur and 43 g will be polyisoprene.  Next, let us find how many moles of sulfur and isoprene

correspond to these masses.  The atomic weight of sulfur is 32.06 g/mol, and thus,

# moles S = 
57 g

 32.06 g/mol
 = 1.78 mol
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However, there are 6 sulfur atoms in each crosslink, which requires us to divide the number of

moles of sulfur by 6 in order to get the number of moles of sulfur per crosslink, which is equal

to 0.297 moles.

Now, in each isoprene mer unit there are five carbon atoms and eight hydrogen atoms.

Thus, the molecular weight of a mole of isoprene units is

(5)(12.01 g/mol) + (8)(1.008 g/mol) = 68.11 g/mol

Or, in 43 g of polyisoprene

# moles isoprene = 
43 g

68.11 g/mol
 = 0.631 mol

Therefore, the ratio of moles of S per crosslink to the number of moles of polyisoprene is

1.78 mol
0.631 mol

 :1 = 2.82:1

When all possible sites are crosslinked, the ratio of the number of moles of sulfur to the

number of moles of isoprene is 6:1, since there are two crosslink sites per mer unit and each

crosslink is shared between mers on adjacent chains, and there are 6 sulfur atoms per

crosslink.   Finally, to determine the fraction of sites that are crosslinked, we just divide the

actual crosslinked sulfur/isoprene ratio by the completely crosslinked ratio.  Or,

fraction of mer sites crosslinked = 
2.82/1

6/1
 = 0.47

16.41  We are asked what weight percent of sulfur must be added to polyisoprene in order to ensure

that 8% of possible sites are crosslinked, assuming that, on the average, three sulfur atoms

are associated with each crosslink.  Table 15.5 shows the chemical repeat unit for cis-

isoprene.  For each of these units there are two possible crosslink sites;  one site is associated

with each of the two carbon atoms that are involved in the chain double bond.  Since 8% of

the possible sites are crosslinked, for each 100 isoprene mers 8 of them are crosslinked;

actually there are two crosslink sites per mer, but each crosslink is shared by two chains.

Furthermore, on the average we assume that each crosslink is composed of 3 sulfur atoms;

thus, there must be 3 x 8 or 24 sulfur atoms added for every 100 isoprene mers.  In terms of



345

moles, it is necessary to add 24 moles of sulfur to 100 moles of isoprene.  The atomic weight

of sulfur is 32.06 g/mol, while the molecular weight of isoprene is

5(AC) + 8(AH)

= (5)(12.01 g/mol) + (8)(1.008 g/mol) = 68.11 g/mol

The mass of sulfur added (m
S

) is

mS = (24 mol)(32.06 g/mol) = 969.4 g

While for isoprene

mip = (100 mol)(68.11 g/mol) = 6811 g

Or, the concentration of sulfur in weight percent is just

CS = 
969.4 g

969.4 g + 6811 g
 x 100 = 12.5 wt%

16.42  Vulcanization of a rubber component should be carried out prior to the forming operation

since, once it has been vulcanized, plastic deformation (and thus forming) is not possible

since chain crosslinks have been introduced.

16.43  Two molecular characteristics essential for elastomers are:  1) they must be amorphous,

having chains that are extensively coiled and kinked in the unstressed state;  and 2) there

must be some crosslinking.

16.44  This question asks us to choose from a list of materials those which would be expected to be

elastomers and those which would be thermosetting polymers.

(a)  Epoxy having a network structure will be a thermoset polymer since it has a network

structure.  It would not be an elastomer since it does not have a crosslinked chain structure.

(b)  A lightly crosslinked poly(styrene-butadiene) random copolymer that has a glass-transition

temperature of -50°C will be an elastomer since it 1) is a random copolymer, 2) is lightly

crosslinked, and 3) is being used at a temperature above its glass transition.  All three of

these criteria are requisites for an elastomer.
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(c)  Lightly branched and semicrystalline PTFE would be neither an elastomer nor a thermoset.

It is not crosslinked nor does it have a network structure.

(d)  A heavily crosslinked poly(ethylene-propylene) random copolymer would be a thermoset

inasmuch as it is heavily crosslinked.

(e)  A thermoplastic elastomer that has a glass-transition temperature of 75°C is neither an

elastomer nor a thermoset.  Since it is a thermoplastic it is not a thermoset.  Furthermore,

room temperature is below its glass-transition temperature, and, therefore, it will not display

elastomeric behavior.

16.45  The molecules in elastomers must be two-dimensional chains that are lightly crosslinked and

capable of being twisted and kinked in the unstressed state.  Phenol-formaldehyde has a rigid

three-dimensional structure consisting of trifunctional mer units, which does not meet these

criteria for chain conformation and flexibility.

16.46  The reaction by which a chloroprene rubber may become vulcanized is as follows:

H H Cl H H H Cl H

C C C C C C C C

H H H H

+ (p + q)S (S) p (S) q

H H H H

C C C C C C C C

H H Cl H H H Cl H

16.47  This question asks for us to determine which of several elastomers are suitable for automobile

tires in Alaska.  From Table 16.4, only natural polyisoprene, poly(styrene-butadiene), and

polysiloxane have useful temperature ranges that extend to below -55°C.  At temperatures

below the lower useful temperature range limit, the other elastomers listed in this table

become brittle, and, therefore, are not suitable for automobile tires.

16.48  The backbone chain of most polymers consists of carbon atoms that are linked together.  For

the silicone polymers, this backbone chain is composed of silicon and oxygen atoms that

alternate positions.
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16.49  The liquid silicones will have low molecular weights and very little crosslinking, whereas the

molecular weights for the elastomers will be much higher;  the elastomers will also have some

crosslinking.

16.50  Fiber materials that are melt spun must be thermoplastic because:  1) In order to be melt

spun, they must be capable of forming a viscous liquid when heated, which is not possible for

thermosets.  2) During drawing, mechanical elongation must be possible;  inasmuch as

thermosetting materials are, in general, hard and relatively brittle, they are not easily

elongated.

16.51  Two important characteristics for polymers that are to be used in fiber applications are:  1)

they must have a high molecular weight, and 2) they must have a chain

configuration/structure that will allow for a high degree of crystallinity.

16.52  Five important characteristics for polymers that are to be used in thin film applications are:  1)

low density;  2) high flexibility;  3) high tensile and tear strengths;  4) resistance to

moisture/chemical attack;  and 5) low gas permeability.

16.53  Of the two polymers cited, the one that was formed by extrusion and then rolled would have

the higher strength.  Both blown and extruded materials would have roughly comparable

strengths;  however the rolling operation would further serve to enhance the strength of the

extruded material.

Design Questions

16.D1  (a)Several advantages of using transparent polymeric materials for eyeglass lenses are:  they

have relatively low densities, and, therefore, are light in weight;  they are relatively easy to

grind to have the desired contours;  they are less likely to shatter than are glass lenses;

wraparound lenses for protection during sports activities are possible;  and they filter out more

ultraviolet radiation than do glass lenses.

The principal disadvantage of these types of lenses is that some are relatively soft and

are easily scratched (although antiscratch coatings may be applied).  Plastic lenses are not as

mechanically stable as glass, and, therefore, are not as precise optically.

(b)  Some of the properties that are important for polymer lens materials are:  they should be

relatively hard in order to resist scratching;  they must be impact resistant;  they should be
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shatter resistant;  they must have a relatively high index of refraction such that thin lenses

may be ground for very nearsighted people;  and they should absorb significant proportions of

all types of ultraviolet radiation, which radiation can do damage to the eye tissues.

(c)  Of those polymers discussed in this chapter and Chapter 15, ones that might appear to be

likely lens candidates are polystyrene, polymethyl methacrylate, and polycarbonate;  these

three materials are not easily crystallized, and, therefore, are normally transparent.  Upon

consultation of their fracture toughnesses (Table B.5 in Appendix B), polycarbonate is the

most superior of the three.

Commercially, the two plastic lens materials of choice are polycarbonate and allyl

diglycol carbonate (having the trade name CR-39).  Polycarbonate is very impact resistant, but

not as hard as CR-39.  Furthermore, PC comes in both normal and high refractive-index

grades.

16.D2  There are three primary requirements for polymeric materials that are utilized in the packaging

of food products and drinks;  these are:  1) sufficient strength, to include tensile, tear, and

impact strengths;  2)  barrier protection--that is, being resistant to permeation by oxygen, water

vapor, and carbon dioxide;  and 3)  being nonreactive with the food/drink contents--such

reactions can compromise the integrity of the packaging material, or they can produce toxic

by-products.

With regard to strength, polyethylene terephthalate (PET or PETE) and oriented

polypropylene (OPP) have high tensile strengths, linear low-density polyethylene (LLDPE) and

low-density polyethylene (LDPE) have high tear strengths, while those polymers having the

best impact strengths are PET and polyvinyl chloride (PVC).  Relative to barrier characteristics,

ethylene vinyl alcohol (EVOH) and polyvinylidene chloride (PVDC) copolymers are relatively

impermeable to oxygen and carbon dioxide, whereas high-density polyethylene (HDPE),

PVDC, polypropylene, and LDPE are impervious to water vapor.

Most common polymers are relatively nonreactive with food products, and are

considered safe;  exceptions are acrylonitrile and plasticizers used in PVC materials that may

be harmful.

The aesthetics of packaging polymers are also important in the marketing of food and

drink products.  Some will be colored, many are adorned with printing, others need to be

transparent and clear, and many need to be resistant to scuffing.

On the basis of the preceding discussion, some examples of polymers that are used for

specific applications are as follows:

PET(E) for soda pop containers;

PVC for beer containers;
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LDPE and HDPE films for packaging bread and bakery products.
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CHAPTER 17

COMPOSITES

PROBLEM SOLUTIONS

17.1  The major difference in strengthening mechanism between large-particle and dispersion-

strengthened particle-reinforced composites is that for large-particle the particle-matrix

interactions are not treated on the molecular level, whereas, for dispersion-strengthening

these interactions are treated on the molecular level.

17.2  The similarity between precipitation hardening and dispersion strengthening is the

strengthening mechanism--i.e., the precipitates/particles effectively hinder dislocation motion.

The two differences are:  1) the hardening/strengthening effect is not retained at

elevated temperatures for precipitation hardening--however, it is retained for dispersion

strengthening;  and 2) the strength is developed by a heat treatment for precipitation

hardening--such is not the case for dispersion strengthening.

17.3  The elastic modulus versus the volume percent of Al2O3 is shown below, on which is included

both upper and lower bound curves;  these curves were generated using Equations (17.1)
and (17.2), respectively, and using the moduli of elasticity for aluminum and Al2O3 that were

given in the problem statement.
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17.4  This problem asks for the maximum and minimum thermal conductivity values for a TiC-Co
cermet.  Using a modified form of Equation (17.1) the maximum thermal conductivity kc(u)  is

calculated as

kc(u) = kmVm + kpVp = kCoVCo + kTiCVTiC

= (69 W/m-K)(0.15) + (27 W/m-K)(0.85) = 33.3 W/m-K

The minimum thermal conductivity kc(l) will be

kc(l) = 
kCokTiC

VCokTiC + VTiCkCo

= 
(69 W/m-K)(27 W/m-K)

(0.15)(27 W/m-K) + (0.85)(69 W/m-K)

= 29.7 W/m-K

17.5  Given the elastic moduli and specific gravities for copper and tungsten we are asked to

estimate the upper limit for specific stiffness when the volume fractions of tungsten and

copper are 0.60 and 0.40, respectively.  There are two approaches that may be applied to
solving this problem.  The first is to estimate both the upper limits of elastic modulus [Ec(u) ]

and specific gravity (ρc) for the composite, using equations of the form of Equation (17.1), and

then take their ratio.  Using this approach

Ec(u) = ECuVCu + EWVW

= (110 GPa)(0.40) + (407 GPa)(0.60)

= 288 GPa

And
ρc = ρCuVCu + ρWVW

= (8.9)(0.40) + (19.3)(0.60) = 15.14

Therefore
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Specific Stiffness = 
Ec(u)

ρc
 = 

288 GPa
15.14

 = 19.0 GPa

With the alternate approach, the specific stiffness is calculated, again employing a

modification of Equation (17.1), but using the specific stiffness-volume fraction product for

both metals, as follows:

Specific Stiffness = 
ECu
ρCu

 VCu + 
EW
ρW

 VW

= 
110 GPa

 8.9
 (0.40) + 

407 GPa
19.3

 (0.60) = 17.6 GPa

17.6  (a)  The matrix phase is a continuous phase that surrounds the noncontinuous dispersed

phase.

(b)  In general, the matrix phase is relatively weak, has a low elastic modulus, but is quite

ductile.  On the other hand, the fiber phase is normally quite strong, stiff, and brittle.

17.7  (a)  Concrete consists of an aggregate of particles that are bonded together by a cement.

(b)  Three limitations of concrete are:  1) it is a relatively weak and brittle material;  2) it

experiences relatively large thermal expansions (contractions) with changes in temperature;

and 3) it may crack when exposed to freeze-thaw cycles.

(c)  Three reinforcement strengthening techniques are:  1) reinforcement with steel wires, rods,

etc.;  2) reinforcement with fine fibers of a high modulus material;  and 3) introduction of

residual compressive stresses by prestressing or posttensioning.

17.8  (a)  Three functions of the polymer-matrix phase are:  1) to bind the fibers together so that the

applied stress is distributed among the fibers;  2) to protect the surface of the fibers from

being damaged;  and 3) to separate the fibers and inhibit crack propagation.

(b)  The matrix phase must be ductile and is usually relatively soft, whereas the fiber phase must

be stiff and strong.

(c)  There must be a strong interfacial bond between fiber and matrix in order to:  1) maximize

the stress transmittance between matrix and fiber phases;  and 2) minimize fiber pull-out, and

the probability of failure.
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17.9  This problem asks that, for a glass fiber-epoxy matrix combination, to determine the fiber-matrix
bond strength if the critical fiber length-fiber diameter ratio is 50.  Thus, we are to solve for τc

in Equation (17.3).  Since we are given that σf* = 3.45 GPa from Table 17.4, and that 
lc
d

 = 50,

then

τc = σf*  


 
d

2lc
 = (3.45 x 103 MPa) 

1
(2)(50)

 = 34.5 MPa

17.10  (a)  The plot of reinforcement efficiency versus fiber length is given below.
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(b)  This portion of the problem asks for the length required for a 0.80 efficiency of

reinforcement.  Solving for l from the given expression

l = 
2x

1 - η

Or, when x  = 0.75 mm (0.03 in.) and η = 0.8, then

l = 
(2)(0.75 mm)

1 - 0.8
 = 7.5 mm (0.30 in.)

17.11  This problem calls for us to compute the longitudinal tensile strength and elastic modulus of

an aramid fiber-reinforced polycarbonate composite.

(a)  The longitudinal tensile strength is determined using Equation (17.17) as
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σc* l = σm' (1 - Vf) +σf*Vf

= (45 MPa)(0.70) + (3600)(0.30)

= 1100 MPa  (160,000 psi)

(b)  The longitudinal elastic modulus is computed using Equation (17.10a) as

Ecl = EmVm + EfVf

= (2.4 GPa)(0.70) + (131 GPa)(0.30)

= 41 GPa  (5.95 x 106 psi)

17.12  This problem asks for us to determine if it is possible to produce a continuous and oriented

aramid fiber-epoxy matrix composite having longitudinal and transverse moduli of elasticity of

57.1 GPa and 4.12 GPa, respectively, given that the modulus of elasticity for the epoxy is 2.4

GPa.  Also, from Table 17.4 the value of E for aramid fibers is 131 GPa.  The approach to
solving this problem is to calculate two values of Vf  using the data and Equations (17.10b)

and (17.16);  if they are the same then this composite is possible.
For the longitudinal modulus Ecl ,

Ecl = Em[1 - Vfl] + EfVfl

57.1 GPa = (2.4 GPa)[1 - Vfl] + (131 GPa)Vfl

Solving this expression for Vfl  yields Vfl  = 0.425.

Now, repeating this procedure for the transverse modulus Ect

Ect = 
EmEf

[1 - Vft]Ef + VftEm

4.12 GPa = 
(2.4 GPa)(131 GPa)

[1 - Vft](131 GPa) + Vft(2.4 GPa)
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Solving this expression for Vft  leads to Vft  = 0.425.  Thus, since Vfl  and Vft  are equal, the

proposed composite is possible.

17.13  (a)  This portion of the problem calls for us to calculate the specific longitudinal strengths of

glass-fiber, carbon-fiber, and aramid-fiber reinforced epoxy composites, and then to compare

these values with the specific strengths of several metal alloys.
The longitudinal specific strength of the glass-reinforced epoxy material (V

f
 = 0.60) in

Table 17.5 is just the ratio of the longitudinal tensile strength and specific gravity as

1020 MPa
2.1

 = 486 MPa

For the carbon-fiber reinforced epoxy

1240 MPa
1.6

 = 775 MPa

And, for the aramid-fiber reinforced epoxy

1380 MPa
1.4

 = 986 MPa

Now, for the metal alloys we use data that is found in Tables B.1 and  B.4 in Appendix

B.  For the 440A tempered martensitic steel

1790 MPa
7.8

 = 229 MPa

For the normalized 1020 plain carbon steel, the ratio is

440 MPa
7.85

 = 56 MPa

For the 2024-T3 aluminum alloy

485 MPa
2.77

 = 175 MPa

For the C36000 brass (cold worked)
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400 MPa
8.50

 = 47 MPa

For the AZ31B (rolled) magnesium alloy

290 MPa
1.77

 = 164 MPa

For the annealed Ti-6Al-4V  titanium alloy

900 MPa
4.43

 = 203 MPa

(b)  The longitudinal specific modulus is just the longitudinal tensile modulus-specific gravity

ratio.  For the glass-fiber reinforced epoxy, this ratio is

45 GPa
2.1

 = 21.4 GPa

For the carbon-fiber reinforced epoxy

145 GPa
1.6

 = 90.6 GPa

And, for the aramid-fiber reinforced epoxy

76 GPa
1.4

 = 54.3 GPa

The specific moduli for the metal alloys (Tables B.1 and B.2) are as follows:

For the 440A tempered martensitic steel

200 GPa
7.8

 = 25.6 GPa

For the normalized 1020 plain-carbon steel

207 GPa
7.85

 = 26.4 GPa
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For the 2024-T3 aluminum alloy

72.4 GPa
 2.77

 = 26.1 GPa

For the C36000 brass

97 GPa
8.50

 = 11.4 GPa

For the AZ31B magnesium alloy

45 GPa
1.77

 = 25.4 GPa

For the Ti-6Al-4V titanium alloy

114 GPa
4.43

 = 25.7 GPa

17.14  This problem asks for us to compute the elastic moduli of fiber and matrix phases for a

continuous and oriented fiber-reinforced composite.  We can write expressions for the

longitudinal and transverse elastic moduli using Equations (17.10b) and (17.16), as

Ecl = Em(1 - Vf) + EfVf

19.7 GPa = Em(1 - 0.25) + Ef(0.25)

And

Ect = 
EmEf

(1 - Vf)Ef + VfEm

3.66 GPa = 
EmEf

(1 - 0.25)Ef + 0.25Em

Solving these two expressions simultaneously for Em  and Ef leads to

Em = 2.79 GPa  (4.04 x 105 psi)
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Ef = 70.4 GPa  (10.2 x 106 psi)

17.15  (a)  In order to show that the relationship in Equation (17.11) is valid, we begin with Equation
(17.4), F

c
 = F

m
 + F

f
, which may be manipulated to

Fc
Fm

 = 1 + 
Ff

Fm

or

Ff
Fm

 = 
Fc
Fm

 - 1

For elastic deformation [Equation (6.5)]

σ = 
F
A

 = εE

or

F = AεE

We may write expressions for F
c

 and F
m

 as

Fc = AcεEc

Fm = AmεEm

which, when substituted into the above expression gives

Ff
Fm

 = 
AcεEc

AmεEm
 - 1

But, V
m

 = A
m

/A
c

, or

Ff
Fm

 = 
Ec

EmVm
 - 1

Also, from Equation (17.10a), E
c

 = E
m

V
m

 + E
f
V

f
, which, when substituted into the previous

expression, yields
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Ff
Fm

 = 
EmVm + EfVf

EmVm
 - 1

= 
EmVm + EfVf - EmVm

EmVm
 = 

EfVf
EmVm

(b)  This portion of the problem asks that we establish an expression for F
f
/F

c
.  We determine

this ratio in a similar manner.  Now F
c

 = F
f
 + F

m
, or

1 = 
Ff
Fc

 + 
Fm
Fc

which gives

Ff
Fc

 = 1 - 
Fm
Fc

 = 1 - 
AmεEm
AcεEc

 = 1 - 
AmEm
AcEc

Since A
m

/A
c

 = V
m

, then

Ff
Fc

 = 1 - 
VmEm

Ec

= 1 - 
VmEm

VmEm + VfEf

= 
VmEm + VfEf - VmEm

VmEm + VfEf

= 
VfEf

VmEm + VfEf
 = 

VfEf
(1 - Vf)Em + VfEf

17.16  (a)  Given some data for an aligned glass-fiber-reinforced nylon 6,6, we are asked to compute

the volume fraction of fibers that are required such that the fibers carry 94% of a load applied

in the longitudinal direction.  From Equation (17.11)

Ff
Fm

 = 
EfVf

EmVm
 = 

EfVf
Em(1 - Vf)
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Now,
Ff

Fm
 = 

0.94
0.06

 = 15.67

Substituting in for E
f
 and E

m

Ff
Fm

 = 15.67 = 
(72.5 GPa)Vf

(3.0 GPa)(1 - Vf)

And, solving for V
f
 yields, V

f
 = 0.418.

(b)  We are now asked for the tensile strength of this composite. From Equation (17.17),

σc* l = σm' (1 - Vf) +σf*Vf

= (30 MPa)(1 - 0.418) +(3400 MPa)(0.0.418)

= 1440 MPa  (207,000 psi)

since values for σf* (3,400 MPa) and σm'  (30 MPa) are given in the problem statement.

17.17  The problem stipulates that the cross-sectional area of a composite, A
c

, is 320 mm
2

 (0.50

in.
2

), and the longitudinal load, F
c

, is 44,500 N (10,000 lbf) for the composite described in

Problem 17.11.
(a)  First, we are asked to calculate the F

f
/F

m
 ratio.  According to Equation (17.11)

Ff
Fm

 = 
EfVf

EmVm
 = 

(131 GPa)(0.30)
(2.4 GPa)(0.70)

 = 23.4

Or, F
f
 = 23.4F

m

(b)  Now, the actual loads carried by both phases are called for.  Since

Ff + Fm = Fc = 44,500 N

23.4Fm + Fm = 44,500 N
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which leads to
Fm = 1824 N  (410 lbf)

Ff = 44,500 N - 1824 N = 42,676 N  (9590 lbf)

(c)  To compute the stress on each of the phases, it is first necessary to know the cross-

sectional areas of both fiber and matrix.  These are determined as

Af = VfAc = (0.30)(320 mm2) = 96 mm2  (0.15 in.2)

Am = VmAc = (0.70)(320 mm2) = 224 mm2  (0.35 in.2)

Now, for the stresses,

σf = 
Ff
Af

 = 
42676 N

(96 mm2)
 = 445 MPa  (63,930 psi)

σm = 
Fm
Am

 = 
1824 N

(224 mm2)
 = 8.14 MPa  (1170 psi)

(d)  The strain on the composite is the same as the strain on each of the matrix and fiber

phases, as

εm = 
σm
Em

 = 
8.14 MPa

2.4 x 103 MPa
 = 3.39 x 10-3

εf = 
σf
Ef

 = 
445 MPa

131 x 103 MPa
 = 3.39 x 10-3

17.18  For a continuous and aligned fibrous composite, we are given its cross-sectional area (1130

mm2), the stresses sustained by the fiber and matrix phases (156 and 2.75 MPa), the force

sustained by the fiber phase (74,000 N), and the total longitudinal strain (1.25 x 10-3).

(a)  For this portion of the problem we are asked to calculate the force sustained by the matrix
phase.  It is first necessary to compute the volume fraction of the matrix phase, Vm .  This may

be accomplished by first determining Vf and then Vm  from Vm  = 1 - Vf.  The value of Vf may

be calculated realizing that
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σf = 
Ff
Af

 = 
Ff

VfAc

Or

Vf = 
Ff

σfAc
 = 

74000 N

(156 x 106 N/m2)(1.13 x 10-3 m2)
 = 0.420

Now
Vm = 1 - Vf = 1 - 0.420 = 0.580

Therefore, since

σm = 
Fm
Am

 = 
Fm

VmAc

then

Fm = VmσmAc = (0.58)(2.75 x 106 N/m2)(1.13 x 10-3 m2) = 1802 N  (406 lbf)

(b)  We are now asked to calculate the modulus of elasticity in the longitudinal direction.  This is

possible realizing that Ec = 
σc
ε  and that σc = 

Fm  + Ff
Ac

.  Thus

Ec = 
Fm + Ff

εAc

= 
1802 N + 74000 N

(1.25 x 10-3)(1.13 x 10-3 m2)
 = 53.7 GPa  (7.77 x 106 psi)

(c)  Finally, it is necessary to determine the moduli of elasticity for the fiber and matrix phases.

This is possible as follows:

Em = 
σm
εm

 = 
σm
εc

 = 
2.75 x 106 N/m2

1.25 x 10-3  = 2.2 x 109 N/m2

= 2.2 GPa  (3.2 x 105 psi)

Ef = 
σf
εf

 = 
σf
εc

 = 
156 x 106 N/m2

1.25 x 10-3  = 1.248 x 1011 N/m2
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= 124.8 GPa  (18.1 x 106 psi)

17.19  In this problem, for an aligned carbon fiber-epoxy matrix composite, we are given the volume

fraction of fibers (0.25), the average fiber diameter (10 x 10-3 mm), the average fiber length

(5.0 mm), the average fiber fracture strength (2.5 GPa), the fiber-matrix bond strength (80

MPa), the matrix stress at composite failure (10.0 MPa), and the matrix tensile strength (75

MPa);  and we are asked to compute the longitudinal strength.  It is first necessary to

compute the value of the critical fiber length using Equation (17.3).  If the fiber length is much
greater than lc , then we may determine the longitudinal strength using Equation (17.17),

otherwise, use of either Equation (17.18) or (17.19) is necessary.  Thus,

lc = 
σf*d

2τc
 = 

(2.5 x 103 MPa)(10 x 10-3 mm)
2(80 MPa)

 = 0.16 mm

Inasmuch as l  >> lc  (5.0 mm >> 0.16 mm), then use of Equation (17.17) is appropriate.

Therefore,

σc* l = σm' (1 - Vf) +σf*Vf

= (10 MPa)(1 - 0.25) +(2500 MPa)(0.25)

= 633 MPa  (91,700 psi)

17.20  In this problem, for an aligned carbon fiber-epoxy matrix composite, we are given the desired

longitudinal tensile strength (750 MPa), the average fiber diameter (1.2 x 10-2 mm), the

average fiber length (1.0 mm), the fiber fracture strength (5000 MPa), the fiber-matrix bond

strength (25 MPa), and the matrix stress at composite failure (10 MPa);  and we are asked to

compute the volume fraction of fibers that is required.  It is first necessary to compute the

value of the critical fiber length using Equation (17.3).  If the fiber length is much greater than
lc , then we may determine Vf  using Equation (17.17), otherwise, use of either Equation

(17.18) or Equation (17.19) is necessary.  Thus,

lc = 
σf*d

2τc
 = 

(5000 MPa)(1.2 x 10-2 mm)
2(25 MPa)

 = 1.20 mm
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Inasmuch as l < lc  (1.0 mm < 1.20 mm), then use of Equation (17.19) is required.  Therefore,

σc*d' = 
lτc
d

 Vf + σm' (1 - Vf)

750 MPa = 
(1.0 x 10-3 m)(25 MPa)

1.2 x 10-5 m
 (Vf) + (10 MPa)(1 - Vf)

Solving this expression for Vf leads to Vf = 0.357.

17.21  In this problem, for an aligned glass fiber-epoxy matrix composite, we are asked to compute

the longitudinal tensile strength given the following:  the average fiber diameter (0.010 mm),

the average fiber length (2.5 mm), the volume fraction of fibers (0.40), the fiber fracture

strength (3500 MPa), the fiber-matrix bond strength (75 MPa), and the matrix stress at

composite failure (8.0 MPa).  It is first necessary to compute the value of the critical fiber
length using Equation (17.3).  If the fiber length is much greater than lc , then we may

determine σc* l using Equation (17.17), otherwise, use of either Equation (17.18) or (17.19) is

necessary.  Thus,

lc = 
σf*d

2τc
 = 

(3500 MPa)(0.010 mm)
2(75 MPa)

 = 0.233 mm  (0.0093 in.)

Inasmuch as l  > lc  (2.5 mm > 0.233 mm), but l is not much greater than lc , then use of

Equation (17.18) is necessary.  Therefore,

σc*d = σf*Vf 



 



1 - 
lc
2l

 + σm' (1 - Vf)

= (3500 MPa)(0.40)[ ]1 - 
0.233 mm

(2)(2.5 mm)
 + (8.0 MPa)(1 - 0.40)

= 1340 MPa  (194,400 psi)

17.22  (a)  This portion of the problem calls for computation of values of the fiber efficiency

parameter.  From Equation (17.20)

Ecd = KEfVf + EmVm



363

Solving this expression for K yields

K = 
Ecd - EmVm

EfVf
 = 

Ecd - Em(1 - Vf)

EfVf

For glass fibers, E
f
 = 72.5 GPa (Table 17.4);  using the data in Table 17.2, and taking an

average of the extreme Em  values given, E
m

 = 2.29 GPa (0.333 x 10
6

 psi).  And, for V
f
 =

0.20

K = 
5.93 GPa - (2.29 GPa)(1 - 0.2)

(72.5 GPa)(0.2)
 = 0.283

For V
f
 = 0.3

K = 
8.62 GPa - (2.29 GPa)(1 - 0.3)

(72.5 GPa)(0.3)
 = 0.323

And, for V
f
 = 0.4

K = 
11.6 GPa - (2.29 GPa)(1 - 0.4)

(72.5 GPa)(0.4)
 = 0.353

(b)  For 50 vol% fibers (V
f
 = 0.50), we must assume a value for K . Since it is increasing with V

f
,

let us estimate it to increase by the same amount as going from 0.3 to 0.4--that is, by a value

of 0.03.  Therefore, let us assume a value for K  of 0.383.  Now, from Equation (17.20)

Ec = KEfVf + EmVm

= (0.383)(72.5 GPa)(0.5) + (2.29 GPa)(0.5)

= 15.0 GPa  (2.18 x 106 psi)

17.23  For discontinuous-oriented fiber-reinforced composites one desirable characteristic is that the

composite is relatively strong  and stiff in one direction;  a less desirable characteristic is that

the mechanical properties are anisotropic.

For discontinuous and random fiber-reinforced, one desirable characteristic is that the

properties are isotropic;  a less desirable characteristic is there is no single high-strength

direction.
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17.24  (a)  The four reasons why glass fibers are most commonly used for reinforcement are listed at

the beginning of Section 17.8 under "Glass Fiber-Reinforced Polymer (GFRP) Composites."

(b)  The surface perfection of glass fibers is important because surface flaws or cracks will act as

points of stress concentration, which will dramatically reduce the tensile strength of the

material.

(c)  Care must be taken not to rub or abrade the surface after the fibers are drawn.  As a surface

protection, newly drawn fibers are coated with a protective surface film.

17.25  "Graphite" is crystalline carbon having the structure shown in Figure 13.17, whereas "carbon"

will consist of some noncrystalline material as well as areas of crystal misalignment.

17.26  (a)  Reasons why fiberglass-reinforced composites are utilized extensively are:  1) glass fibers

are very inexpensive to produce;  2) these composites have relatively high specific strengths;

and 3) they are chemically inert in a wide variety of environments.

(b)  Several limitations of these composites are:  1) care must be exercised in handling the fibers

inasmuch as they are susceptible to surface damage;  2)  they are lacking in stiffness in

comparison to other fibrous composites;  and 3) they are limited as to maximum temperature

use.

17.27  (a)  A hybrid composite is a composite that is reinforced with two or more different fiber

materials in a single matrix.

(b)  Two advantages of hybrid composites are:  1) better overall property combinations, and 2)

failure is not as catastrophic as with single-fiber composites.

17.28  (a)  For a hybrid composite having all fibers aligned in the same direction

Ecl = EmVm + Ef1Vf1 + Ef2Vf2

in which the subscripts f1 and f2 refer to the two types of fibers.

(b)  Now we are asked to compute the longitudinal elastic modulus for a glass- and aramid-fiber

hybrid composite.  From Table 17.4, the elastic moduli of aramid and glass fibers are,

respectively, 131 GPa (19 x 10
6

 psi) and 72.5 GPa (10.5 x 10
6

 psi).  Thus, from the previous

expression

Ecl = (2.5 GPa)(1.0 - 0.30 - 0.40) + (131 GPa)(0.30)
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+ (72.5 GPa)(0.40)

= 69.1 GPa  (10.0 x 106 psi)

17.29  This problem asks that we derive a generalized expression analogous to Equation (17.16) for

the transverse modulus of elasticity of an aligned hybrid composite consisting of two types of

continuous fibers.  Let us denote the subscripts f1  and f2  for the two fiber types, and m  , c ,

and t  subscripts for the matrix,  composite, and transverse direction, respectively.  For the

isostress state, the expressions analogous to Equations (17.12) and (17.13) are

σc = σm = σf1 = σf2

And
εc = εmVm + εf1Vf1 + εf2Vf2

Since ε = σ/E, then

σ
Ect

 = 
σ

Em
 Vm + 

σ
Ef1

 Vf1 + 
σ

Ef2
 Vf2

And

1
Ect

 = 
Vm
Em

 + 
Vf1
Ef1

 + 
Vf2
Ef2

1
Ect

 = 
VmEf1Ef2 + Vf1EmEf2 + Vf2EmEf1

EmEf1Ef2

And, finally

Ect = 
EmEf1Ef2

VmEf1Ef2 + Vf1EmEf2 + Vf2EmEf1

17.30  Pultrusion, filament winding, and prepreg fabrication processes are described in Section

17.13.

For pultrusion, the advantages are:  the process may be automated, production rates

are relatively high, a wide variety of shapes having constant cross-sections are possible, and

very long pieces may be produced.  The chief disadvantage is that shapes are limited to

those having a constant cross-section.
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For filament winding, the advantages are:  the process may be automated, a variety of

winding patterns are possible, and a high degree of control over winding uniformity and

orientation is afforded.  The chief disadvantage is that the variety of shapes is somewhat

limited.

For prepreg production, the advantages are:  resin does not need to be added to the

prepreg, the lay-up arrangement relative to the orientation of individual plies is variable, and

the lay-up process may be automated.  The chief disadvantages of this technique are that

final curing is necessary after fabrication, and thermoset prepregs must be stored at

subambient temperatures to prevent complete curing.

17.31  Laminar composites are a series of sheets or panels, each of which has a preferred high-

strength direction.  These sheets are stacked and then cemented together such that the

orientation of the high-strength direction varies from layer to layer.

These composites are constructed in order to have a relatively high strength in virtually

all directions within the plane of the laminate.

17.32  (a)  Sandwich panels consist of two outer face sheets of a high-strength material that are

separated by a layer of a less-dense and lower-strength core material.

(b)  The prime reason for fabricating these composites is to produce structures having high in-

plane strengths, high shear rigidities, and low densities.

(c)  The faces function so as to bear the majority of in-plane loading and also transverse

bending stresses.  On the other hand, the core separates the faces and resists deformations

perpendicular to the faces.

Design Problems

17.D1  In order to solve this problem, we want to make longitudinal elastic modulus and tensile

strength computations assuming 50 vol% fibers for all three fiber materials, in order to see

which meet the stipulated criteria [i.e., a minimum elastic modulus of 50 GPa (7.3 x 10
6

 psi),

and a minimum tensile strength of 1300 MPa (189,000 psi)].  Thus, it becomes necessary to
use Equations (17.10b) and (17.17) with V

m
 = 0.5 and V

f
 = 0.5, E

m
 = 3.1 GPa, and σ

m
*  = 75

MPa.
For glass, E

f
 = 72.5 GPa and σ

f
* = 3450 MPa.  Therefore,

Ecl = Em(1 - Vf) + EfVf
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= (3.1 GPa)(1 - 0.5) + (72.5 GPa)(0.5) = 37.8 GPa  (5.48 x 106 psi)

Since this is less than the specified minimum, glass is not an acceptable candidate.

For carbon (PAN standard-modulus), Ef = 230 GPa and σ
f
* = 4000 MPa (the average of

the range of values in Table B.4), thus

Ecl = (3.1 GPa)(0.5) + (230 GPa)(0.5) = 116.6 GPa  (16.9 x 106 psi)

which is greater than the specified minimum.  In addition, from Equation (17.17)

σc* l = σm' (1 - Vf) +σf*Vf

= (30 MPa)(0.5) + (4000 MPa)(0.5) = 2015 MPa (292,200 psi)

which is also greater than the minimum.  Thus, carbon (PAN standard-modulus) is a candidate.

For aramid, Ef  = 131 GPa and σ
f
* = 3850 MPa (the average of the range of values in

Table B.4), thus

Ecl = (3.1 GPa)(0.5) + (131 GPa)(0.5) = 67.1 GPa  (9.73 x 106 psi)

which value is greater than the minimum.  Also, from Equation (17.17)

σc* l = σm' (1 - Vf) +σf*Vf

= (50 MPa)(0.5) + (3850 MPa)(0.5) = 1950 MPa (283,600 psi)

which is also greater than the minimum strength value.  Therefore, of the three fiber materials,

both the carbon (PAN standard-modulus) and the aramid meet both minimum criteria.

17.D2  This problem asks us to determine whether or not it is possible to produce a continuous and

oriented carbon fiber-reinforced epoxy having a modulus of elasticity of at least 83 GPa in the

direction of fiber alignment, and a maximum specific gravity of 1.40.  We will first calculate the

minimum volume fraction of fibers to give the stipulated elastic modulus, and then the
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maximum volume fraction of fibers possible to yield the maximum permissible specific gravity;

if there is an overlap of these two fiber volume fractions then such a composite is possible.

With regard to the elastic modulus, from Equation (17.10b)

Ecl = Em(1 - Vf) + EfVf

83 GPa = (2.4 GPa)(1 - Vf) + (260 GPa)(Vf)

Solving for V
f
 yields V

f
 = 0.31.  Therefore, V

f
 > 0.31 to give the minimum desired elastic

modulus.

Now, upon consideration of the specific gravity, ρ, we employ the following relationship:

ρc = ρm(1 - Vf) + ρfVf

1.40 = 1.25(1 - Vf) + 1.80(Vf)

And, solving for V
f
 from this expression gives V

f
 = 0.27.  Therefore, it is necessary for V

f
 <

0.27 in order to have a composite specific gravity less than 1.40.

Hence, such a composite is not  possible since there is no overlap of the fiber volume

fractions as computed using the two stipulated criteria.

17.D3  This problem asks us to determine whether or not it is possible to produce a continuous and

oriented glass fiber-reinforced polyester having a tensile strength of at least 1400 MPa in the

longitudinal direction, and a maximum specific gravity of 1.65.  We will first calculate the

minimum volume fraction of fibers to give the stipulated tensile strength, and then the

maximum volume fraction of fibers possible to yield the maximum permissible specific gravity;

if there is an overlap of these two fiber volume fractions then such a composite is possible.

With regard to tensile strength, from Equation (17.17)

σc* l = σm' (1 - Vf) +σf*Vf

1400 MPa = (15 MPa)(1 - Vf) + (3500 MPa)(Vf)

Solving for V
f
 yields V

f
 = 0.397.  Therefore, V

f
 > 0.397 to give the minimum desired tensile

strength.

Now, upon consideration of the specific gravity, ρ, we employ the following relationship:
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ρc = ρm(1 - Vf) + ρfVf

1.65 = 1.35(1 - Vf) + 2.50(Vf)

And, solving for V
f
 from this expression gives V

f
 = 0.261.  Therefore, it is necessary for V

f
 <

0.261 in order to have a composite specific gravity less than 1.65.

Hence, such a composite is not  possible since there is no overlap of the fiber volume

fractions as computed using the two stipulated criteria.

17.D4  In this problem, for an aligned and discontinuous carbon fiber-epoxy matrix composite having

a longitudinal tensile strength of 1900 MPa, we are asked to compute the required fiber

fracture strength, given the following:  the average fiber diameter (8 x 10-3 mm), the average

fiber length (3.5 mm), the volume fraction of fibers (0.45), the fiber-matrix bond strength (40

MPa), and the matrix stress at fiber failure (12 MPa).
To begin, since the value of σf* is unknown, calculation of the value of lc  in Equation

(17.3) is not possible, and, therefore, we are not able to decide which of Equations (17.18)
and (17.19) to use.  Thus, it is necessary to substitute for lc  in Equation (17.3) into Equation

(17.18), solve for the value of σf*, then, using this value, solve for lc  from Equation (17.3).  If l

> lc , we use Equation (17.18), otherwise Equation (17.19) must be used.  Note:  the

parameter σf* in Equation (17.18) is really the same as σf* in Equation (17.3).  Realizing this,

and substituting for lc  in Equation (17.3) into Equation (17.18) leads to

σ c*d = σf*Vf 


 
1 - 

σf*d

4τcl
 + σm' (1 - Vf)

= σf*Vf - 
σf*

2Vfd

4τcl
 + σm'  - σm' Vf

This expression is a quadratic equation in which σf* is the unknown.  Rearrangement into a

more convenient form leads to

σf*
2

 


 
Vfd

4τcl
 - σf*(Vf) + [ ]σc*d - σm' (1 - Vf)  = 0

Or

aσf*
2 + bσf* + c = 0
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In which

a = 
Vfd

4τcl

= 
(0.45)(8 x 10-6 m)

(4)(40 MPa)(3.5 x 10-3 m)
 = 6.43 x 10-6 (MPa)-1  [ ]4.29 x 10-8 (psi)-1

Furthermore,

b = -Vf = -0.45

c = σc*d - σm' (1 - Vf)

= 1900 MPa - (12 MPa)(1 - 0.45) = 1893.4 MPa  (274,043 psi)

Now solving the above quadratic equation for σf* yields

σf* = 
- b ± √b2 - 4ac

2a

= 
- (-0.45) ± √(-0.45)2 - (4)[ ]6.43 x 10-6 (MPa)-1 (1893.4 MPa)

(2)[ ]6.43 x 10-6 (MPa)-1

= 
0.4500 ± 0.3922

1.286 x 10-5  MPa   
 



 

0.4500 ± 0.3943

8.58 x 10-8  psi

This yields the two possible roots as

σf*(+) = 
0.4500 + 0.3922

1.286 x 10-5  MPa = 65,500 MPa  (9.84 x 106 psi)

σf*(-) = 
0.4500 - 0.3922

1.286 x 10-5  MPa = 4495 MPa  (650,000 psi)

Upon consultation of the magnitudes of σf* for various fibers and whiskers in Table 17.4, only

σf*(-) is reasonable.  Now, using this value, let us calculate the value of lc  using Equation
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(17.3) in order to ascertain if use of Equation (17.18) in the previous treatment was

appropriate.  Thus

lc = 
σf*d

2τc
 = 

(4495 MPa)(0.008 mm)
(2)(40 MPa)

 = 0.45 mm  (0.0173 in.)

Since l > lc  (3.5 mm > 0.45 mm), then our choice of Equation (17.18) was indeed appropriate,

and σf* = 4495 MPa (650,000 psi).

17.D5  (a)  This portion of the problem  calls for the same volume fraction of fibers for the four fiber
types (i.e., Vf = 0.50);  thus, the modulus of elasticity will vary according to Equation (17.24a)

with cos θ = cos (20°) = 0.940.  Hence

Ecs = 0.940( )EmVm + EfVf

And, using data in Table 17.8, the value of Ecs  may be determined for each fiber material;

these are tabulated in Table 17.D5a.

Table 17.D5a Composite Elastic Modulus for Each of Glass and Three Carbon Fiber Types for Vf =

0.50

______________________________________
Ecs

_____________________
Fiber Type GPa 106 psi

_______________________________________

Glass 35.2 5.1

Carbon--standard modulus 109 15.8

Carbon--intermediate modulus 135 19.6

Carbon--high modulus 189 27.4
________________________________________
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It now becomes necessary to determine, for each fiber type, the inside diameter d i .

Rearrangement of Equation 17.23 leads to

di =  



 



d4
o - 

4FL3

3πE∆y

1/4

The d i  values may be computed by substitution into this expression for E the Ecs  data in

Table 17.D5a and the following

F = 667 N

L  = 1.82 m

∆y  = 0.84 mm
do  = 76.2 mm

These di data are tabulated in the second column of Table 17.D5b.  No entry is included for

glass.  The elastic modulus for glass fibers is so low that it is not possible to use them for a

tube that meets the stipulated criteria;  mathematically, the term within brackets in the above
equation for d i  is negative, and no real root exists.  Thus, only the three carbon types are

candidate fiber materials.

Table 17.D5b  Inside Tube Diameter, Total Volume, and Fiber, Matrix, and Total Costs for Three

Carbon-Fiber Epoxy-Matrix Composites

___________________________________________________
Inside Total Fiber Matrix Total

Diameter Volume Cost Cost Cost

Fiber Type (mm) (cm3) ($) ($) ($)
___________________________________________________

Glass - - - - -

Carbon--standard
    modulus 62.3 2752 86.70 14.10 100.80

Carbon--intermediate
    modulus 65.7 2130 134.20 10.90 145.10

Carbon--high modulus 69.2 1455 229.15 7.45 236.60
___________________________________________________
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(b)  Also included in Table 17.D5b is the total volume of material required for the tubular shaft
for each carbon fiber type;  Equation (17.25) was utilized for these computations.  Since Vf =

0.50, half this volume is fiber and the other half is epoxy matrix.  In the manner of Design

Example 17.1, the masses and costs of fiber and matrix materials were determined, as well as

the total composite cost.  These data are also included in Table 17.D5b.  Here it may be

noted that the standard-carbon fiber yields the least expensive composite, followed by the

intermediate- and high-modulus materials.

17.D6  This problem is to be solved using the E-Z Solve software.

17.D7  Inasmuch as there are a number of different sports implements that employ composite

materials, no attempt will be made to provide a complete answer for this question.  However,

a list of this type of sporting equipment would include skis and ski poles, fishing rods, vaulting

poles, golf clubs, hockey sticks, baseball and softball bats, surfboards and boats, oars and

paddles, bicycle components (frames, wheels, handlebars), canoes, and tennis and

racquetball rackets.
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CHAPTER 18

CORROSION AND DEGRADATION OF MATERIALS

PROBLEM SOLUTIONS

18.1  (a)  Oxidation is the process by which an atom gives up an electron (or electrons) to become a

cation.

Reduction is the process by which an atom acquires an extra electron (or electrons) and

becomes an anion.

(b)  Oxidation occurs at the anode;  reduction at the cathode.

18.2  (a)  This problem asks that we write possible oxidation and reduction half-reactions for

magnesium in various solutions.

(i)  In HCl

Mg →  Mg2+ + 2e-   (oxidation)

2H+ + 2e- →  H2   (reduction)

(ii)  In an HCl solution containing dissolved oxygen

Mg →  Mg2+ + 2e-   (oxidation)

4H+ + O2 + 4e- →  2H2O   (reduction)

(iii)  In an HCl solution containing dissolved oxygen and Fe
2+

 ions

Mg →  Mg2+ + 2e-   (oxidation)

4H+ + O2 + 4e- →  2H2O   (reduction)

Fe2+ + 2e-→  Fe   (reduction)
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(b)  The magnesium would probably oxidize most rapidly in the HCl solution containing dissolved

oxygen and Fe
2+

 ions because there are two reduction reactions that will consume electrons

from the oxidation of magnesium.

18.3  Iron would not corrode in water of high purity because all of the reduction reactions, Equations

(18.3) through (18.7), depend on the presence of some impurity substance such as H
+

 or

M
n+

 ions or dissolved oxygen.

18.4  (a)  The Faraday constant is just the product of the charge per electron and Avogadro's

number;  that is

F = eNA = (1.602 x 10-19 C/electron)(6.023 x 1023 electrons/mol)

= 96,488 C/mol

(b)  At 25°C (298
 
K),

RT
nF

 ln(x) = 
(8.31 J/mol-K)(298 K)

(n)(96500 C/mol)
 (2.303) log(x)

= 
0.0592

n
 log(x)

This gives units in volts since a volt is a J/C.

18.5  (a)  We are asked to compute the voltage of a nonstandard Cd-Fe electrochemical cell.  Since

iron is lower in the emf series (Table 18.1), we will begin by assuming that iron is oxidized and

cadmium is reduced, as

Fe + Cd2+ →  Fe2+ + Cd

and

∆V = (VCd
°  - VFe

° ) - 
0.0592

2
 log 

[Fe2+]

[Cd2+]

= [-0.403 V - (-0.440 V)] - 
0.0592

2
 log 

 



 

0.40

2 x 10-3

= -0.031 V
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(b)  Since the ∆V is negative, the spontaneous cell direction is just the reverse of that above, or

Fe2+ + Cd →  Fe + Cd2+

18.6  This problem calls for us to determine whether or not a voltage is generated in a Zn/Zn
2+

concentration cell, and, if so, its magnitude. Let us label the Zn cell having a 1.0 M Zn
2 +

solution as cell 1, and the other as cell 2.  Furthermore, assume that oxidation occurs within

cell 2, wherein [Zn
2
2+

] = 10
-2

 M.  Hence,

Zn2 + Zn 1
2+ →  Zn 2

2+ + Zn1

and

∆V = - 
0.0592

2
 log 

[Zn 2
2+]

[Zn 1
2+]

= - 
0.0592

2
 log  


 
10-2

1.0
 = +0.0592 V

Therefore, a voltage of 0.0592 V is generated when oxidation occurs in the cell having the

Zn
2+

 concentration of 10
-2

 M.

18.7  We are asked to calculate the concentration of Pb
2+

 ions in a copper-lead electrochemical cell.

The electrochemical reaction that occurs within this cell is just

Pb + Cu2+ →  Pb2+ + Cu

while ∆V = 0.507 V and [Cu
2+

] = 0.6 M.  Thus, Equation (18.20) is written in the form

∆V = (VCu
°  - VPb

° ) - 
0.0592

2
 log 

[Pb2+]

[Cu2+]

Solving this expression for [Pb
2+

] gives

[Pb2+] = [Cu2+] exp -  



 



(2.303) 
∆V - (VC

°
u - VP

°
b)

0.0296
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The standard potentials from Table 18.1 are VC u
°  = +0.340 V and V P b

°  =   -0.126 V.

Therefore,

[Pb2+] = (0.6 M) exp[ ]- (2.303) 
0.507 V - (0.340 V + 0.126 V)

0.0296

= 2.5 x 10-2 M

18.8  This problem asks for us to calculate the temperature for a nickel-iron electrochemical cell when

the potential between the Ni and Fe electrodes is +0.140 V.  On the basis of their relative

positions in the standard emf series (Table 18.1), assume that Fe is oxidized and Ni is

reduced.  Thus, the electrochemical reaction that occurs within this cell is just

Ni2+ + Fe →  Ni + Fe2+

Thus, Equation (18.20) is written in the form

∆V = (VNi
°  - VFe

° ) - 
RT
nF

 ln 
[Fe2+]

[Ni2+]

Solving this expression for T gives

T = - 
nF
R

 

 


 


∆V - (VNi
°  - VFe

° )

ln 
[Fe2+]

[Ni2+]

The standard potentials from Table 18.1 are VFe
°  = -0.440 V and VNi

°  = -0.250 V.  Therefore,

T = - 
(2)(96500 C/mol)

8.31 J/mol-K
 

 



 

0.140 V - (-0.250 V + 0.440 V)

ln 
 


 
0.1 M

3 x 10-3 M

= 331 K = 58°C

18.9  We are asked to modify Equation (18.19) for the case when metals M
1

 and M
2

 are alloys.  In

this case, the equation becomes
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∆V = (V2°  - V1° ) - 
RT
nF

 ln 
[M 1

n+][M2]

[M 2
n+][M1]

where [M
1

] and [M
2

] are the concentrations of metals M
1

 and M
2

 in their respective alloys.

18.10  This problem asks, for several pairs of alloys that are immersed in seawater, to predict

whether or not corrosion is possible, and if it is possible, to note which alloy will corrode.  In

order to make these predictions it is necessary to use the galvanic series, Table 18.2.  If both

of the alloys in the pair reside within the same set of brackets in this table, then galvanic

corrosion is unlikely.  However, if the two alloys do not reside within the same set of brackets,

then that alloy appearing lower in the table will experience corrosion.

(a)  For the aluminum-magnesium couple, corrosion is possible, and magnesium will corrode.

(b)  For the zinc-low carbon steel couple, corrosion is possible, and zinc will corrode.

(c)  For the brass-monel couple, corrosion is unlikely inasmuch as both alloys appear within the

same set of brackets.

(d)  For the titanium-304 stainless steel pair, the stainless steel will corrode, inasmuch as it is

below titanium in both its active and passive states.

(e)  For the cast iron-316 stainless steel couple, the cast iron will corrode since it is below

stainless steel in both active and passive states.

18.11  (a)  The following metals and alloys may be used to galvanically protect nickel in the active

state:  tin, lead, 316 and 304 stainless steels, cast iron, iron, steel, aluminum alloys, cadmium,

commercially pure aluminum, zinc, magnesium, and magnesium alloys.

(b)  Zinc and magnesium may be used to protect a copper-aluminum galvanic couple.

18.12  This problem is just an exercise in unit conversions.  The parameter K  in Equation (18.23)

must convert the units of W, ρ, A , and t, into the unit scheme for the CPR.

For CPR in mpy (mil/yr)

K = 
W(mg)(1 g/1000 mg)

ρ
 


 
g

cm3 ( )2.54 cm
in.

3
A(in.2)( )1 in.

1000 mil
t(h)( )1 day

24 h ( )1 yr
365 days

= 534.6

For CPR in mm/yr
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K = 
W(mg)(1 g/1000 mg)

ρ
 


 
g

cm3 ( )1 cm
10 mm

3
A(cm2)( )10 mm

cm

2
t(h)( )1 day

24 h ( )1 yr
365 days

= 87.6

18.13  This problem calls for us to compute the time of submersion of a steel piece.  In order to

solve this problem, we must first rearrange Equation (18.23), as

t = 
KW

ρA(CPR)

Thus,

t = 
(534)(2.6 x 106 mg)

(7.9 g/cm3)(10 in.2)(200 mpy)

= 8.8 x 104 h = 10 yr

18.14  This problem asks for us to calculate the CPR in both mpy and mm/yr for a thick steel sheet

of area 400 cm2 which experiences a weight loss of 375 g after one year.  Employment of

Equation (18.23) leads to

CPR = 
KW
ρAt

= 
(87.6)(375 g)(103 mg/g)

(7.9 g/cm3)(400 cm2)(24 h/day)(365 day/yr)(1 yr)

= 1.2 mm/yr

Also

CPR = 
(534)(375 g)(103 mg/g)

(7.9 g/cm3)(400 cm2)(1 in./2.54 cm)2(24 h/day)(365 day/yr)(1 yr)

= 46.7 mpy

18.15  (a)  We are to demonstrate that the CPR  is related to the corrosion current density, i , in

A/cm2 through the expression
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CPR = 
KAi
nρ

in which K  is a constant, A  is the atomic weight, n  is the number of electrons ionized per metal

atom, and ρ is the density of the metal.  Possibly the best way to make this demonstration is

by using a unit dimensional analysis.  The corrosion rate, r , in Equation (18.24) has the units

(SI)

r = 
i

nF
 = 

C/m2-s
(unitless)(C/mol)

 = 
mol

m2-s

The units of CPR in Equation (18.23) are length/time, or in the SI scheme, m/s.  In order to

convert the above expression to the units of m/s it is necessary to multiply r  by the atomic

weight A  and divide by the density ρ as

rA
ρ  = 

(mol/m2-s)(g/mol)

g/m3  = m/s

Thus, the CPR is proportional to r, and substituting for r from Equation (18.24) into the above

expression leads to

CPR = K"r = 
K'Ai
nFρ

in which K'  and K " are constants which will give the appropriate units for CPR.  Also, since F is

also a constant, this expression will take the form

CPR = 
KAi
nρ

in which K = K' /F.

(b)  Now we will calculate the value of K  in order to give the CPR in mpy for i in µA/cm2 (10-6

A/cm2).  It should be noted that the units of A (amperes) are C/s.  Substitution of the units

normally used into the former CPR expression above leads to

CPR = = K'
Ai

nFρ
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= K' 
(g/mol)(C/s-cm2)

(unitless)(C/mol)(g/cm3)
 = cm/s

Since we want the CPR in mpy and i is given in µA/cm2, and realizing that K  = K' /F leads to

K = ( )1
96500 C/mol  


 
10-6 C

µC ( )1 in.
2.54 cm  


 
103 mil

in.  


 
3.1536 x 107 s

yr

= 0.129

18.16  We are asked to compute the CPR  in mpy for the corrosion of Fe for a corrosion current

density of 1.15 x 10-5 A/cm2 (11.5 µA/cm2).  From Problem 18.14, the value of K  in Equation

(18.38) is 0.129, and therefore

CPR = 
KAi
nρ

= 
(0.129)(55.85 g/mol)(11.5 µA/cm2)

(2)(7.9 g/cm3)
 = 5.24 mpy

18.17  (a)  Activation polarization is the condition wherein a reaction rate is controlled by one step in

a series of steps that takes place at the slowest rate.  For corrosion, activation polarization is

possible for both oxidation and reduction reactions.  Concentration polarization occurs when a

reaction rate is limited by diffusion in a solution.  For corrosion, concentration polarization is

possible only for reduction reactions.

(b)  Activation polarization is rate controlling when the reaction rate is low and/or the

concentration of active species in the liquid solution is high.

(c)  Concentration polarization is rate controlling when the reaction rate is high and/or the

concentration of active species in the liquid solution is low.

18.18  (a)  The phenomenon of dynamic equilibrium is the state wherein oxidation and reduction

reactions are occurring at the same rate such that there is no net observable reaction.

(b)  The exchange current density is just the current density which is related to both the rates of

oxidation and reduction (which are equal) according to Equation (18.24) for the dynamic

equilibrium state.
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18.19  Concentration polarization is not normally rate controlling for oxidation reactions because

there will always be an unlimited supply of metal atoms at the corroding electrode interface.

18.20  (a)  This portion of the problem asks that we compute the rate of oxidation for Pb given that

both the oxidation and reduction reactions are controlled by activation polarization, and also

given the polarization data for both lead oxidation and hydrogen reduction.  The first thing

necessary is to establish relationships of the form of Equation (18.25) for the potentials of

both oxidation and reduction reactions.  Next we will set these expressions equal to one
another, and then solve for the value of i  which is really the corrosion current density, ic .

Finally, the corrosion rate may be calculated using Equation (18.24).  The two potential

expressions are as follows:

For hydrogen reduction

VH = V(H+/H2) + βH log 

 



 

i

ioH

And for Pb oxidation

VPb = V(Pb/Pb2+) + βPb log 

 



 

i

ioPb

Setting VH = VPb  and solving for log i (log ic) leads to

log ic = 
 


 
1

βPb - βH [ ]V(H+/H2) - V(Pb/Pb2+) - βH log ioH
 + βPb log ioPb

= [ ]1
0.12 - (-0.10)

[ ]0 - (-0.126) - (-0.10){log(1.0 x 10-8)} + (0.12){log(2 x 10-9)}

= -7.809

Or

ic = 10-7.809 = 1.55 x 10-8 A/cm2

And from Equation (18.24)

r = 
ic
nF
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= 
1.55 x 10-8 C/s-cm2

(2)(96500 C/mol)
 = 8.03 x 10-14 mol/cm2-s

(b)  Now it becomes necessary to compute the value of the corrosion potential, Vc .  This is

possible by using either of the above equations for VH or VPb  and substituting for i the value

determined above for ic .  Thus

Vc = V(H+/H2) + βH log 
 



 

ic

ioH

= 0 + (-0.10 V)log 
 



 

1.55 x 10-8 A/cm2

1.0 x 10-8 A/cm2  = -0.019 V

18.21  (a)  This portion of the problem asks that we compute the rate of oxidation for a divalent

metal M given that both the oxidation and reduction reactions are controlled by activation

polarization, and also given the polarization data for both M oxidation and hydrogen

reduction.  The first thing necessary is to establish relationships of the form of Equation

(18.25) for the potentials of both oxidation and reduction reactions.  Next we will set these

expressions equal to one another, and then solve for the value of i  which is really the
corrosion current density, ic .  Finally, the corrosion rate may be calculated using Equation

(18.24).  The two potential expressions are as follows:

For hydrogen reduction

VH = V(H+/H2) + βH log 

 



 

i

ioH

And for M oxidation

VM = V(M/M2+) + βM log 

 



 

i

ioM

Setting VH = VM and solving for log i (log ic) leads to

log ic = 
 


 
1

βM - βH [ ]V(H+/H2) - V(M/M2+) - βH log ioH
 + βM log ioM

= [ ]1
0.15 - (-0.12)

[ ]0 - (-0.47) - (-0.12){log(2 x 10-9)} + (0.15){log(5 x 10-10)}
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= -7.293

Or

ic = 10-7.293 = 5.09 x 10-8 A/cm2

And from Equation (18.24)

r = 
ic
nF

= 
5.09 x 10-8 C/s-cm2

(2)(96500 C/mol)
 = 2.64 x 10-13 mol/cm2-s

(b)  Now it becomes necessary to compute the value of the corrosion potential, Vc .  This is

possible by using either of the above equations for VH or VM and substituting for i the value

determined above for ic .  Thus

Vc = V(H+/H2) + βH log 
 



 

ic

ioH

= 0 + (-0.12 V)log 
 



 

5.09 x 10-8 A/cm2

2 x 10-9 A/cm2  = -0.169 V

18.22  This problem asks that we make a schematic plot of corrosion rate versus solution velocity.

The reduction reaction is controlled by combined activation-concentration polarization for

which the overvoltage versus logarithm current density is shown in Figure 18.26.  The

oxidation of the metal is controlled by activation polarization, such that the electrode kinetic

behavior for the combined reactions would appear schematically as shown below.
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Thus, the plot of corrosion rate versus solution velocity would be as

A

B

C

D

Solution Velocity

C
o

rr
o

si
o

n
 R

a
te

The corrosion rate initially increases with increasing solution velocity (for velocities v1, v2, and

v3), corresponding to intersections in the concentration polarization regions for the reduction

reaction.  However, for the higher solution velocities (v4 and v5), the metal oxidation line

intersects the reduction reaction curve in the linear activation polarization region, and, thus,

the reaction becomes independent of solution velocity.
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18.23  Passivity is the loss of chemical reactivity, under particular environmental conditions, of

normally active metals and alloys. Stainless steels and aluminum alloys often passivate.

18.24  The chromium in stainless steels causes a very thin and highly adherent surface coating to

form over the surface of the alloy, which protects it from further corrosion.  For plain carbon

steels, rust, instead of this adherent coating, forms.

18.25  For each of the forms of corrosion, the conditions under which it occurs, and measures that

may be taken to prevent or control it are outlined in Section 18.7.

18.26  Two beneficial uses of galvanic corrosion are corrosion prevention by means of cathodic

protection, and the dry-cell battery.

18.27  Cold-worked metals are more susceptible to corrosion than noncold-worked metals because

of the increased dislocation density for the latter.  The region in the vicinity of a dislocation that

intersects the surface is at a higher energy state, and, therefore, is more readily attacked by a

corrosive solution.

18.28  For a small anode-to-cathode area ratio, the corrosion rate will be higher than for a large ratio.

The reason for this is that for some given current flow associated with the corrosion reaction,

for a small area ratio the current density at the anode will be greater than for a large ratio.

The corrosion rate is proportional to the current density according to Equation (18.24).

18.29  For a concentration cell, corrosion occurs at that region having the lower concentration.  In

order to explain this phenomenon let us consider an electrochemical cell consisting of two

divalent metal M electrodes each of which is immersed in a solution containing a different

concentration of its M2+ ion;  let us designate the low and high concentrations of M2+ as

[ML
2+] and [MH

2 +], respectively.  Now assuming that reduction and oxidation reactions occur in

the high- and low-concentration solutions, respectively, let us determine the cell potential in

terms of the two [M2+]'s;  if this potential is positive then we have chosen the solutions in

which the reduction and oxidation reactions appropriately.

Thus, the two half-reactions in the form of Equations (18.16) are

M2
H

+ + 2e- →  M            V °
M

M →  M2
L

+ + 2e-          -V °
M
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Whereas the overall cell reaction is

M2
H

+ + M →  M + M2
L

+

From Equation (18.19), this yields a cell potential of

∆V = V °
M - V °

M - 
RT
nF

 ln 

 




 


[M2

L
+]

[M2
H

+]

= - 
RT
nF

 ln 

 




 


[M2

L
+]

[M2
H

+]

Inasmuch as [M2
L

+] < [M2
H

+] then the natural logarithm of the [M2+] ratio is negative, which

yields a positive value for ∆V.  This means that the electrochemical reaction is spontaneous

as written, or that oxidation occurs at the electrode having the lower M2+ concentration.

18.30  Equation (18.23) is not  equally valid for uniform corrosion and pitting.  The reason for this is

that, with pitting, the corrosion attack is very localized, and a pit may penetrate the entire

thickness of a piece (leading to failure) with very little material loss and a very small corrosion

penetration rate.  With uniform corrosion, the corrosion penetration rate accurately represents

the extent of corrosion damage.

18.31  (a)  Inhibitors are substances that, when added to a corrosive environment in relatively low

concentrations, decrease the environment's corrosiveness.

(b)  Possible mechanisms that account for the effectiveness of inhibitors are:  1) elimination of a

chemically active species in the solution;  2) attachment of inhibitor molecules to the corroding

surface so as to interfere with either the oxidation or reduction reaction;  and 3) the formation

of a very thin and protective coating on the corroding surface.

18.32  Descriptions of the two techniques used for galvanic protection are as follows:

1)  A sacrificial anode is electrically coupled to the metal piece to be protected, which anode is

also situated in the corrosion environment.  The sacrificial anode is a metal or alloy that is

chemically more reactive in the particular environment.  It (the anode) preferentially oxidizes,

and, upon giving up electrons to the other metal, protects it from electrochemical corrosion.
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2)  An impressed current from an external dc power source provides excess electrons to the

metallic structure to be protected.

18.33  Tin offers galvanic protection to the steel in tin cans even though it (tin) is electrochemically

less active than steel from the galvanic series.  The reason for this is that the galvanic series

represents the reactivities of metals and alloys in seawater;  however, for the food solutions

that are contained within the cans, tin is the more active metal.

18.34  For this problem we are given, for three metals, their densities, chemical formulas, and oxide

densities, and are asked to compute the Pilling-Bedworth ratios, and then specify whether or

not the oxide scales that form will be protective.  The general form of the equation used to

calculate this ratio is Equation (18.33) [or Equation (18.32)].  For zirconium, oxidation occurs

by the reaction

Zr + O2 →   ZrO2

and therefore

P-B ratio = 
AZrO2

ρZr

AZrρZrO2

= 
(123.22 g/mol)(6.51 g/cm3)

(91.22 g/mol)(5.89 g/cm3)
 = 1.49

Thus, this would probably be a protective oxide film since the P-B ratio lies between one and

two.

The oxidation reaction for Sn is just

Sn + O2 →  SnO2

and the P-B ratio is

P-B ratio = 
ASnO2

ρSn

ASnρSnO2

= 
(150.69 g/mol)(7.30 g/cm3)

(118.69 g/mol)(6.95 g/cm3)
 = 1.33
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Hence, the film would most likely be protective since the ratio lies between one and two.

Now for Bi,  the reaction for its oxidation is

2Bi + 
3
2

O2 →  Bi2O3

P-B ratio = 
ABi2O3

ρBi

(2)ABiρBi2O3

= 
(465.96 g/mol)(9.80 g/cm3)

(2)(208.98 g/mol)(8.90 g/cm3)
 = 1.23

Thus, the Bi2O3  film would probably be protective since the ratio is between one and two.

18.35  Silver does not oxidize appreciably at room temperature and in air even though, according to

Table 18.3, the oxide coating should be nonprotective because the oxidation of silver in air is

not thermodynamically favorable;  therefore, the lack of a reaction is independent of whether

or not a protective scale forms.

18.36  For this problem we are given weight gain-time data for the oxidation of Cu at an elevated

temperature.

(a)  We are first asked to determine whether the oxidation kinetics obey a parabolic, linear, or

logarithmic rate expression, which expressions are described by Equations (18.34), (18.35),

and (18.36), respectively.  One way to make this determination is by trial and error.  Let us

assume that the parabolic relationship is valid; that is from Equation (18.34)

W2 = K1t + K2

which means that we may establish three simultaneous equations using the three sets of
given W and t values, then using two combinations of two pairs of equations, solve for K1 and

K2;  if K1 and K2 have the same values for both solutions, then the kinetics are parabolic.  If

the values are not identical then the other kinetic relationships need to be explored.  Thus, the

three equations are

(0.316)2 = 0.100 = 15K1 + K2
(0.524)2 = 0.275 = 50K1 + K2
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(0.725)2 = 0.526 = 100K1 + K2

From the first two equations K 1 = 5 x 10-3 and K 2 = 0.025;  these same two values are

obtained using the last two equations.  Hence, the oxidation rate law is parabolic.

(b) Since a parabolic relationship is valid, this portion of the problem calls for us to determine W
after a total time of 450 min.  Again, using Equation (18.34) and the values of K1 and K2

W2 = K1t + K2

= (0.005)(450 min) + 0.025 = 2.28

Or W = √2.28 = 1.51 mg/cm2.

18.37  For this problem we are given weight gain-time data for the oxidation of some metal at an

elevated temperature.

(a)  We are first asked to determine whether the oxidation kinetics obey a linear, parabolic, or

logarithmic rate expression, which expressions are described by Equations (18.34), (18.35),

and (18.36), respectively.  One way to make this determination is by trial and error.  Let us

assume that the rate expression is linear, that is from Equation (18.35)

W = K3t

which means that we may establish three simultaneous equations using the three sets of
given W and t  values, then solve for K3 for each;  if K3 is the same for all three cases, then

the rate law is linear.  If the values are not the same then the other kinetic relationships need

to be explored.  Thus, the three equations are

4.66 = 20K3

11.7 = 50K3

41.1 = 175K3

In all three instances the value of K3 is about equal to 0.234, which means the oxidation rate

obeys a linear expression.

(b)  Now we are to calculate W after a time of 1000 min;  thus
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W = K3t = (0.234)(1000 min) = 234 mg/cm2

18.38  For this problem we are given weight gain-time data for the oxidation of some metal at an

elevated temperature.

(a)  We are first asked to determine whether the oxidation kinetics obey a linear, parabolic, or

logarithmic rate expression, which expressions are described by Equations (18.34), (18.35),

and (18.36), respectively.  One way to make this determination is by trial and error.  Let us

assume that the kinetic rate is parabolic, that is from Equation (18.34)

W2 = K1t + K2

which means that we may establish three simultaneous equations using the three sets of
given W and t values, then using two combinations of two pairs of equations, solve for K1 and

K 2 ;  if K 1  and K 2  have the same values for both solutions, then the weight gain-time

relationships are parabolic.  If the values are not the same then the other kinetic relationships

need to be explored.  Thus, the three equations are

(1.90)2 = 3.610 = 25K1 + K2

(3.67)2 = 13.47 = 75K1 + K2

(6.40)2 = 40.96 = 250K1 + K2

From the first two equations K1 = 0.197 and K2 = -1.32;  while from the second and third

equations K1 = 0.157 and K2 = 1.689.  Thus, a parabolic rate expression is not obeyed by

this reaction.

Let us now investigate linear kinetics in the same manner, using Equation (18.35), W =
K3t.  The three equations are thus

1.90 = 25K3

3.67 = 75K3

6.40 = 250K3

And three K3 values may be computed (one for each equation) which are 7.60 x 10-2, 4.89 x

10-2, and 2.56 x 10-2.  Since these K 3 values are all different, a linear rate law is not a

possibility, and, by process of elimination, a logarithmic expression is obeyed.
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(b)  In order to determine the value of W after 3500 min, it is first necessary that we solve for the
K4, K5, and K6 constants of Equation (18.36).  One way this may be accomplished is to use

the E-Z Solve  equation solver, with Equation (18.36) expressed in exponential form, as

K5 + K6 = 10W/K4

The following is entered into the workspace of E-Z Solve

K5 *t1 + K6 = 10^(W1/K4)

K5 *t2 + K6 = 10^(W2/K4)

K5 *t3 + K6 = 10^(W3/K4)

t1 = 25; W1 = 1.90

t2 = 75;  W2 = 3.67

t3 = 250; W3 = 6.40

After clicking the "Solve" button (calculator icon) in the menu bar, the following values for the

three constants are displayed in the data grid near the bottom of the window:

K4 = 6.50

K5 = 0.0342

K6 = 1.1055

Now solving Equation (18.36) for W at a time of 3500 min

W = K4 log ( )K5t + K6

= 6.50 log [ ](0.0342)(3500 min) + 1.1055

= 13.53 mg/cm2

18.39  During the swelling and dissolution of polymeric materials, the solute molecules diffuse to and

occupy positions among the polymer macromolecules, and thereby force the latter apart.

Increasing both the degrees of crosslinking and crystallinity will enhance a polymer's

resistance to these types of degradation since there will be a greater degree of intermolecular
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bonding between adjacent chains;  this restricts the number of solute molecules that can fit

into these locations.

Crosslinking will be more effective.  For linear polymers, the intermolecular bonds are

secondary ones (van der Waals and/or hydrogen), and relatively weak in comparison to the

strong covalent bonds associated with the crosslinks.

18.40  (a)  Three differences between the corrosion of metals and the corrosion of ceramics are:

1)  Ceramic materials are more corrosion resistant than metals in most environments.

2)  Corrosion of ceramic materials is normally just a chemical dissolution process, whereas for

metals it is usually electrochemical.

3)  Ceramics are more corrosion resistant at elevated temperatures.

(b)  Three differences between the corrosion of metals and the degradation of polymers are:

1)  Degradation of polymers is ordinarily physiochemical, whereas for metals, corrosion is

electrochemical.

2)  Degradation mechanisms for polymers are more complex than the corrosion mechanisms

for metals.

3)  More types of degradation are possible for polymers--e.g., dissolution, swelling, and bond

rupture (by means of radiation, heat, and chemical reactions).

Design Problems

18.D1  Possible methods that may be used to reduce corrosion of the heat exchanger by the brine

are as follows:

1)  Reduce the temperature of the brine;  normally, the rate of a corrosion reaction increases

with increasing temperature.

2)  Change the composition of the brine;  the corrosion rate is often quite dependent on the

composition of the corrosion environment.

3)  Remove as much dissolved oxygen as possible.  Under some circumstances, the dissolved

oxygen may form bubbles, which can lead to erosion-corrosion damage.

4)  Minimize the number of bends and/or changes in pipe contours in order to minimize

erosion-corrosion.

5)  Add inhibitors.

6)  Avoid connections between different metal alloys.
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18.D2  This question asks that we suggest appropriate materials, and if necessary, recommend

corrosion prevention measures that should be taken for several specific applications.  These

are as follows:

(a)  Laboratory bottles to contain relatively dilute solutions of nitric acid.  Probably the best

material for this application would be polytetrafluoroethylene (PTFE).  The reasons for this are:

1)  it is flexible and will not easily break if dropped;  and 2)  PTFE is resistant to this type of

acid, as noted in Table 18.4.

(b)  Barrels to contain benzene.  Polyethylene terephthalate (PET) would be suited for this

application, since it is resistant to degradation by benzene (Table 18.4), and is less expensive

than the other two materials listed in Table 18.4 (see Appendix C).

(c)  Pipe to transport hot alkaline (basic) solutions.  The best material for this application would

probably be a nickel alloy (Section 12.14).  Polymeric materials listed in Table 18.4 would not

be suitable inasmuch as the solutions are hot.

(d)  Underground tanks to store large quantities of high purity water.  The outside of the tanks

should probably be some type of low-carbon steel that is cathodically protected (Sections 18.8

and 18.9).  Inside the steel shell should be coated with an inert polymeric material;

polytetrafluoroethylene or some other fluorocarbon would probably be the material of choice

(Table 18.4).

(e)  Architectural trim for high-rise buildings.  The most likely candidate for this application would

probably be an aluminum alloy.  Aluminum and its alloys are relatively corrosion resistant in

normal atmospheres (Section 18.8), retains their lustrous appearance, and are relatively

inexpensive (Appendix C).
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CHAPTER 19

ELECTRICAL PROPERTIES

PROBLEM SOLUTIONS

19.1  This problem calls for us to compute the electrical conductivity and resistance of a silicon

specimen.

(a)  We use Equations (19.3) and (19.4) for the conductivity, as

σ = 
1
ρ = 

I l
VA

 = 
I l

Vπ( )d
2

2

= 
(0.1 A)(38 x 10-3 m)

(12.5 V)(π) 


 
5.1 x 10-3 m

2

2 = 14.9 (Ω-m)-1

(b)  The resistance, R, may be computed using Equations (19.2) and (19.4), as

R = 
l

σA

= 
50.8 x 10-3 m

[ ]14.9 (Ω-m)-1 (π) 


 
5.1 x 10-3 m

2

2 = 166.9 Ω

19.2  For this problem, given that a copper wire 100 m long must experience a voltage drop of less

than 1.5 V when a current of 2.5 A passes through it, we are to compute the minimum diameter

of the wire.  Combining Equations (19.3) and (19.4) and solving for the cross-sectional area A

leads to

A = 
I l

Vσ

From Table 19.1, for copper σ = 6.0 x 107 (Ω-m)-1.  Furthermore, inasmuch as A  = π( )d
2

2
 for a

cylindrical wire, then
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π( )d
2

2
 = 

I l
Vσ

or

d = √4I l
πVσ

= √(4)(2.5 A)(100 m)

(π)(1.5 V)[ ]6.0 x 107 (Ω-m)-1

= 1.88 x 10-3 m = 1.88 mm

19.3  This problem asks that we compute, for an aluminum wire 4 mm in diameter, the maximum

length such that the resistance will not exceed 2.5 Ω. From Table 19.1, for aluminum, σ = 3.8 x

107 (Ω-m)-1.  If d  is the diameter then, combining Equations (19.2) and (19.4) leads to

l = RσA = Rσπ( )d
2

2

= (2.5 Ω)[ ]3.8 x 107 (Ω-m)-1 (π) 


 
4 x 10-3 m

2

2
 = 1195 m

19.4  Let us demonstrate that, by appropriate substitution and algebraic manipulation, Equation

(19.5) may be made to take the form of Equation (19.1).  Now, Equation (19.5) is just

J = σE

But, by definition, J  is just the current density, the current per unit cross-sectional area, or J  =

I /A .  Also, the electric field is defined by E  = V /l .  And, substituting these expressions into

Equation (19.5) leads to

I
A

 = σ 
V
l

But, from Equations (19.2) and (19.4)

σ = 
l

RA

and
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I
A

 = [ ]l
RA [ ]V

l

Solving for V from this expression gives V = IR, which is just Equation (19.1).

19.5  (a)  In order to compute the resistance of this copper wire it is necessary to employ Equations

(19.2) and (19.4).  Solving for the resistance in terms of the conductivity,

R = 
ρl
A

 = 
l

σA

From Table 19.1, the conductivity of copper is 6.0 x 10
7

 (Ω-m)
-1

, and

R = 
l

σA
 = 

2 m

[ ]6.0 x 10
7

 (Ω-m)
-1

(π) 


 
3 x 10-3 m

2

2

= 4.7 x 10-3 Ω

(b)  If V = 0.05 V then, from Equation (19.1)

I  = 
V
R

 = 
0.05 V

4.7 x 10-3 Ω
 = 10.6 A

(c)  The current density is just

J = 
I
A

 = 
I

π( )d
2

2 = 
10.6 A

π 


 
3 x 10-3 m

2

2 = 1.5 x 106 A/m2

(d)  The electric field is just

E = 
V
l
 = 

0.05 V
2 m

 = 2.5 x 10-2 V/m

19.6  When a current arises from a flow of electrons, the conduction is termed electronic ;  for ionic

conduction , the current results from the net motion of charged ions.
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19.7  For an isolated atom, there exist discrete electron energy states (arranged into shells and

subshells);  each state may be occupied by, at most, two electrons, which must have opposite

spins.  On the other hand, an electron band structure is found for solid materials;  within each

band exist closely spaced yet discrete electron states, each of which may be occupied by, at

most, two electrons, having opposite spins.  The number of electron states in each band will

equal the total number of corresponding states contributed by all of the atoms in the solid.

19.8  This question asks that we explain the difference in electrical conductivity of metals,

semiconductors, and insulators in terms of their electron energy band structures.

For metallic materials, there are vacant electron energy states adjacent to the highest

filled state;  thus, very little energy is required to excite large numbers of electrons into

conducting states. These electrons are those that participate in the conduction process, and,

because there are so many of them, metals are good electrical conductors.

There are no empty electron states adjacent to and above filled states for

semiconductors and insulators, but rather, an energy band gap across which electrons must be

excited in order to participate in the conduction process.  Thermal excitation of electrons will

occur, and the number of electrons excited will be less than for metals, and will depend on the

band gap energy.  For semiconductors, the band gap is narrower than for insulators;

consequently, at a specific temperature more electrons will be excited for semiconductors, giving

rise to higher conductivities.

19.9  The electrical conductivity for a metallic glass will be less than for its crystalline counterpart.

The glass will have virtually no periodic atomic structure, and, as a result, electrons that are

involved in the conduction process will experience frequent and repeated scattering.  (There is

no electron scattering in a perfect crystal lattice of atoms.)

19.10  The drift velocity of a free electron is the average electron velocity in the direction of the force

imposed by an electric field.

The mobility is the proportionality constant between the drift velocity and the electric

field.  It is also a measure of the frequency of scattering events (and is inversely proportional to

the frequency of scattering).

19.11  (a)  The drift velocity of electrons in Ge may be determined using Equation (19.7).  Since the

room temperature mobility of electrons is 0.38 m
2

/V-s (Table 19.2), and the electric field is 1000

V/m (as stipulated in the problem),
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vd = µeE

= (0.38 m2/V-s)(1000 V/m) = 380 m/s

(b)  The time, t, required to traverse a given length, l, is just

t = 
l

vd
 = 

25 x 10-3 m
380 m/s

 = 6.6 x 10-5 s

19.12  The conductivity of this semiconductor is computed using Equation (19.16).  However, it first

becomes necessary to determine the electron mobility from Equation (19.7) as

µe = 
vd
E

 = 
100 m/s
500 V/m

 = 0.20 m2/V-s

Thus,
σ = n eµ e

= (3 x 1018 m-3)(1.602 x 10-19 C)(0.20 m2/V-s)

= 0.096 (Ω-m)-1

19.13  (a)  The number of free electrons per cubic meter for copper at room temperature may be

computed using Equation (19.8) as

n = 
σ

 eµ e

= 
6.0 x 107 (Ω-m)-1

(1.602 x 10-19 C)(0.0030 m2/V-s)

= 1.25 x 1029 m-3

(b)  In order to calculate the number of free electrons per copper atom, we must first determine
the number of copper atoms per cubic meter, NCu .  From Equation (4.2)

NCu = 
NAρ
ACu
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= 
(6.023 x 1023 atoms/mol)(8.94 g/cm3)(106 cm3/m3)

63.55 g/mol

= 8.47 x 1028 m-3

The number of free electrons per copper atom is just

n
N

 = 
1.25 x 1029 m-3

8.47 x 1028 m-3 = 1.48

19.14  (a)  This portion of the problem asks that we calculate, for gold, the number of free electrons

per cubic meter (n ) given that there are 1.5 free electrons per gold atom, that the electrical

conductivity is 4.3 x 107 (Ω-m)-1, and that the density (ρ A' u ) is 19.32 g/cm3.  (Note:  in this

discussion, the density of gold is represented by ρA' u  in order to avoid confusion with resistivity

which is designated by ρ.)  Since n  = 1.5N,  and N is defined in Equation (4.2), then

n = 1.5N = 1.5 
 


 
ρ A' uNA

AAu

= 1.5  



 

(19.32 g/cm3)(6.023 x 1023 atoms/mol)

196.97 g/mol

= 8.86 x 1022 cm-3 = 8.86 x 1028 m-3

(b)  Now we are asked to compute the electron mobility, µe.  Using Equation (19.8)

µe = 
σ

n e

= 
4.3 x 107 (Ω-m)-1

(8.86 x 1028 m-3)(1.602 x 10-19 C)
 = 3.03 x 10-3 m2/V-s

19.15  We want to solve for the parameter A  in Equation (19.11) using the data in Figure 19.35.

From Equation (19.11)

A = 
ρi

Ci(1 - Ci)
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However, the data plotted in Figure 19.35 is the total resistivity, ρtotal , and includes both

impurity (ρi) and thermal (ρt) contributions [Equation (19.9)].  The value of ρt  is taken as the

resistivity at Ci  = 0 in Figure 19.35, which has a value of 1.7 x 10
-8

 (Ω -m);  this must be

subtracted out.  Below are tabulated values of A  determined at C
i
 = 0.10, 0.20, and 0.30,

including other data which were used in the computations.

Ci 1 - Ci ρtotal (Ω-m) ρi (Ω-m) A (Ω-m)

0.10 0.90 3.9 x 10
-8

2.2 x 10
-8

2.44 x 10
-7

0.20 0.80 5.3 x 10
-8

3.6 x 10
-8

2.25 x 10
-7

0.30 0.70 6.15 x 10
-8

4.45 x 10
-8

2.12 x 10
-7

So, there is a slight decrease of A  with increasing C
i
.

19.16  (a)  Perhaps the easiest way to determine the values of ρo  and a in Equation (19.10) for pure

copper in Figure 19.8, is to set up two simultaneous equations and use resistivity values at two

different temperatures (labeled as 1 and 2).  Thus,

ρt1 = ρo + aT1

ρt2 = ρo + aT2

which yield

a = 
ρt1 - ρt2
T1 - T2

ρo = ρt1 - T1 


 
ρt1 - ρt2

T1 - T2

= ρt2 - T2 


 
ρt1 - ρt2

T1 - T2

Let us take T
1

 = -150°C, T
2

 = -50°C, which gives ρt1 = 0.6 x 10-8 (Ω-m), and ρt2 = 1.25 x 10-8

(Ω-m).  Therefore

a = 
[ ](0.6 x 10-8) - (1.25 x 10-8) (Ω-m)

-150°C - (-50°C)
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= 6.5 x 10-11 (Ω-m)/°C

and

ρo = (0.6 x 10-8) - (-150) 
[ ](0.6 x 10-8) - (1.25 x 10-8)

-150°C - (-50°C)

1.58 x 10-8 (Ω-m)

(b)  For this part of the problem, we want to calculate A  from the expression

ρi = ACi(1 - Ci)

In Figure 19.8, curves are plotted for three C
i
 values (0.0112, 0.0216, and 0.0332).  Let us find

A  for each of these C
i
's by taking a ρtotal  from each curve at some temperature (say 0°C) and

then subtracting out ρi  for pure copper at this same temperature (which is 1.7 x 10
-8

 Ω-m).

Below is tabulated values of A  determined from these three C
i
 values, and other data that were

used in the computations.

Ci 1 - Ci ρtotal (Ω-m) ρi (Ω-m) A (Ω-m)

0.0112 0.989 3.0 x 10
-8

1.3 x 10
-8

1.17 x 10
-6

0.0216 0.978 4.2 x 10
-8

2.5 x 10
-8

1.18 x 10
-6

0.0332 0.967 5.5 x 10
-8

3.8 x 10
-8

1.18 x 10
-6

The average of these three A  values is 1.18 x 10
-6

 (Ω-m).

(c)  We use the results of parts (a) and (b) to estimate the electrical resistivity of copper

containing 1.75 at% Ni at 100°C.  The total resistivity is just

ρtotal = ρt + ρi

= (ρo + aT) + ACi(1 - Ci)

= [ ]1.58 x 10-8 (Ω-m) + (6.5 x 10-11 (Ω-m)/°C)(100°C)

+ [ ](1.18 x 10
-6

 (Ω-m))(0.0175)(1 - 0.0175)

= 4.26 x 10-8 (Ω-m)
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19.17  We are asked to determine the electrical conductivity of a Cu-Ni alloy that has a yield strength

of 125 MPa (18,000 psi).  From Figure 7.16(b), the composition of an alloy having this yield

strength is about 20 wt% Ni.  For this composition, the resistivity is about 27 x 10-8 Ω-m (Figure

19.9).  And since the conductivity is the reciprocal of the resistivity, Equation (19.4), we have

σ = 
1
ρ = 

1

27 x 10-8 Ω-m
 = 3.70 x 106 (Ω-m)-1

19.18  This problem asks for us to compute the room-temperature conductivity of a two-phase Cu-Sn

alloy.  It is first necessary for us to determine the volume fractions of the α  and ε phases, after

which the resistivity (and subsequently, the conductivity) may be calculated using Equation

(19.12).  Weight fractions of the two phases are first calculated using the phase diagram

information provided in the problem.

We might represent the phase diagram near room temperature as shown below.

Applying the lever rule to this situation

Wα = 
Cε - Co
Cε - Cα

 = 
37 - 8
37 - 0

 = 0.784

Wε = 
Co - Cα
Cε - Cα

 = 
8 - 0

37 - 0
 = 0.216
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We must now convert these mass fractions into volume fractions using the phase densities

given in the problem.  (Note:  in the following expressions, density is represented by ρ' in order

to avoid confusion with resistivity which is designated by ρ.)  Utilization of Equations (9.6a) and

(9.6b) leads to

Vα  = 

Wα
ρα'

Wα
ρα'

 + 
Wε
ρε'

= 

0.784

8.94 g/cm3

0.784

8.94 g/cm3 + 
0.216

8.25 g/cm3

= 0.770

Vε = 

Wε
ρε'

Wα
ρα'

 + 
Wε
ρε'

= 

0.216

8.25 g/cm3

0.784

8.94 g/cm3 + 
0.216

8.25 g/cm3

= 0.230

Now, using Equation (19.12)

ρ = ραVα + ρεVε

= (1.88 x 10-8 Ω-m)(0.770) + (5.32 x 10-7 Ω-m)(0.230)

= 1.368 x 10-7 Ω-m

Finally, for the conductivity
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σ = 
1
ρ = 

1

1.368 x 10-7 Ω-m
 = 7.31 x 106 (Ω-m)-1

19.19  The (a) and (b) portions of the problem ask that we make  schematic plots on the same graph

for the electrical resistivity versus composition for lead-tin alloys at both room temperature and

150°C;  such a graph is shown below.

Composition (wt% Sn)

E
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ct
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Room Temperature

150°C

(c)  Upon consultation of the Pb-Sn phase diagram (Figure 9.7) we note upon extrapolation of

the two solvus lines to at room temperature (e.g., 20°C), that the single phase α  phase solid

solution exists between pure lead and a composition of about 2 wt% of Sn-98 wt% Pb.  In

addition, the composition range over which the β phase is between approximately 99 wt% Sn-1

wt% Pb and pure tin.  Within both of these composition regions the resistivity increases in

accordance with Equation (19.11);  also, in the above plot, the resistivity of pure Pb is

represented (schematically) as being greater than that for pure Sn, per the problem statement.

Furthermore, for compositions between these extremes, both α  and β phases coexist,

and alloy resistivity will be a function of the resisitivities the individual phases and their volume

fractions, as described by Equation (19.12).  Also, mass fractions of the α  and β phases within

the two-phase region of Figure 9.7 change linearly with changing composition (according to the

lever rule).  There is a reasonable disparity between the densities of Pb and Sn (11.35 g/cm3

versus 7.3 g/cm3).  Thus, according to Equation (9.6) phase volume fractions will not exactly

equal  mass fractions, which means that the resistivity will not exactly vary linearly with

composition.  In the above plot, the curve in this region has been depicted as being linear for

the sake of convenience.
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At 150°C, the curve has the same general shape, and is shifted to significantly higher

resistivities inasmuch as resistivity increases with rising temperature [Equation (19.10) and

Figure 19.8].  In addition, from Figure 9.7, at 150°C the solubility of Sn in Pb increases to

approximately 10 wt% Sn--i.e., the α  phase field is wider and the increase of resistivity due to

the solid solution effect extends over a greater composition range, which is also noted in the

figure.  The resistivity-temperature behavior is similar on the tin-rich side, where, at 150°C, the β

phase field extends to approximately 2 wt% Pb (98 wt% Sn).  And, as with the room

temperature case, for compositions within the α  + β two-phase region, the plot is approximately

linear, extending between resistivity values found at the maximum solubilities of the two phases.

19.20  We are asked to select which of several metals may be used for a 2 mm diameter wire to

carry 10 A, and have a voltage drop less than 0.03 V per foot (300 mm).  Using Equations

(19.3) and (19.4), let us determine the minimum conductivity required, and then select from

Table 19.1, those metals that have conductivities greater than this value.  The minimum

conductivity is just

σ = 
I l

VA
 = 

I l

Vπ( )d
2

2

= 
(10 A)(300 x 10-3 m)

(0.03 V)(π) 


 
2 x 10-3 m

2

2 = 3.2 x 107 (Ω-m)-1

Thus, from Table 19.1, only aluminum, gold, copper, and silver are candidates.

19.21  (a)  In order to determine the number of free electrons and holes in intrinsic Ge at room

temperature, we must use Equation (19.15) in conjunction with Table 19.2.  Thus,

n = p = 
σ

 e (µe + µh)

= 
2.2 (Ω-m)-1

(1.602 x 10-19 C)(0.38 + 0.18) m2/V-s

= 2.45 x 1019 electrons/m3 = 2.45 x 1019 holes/m3
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(b)  The number of atoms per cubic meter for Ge and Si (N
Ge

 and N
Si

, respectively) may be

determined from their densities (ρGe'  and ρSi' ) and atomic weights (A
Ge

 and A
Si

) as

NGe = 
NAρGe'

AGe

= 
(6.023 x 1023 atoms/mol)(5.32 g/cm3)(106 cm3/m3)

72.59 g/mol

= 4.41 x 1028 atoms/m3

And

NSi = 
NAρSi'

ASi

= 
(6.023 x 1023 atoms/mol)(2.33 g/cm3)(106 cm3/m3)

28.09 g/mol

= 5.00 x 1028 atoms/m3

Finally, the ratio of the number of free electrons per atom is calculated by dividing n  by N.  For

Ge

nGe
NGe

 = 
2.45 x 1019 electrons/m3

4.41 x 1028 atoms/m3

= 5.6 x 10-10 electron/atom

For Si (nSi = 1.33 x 1016, Example Problem 19.1)

nSi
NSi

 = 
1.33 x 1016 electrons/m3

5.00 x 1028 atoms/m3

= 2.7 x 10-13 electron/atom

(c)  The difference is due to the magnitudes of the band gap energies (Table 19.2).  The band

gap energy at room temperature for Si (1.11 eV) is larger than for Ge (0.67 eV), and,
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consequently, the probability of excitation across the band gap for a valence electron is much

smaller for Si.

19.22  This problem asks that we determine the band gap energy for Si from Figure 19.16 realizing
that the slope of the linear intrinsic region is equal to -Eg /2k ;  that is according to Equation

(19.20)

Eg = -2k 

 



 

∆ ln p

∆( )1
T

 = -2k 

 





 



ln p1 - ln p2

1
T1

 - 
1

T2

Taking our two ln p values as ln p1 = 58 and ln p1 = 48, their corresponding 1/T values are 
1

T1
 =

0.00070 and 
1

T2
 = 0.0023, respectively.  Therefore

Eg = -(2)(8.62 x 10-5 eV/atom-K)[ ]58 - 48
 0.00070 - 0.0023

= 1.08 eV

This value compares favorably with 1.11 eV given in Table 19.2.

19.23  These semiconductor terms are defined in the Glossary.  Examples are as follows:  intrinsic--

high purity (undoped) Si, GaAs, CdS, etc.; extrinsic--P-doped Ge, B-doped Si, S-doped GaP,

etc.;  compound--GaAs, InP, CdS, etc.;  elemental--Ge and Si.

19.24  Yes, compound semiconductors can exhibit intrinsic behavior.  They will be intrinsic even

though they are composed of two different elements as long as the electrical behavior is not

influenced by the presence of other elements.

19.25  This problem calls for us to decide for each of several pairs of semiconductors, which will have

the smaller band gap energy and then cite reasons for the choice.

(a)  Cadmium selenide will have a smaller band gap energy than zinc sulfide.  Both are II-VI

compounds, and Cd and Se are both lower vertically in the periodic table (Figure 2.6) than Zn
and S.  In moving from top to bottom down the periodic table, Eg  decreases.

(b)  Silicon will have a smaller band gap energy than diamond since Si is lower in column IVA

of the periodic table than is C.
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(c)  Zinc telluride will have a smaller band gap energy that aluminum oxide.  There is a greater

disparity between the electronegativities for aluminum and oxygen [1.5 versus 3.5 (Figure 2.7)]

than for zinc and tellurium (1.6 and 2.1).  For binary compounds, the larger the difference

between the electronegativities of the elements, the greater the band gap energy.

(d)  Indium antimonide will have a smaller band gap energy than zinc selenide.  These

materials are III-V and II-VI compounds, respectively;  Thus, in the periodic table, In and Sb are

closer together horizontally than are Zn and Se.  Furthermore, both In and Sb reside below Zn

and Se in the periodic table.

(e)  Gallium arsenide will have a smaller band gap energy than aluminum phosphide.  Both

are III-V compounds, and Ga and As are both lower vertically in the periodic table than Al and

P.

19.26  The explanations called for in this problem are found in Section 19.11.

19.27  (a)  No hole is generated by an electron excitation involving a donor impurity atom because

the excitation comes from a level within the band gap, and thus, no missing electron is created

from the normally filled valence band.

(b)  No free electron is generated by an electron excitation involving an acceptor impurity atom

because the electron is excited from the valence band into the impurity level within the band

gap;  no free electron is introduced into the conduction band.

19.28  Nitrogen will act as a donor in Si.  Since it (N) is from group VA of the periodic table (Figure

2.6), an N atom has one more valence electron than a Si atom.

Boron will act as an acceptor in Ge.  Since it (B) is from group IIIA of the periodic table, a

B atom has one less valence electron than a Ge atom.

Zinc will act as an acceptor in GaAs.  Since Zn is from group IIB of the periodic table, it

will substitute for Ga;  furthermore, a Zn atom has one less valence electron than a Ga atom.

Sulfur will act as a donor in InSb.  Since S is from group VIA of the periodic table, it will

substitute for Sb;  also, an S atom has one more valence electron than an Sb atom.

Indium will act as a donor in CdS.  Since In is from group IIIA of the periodic table, it will

substitute for Cd;  and, an In atom has one more valence electron than a Cd atom.

Arsenic will act as an acceptor in ZnTe.  Since As is from group VA of the periodic table,

it will substitute for Te;  furthermore, an As atom has one less valence electron than a Te atom.

19.29  (a)  For an intrinsic semiconductor the Fermi energy is located in the vicinity of the center of

the band gap.

(b)  For an n-type semiconductor the Fermi energy is located in the vicinity of the donor impurity

level.
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(c)  Below is shown a schematic plot of Fermi energy versus temperature for an n - type

semiconductor.

Conduction Band

Valence Band

Eg

Temperature

E
n

e
rg

y

E
f

At low temperatures, the material is extrinsic and the Fermi energy is located near the top of the

band gap, in the vicinity of the donor level.  With increasing temperature, the material eventually

becomes intrinsic, and the Fermi energy resides near the center of the band gap.

19.30  (a)  In this problem, for a Si specimen, we are given p  and σ, while µh  and µe are included in

Table 19.2.  In order to solve for n  we must use Equation (19.13), which, after rearrangement,

leads to

n = 
σ - p eµ h

 eµ e

= 
103 (Ω-m)-1 - (1.0 x 1023 m-3)(1.602 x 10-19 C)(0.05 m2/V-s)

(1.602 x 10-19 C)(0.14 m2/V-s)

= 8.9 x 1021 m-3

(b)  This material is p-type extrinsic since p (1.0 x 10
23

 m
-3

) is greater than n (8.9 x 10
21

 m
-3

).

19.31  Using the data in Table 19.2 we are asked to compute the electron and hole concentrations

in intrinsic InSb at room temperature.  Since the conductivity and both electron and hole

mobilities are provided in the table, all we need do is solve for n  and p  using Equation (19.15).

Thus,
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n = p = 
σ

 e (µe + µh)

= 
2 x 104 (Ω-m)-1

(1.602 x 10-19 C)(7.7 + 0.07) m2/V-s

= 1.61 x 1022 m-3

19.32  (a)  This germanium material to which has been added 5 x 10
22

 m
-3

 Sb atoms is n-type

since Sb is a donor in Ge.  (Antimony is from group VA of the periodic table--Ge is from group

IVA.)

(b)  Since this material is n -type extrinsic, Equation (19.16) is valid.  Furthermore, each Sb will

donate a single electron, or the electron concentration is equal to the Sb concentration since all

of the Sb atoms are ionized at room temperature;  that is n  = 5 x 10
22

 m
-3

, and,

σ = n eµ e

= (5 x 1022 m-3)(1.602 x 10-19 C)(0.1 m2/V-s)

= 800 (Ω-m)-1

19.33  In order to solve for the electron and hole mobilities for InP, we must write conductivity

expressions for the two materials, of the form of Equation (19.13)--i.e.,

σ = n eµ e + p eµ h

For the intrinsic material

2.5 x 10-6 (Ω-m)-1 = (3.0 x 1013 m-3)(1.602 x 10-19 C)µe
+ (3 x 1013 m-3)(1.602 x 10-19 C)µh

which reduces to
0.52 = µe + µh

Whereas, for the extrinsic InP
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3.6 x 10-5 (Ω-m)-1 = (4.5 x 1014 m-3)(1.602 x 10-19 C)µe
+ (2.0 x 1012 m-3)(1.602 x 10-19 C)µh

which may be simplified to

112.4  = 225µe + µh

Thus, we have two independent expressions with two unknown mobilities. Solving for them, we

get µe = 0.50 m2/V-s and µh  = 0.02 m2/V-s.

19.34  This question asks that we compare and then explain the difference in the temperature

dependence of the electrical conductivity for metals and intrinsic semiconductors.  For a pure

metal, this temperature dependence is just

σ = 
1

ρo + aT

[This expression comes from Equations (19.4) and (19.10).]  That is, the electrical conductivity

decreases with increasing temperature.

By way of contrast, for an intrinsic semiconductor [Equation (19.18)]

ln σ ≅  C - 
Eg
2kT

Or, with rising temperature, the conductivity increases.

The temperature behavior for metals is best explained by consulting Equation (19.8)

σ = n eµ e

As the temperature rises, n will remain virtually constant, whereas the mobility (µe) will decrease,

because the thermal scattering of free electrons will become more efficient.  Since |e | is

independent of temperature, the net result will be diminishment in the magnitude of σ.

For an intrinsic semiconductor, Equation (19.15) describes the conductivity;  i.e.,

σ = n e (µe + µh) = p e (µe + µh)
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Both n  and p  will increase with rising temperature, rather dramatically, since more thermal

energy becomes available for valence band-conduction band electron excitations.  The
magnitudes of µe and µh  will diminish somewhat with increasing temperature (because of the

thermal scattering of electrons and holes), which effect will be overwhelmed by the increase in n

and p .  The net result is that σ increases with temperature.

19.35  In order to estimate the electrical conductivity of intrinsic GaAs at 150°C, we must employ

Equation (19.18).  The first thing necessary is, using the conductivity and band gap at room

temperature, to determine the value of the constant C  in this expression;  this is done as

follows:

C = ln σ + 
Eg
2kT

= ln[ ]10-6 (Ω-m)-1  + 
1.42 eV

(2)(8.62 x 10-5 eV/atom-K)(298 K)

= 13.82

Now, at 150°C

ln σ = C - 
Eg
2kT

= 13.82 - 
1.42 eV

(2)(8.62 x 10-5 eV/atom-K)(423 K)

= -5.65

Therefore,

σ = e-5.65 = 3.5 x 10-3 (Ω-m)-1

19.36  The factor 2 in Equation (19.19) takes into account the creation of two charge carriers (an

electron and a hole) for each valence-band-to-conduction-band intrinsic excitation;  both charge

carriers may participate in the conduction process.

19.37  Using the data in Table 19.2 we are asked to estimate the temperature at which intrinsic

GaAs is 4 x 10-4 (Ω-m)-1.  Realizing that the conductivity value for GaAs given in the table [10-6

(Ω-m)-1] is at room temperature (298 K), all we need do is solve for the value of C in Equation
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(19.18) using the value of Eg  also provided in the table (1.42 eV), and then calculate the

temperature at which σ = 4 x 10-4 (Ω-m)-1 using the same equation.  Thus, using the room-

temperature data

C = ln σ + 
Eg
2kT

= ln[ ]10-6 (Ω-m)-1  + 
1.42 eV

(2)(8.62 x 10-5 eV/atom-K)(298 K)

= 13.82

Now solving for the new temperature, T

T = 
Eg

2k(C - ln σ)

= 
1.42 eV

(2)(8.62 x 10-5 eV/atom-K)[ ]13.82 - ln{ }4 x 10-4 (Ω-m)-1

= 380 K

19.38  For this problem, we are given conductivity values at two different temperatures for an intrinsic

semiconductor, and are then asked to determine its band gap energy.  It is possible, using
Equation (19.18), to set up two independent equations with C and E

g
 as unknowns.  At 20°C

ln σ = C - 
Eg
2kT

ln [1.0 (Ω-m)-1]  = C - 
Eg

(2)(8.62 x 10-5 eV/atom-K)(293 K)

or
C = 19.80 Eg

At 373
 
K
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ln [500 (Ω-m)-1] = C - 
Eg

(2)(8.62 x 10-5 eV/atom-K)(373 K)

6.21 = C - 15.55 Eg

From these two expressions

Eg = 1.46 eV

19.39  For this problem we are given the intrinsic electrical conductivities of a semiconductor at two

temperatures.

(a)  This portion of the problem asks that we determine the band gap energy for this material.
We need to use Equation (19.18) for which there are two unknowns--viz. Eg  and C.  Thus we

may set up two simultaneous equations of the form

ln σ1 = C - 
Eg

2kT1

ln σ2 = C - 
Eg

2kT2

Solving simultaneously for Eg leads to

Eg = -2k 

 





 



ln σ1 - ln σ2

1
T1

 - 
1

T2

Using the data provided, and taking T1 and T2 to be 450°C and 550°C, respectively

Eg = -(2)(8.62 x 10-5) 

 


 


ln(0.12) - ln(2.25)
1

450
 - 

1
550

 = 1.25 eV

(b)  Now we are asked to compute σ at 300 K.  This requires that we next determine the value

of the constant C.  Using the 450 K data and Equation (19.18)

C = ln σ + 
Eg
2kT
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= ln[ ]0.12 (Ω-m)-1  + 
1.25 eV

(2)(8.62 x 10-5 eV/atom-K)(450 K)

= 14.00

Hence, at 300 K

ln σ = C - 
Eg
2kT

= 14.00 - 
1.25 eV

(2)(8.62 x 10-5 eV/atom-K)(300 K)

= -10.169

and

σ = e-10.169 = 3.84 x 10-5 (Ω-m)-1

19.40  (a)  This portion of the problem asks for us to assume that electron and hole mobilities are

temperature-dependent, and proportional to T -3/2 for temperature in K, and then to compute

the electrical conductivity of intrinsic germanium at 150°C, and compare this value with that

obtained in Example Problem 19.3, which did not consider this temperature dependence.  It first

becomes necessary to solve for C"  in Equation (19.39b) using the room-temperature (298 K)

conductivity [2.2 (Ω-m)-1], which is accomplished as follows:

ln C" = ln σ + 
3
2

 ln T + 
Eg
2kT

= ln (2.2) + 
3
2

 ln (298) + 
0.67 eV

(2)(8.62 x 10-5 eV/K)(298 K)

= 22.38

Now, again using Equation (19.39b) we are able to compute the conductivity  at 423 K

ln σ = ln C" - 
3
2

 ln T - 
Eg
2kT
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= 22.38 - 
3
2

 ln (423 K) - 
0.67 eV

(2)(8.62 x 10-5 eV/K)(423 K)

= 4.12

which leads to a value of 61.4 (Ω-m)-1;  this is only a little over more than half of the value

obtained in Example Problem 19.3 [103.8 (Ω-m)-1].

(b)  We are now to determine the number of electrons and holes per cubic meter in intrinsic Ge,
again assuming the T- 3/2 dependence of µh  and µe.  For this intrinsic material, the conductivity

is a function of electron and hole concentrations according to Equation (19.15).  Thus, in order

to compute n  and p  (which are equal to one another), it becomes necessary to determine

values for electron and hole mobilities at 150°C (423 K).  Therefore,

µe = AT -3/2

and

µh = BT -3/2

Now, it is possible to solve for the temperature-independent A  and B  constants using the room-

temperature mobilities given in Table 19.2 (i.e., µe = 0.38 m2/V-s and µh  = 0.18 m2/V-s).  Thus,

A = 
µe

T-3/2

=
0.38 m2/V-s
(298 K)-3/2  = 1.955 x 103

B = 
µh

T-3/2

=
0.18 m2/V-s
(298 K)-3/2  = 0.926 x 103

Consequently, at 150°C (423 K)

µe = AT-3/2
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= (1.955 x 103)(423 K)-3/2 = 0.225 m2/V-s

µh = BT-3/2

= (0.926 x 103)(423 K)-3/2 = 0.106 m2/V-s

Now, from Equation (19.15) we may solve for n and p as

n = p = 
σ

|e| (µe + µh)

= 
61.4 (Ω-m)-1

(1.6 x 10-19C)(0.225 m2/V-s + 0.106 m2/V-s)

= 1.16 x 1021 electrons/m3 = 1.16 x 1021 holes/m3

19.41  This problem asks that we estimate the temperature at which GaAs has an electrical

conductivity of 3.7 x 10-3 (Ω -m)-1 assuming that the conductivity has a temperature

dependence as shown in Equation (19.39a).  From the room temperature (298 K) conductivity

[10-6 (Ω-m)-1] and band gap energy (1.42 eV) of Table 19.2 we determine the value of C "

[Equation (19.39b)] as

ln C" = ln σ + 
3
2

 ln T + 
Eg
2kT

= ln [ ]10-6 (Ω-m)-1  + 
3
2

 ln (298 K) + 
1.42 eV

(2)(8.62 x 10-5 eV/K)(298 K)

= 22.37

Now we substitute this value into Equation (19.39b)  in order to determine the value of T for

which σ = 3.7 x 10-3 (Ω-m)-1:

ln σ = ln C" - 
3
2

 ln T - 
Eg
2kT
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ln [3.7 x 10-3 (Ω-m)-1] = 22.37 - 
3
2

 ln T - 
1.42 eV

(2)(8.62 x 10-5 eV/K)T

This equation may be solved for T using the E-Z Solve  equation solver.  The following text is

entered into the workspace

ln(3.7*10^-3) = 22.37 - 1.5*ln(T) - 1.42/(2*8.62*10^-5*T)

And when the "Solve new run" button in the toolbar is clicked, the value of T = 437 appears in

the data grid.  This value is the temperature in K which corresponds to 164°C.

19.42  For a p -type extrinsic semiconductor, we are called upon to provide an expression for the

dependence of p  on the position of the acceptor level.  The equation would be similar to
Equation (19.19) except instead of Eg  we would use the magnitude of the energy this level is

above the top of the valence band (which we will denote Ea);  furthermore, there will be no

factor of 2 in the denominator since only a single charge carrier is generated for each excitation.

The equation is thus

ln p = C" - 
Ea
kT

where C"  is a temperature-independent constant.

19.43  We are asked in this problem to determine the electrical conductivity for the nonstoichiometric

Fe(1 - x)O, given x  = 0.060 and that the hole mobility is 1.0 x 10-5 m2/V-s.  It is first necessary

that we compute the number of vacancies per cubic meter for this material.  For this

determination let us use as our basis 10 unit cells.  For the sodium chloride crystal structure

there are four cations and four anions per unit cell.  Thus, in ten unit cells of FeO there will

normally be forty O2- and forty Fe2+ ions.  However, when x  = 0.06, (0.06)(40) = 2.4 of the

Fe2+ sites will be vacant.  (Furthermore, there will be 4.8 Fe3+ ions in these ten unit cells

inasmuch as two Fe3+ ions are created for every vacancy).  Therefore, each unit cell will, on the

average contain 0.24 vacancies.  Now, the number of vacancies per cubic meter is just the

number of vacancies per unit cell divided by the unit cell volume;  this volume is just the unit cell

edge length (0.437 nm) cubed.  Thus

# vacancies

m3  = 
0.24 vacancies/unit cell

(0.437 x 10-9 m)3
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= 2.88 x 1027 vacancies/m3

Inasmuch as it is assumed that the vacancies are saturated, the number of holes (p ) is also

2.88 x 1027 m-3.  It is now possible, using Equation (19.17), to compute the electrical

conductivity of this material:

σ = p|e|µh

= (2.88 x 1027 m-3)(1.602 x 10-19 C)(1.0 x 10-5 m2/V-s) = 4600 ( Ω-m)-1

19.44  (a) This portion of the problem calls for us to determine the electron mobility for some

hypothetical metal having an electrical resistivity of 4 x 10-8 (Ω-m), given that the specimen

thickness is 25 mm, and that when I x  = 30 A and B z = 0.75 tesla a VH  of -1.26 x 10-7 V is

produced.  It is first necessary to convert resistivity to conductivity (Equation 19.4).  Thus

σ = 
1
ρ = 

1

4 x 10-8 (Ω-m)
 = 2.5 x 107 (Ω-m)-1

The electron mobility may be determined using Equation (19.23b);  and upon incorporation of

Equation (19.21), we have

µe = |RH|σ

= 
|VH|dσ

IxBz

= 
(|-1.26 x 10-7 V|)(25 x 10-3 m)[2.5 x 107 (Ω-m)-1]

(30 A)(0.75 tesla)

= 0.0035 m2/V-s

(b)  Now we are to calculate the number of free electrons per cubic meter.  From Equation (19.8)

we have

n = 
σ

|e|µe
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= 
2.5 x 107 (Ω-m)-1

(1.602 x 10-19 C)(0.0035 m2/V-s)

= 4.46 x 1028 m-3

19.45  In this problem we are asked to determine the magnetic field required to produce a Hall

voltage of -1.0 x 10-7 V, given that σ = 1.5 x 107 (Ω-m)-1, µe = 0.0020 m2/V-s, I x  = 45 A, and

d  = 35 mm.  Combining Equations (19.21) and (19.23b), and after solving for Bz, we get

Bz = 
|VH|σd

Ixµe

= 
(|-1.0 x 10-7 V|)[1.5 x 107 (Ω-m)-1](35 x 10-3 m)

(45 A)(0.0020 m2/V-s)

= 0.58 tesla

19.46  The explanations called for are found in Section 19.14, on page 631.

19.47  The energy generated by the electron-hole annihilation reaction, Equation (19.24), is

dissipated as heat.

19.48  In an electronic circuit, a transistor may be used to 1) amplify an electrical signal, and 2) act

as a switching device in computers.

19.49  If the temperature of a p-n  junction rectifier or a junction transistor is raised high enough, the

semiconducting materials will become intrinsic and the device will become inoperative.

Furthermore, diffusion of doping species from a p  to an n  region and vice versa may occur,

which would also lead to performance problems.

19.50  The differences in operation and application for junction transistors and MOSFETs are

described in Section 19.14, on pages 633 through 634.

19.51  For this problem, we are given, for FeO, the activation energy (102,000 J/mol) and

preexponential (7.3 x 10-8 m2/s) for the diffusion coefficient of Fe2+ and are asked to compute

the mobility for a Fe2+ ion at 1273 K.  The mobility, µFe2+, may be computed using Equation
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(19.26);  however, this expression also includes the diffusion coefficient DF e2+ , which is

determined using Equation (5.8) as

DFe2+ = Do exp  


 


- 
Qd
RT

= (7.3 x 10-8 m2/s) exp[ ]- 
102000 J/mol

(8.31 J/mol-K)(1273)

= 4.74 x 10-12 m2/s

Now solving for µFe2+ yields

µFe2+ = 
nFeeDFe2+

kT

= 
(2)(1.602 x 10-19 C/atom)(4.74 x 10-12 m2/s)

(1.38 x 10-23 J/atom-K)(1273 K)

= 8.64 x 10-11 m2/V-s

19.52  We want to compute the plate spacing of a parallel-plate capacitor as the dielectric constant

is increased form 2.5 to 4.0, while maintaining the capacitance constant.  Combining Equations

(19.29) and (19.30) yields

C = 
εrεoA

l

Now, let us use the subscripts 1 and 2 to denote the initial and final states, respectively.  Since
C

1
 = C

2
, then

εr1εoA

l1
 = 

εr2εoA

l2

And, solving for l2

l2 = 
εr2l1
εr1

 = 
(4.0)(1 mm)

2.5
 = 1.6 mm
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19.53  This problem asks for us to ascertain which of the materials listed in Table 19.4 are

candidates for a parallel-plate capacitor which has dimensions of 100 mm by 25 mm, a plate

separation of 3 mm so as to have a minimum capacitance of 3.8 x 10-11 F, when an ac

potential of 500 V is applied at 1 MHz.  Upon combining Equations (19.29) and (19.30) and
solving for the dielectric constant εr we get

εr = 
lC

εoA

= 
(3 x 10-3 m)(3.8 x 10-11 F)

(8.85 x 10-12 F/m)(100 x 10-3 m)(25 x 10-3 m)

= 5.15

Thus, the minimum value of εr  to achieve the desired capacitance is 5.15 at 1 MHz.  Of those

materials listed in the table, titanate ceramics, mica, steatite, soda-lime glass, and porcelain are

candidates.

19.54  For this problem we are given, for a parallel-plate capacitor, its area (2500 mm2), the plate
separation (2 mm), and that a material having an εr of 4.0 is positioned between the plates.

(a)  We are first asked to compute the capacitance.  Combining Equations (19.29) and (19.30),

and solving for C yields

C = 
εrεoA

l

= 
(4.0)(8.85 x 10-12 F/m)(2500 mm2)(1 m2/106 mm2)

2 x 10-3 m

= 4.43 x 10-11 F = 44.3 pF

(b)  Now we are asked to compute the electric field that must be applied in order that 8 x 10-9 C

be stored on each plate.  First we need to solve for V in Equation (19.27) as

V = 
Q
C

 = 
8 x 10-9 C

4.43 x 10-11 F
 = 181 V

The electric field E may now be determined using Equation (19.6);  thus
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E = 
V
l
 = 

181 V

2 x 10-3 m
 = 9.1 x 104 V/m

19.55  This explanation is found in Section 19.18 on pages 641 through 642.

19.56  Shown below are the relative positions of Na
+

 and Cl
-
 ions, without and with an electric field

present.

d d + ∆d

Na
+

Cl
-

Na
+

Cl
-

E = 0 E > 0

Now,

d = rNa+ + rCl- = 0.102 nm + 0.181 nm = 0.283 nm

and

∆d = 0.05 d = (0.05)(0.283 nm) = 0.0142 nm = 1.42 x 10-11 m

From Equation (19.31), the dipole moment, p , is just

p = q∆d

= (1.602 x 10-19 C)(1.42 x 10-11 m)

= 2.26 x 10-30 C-m

19.57  (a)  In order to solve for the dielectric constant in this problem, we must employ Equation
(19.35), in which the polarization and the electric field are given.  Solving for εr  from this

expression gives
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εr = 
P

εoE
 + 1

= 
1.0 x 10-6 C/m2

(8.85 x 10-12 F/m)(5 x 104 V/m)
 + 1

= 3.26

(b)  The dielectric displacement may be determined using Equation (19.34), as

D = εoE + P

= (8.85 x 10-12 F/m)(5 x 104 V/m) + 1.0 x 10-6 C/m2

= 1.44 x 10-6 C/m2

19.58  (a)  We want to solve for the voltage when Q = 3.5 x 10
-11

 C, A  = 160 mm
2

, l = 3.5 mm, and
εr = 5.0.  Combining Equations (19.27), (19.29), and (19.30) yields

Q
V

 = εrεo 
A
l

And, solving for V

V = 
Ql

εrεoA

= 
(3.5 x 10-11 C)(3.5 x 10-3 m)

(5.0)(8.85 x 10-12 F/m)(160 mm2)(1 m2/106 mm2)

= 17.3 V

(b)  For this same capacitor, if a vacuum is used

V = 
Ql

εoA

= 
(3.5 x 10-11 C)(3.5 x 10-3 m)

(8.85 x 10-12 F/m)(160 x 10-6 m2)
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= 86.5 V

(c)  The capacitance for part (a) is just

C = 
Q
V

 = 
3.5 x 10-11 C

17.3 V
 = 2.0 x 10-12 F

For part (b)

C = 
Q
V

 = 
3.5 x 10-11 C

86.5 V
 = 4.0 x 10-13 F

(d)  The dielectric displacement may be computed by combining Equations (19.34), (19.35), and

(19.6), as

D = εoE + εo(εr - 1)E = εoεrE = 
εoεrV

l

= 
(8.85 x 10-12 F/m)(5.0)(17.3 V)

3.5 x 10-3 m

= 2.2 x 10-7 C/m2

(e)  The polarization is determined using Equations (19.35) and (19.6) as

P = εo(εr - 1) 
V
l

= 
(8.85 x 10-12 F/m)(5.0 - 1)(17.3 V)

3.5 x 10-3 m

= 1.75 x 10-7 C/m2

19.59  (a)  For electronic polarization, the electric field causes a net displacement of the center of the

negatively charged electron cloud relative to the positive nucleus.  With ionic polarization, the

cations and anions are displaced in opposite directions as a result of the application of an

electric field.  Orientation polarization is found in substances that possess permanent dipole

moments;  these dipole moments become aligned in the direction of the electric field.
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(b)  Electronic, ionic, and orientation polarizations would be observed in lead titanate.  The lead,

titanium, and oxygen would undoubtedly be largely ionic in character.  Furthermore, orientation

polarization is also possible inasmuch as permanent dipole moments may be induced in the
same manner as for BaTiO3 as shown in Figure 19.33.

Only electronic polarization is to be found in gaseous neon;  being an inert gas, its

atoms will not be ionized nor possess permanent dipole moments.

Only electronic polarization is to be found in solid diamond;  this material does not have

molecules with permanent dipole moments, nor is it an ionic material.

Both electronic and ionic polarizations will be found in solid KCl, since it is strongly ionic.

In all probability, no permanent dipole moments will be found in this material.
Both electronic and orientation polarizations are found in liquid NH3.  The NH3

molecules have permanent dipole moments that are easily oriented in the liquid state.

19.60  For this soda-lime glass, in order to determine the fraction of the dielectric constant at low
frequencies that is attributed to ionic polarization, we must determine the εr  within this low-

frequency regime;  such is tabulated in Table 19.4, and at 1 MHz its value is 6.9.  Thus, this

fraction is just

fraction = 
εr(low) - εr(high)

εr(low)

= 
6.9 - 2.3

6.9
 = 0.67

19.61  (a)  This portion of the problem asks that we compute the magnitude of the dipole moment
associated with each unit cell of BaTiO3, which is illustrated in Figure 19.33.  The dipole

moment p  is defined by Equation (19.31) as p  = qd  in which q  is the magnitude of each dipole

charge, and d  is the distance of separation between the charges.  Each Ti4+ ion has four units

of charge associated with it, and thus q = (4)(1.602 x 10-19 C) = 6.41 x 10-19 C.  Furthermore, d

is the distance the Ti4+ ion has been displaced from the center of the unit cell, which is just

0.006 nm + 0.006 nm = 0.012 nm [Figure 19.33(b)].  Hence

p = qd = (6.41 x 10-19 C)(0.012 x 10-9 m)

= 7.69 x 10-30 C-m
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(b)  Now it becomes necessary to compute the maximum polarization that is possible for this

material.  The maximum polarization will exist when the dipole moments of all unit cells are

aligned in the same direction.  Furthermore, it is computed by dividing the value of p  by the

volume of each unit cell, which is equal to the product of three unit cell edge lengths, as shown

in Figure 19.33.  Thus

P = 
p

VC

= 
7.69 x 10-30 C-m

(0.403 x 10-9 m)(0.398 x 10-9 m)(0.398 x 10-9 m)

= 0.121 C/m2

19.62  The ferroelectric behavior of BaTiO3 ceases above its ferroelectric Curie temperature because

the unit cell transforms from tetragonal geometry to cubic;  thus, the Ti4+ is situated at the

center of the cubic unit cell, there is no charge separation, and no net dipole moment.

19.63  Yes, the physical dimensions of a piezoelectric material such as BaTiO3 change when it is

subjected to an electric field.  As noted in Figure 19.34, a voltage (or electric field) is generated

when the dimensions of a piezoelectric material are altered.  It would be logical to expect the

reverse effect to occur--that is, placing the material within an electric field will cause its physical

dimensions to change.

Design Problems

19.D1  This problem asks that we calculate the composition of a platinum-nickel alloy that has a

room temperature resistivity of 1.75 x 10
-7

 Ω-m. The first thing to do is, using the 95 Pt-5 Ni

resistivity data, determine the impurity contribution, and, from this result, calculate the constant

A  in Equation (19.11).  Thus,

ρtotal = 2.35 x 10-7 (Ω-m) = ρi + ρt

From Table 19.1, for pure platinum

ρt = 
1
σ = 

1

9.4 x 106 (Ω-m)-1
 = 1.064 x 10-7 (Ω-m)
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Thus, for the 95 Pt-5 Ni alloy

ρi = ρtotal - ρt = 2.35 x 10-7 - 1.064 x 10-7

= 1.286 x 10-7 (Ω-m)

In the problem statement, the impurity (i.e., nickel) concentration is expressed in weight percent.

However, Equation (19.11) calls for concentration in atom fraction (i.e., atom percent divided by

100).  Consequently, conversion from weight percent to atom fraction is necessary.  (Note:  we
now choose to denote the atom fraction of nickel as cN' i , and the weight percents of Ni and Pt

by CNi  and CPt , respectively.)  Using these notations, this conversion may be accomplished by

using a modified form of Equation (4.6a) as

cN' i = 
CNiAPt

CNiAPt + CPtANi

Here ANi and APt denote the atomic weights of nickel and platinum.  Thus

cN' i = 
(5 wt%)(195.08 g/mol)

(5 wt%)(195.08 g/mol) + (95 wt%)(58.69 g/mol)

= 0.15

Now, from Equation (19.11)

A = 
ρi

cN' i(1 - cN' i)

= 
1.286 x 10-7 (Ω-m)

(0.15)(1 - 0.15)
 = 1.01 x 10-6 (Ω-m)

Finally, it is possible to compute the cN' i to give a room temperature resistivity of 1.75 x 10
-7

 Ω-

m.  Again, we must determine ρi as

ρi = ρtotal - ρt

= 1.75 x 10-7 - 1.286 x 10-7 = 4.64 x 10-8 (Ω-m)
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If Equation (19.11) is expanded, then

ρi = AcN' i - AcN' i
2

and, solving for cN' i

cN' i =  
A ± √A2 - 4Aρi

2A

Or

cN' i =  
1.01 x 10-6 ± √(1.01 x 10-6)2 - (4)(1.01 x 10-6)(4.64 x 10-8)

(2)(1.01 x 10-6)

Taking the negative root,

cN' i = 0.0483

which is equivalent to a concentration of 4.83 at% Ni.  Now, converting this composition to

weight percent Ni, requires that we use Equation (4.7a) as

CNi = 
CN' iANi

CN' iANi + CP' tAPt
 x 100

= 
(4.83 at%)(58.96 g/mol)

(4.83 at%)(58.96 g/mol) + (95.17 at%)(195.08 g/mol)
 x100

= 1.51 wt%

19.D2  This problem asks that we determine the electrical conductivity of an 80 wt% Cu-20 wt% Zn

alloy at -150°C using information contained in Figures 19.8 and 19.35.  In order to solve this

problem it is necessary to employ Equation (19.9) which is of the form

ρtotal = ρt + ρi

since it is assumed that the alloy is undeformed.  Let us first determine the value of ρi at room

temperature (25°C) which value will be independent of temperature.  From Figure (19.8), at
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25°C and for pure Cu, ρt(25) = 1.75 x 10-8 Ω-m.  Now, since it is assumed that the curve in

Figure 19.35 was generated also at room temperature, we may take ρ as ρtotal (25) at 80 wt%

Cu-20 wt% Zn which has a value of 5.3 x 10-8 Ω-m.  Thus

ρi = ρtotal(25) - ρt(25)

= 5.3 x 10-8 Ω-m - 1.75 x 10-8 Ω-m = 3.55 x 10-8 Ω-m

Finally, we may determine the resistivity at -150°C, ρtotal (-150), by taking the resistivity of pure

Cu at -150°C from Figure 19.8, which gives us ρt(-150) = 0.55 x 10-8 Ω-m.  Therefore

ρtotal(-150) = ρi + ρt(-150)

= 3.55 x 10-8 Ω-m + 0.55 x 10-8 Ω-m = 4.10 x 10-8 Ω-m

And, using Equation (19.4) the conductivity is calculated as

σ = 
1
ρ = 

1

4.10 x 10-8 Ω-m
 = 2.44 x 107 (Ω-m)-1

19.D3  To solve this problem, we want to consult Figures 7.16(a) and (19.9) in order to determine the

Ni concentration ranges over which the tensile strength is greater than 375 MPa (54,400 psi)

and the conductivity exceeds 2.5 x 10
6

 (Ω-m)
-1

.

From Figure 7.16(a), a Ni concentration greater than about 30 wt% is necessary for a

tensile strength in excess of 375 MPa.  In Figure 19.9 is plotted the resistivity versus the Ni

content.  Since conductivity is the reciprocal of resistivity, the resistivity must be less than 40 x

10
-8

 Ω-m.  According to the figure, this will be the case for Ni concentrations less than 32.5

wt%.

Hence, it is possible to prepare an alloy meeting the criteria.  The concentration of Ni

would have to lie between about 30 and 32.5 wt%.

19.D4  First of all, those elements which, when added to silicon render it p-type, lie one group to the

left of silicon in the periodic table;  these include the group IIIA elements (Figure 2.6)--i.e.,

boron, aluminum, gallium, and indium.

Since this material is extrinsic and p -type, p>> n , and the electrical conductivity is a

function of the hole concentration according to Equation (19.17).  Furthermore, the design
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stipulates that  the acceptor impurity atoms are saturated;  therefore, the number of holes is
about equal to the number of acceptor impurities, Na.  That is

p ~ Na

We now solve Equation (19.17) for p  using the stipulated conductivity [50 (Ω-m)-1] and the hole

mobility value provided in Table 19.2 (0.05 m2/V-s).  Thus

p ~ Na  = 
σ

|e|µh

= 
50 (Ω-m)-1

(1.602 x 10-19 C)(0.05 m2/V-s)

= 6.24 x 1021 m-3

It next becomes necessary to calculate the concentration of acceptor impurities in atom percent.

This computation first requires the determination of the number of silicon atoms per cubic meter,
NSi, using Equation (4.2), which is as follows

NSi = 
NAρS' i

ASi

= 
(6.023 x 1023 atoms/mol)(2.33 g/cm3)(106 cm3/m3)

28.09 g/mol

= 5 x 1028 m-3

(Note:  in the above discussion, the density of silicon is represented by ρS' i in order to avoid

confusion with resistivity which is designated by ρ.)

The concentration of acceptor impurities in atom percent (C 'a) is just the ratio of Na and

Na + NSi  multiplied by 100 as

C 'a = 
Na

Na + NSi
 x 100
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= 
6.24 x 1021 m-3

(6.24 x 1021 m-3) + (5 x 1028 m-3)
 x 100 = 1.25 x 10-5 at%

Now, conversion to weight percent (Ca) is possible using Equation (4.7a) as

Ca = 
C 'aAa

C 'aAa + C 'SiASi
 x 100

where Aa and ASi  are the atomic weights of the acceptor and silicon, respectively.  Thus, the

concentration in weight percent will depend on the particular acceptor type.  For example, for

boron

CB = 
C 'BAB

C 'BAB + C 'SiASi
 x 100

= 
(1.25 x 10-5 at%)(10.81 g/mol)

(1.25 x 10-5 at%)(10.81 g/mol) + (99.9999875 at%)(28.09 g/mol)
 x 100

= 4.81 x 10-6 wt%

Similar calculations may be carried out for the other possible acceptor impurities which yield

CAl = 1.20 x 10-5 wt%

CGa = 3.10 x 10-5 wt%

CIn = 5.11 x 10-5 wt%

19.D5  This problem asks for us to determine the temperature at which boron is to diffused into high-

purity silicon in order to achieve a room-temperature electrical conductivity of 1.2 x 104 (Ω-m)-1

at a distance 0.2 µm from the surface if the B concentration at the surface is maintained at 1.0

x 1025 m-3.  It is first necessary for us to compute the hole concentration (since B is an

acceptor in Si) at this 0.2 µm location.  This computation requires the use of Equation (19.17)

and taking the hole mobility to be 0.05 m2/V-s (Table 19.2).  Thus

p = 
σ

|e|µh
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= 
1.2 x 104 (Ω-m)-1

(1.602 x 10-19 C)(0.05 m2/V-s)

= 1.5 x 1024 m-3

The problem now is one of nonsteady-state diffusion of B into the Si, wherein we have to solve

for temperature.  Temperature is incorporated into the diffusion coefficient expression given in

the problem.  But we must now employ the solution to Fick's second law for constant surface
composition boundary conditions, Equation (5.5);  in this expression Co  is taken to be zero

inasmuch as the problem stipulates that the initial boron concentration may be neglected.

Thus,

Cx - Co
Cs - Co

 = 1 - erf 
 


 
x

2√Dt

1.5 x 1024 m-3 - 0

1.0 x 1025 m-3 - 0
 = 1 - erf 

 


 
x

2√Dt

which reduces to

0.85 = erf 
 


 
x

2√Dt

In order to solve this expression for a value of x/2√Dt  it is necessary to interpolate using data in

Table 5.1.  Thus

z erf(z)

1.0 0.8427

z 0.8500

1.1 0.8802

z - 1.0
1.1- 1.0

 = 
0.8500 - 0.8427
0.8802 - 0.8427

From which, z = 1.0195;  which is to say
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1.0195 = 
x

2√Dt

Inasmuch as there are 3600 s/h (= t ) and x  = 0.2 µm (= 2 x 10-7 m) the above equation

becomes

1.0195 = 
2 x 10-7 m

2√(D)(3600 s)

Which gives D = 2.67 x 10-18 m2/s.  However, setting this value equal to the expression for D

given in the problem

D = 2.67 x 10-18 m2/s = 2.4 x 10-4 exp ( )- 
347000 J/mol

(8.31 J/mol-K)(T)

And, upon solving for the temperature, T = 1300 K = 1027 °C.

19.D6  This problem asks, for the nonstoichiometric Fe(1 - x )O, given the electrical conductivity (2000

m2/V-s) and hole mobility (1.0 x 10-5 m2/V-s) that we determine the value of x .  It is first

necessary to compute the number of holes per unit volume (p) using Equation (19.17).  Thus

p = 
σ

|e|µh

= 
2000 (Ω-m)-1

(1.0 x 10-5 m2/V-s)(1.602 x 10-19 C)
  = 1.25 x 1027 holes/m3

Inasmuch as it is assumed that the vacancies are saturated, the number of vacancies is also

1.25 x 1027 m-3.  Next, it is possible to compute the number of vacancies per unit cell by taking

the product of the number of vacancies per cubic meter times the volume of a unit cell.  This

volume is just the unit cell edge length (0.437 nm) cubed:

# vacancies
unit cell

 = ( )1.25 x 1027 m-3 ( )0.437 x 10-9 m
3

 = 0.10

A unit cell for the sodium chloride structure contains the equivalent of four cations and four

anions.  Thus, if we take as a basis for this problem 10 unit cells, there will be one vacancy, 40
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O2- ions, and 39 iron ions (since one of the iron sites is vacant).  (It should also be noted that

since two Fe3+ ions are created for each vacancy, that of the 39 iron ions, 37 of them are Fe2+

and 2 of them are Fe3+).  In order to find the value of (1 - x )  in the chemical formula, we just

take the ratio of the number of total Fe ions (39) and the number of total Fe ion sites (40).  Thus

(1 - x) = 
39
40

 = 0.975

Or the formula for this nonstoichiometric material is Fe0.975O.

19.D7  We are asked to compare silicon and gallium arsenide semiconductors relative to properties

and applications.

The following are the characteristics and applications for Si:  1)  being an elemental

semiconductor, it is cheaper to grow in single-crystalline form;  2)  because of its electron band

structure, it is best used in transistors;  3)  electronic processes are relatively slow due to the low

mobilities for electrons and holes (Table 19.2).

For GaAs:  1)  it is much more expensive to produce inasmuch as it is a compound

semiconductor;  2)  because of its electron band structure it is best used in light-emitting diodes

and semiconducting lasers;  3) its band gap may be altered by alloying;  4)  electronic processes

are more rapid than in Si due to the greater mobilities for electrons and holes;  5) absorption of

electromagnetic radiation is greater in GaAs, and therefore, thinner layers would be required for

solar cells.
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CHAPTER 20

THERMAL PROPERTIES

PROBLEM SOLUTIONS

20.1  The energy, E, required to raise the temperature of a given mass of material, m , is the product

of the specific heat, the mass of material, and the temperature change, ∆T, as

E = cpm(∆T)

The ∆T is equal to 100°C - 20°C = 80°C (= 80
 
K), while the mass is 2 kg, and the specific heats

are presented in Table 20.1.  Thus,

E(aluminum) = (900 J/kg-K)(2 kg)(80
 
K) = 1.44 x 10

5
 J

E(steel) = (486 J/kg-K)(2 kg)(80
 
K) = 7.78 x 10

4
 J

E(glass) = (840 J/kg-K)(2 kg)(80
 
K) = 1.34 x 10

5
 J

E(HDPE) = (1850 J/kg-K)(2 kg)(80
 
K) = 2.96 x 10

5
 J

20.2  We are asked to determine the temperature to which 25 lbm of steel initially at 25°C would be

raised if 125 Btu of heat is supplied.  This is accomplished by utilization of a modified form of

Equation (20.1) as

∆T = 
∆Q
mcp

in which ∆Q  is the amount of heat supplied, m  is the mass of the specimen, and cp  is the

specific heat.  From Table 20.1, cp = 486 J/kg-K, which in Customary U.S. units is just

cp = (486 J/kg-K)
 



 

2.39 x 10-4 Btu/lbm-°F

1 J/kg-K
 = 0.116 Btu/lbm-°F
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Thus

∆T = 
125 Btu

(25 lbm)(0.116 Btu/lbm-°F)
 = 43.1°F

and

Tf = To + ∆T = 77°F + 43.1°F = 120°F  (49°C)

20.3  (a)  This problem asks that we determine the heat capacities at constant pressure, Cp , for

aluminum, silver, tungsten, and 70Cu-30Zn brass.  All we need do is multiply the cp  values in

Table 20.1 by the atomic weight, taking into account the conversion from grams to kilograms.

Thus, for Al

Cp = (900 J/kg-K)(1 kg/1000 g)(26.98 g/mol) = 24.3 J/mol-K

For Ag

Cp = (235 J/kg-K)(1 kg/1000 g)(107.87 g/mol) = 25.35 J/mol-K

For W

Cp = (138 J/kg-K)(1 kg/1000 g)(183.85 g/mol) = 25.4 J/mol-K

For brass it is first necessary to compute the alloy atomic weight (Aave) using Equation (4.11a)

as follows:

Aave = 
100

 
CCu
ACu

 + 
CZn
AZn

= 
100

 
70 wt%

63.55 g/mol
 + 

30 wt%
65.39 g/mol

= 64.09 g/mol

Thus
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Cp = (375 J/kg-K)(1 kg/1000 g)(64.09 g/mol) = 24.0 J/mol-K

(b)  These values of C p  are very close to one another because room temperature is

considerably above the Debye temperature for these metals, and, therefore, the values of Cp

should be about equal to 3R [(3)(8.31 J/mol-K) = 24.9 J/mol-K], which is indeed the case for all

four of these metals.

20.4  (a)  For aluminum, C
v

 at 50
 
K may be approximated by Equation (20.2), since this temperature

is significantly below the Debye temperature.  The value of C
v

 at 30
 
K is given, and thus, we

may compute the constant A  as

A = 
Cv

T3 = 
0.81 J/mol-K

 (30 K)3
 = 3 x 10-5 J/mol-K4

Therefore, at 50
 
K

Cv = AT3 = (3 x 10-5 J/mol-K4)(50 K)3 = 3.75 J/mol-K

and

cv = (3.75 J/mol-K)(1 mol/26.98 g)(1000 g/kg) = 139 J/kg-K

(b)  Since 425
 
K is above the Debye temperature, a good approximation for Cv  is

Cv = 3R

= (3)(8.31 J/mol-K) = 24.9 J/mol-K

And, converting this to specific heat

cv = (24.9 J/mol-K)(1 mol/26.98 g)(1000 g/kg) = 925 J/kg-K

20.5  For copper, we want to compute the Debye temperature, θD, given the expression for A  in

Equation (20.2) and the heat capacity at 10
 
K. First of all, let us determine the magnitude of A ,

as
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A = 
Cv

T3

= 
(0.78 J/mol-K)(1 kg/1000g)(63.55 g/mol)

 (10 K)3

= 4.96 x 10-5 J/mol-K4

As stipulated in the problem

A = 
12π4R

5θD
3

Or, solving for θD

θD =  



 

12π4R

5A

1/3

= 
 


 
(12)(π)4(8.31 J/mol-K)

(5)(4.96 x 10-5 J/mol-K4)

1/3

 = 340 K

20.6  (a)  The reason that Cv  rises with increasing temperature at temperatures near 0 K is because,

in this temperature range, the allowed vibrational energy levels of the lattice waves are far apart

relative to the available thermal energy, and only a portion of the lattice waves may be excited.

As temperature increases, more of the lattice waves may be excited by the available thermal

energy, and, hence, the ability of the solid to absorb energy (i.e., the magnitude of the heat

capacity) increases.
(b)  At temperatures far removed from 0 K, Cv  becomes independent of temperature because

all of the lattice waves have been excited and the energy required to produce an incremental

temperature change is nearly constant.

20.7  The two metals from which a bimetallic strip is constructed have different coefficients of thermal

expansion.  Consequently, a change in temperature will cause the strip to bend.  For a

thermostat that operates a furnace, as the temperature drops below a lower limit, the bimetallic

strip bends so as to make an electrical contact, thus, turning on the furnace.  With rising

temperature, the strip bends in the opposite direction, breaking the contact (and turning the

furnace off) when an upper-limit temperature is exceeded.
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20.8  (a)  A brass lid on a glass canning jar will loosen when heated because brass has the greater

coefficient of thermal expansion [20 x 10
-6

 (°C)
-1

 versus approximately 9 x 10
-6

 (°C)
-1

 for glass,

Table 20.1].

(b)  If the ring is made of tungsten instead of brass, the ring will tighten upon heating inasmuch
as the glass will expand more than tungsten.  The values of α l for glass and tungsten are 9 x

10
-6 (°C)-1

 
and 4.5 x 10-6 (°C)-1, respectively.

20.9  In order to determine the change in length of the aluminum wire, we must employ Equation

(20.3b) as

∆l = loα l∆T

= (10 m)[ ]23.6 x 10-6 (°C)-1 (-1°C - 38°C)

= -9.2 x 10-3 m = -9.2 mm  (-0.36 in.)

20.10  The linear coefficient of thermal expansion for this material may be determined using

Equation (20.3b) as

α l = 
∆l

lo∆T
 = 

0.2 x 10-3 m
(0.1 m)(100°C - 20°C)

= 25.0 x 10-6 (°C)-1

20.11  The phenomenon of thermal expansion using the potential energy-versus-interatomic spacing

curve is explained in Section 20.3 on page 663.

20.12  (a)  In this portion of the problem we are asked to determine the density of copper at 1000°C

on the basis of thermal expansion considerations.  The basis for this determination will be 1 cm3

of material at 20°C, which has a mass of 8.940 g, which mass it is assumed remains constant at

the elevated temperature.  So let us compute the volume expansion of this cubic centimeter of

copper as it is heated to 1000°C.  A volume expansion expression similar to Equation (20.3b)

exists--viz.,

∆V
Vo

 = αv∆T
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for which αv  = 3α l, as stipulated in the problem.  The value of α l given in Table 20.1 for copper

is 17.0 x 10-6 (°C)-1.  Therefore, the volume of this specimen of Cu at 1000°C (V) is just

V = Vo + ∆V = Vo( )1 + αv∆T

= (1 cm3) { }1 + (3)[17.0 x 10-6 (°C)-1](1000°C - 20°C)

= 1.04998 cm3

Thus, the density is just the 8.940 g divided by this new volume--i.e.,

ρ = 
8.940 g

1.04998 cm3 = 8.514 g/cm3

(b)  Now we are asked to compute the density at 1000°C  taking into consideration the creation of

vacancies which will further lower the density.  This determination requires that we first of all

calculate the number of vacancies using Equation (4.1).  But it first becomes necessary to

compute the number of Cu atoms per cubic centimeter (N) using Equation (4.2).  Thus,

N = 
NAρCu
ACu

= 
(6.023 x 1023 atoms/mol)(8.514 g/cm3)

63.55 g/mol

= 8.07 x 1022 atoms/cm3.

Now the total number of vacancies, Nv, is just

Nv = N exp  


 


- 
Qv
kT

= (8.07 x 1022 atoms/cm3) exp 
 


 
- 

0.90 eV/atom

(8.62 x 10-5 eV/K)(1273 K)

= 2.212 x 1019 vacancies/cm3
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We want to determine the number of vacancies per unit cell, which is possible if the unit cell
volume is multiplied by Nv .   The unit cell volume (Vc) may be calculated using Equation (3.5)

taking n = 4 inasmuch as Cu has a FCC crystal structure.  Thus

Vc = 
nACu
ρCuNA

= 
(4 atoms/unit cell)(63.55 g/mol)

(8.514 g/cm3)(6.023 x 1023 atoms/mol)

= 4.957 x 10-23cm3/unit cell

Now, the number of vacancies per unit cell, nv, is just

nv = NvVc

= (2.212 x 1019 vacancies/cm3)(4.957 x 10-23 cm3/unit cell)

= 0.001096 vacancies/unit cell

What is means is that instead of there being 4.0000 atoms per unit cell, there are only 4.0000 -

0.001096 = 3.9989 atoms per unit cell.  And, finally, the density may be computed using

Equation (3.5) taking n  = 3.998904

ρCu = 
nACu
VcNA

= 
(3.998904 atoms/unit cell)(63.55 g/mol)

(4.957 x 10-23cm3/unit cell)(6.023 x 1023 atoms/mol)

= 8.512 g/cm3

Thus, the influence of the vacancies is almost insignificant--their presence reduces the density

by only 0.002 g/cm3.
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20.13  This problem asks that we calculate the values of c v  for copper and nickel at room

temperature using Equation (20.10), the data in Table 20.1, that αv  = 3α l , and values of the

compressibility.  From Equation (20.10)

cv = cp - 
αv

2voT

β

From Table 20.1, cp(Cu) = 386 J/kg-K, cp(Ni) = 443 J/kg-K, αv(Cu) = (3)[17.0 x 10-6 (°C)-1] =

5.10 x 10-5 (°C)-1, αv(Ni) = (3)[(13.3 x 10-6 (°C)-1] = 3.99 x 10-5 (°C)-1.  The specific volume is

just the reciprocal of the density;  thus

vo(Cu) = 
1
ρ = 

 


 
1

8.94 g/cm3 ( )1000 g
kg ( )1 m

100 cm

3
 = 1.119 x 10-4 m3/kg

vo(Ni) = 
 


 
1

8.90 g/cm3 ( )1000 g
kg ( )1 m

100 cm

3
 = 1.124 x 10-4 m3/kg

Therefore,

cv(Cu) = cp(Cu) - 
αv

2(Cu)vo(Cu)T

β(Cu)

= 386 J/kg-K - 
[ ]5.10 x 10-5 (°C)-1

2
(1.119 x 10-4 m3/kg)(293 K)

8.35 x 10-12 (N/m2)-1

376 J/kg-K

And

cv(Ni) = 443 J/kg-K - 
[ ]3.99 x 10-5 (°C)-1

2
(1.124 x 10-4 m3/kg)(293 K)

5.51 x 10-12 (N/m2)-1

433 J/kg-K

20.14  This problem asks for us to determine the temperature to which a cylindrical rod of tungsten

10.000 mm in diameter must be heated in order for it of just fit into a 9.988 mm diameter

circular hole in a plate of 316 stainless steel, assuming that the initial temperature is 25°C.  This
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requires the use of Equation (20.3a), which is applied to the diameters of the rod and hole.

That is

df - do
do

 = αl(Tf - To)

Solving this expression for df yields

df = do[ ]1 + α l(Tf - To)

Now all we need do is to establish expressions for df(316 stainless) and df(W), set them equal to

one another, and solve for Tf.  According to Table 20.1, α l(316 stainless) = 16.0 x 10-6 (°C)-1

and α l(W) = 4.5 x 10-6 (°C)-1.  Thus

df(316 stainless) = df(W)

(9.988 mm)[ ]1 + { }16.0 x 10-6 (°C)-1 (Tf - 25°C)

= (10.000 mm)[ ]1 + { }4.5 x 10-6 (°C)-1 (Tf - 25°C)

Now solving for Tf gives Tf = 129.5°C

20.15  On a cold day, the metal door handle feels colder than the plastic steering wheel because

metal has the higher thermal conductivity, and, therefore, conducts heat away from one's skin

more rapidly.

20.16  (a)  The steady-state heat flux through the plate may be computed using Equation (20.5);

the thermal conductivity for steel, found in Table 20.1, is 51.9 W/m-K.  Therefore,

q = - k 
∆T
∆x

= -(51.9 W/m-K) 
(373 K - 573 K)

10 x 10-3 m

= 1.04 x 106 W/m2
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(b)  Let dQ/dt  represent the total heat loss such that

dQ
dt

 = qAt

where A  and t are the cross-sectional area and time, respectively. Thus,

dQ
dt

 = (1.04 x 106 J/s-m2)(0.25 m2)(60 s/min)(60 min/h)

= 9.3 x 108 J/h  (8.9 x 105 Btu/h)

(c)  If soda-lime glass is used (k = 1.7 W/m-K),

dQ
dt

 = - kAt 
∆T
∆x

= - (1.7 J/s-m-K)(0.25 m2)(3600 s/h) 
 


 
-200 K

10 x 10-3 m

= 3.06 x 107 J/h  (2.9 x 104 Btu/h)

(d)  If the thickness of the steel is increased to 20 mm

dQ
dt

 = - (51.9 W/m-K)(0.25 m2)(3600 s/h) 
 


 
-200 K

20 x 10-3 m

= 4.7 x 108 J/h  (4.5 x 105 Btu/h)

20.17  (a)  Equation (20.7) is not valid for ceramic and polymeric materials since, in the development

of this expression, it is assumed that free electrons are responsible for both electrical and

thermal conduction.  Such is the case for most metals.  For ceramics and polymers, free

electrons are the primary contributors to the electrical conductivity.  However, free electrons are

not responsible for the thermal conductivity.  For ceramics, thermal conduction is primarily by

means of phonons;  for polymers, the energy transfer is made by chain vibration, translation,

and rotation.

(b)  Estimated room-temperature values of L , in Ω -W/(K)
2

, for the several materials are

determined below.  Electrical conductivity values were determined by taking reciprocals of the
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resistivities given in Table B.9, Appendix B;  thermal conductivities are taken from Table B.7 in

the same appendix.

For intrinsic silicon

L = 
k

σT
 = 

141 W/m-K

[ ]4 x 10-4 (Ω-m)-1 (293 K)
 = 1203 Ω-W/K2

For Pyroceram glass-ceramic

L = 
3.3 W/m-K

[ ]5 x 10-15 (Ω-m)-1 (293 K)
 = 2.3 x 1012 Ω-W/K2

For fused silica

L = 
1.4 W/m-K

[ ]10-18 (Ω-m)-1 (293 K)
 = 4.8 x 1015 Ω-W/K2

For polycarbonate

L = 
0.20 W/m-K

[ ]5 x 10-15 (Ω-m)-1 (293 K)
 = 1.4 x 1011 Ω-W/K2

For polytetrafluoroethylene

L = 
0.25 W/m-K

[ ]10-17 (Ω-m)-1 (293 K)
 = 8.5 x 1013 Ω-W/K2

20.18  (a)  The thermal conductivity of a single crystal is greater than a polycrystalline specimen of

the same material because both phonons and free electrons are scattered at grain boundaries,

thus decreasing the efficiency of thermal transport.

(b)  The thermal conductivity of a plain carbon steel is greater than for a stainless steel because

the stainless steel has much higher concentrations of alloying elements.  Atoms of these

alloying elements serve as scattering centers for the free electrons that are involved in the

thermal transport process.
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20.19  Thermal conductivities are higher for crystalline than for noncrystalline ceramics because, for

noncrystalline, phonon scattering, and thus the resistance to heat transport, is much more

effective due to the highly disordered and irregular atomic structure.

20.20  Metals are typically better thermal conductors than are ceramic materials because, for metals,

most of the heat is transported by free electrons (of which there are relatively large numbers).  In

ceramic materials, the primary mode of thermal conduction is via phonons, and phonons are

more easily scattered than are free electrons.

20.21  (a)  Porosity decreases the thermal conductivity of ceramic and polymeric materials because

the thermal conductivity of a gas phase that occupies pore space is extremely small relative to

that of the solid material.  Furthermore, contributions from gaseous convection are generally

insignificant.

(b)  Increasing the degree of crystallinity of a semicrystalline polymer enhances its thermal

conductivity;  the vibrations, rotations, etc. of the molecular chains are more effective modes of

thermal transport when a crystalline structure prevails.

20.22  For some ceramic materials, the thermal conductivity first decreases with rising temperature

because the scattering of lattice vibrations increases with temperature.  At higher temperatures,

the thermal conductivity will increase for some ceramics that are porous because radiant heat

transfer across pores may become important, which process increases with rising temperature.

20.23  This question asks for us to decide, for each of several pairs of materials, which has the larger

thermal conductivity and why.

(a)  Pure silver will have a larger conductivity than sterling silver because the impurity atoms in

the latter will lead to a greater degree of free electron scattering.

(b)  Polycrystalline silica will have a larger conductivity than fused silica because fused silica is

noncrystalline and lattice vibrations are more effectively scattered in noncrystalline materials.

(c)  The linear polyethylene will have a larger conductivity than the lightly branched polyethylene

because the former will have a higher degree of crystallinity by virtue of its linear molecular

structure.  Since heat transfer is accomplished by molecular chain vibrations, and the

coordination of these vibrations increases with percent crystallinity, the higher the crystallinity,

the greater the thermal conductivity.

(d)  The isotactic polypropylene will have a larger thermal conductivity than the atactic

polypropylene because isotactic polymers have a higher degree of crystallinity.  The influence of

crystallinity on conductivity is explained in part (c).
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20.24  This problem asks that we treat a porous material as a composite wherein one of the phases

is a pore phase, and that we estimate upper and lower limits for the room-temperature thermal

conductivity of a magnesium oxide material having a 0.30 volume fraction of pores.  The upper
limit of k  (k upper ) may be determined using Equation (17.1) with thermal conductivity

substituted for the elastic modulus, E.  From Table 20.1, the value of k  for MgO is 37.7 W/m-K,

while for still air in the pore phase, k = 0.02 W/m-K.  Thus

kupper = Vpkair + VMgOkMgO

= (0.30)(0.02 W/m-K) + (0.70)(37.7 W/m-K) = 26.4 W/m-K

For the lower limit we employ a modification of Equation (17.2) as

klower = 
kairkMgO

VpkMgO + VMgOkair

= 
(0.02 W/m-K)(37.7 W/m-K)

(0.30)(37.7 W/m-K) + (0.70)(0.02 W/m-K)
 = 0.067 W/m-K

20.25  (a)  The units of D
T

 are

DT = 
k(J/s-m-K)

ρ(kg/m3)cp(J/kg-K)
 = m2/s

(b)  The values of D
T

 for the several materials are given below:

For aluminum

DT = 
k

ρcp
 = 

247 W/m-K

(2.71 x 103 kg/m3)(900 J/kg-K)
 = 1.0 x 10-4 m2/s

For steel

DT = 
51.9 W/m-K

(7.9 x 103 kg/m3)(486 J/kg-K)
 = 1.4 x 10-5 m2/s

For aluminum oxide
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DT = 
39 W/m-K

(4.0 x 103 kg/m3)(775 J/kg-K)
 = 1.26 x 10-5 m2/s

For soda-lime glass

DT = 
1.7 W/m-K

(2.5 x 103 kg/m3)(840 J/kg-K)
 = 8.1 x 10-7 m2/s

For polystyrene

DT = 
0.13 W/m-K

(1.05 x 103 kg/m3)(1170 J/kg-K)
 = 1.06 x 10-7 m2/s

For nylon 6,6

DT = 
0.24 W/m-K

(1.14 x 103 kg/m3)(1670 J/kg-K)
 = 1.3 x 10-7 m2/s

20.26  We want to show that Equation (20.8) is valid beginning with Equation (20.3).  Upon

examination of Equation (20.3b),

∆l
lo

 = α l∆T

it may be noted that the term on the left-hand side is the same expression as that for the

definition of engineering strain [Equation (6.2)].  Furthermore, elastic stress and strain are

related through Hooke's law, Equation (6.5).  Making appropriate substitutions and algebraic

manipulations gives

∆l
lo

 = ε = 
σ
E

 = α l∆T

Or
σ = Eα l∆T

which is the form of Equation (20.8).

20.27  (a)  Thermal stresses may be introduced into a structure by rapid heating or cooling because

temperature gradients will be established across the cross section due to more rapid
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temperature changes at the surface than within the interior;  thus, the surface will expand or

contract at a different rate than the interior and since this surface expansion or contraction will

be restrained by the interior, stresses will be introduced.

(b)  For cooling, the surface stresses will be tensile in nature since the interior contracts to a

lesser degree than the cooler surface.

(c)  For heating, the surface stresses will be compressive in nature since the interior expands to

a lesser degree than the hotter surface.

(d)  For a ceramic material, thermal shock is more likely for rapid cooling since the surface

stresses are tensile in nature which will lead to stress concentrations at surface flaws that are

present.  No such stress amplification will results for compressive stresses which are established

at the surface for rapid heating.

20.28  (a)  We are asked to compute the magnitude of the stress within a steel rod that is heated

while its ends are maintained rigid.  To do this we employ Equation (20.8) as

σ = Eαl(To - Tf)

= (207 x 109 N/m2)[ ]12.0 x 10-6 (°C)-1 (20°C - 80°C)

= -150 MPa   (-21,800 psi)

The stress will be compressive since its sign is negative.

(b)  The stress will be the same [- 150 MPa (- 21,800 psi )], since stress is independent of bar

length.

(c)  Upon cooling the indicated amount, the stress becomes

σ = Eαl(To - Tf)

= (207 x 109 N/m2)[ ]12.0 x 10-6 (°C)-1 [20°C - (-10°C)]

= +74.5 MPa  (+10,900 psi)

This stress will be tensile since its sign is positive.
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20.29  We want to heat the copper wire in order to reduce the stress level from 70 MPa to 35 MPa;

in doing so, we reduce the stress in the wire by 70 MPa - 35 MPa = 35 MPa, which stress will be
a compressive one (i.e., σ = -35 MPa).  Solving for T

f
 from Equation (20.8)

Tf = To - 
σ

Eα l

= 20°C - 
-35 MPa

(110 x 103 MPa)[ ]17 x 10-6 (°C)-1

= 20°C + 19°C = 39°C  (101°F)

20.30  This problem asks for us to determine the change in diameter of a cylindrical nickel rod

100.00 mm long and 8.000 mm in diameter when it is heated from 20°C to 200°C while its ends

are maintained rigid.  There will be two contributions to the diameter increase of the rod;  the
first is due to thermal expansion (which will be denoted as ∆d1), while the second is from

Poisson's lateral expansion as a result of elastic deformation from stresses that are established
from the inability of the rod to elongate as it is heated (denoted as ∆d2).  The magnitude of ∆d1

may be computed using Equation (20.3b) as

∆d1 = doα l(Tf - To)

From Table 20.1 the value of α l for nickel is 13.3 x 10-6 (°C)-1.  Thus,

∆d1 = (8.000 mm)[ ]13.3 x 10-6 (°C)-1 (200°C - 20°C)

= 0.0192 mm

For ∆d2, we may calculate the stress using Equation (20.8), and the resulting longitudinal strain

using Equation (6.5), and finally the lateral strain (and ∆d2) using Equation (6.8).  Hence

∆d2
do

 = - νεz = - 
νσ
E

 = - 
νEα l(To - Tf)

E
 = - να l(To - Tf)

Solving for ∆d2 and realizing that ν = 0.31 (Table 6.1) yields

∆d2 = -doνα l(To - Tf)
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= -(8.000 mm)(0.31)[ ]13.3 x 10-6 (°C)-1 (20°C - 200°C)

= 0.0059 mm

Finally, the total ∆d  is just ∆d1 + ∆d2 = 0.0192 mm + 0.0059 mm = 0.0251 mm.

20.31  This problem asks for us to determine to what temperature a cylindrical rod of 1025 steel

75.00 mm long and 10.000 mm in diameter must be cooled from 25°C in order to have a 0.008

mm reduction in diameter if the rod ends are maintained rigid.  There will be two contributions to

the diameter decrease of the rod;  the first is due to thermal contraction (which will be denoted
as ∆d1), while the second is from Poisson's lateral contraction as a result of elastic deformation

from stresses that are established from the inability of the rod to contract as it is cooled
(denoted as ∆d2).  The magnitude of ∆d1 may be computed using Equation (20.3b) as

∆d1 = doα l(Tf - To)

Furthermore, for ∆d2, we may calculate the stress using Equation (20.8), and the resulting

longitudinal strain from Equation (6.5), and finally the lateral strain (and ∆d2) using Equation

(6.8).  Thus

∆d2
do

 = - νεz = - 
νσ
E

 = - 
νEα l(To - Tf)

E
 = - να l(To - Tf)

Or
∆d2 = - doνα l(To - Tf)

The total ∆d  is just ∆d  = ∆d1 + ∆d2, and

∆d = doα l(Tf - To) + doνα l(Tf - To) = doα l(Tf - To)(1 + ν)

The values of ν and α l for 1025 steel are 0.30 and 12.0 x 10-6 (°C)-1, respectively (Tables 6.1

and 20.1).  Therefore,

- 0.008 mm = (10.000 mm)[ ]12.0 x 10-6 (°C)-1 (Tf - 25°C)(1 + 0.30)
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Solving the above expression for Tf yields Tf = - 26.3°C.

20.32  According to Equation (20.9), the thermal shock resistance of a ceramic piece may be

enhanced by increasing the fracture strength and thermal conductivity, and by decreasing the
elastic modulus and linear coefficient of thermal expansion.  Of these parameters, σf and α l are

the most amenable to alteration, usually be changing the composition and/or the

microstructure.

Design Problems

20.D1  For these railroad tracks, each end is allowed to expand one-half of the joint space distance,

or the track may expand a total of this distance (4.6 mm).  Equation (20.3a) is used to solve for
T

f
, where α l for the 1025 steel is found in Table 20.1.  Thus,

Tf = 
∆l

α llo
 + To

= 
4.6 x 10-3 m

[ ]12.0 x 10-6 (°C)-1 (11.9 m)
 + 10°C

= 32.2°C + 10°C = 42.2°C  (108°F)

20.D2  This is really a materials selection problem in which we must decide for which of the five

metals listed, the stress in the rod will not exceed 125 MPa (18,125 psi), when it is heated while

its ends are mounted in rigid supports.  Upon examination of Equation (20.8), it may be noted
that all we need do is to compute the Eα l∆T product for each of the candidate materials, and

then note for which the stress is less than the stipulated maximum.  (The value of ∆T is just

60°C.) These parameters and their product for each of the alloys are tabulated below.

Alloy αl (°C)-1 E (GPa) α lE∆T (MPa)

Aluminum 23.6 x 10
-6

69 98

Copper 17.0 x 10
-6

110 112

Brass 20.0 x 10
-6

97 116

1025 Steel 12.0 x 10
-6

207 149

Tungsten 4.5 x 10
-6

407 110
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Thus, aluminum, copper, brass, and tungsten are suitable candidates.

20.D3  (a)  This portion of the problem asks that we cite the units for the thermal shock resistance

parameter (TSR).  From Equation (20.9)

TSR = 
σf(N/m2)k(W/m-K)

E(N/m2)αl(°C)-1
 = W/m

(b)  Now we are asked to rank glass-ceramic (Pyroceram), partially-stabilized zirconia, and

borosilicate (Pyrex) glass as to their thermal shock resistance.  Thus, all we need do is calculate,
for each, the value of TSR  using Equation (20.9).  Values of E , σ f , α l , and k  are found,

respectively, in Tables B.2, B.4, B.6, and B.7, Appendix B.  (Note:  whenever a range for a

property value in these tables is cited, the average of the extremes is used.)   For the glass-

ceramic

TSR = 
σfk

Eα l

= 
(247 MPa)(3.3 W/m-K)

(120 x 103 MPa)[ ]6.5 x 10-6 (°C)-1
 = 1045 W/m

For partially-stabilized zirconia

TSR = 
(1150 MPa)(2.7 W/m-K)

(205 x 103 MPa)[ ]9.6 x 10-6 (°C)-1
 = 1578 W/m

And, for borosilicate glass

TSR = 
(69 MPa)(1.4 W/m-K)

(70 x 103 MPa)[ ]3.3 x 10-6 (°C)-1
 = 418 W/m

Thus, these materials may be ranked according to their thermal shock resistance from the

greatest to the least as follows:  partially-stabilized zirconia, glass-ceramic, and borosilicate

glass.
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20.D4  We want to compute the maximum temperature change allowable without thermal shock for

these several ceramic materials, which temperature change is a function of the fracture

strength, elastic modulus, and linear coefficient of thermal expansion.  (Note:  whenever a range
for a property value is cited, the average of the extremes is used.)  These data and the ∆Tf 's

are tabulated below.

Material σf (MPa) E (MPa) αl (°C)-1 ∆Tf (°C)

Glass ceramic 247 120 x 10
3

6.5 x 10
-6

317

Zirconia 1150 205 x 10
3

9.6 x 10
-6

584

Fused silica 110 104 x 10
3

0.4 x 10
-6

2640
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CHAPTER 21

MAGNETIC PROPERTIES

21.1  (a)  We may calculate the magnetic field strength generated by this coil using Equation (21.1)

as

H = 
NI
l

= 
(200 turns)(10 A)

0.2 m
 = 10,000 A-turns/m

(b)  In a vacuum, the flux density is determined from Equation (21.3).  Thus,

Bo = µoH

= (1.257 x 10-6 H/m)(10,000 A-turns/m) = 1.257 x 10-2 tesla

(c)  When a bar of titanium is positioned within the coil, we must use an expression that is a

combination of Equations (21.5) and (21.6) in order to compute the flux density given the

magnetic susceptibility.  Inasmuch as χm  = 1.81 x 10-4 (Table 21.2), then

B = µoH + µoM = µoH + µoχmH = µoH(1 + χm)

= (1.257 x 10-6 H/m)(10,000 A-turns/m)(1 + 1.81 x 10-4)

≅  1.257 x 10-2 tesla

which is essentially the same result as part (b).  This is to say that the influence of the titanium

bar within the coil makes an imperceptible difference in the magnitude of the B  field.

(d)  The magnetization is computed from Equation (21.6):

M = χmH = (1.81 x 10-4)(10,000 A-turns/m) = 1.81 A/m
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21.2  (a)  This portion of the problem asks that we compute the flux density in a coil of wire 0.1 m

long, having 15 turns, and carrying a current of 1.0 A, and that is situated in a vacuum.  Utilizing

Equations (21.1) and (21.3), and solving for B  yields

Bo = µoH = 
µoNI

l

= 
(1.257 x 10-6 H/m)(15 turns)(1.0 A)

0.1 m
 = 1.89 x 10-4 tesla

(b)  Now we are to compute the flux density with a bar of the iron-silicon alloy, the B-H  behavior

for which is shown in Figure 21.24.  It is necessary to determine the value of H using Equation

(21.1) as

H = 
NI
l

 = 
(15 turns)(1.0 A)

0.1 m
 = 150 A-turns/m

Using the curve in Figure 21.24, B  = 1.65 tesla at H = 150 A-turns/m.

(c)  Finally, we are to assume that a bar of Mo is situated within the coil, and to calculate the

current that is necessary to produce the same B  field as when the iron-silicon alloy in part (b)

was used.  Molybdenum is a paramagnetic material having a χm  of 1.19 x 10-4 (Table 21.2).

Combining Equations (21.2), (21.4), and (21.7) we get

H = 
B
µ  = 

B
µo(1 + χm)

And when Mo is positioned within the coil, then

H = 
1.65 tesla

(1.257 x 10-6 H/m)(1 + 1.19 x 10-4)
 = 1.312 x 106 A-turns/m

Now, the current may be determined using Equation (21.1);

I = 
Hl
N

 = 
(1.312 x 106 A-turns/m)(0.1 m)

15 turns
 = 8750 A

21.3  This problem asks us to show that χm  and µr are related according to   χm  = µr - 1.  We begin

with Equation (21.5) and substitute for M using Equation (21.6).  Thus,
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B = µoH + µoM = µoH + µoχmH

But B  is also defined in Equation (21.2) as

B = µH = µoH + µoχmH

which leads to
µ = µo(1 + χm)

If we divide both sides of this expression by µo

µ
µo

 = µr = 1 + χm

or, upon rearrangement

χm = µr - 1

21.4  For this problem, we want to convert the volume susceptibility of silver (i.e., 2.38 x 10-5) into

other systems of units.

For the mass susceptibility

χm(kg) = 
χm

ρ(kg/m3)

= 
-2.38 x 10-5

10.49 x 103 kg/m3 = -2.27 x 10-9

For the atomic susceptibility

χm(a) = χm(kg) x [atomic weight (in kg)]

= (-2.27 x 10-9)(0.10787 kg/mol) = -2.45 x 10-10

For the cgs-emu susceptibilities,
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χm'  = 
χm
4π  = 

-2.38 x 10-5

4π  = -1.89 x 10-6

χm' (g) = 
χm'

ρ(g/cm3)
 = 

-1.89 x 10-6

10.49 g/cm3 = -1.80 x 10-7

χm' (a) = χm' (g) x [atomic weight (in g)]

= (-1.80 x 10-7)(107.87 g/mol) = -1.94 x 10-5

21.5  (a)  The two sources of magnetic moments for electrons are the electron's orbital motion

around the nucleus, and also, its spin.

(b)  Each electron will have a net magnetic moment from spin, and possibly, orbital

contributions, which do not cancel for an isolated atom.

(c)  All atoms do not have a net magnetic moment.  If an atom has completely filled electron

shells or subshells, there will be a cancellation of both orbital and spin magnetic moments.

21.6  (a)  The magnetic permeability of this material may be determined according to Equation (21.2)

as

µ = 
B
H

 = 
0.435 tesla

3.44 x 105 A/m
 = 1.2645 x 10-6 H/m

(b)  The magnetic susceptibility is calculated as

χm = 
µ

µo
 - 1 =  

1.2645 x 10-6 H/m

1.257 x 10-6 H/m
 - 1

= 6 x 10-3

(c)  This material would display both diamagnetic and paramagnetic behavior.  All materials are

diamagnetic, and since χm  is positive and on the order of 10
-3

, there would also be a

paramagnetic contribution.

21.7  (a)  This portion of the problem calls for us to compute the magnetic susceptibility within a bar

of some metal alloy when M = 3.2 x 105 A/m and H = 50 A/m.  This requires that we solve for
χm  from Equation (21.6) as
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χm = 
M
H

 = 
3.2 x 105 A/m

50 A/m
 = 6400

(b)  In order to calculate the permeability we must employ Equations (21.4) and (21.7) as

follows:

µ = µrµo = µo(χm + 1)

= (1.257 x 10-6 H/m)(6400 + 1) = 8.05 x 10-3 H/m

(c)  The magnetic flux density may be determined using Equation (21.2) as

B = µH = (8.05 x 10-3 H/m)(50 A/m) = 0.40 tesla

(d)  This metal alloy would exhibit ferromagnetic behavior on the basis of the value of its χm
(6400), which is considerably larger than the χm  values for diamagnetic and paramagnetic

materials listed in Table 21.2.

21.8  (a)  The saturation magnetization for Co may be determined in the same manner as was done

for Ni in Example Problem 21.1.  Thus,

Ms = 1.72µBN

in which µB  is the Bohr magneton and N is the number of Co atoms per cubic meter.  Also,

there are 1.72 Bohr magnetons per Co atom.  Now, N (the number of atoms per cubic meter) is

related to the density and atomic weight of Co, and Avogadro's number according to Equation

(4.2) as

N = 
ρCoNA

ACo

= 
(8.90 x 106 g/m3)(6.023 x 1023 atoms/mol)

58.93 g/mol

= 9.10 x 1028 atoms/m3

Therefore,
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Ms = (1.72 BM/atom)(9.27 x 10-24 A-m2/BM)(9.10 x 1028 atoms/m3)

= 1.45 x 106 A/m

(b)  The saturation flux density is determined according to Equation (21.8).  Thus

Bs = µoMs

= (1.257 x 10-6 H/m)(1.45 x 106 A/m) = 1.82 tesla

21.9  We want to confirm that there are 2.2 Bohr magnetons associated with each iron atom.
Therefore, let n

B
'  be the number of Bohr magnetons per atom, which we will calculate.  Using a

modified form of the expression for M
s

 found on page 682,

nB'  = 
Ms

µBN

Now, N is just the number of atoms per cubic meter, which is the number of atoms per unit cell

(two for BCC) divided by the unit cell volume-- that is,

N = 
2

VC
 = 

2

a3

a being the BCC unit cell edge length.  Thus

nB'  = 
Ms

µBN
 = 

Msa3

2µB

= 
(1.70 x 106 A/m)[ ](0.2866 x 10-9 m)3/unit cell

(2 atoms/unit cell)(9.27 x 10-24 A-m2/BM)

= 2.16 BM/atom

21.10  We are to determine the number of Bohr magnetons per atom of a hypothetical metal that

has a simple cubic crystal structure, an atomic radius of 0.153 nm, and a saturation flux density

of 0.76 tesla.  It becomes necessary to employ Equations (21.8) and (21.11) as follows:
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Ms = 
Bs
µo

 = 
nBµB

VC

For the simple cubic crystal structure VC = (2r)3, where r is the atomic radius.  Substituting this

relationship into the above equation and solving for nB  yields

nB = 
Bs(8r3)

µoµB

= 
(0.76 tesla)(8)[ ]0.153 x 10-9 m

3

(1.257 x 10-6 H/m)(9.27 x 10-24 A-m2/BM)
 = 1.87 Bohr magnetons/atom

21.11  Ferromagnetic materials may be permanently magnetized (whereas paramagnetic ones may

not) because of the ability of net spin magnetic moments of adjacent atoms to align with one

another.  This mutual magnetic moment alignment in the same direction exists within small

volume regions--domains.  When a magnetic field is applied, favorably oriented domains grow

at the expense of unfavorably oriented ones, by the motion of domain walls.  When the

magnetic field is removed, there remains a net magnetization by virtue of the resistance to

movement of domain walls;  even after total removal of the magnetic field, the magnetization of

some net domain volume will be aligned near the direction that the external field was oriented.

For paramagnetic materials, there is no magnetic dipole coupling, and, consequently,

domains do not form.  When a magnetic field is removed, the atomic dipoles assume random

orientations, and no magnetic moment remains.

21.12  The similarities between ferromagnetic and ferrimagnetic materials are as follows:

There is a coupling interaction between magnetic moments of adjacent atoms/cations

for both material types.

Both ferromagnets and ferrimagnets form domains.

Hysteresis B-H behavior is displayed for both, and, thus, permanent magnetizations are

possible.

The differences between ferromagnetic and ferrimagnetic materials are as follows:

Magnetic moment coupling is parallel for ferromagnetic materials, and antiparallel for

ferrimagnetic.
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Ferromagnetics, being metallic materials, are relatively good electrical conductors;

inasmuch as ferrimagnetic materials are ceramics, they are electrically insulative.

Saturation magnetizations are higher for ferromagnetic materials.

21.13  Both spinel and inverse spinel crystal structures consist of FCC close-packed stackings of

anions (O
2-

 ions).  Two types of sites, tetrahedral and octahedral, exist among the anions which

may be occupied by the cations.  The divalent cations (e.g., Fe
2+

) occupy tetrahedral positions

for both structures.  The difference lies in the occupancy for the trivalent cations (e.g., Fe
3+

).

For spinel, all trivalent ions reside on octahedral sites;  whereas, for the inverse spinel, half are

positioned on tetrahedral sites, the other half on octahedral.

21.14  Hund's rule states that the spins of the electrons of a shell will add together in such a way as

to yield the maximum magnetic moment.  This means that as electrons fill a shell the spins of

the electrons that fill the first half of the shell are all oriented in the same direction;  furthermore,

the spins of the electrons that fill the last half of this same shell will all be aligned and oriented in

the opposite direction.  For example, consider the iron ions in Table 21.4;  from Table 2.2, the

electron configuration for the outermost shells for the Fe atom is 3d64s2.  For the Fe3+ ion the

outermost shell configuration is 3d5, which means that five of the ten possible 3d states are

filled with electrons.  According to Hund's rule the spins of all of these electrons are aligned,

there will be no cancellation, and therefore, there are five Bohr magnetons associated with each

Fe3+ ion, as noted in the table.  For Fe2+ the configuration of the outermost shell is 3d6, which

means that the spins of five electrons are aligned in one direction, and the spin of a single

electron is aligned in the opposite direction, which cancels the magnetic moment of one of the

other five;  thus, this yields a net moment of four Bohr magnetons.

For Mn2+ the electron configuration is 3d5, the same as Fe3+, and, therefore it will have

the same number of Bohr magnetons (i.e., five).

For Co2+ the electron configuration is 3d7, which means that the spins of five electrons

are in one direction, and two are in the opposite direction, which gives rise to a net moment of

three Bohr magnetons.

For Ni2+ the electron configuration is 3d8 which means that the spins of five electrons

are in one direction, and three are in the opposite direction, which gives rise to a net moment of

two Bohr magnetons.

For Cu2+ the electron configuration is 3d9 which means that the spins of five electrons

are in one direction, and four are in the opposite direction, which gives rise to a net moment of

one Bohr magneton.
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21.15  (a)  The saturation magnetization of nickel ferrite is computed in the same manner as

Example Problem 21.2, and from the expression

Ms = 
nBµB

a3

Now, n
B

 is just the number of Bohr magnetons per unit cell.  The net magnetic moment arises

from the Ni
2+

 ions, of which there are eight per unit cell, each of which has a net magnetic
moment of two Bohr magnetons (Table 21.4).  Thus, n

B
 is sixteen.  Therefore,

Ms = 
(16 BM/unit cell)(9.27 x 10-24 A-m2/BM)

(0.8337 x 10-9 m)3/unit cell

= 2.56 x 105 A/m

(b)  This portion of the problem calls for us to compute the saturation flux density.  From

Equation (21.8)

Bs = µoMs

= (1.257 x 10-6 H/m)(2.56 x 105 A/m) = 0.32 tesla

21.16  We want to compute the number of Bohr magnetons per Mn
2+

 ion in (MnFe
2

O
4

)
8

.  Let n

represent the number of Bohr magnetons per Mn
2+

 ion;  then, using the expression given in

Example Problem 21.1 on page 682, we have

Ms = nNµB

in which N is the number of Mn
2+

 ions per cubic meter of material.  But, from Equation (4.2)

N = 
NAρ

A

in which A  is the molecular weight of MnFe
2

O
4

 (230.64 g/mol).  Thus,

Ms = 
nNAρµB

A



463

or

n = 
MsA

NAρµB

= 
(5.6 x 105 A/m)(230.64 g/mol)

(6.023 x 1023 ions/mol)(5.0 x 106 g/m3)(9.27 x 10-24 A-m2/BM)

= 4.6 Bohr magnetons/Mn2+ ion

21.17  For this problem we are given that yttrium iron garnet may be written in the form

Y3
cFe2

aFe3
dO12 in which the superscripts a, c , and d  represent different sites on which the Y3+

and Fe3+ are located, and that the spin magnetic moments for the ions on a and c  sites are

oriented parallel to one another and antiparallel to the Fe3+ ions on the d  sites.  We are to

determine the number of Bohr magnetons associated with each Y3+ ion given that each unit

cell consists of eight formula units, the unit cell is cubic with an edge length of 1.2376 nm, the

saturation magnetization for the material is 1.0 x 104 A/m, and that there are 5 Bohr

magnetons for each Fe3+ ion.

The first thing to do is to calculate the number of Bohr magnetons per unit cell, which we
will denote nB .  Solving for nB  using Equation (21.11), we get

nB = 
MsVC

µB

= 
(1.0 x 104 A/m)(1.2376 x 10-9 m)3

9.27 x 10-24 A-m2/BM
 = 2.04 Bohr magnetons/unit cell

Now, there are 8 formula units per unit cell or 
2.04

8
 = 0.255 Bohr magnetons per formula unit.

Furthermore, for each formula unit there are two Fe3+ ions on a sites and three Fe3+ on d  sites

which magnetic moments are aligned antiparallel. Since there are 5 Bohr magnetons

associated with each Fe3+ ion, the net magnetic moment contribution per formula unit from the

Fe3+ ions is 5 Bohr magnetons.  This contribution is antiparallel to the contribution from the Y3+

ions, and since there are three Y3+ ions per formula unit

No. of Bohr magnetons/Y3+ =   
0.255 BM + 5 BM

3
 = 1.75 BM
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21.18  Repeatedly dropping a permanent magnet on the floor will cause it to become demagnetized

because the jarring will cause large numbers of magnetic dipoles to become misaligned by

dipole rotation.

21.19  For ferromagnetic materials, the saturation magnetization decreases with increasing

temperature because the atomic thermal vibrational motions counteract the coupling forces

between the adjacent atomic dipole moments, causing some magnetic dipole misalignment.

Ferromagnetic behavior ceases above the Curie temperature because the atomic thermal

vibrations are sufficiently violent so as to completely destroy the mutual spin coupling forces.

21.20  The phenomenon of magnetic hysteresis and an explanation as to why it occurs for

ferromagnetic and ferrimagnetic materials is given in Section 21.7 on pages 688 through 690.

21.21  The B  versus H behaviors for a ferromagnetic material at 0
 
K, at a temperature just below its

Curie temperature, and just above its Curie temperature are sketched schematically below.

At 0
 
K, the saturation magnetization will be a maximum, and the hysteresis loop will

have the largest area.  At a higher temperature (yet below the Curie temperature) the saturation

magnetization will decrease and the size of the hysteresis loop will diminish.  Finally, above the

Curie temperature, ferromagnetic behavior ceases, and the material becomes paramagnetic,

with linear B  versus H behavior;  the slope of this line segment is very gentle.
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21.22  A schematic sketch showing the hysteresis behavior for a ferromagnet which is gradually

demagnetized by cycling an H  field that alternates direction and decreases in magnitude is

shown below.

21.23  Relative to hysteresis behavior, a hard magnetic material has a high remanence, a high

coercivity, a high saturation flux density, high hysteresis energy losses, and a low initial

permeability;  a soft magnetic material, on the other hand, has a high initial permeability, a low

coercivity, and low hysteresis energy losses.

With regard to applications, hard magnetic materials are utilized for permanent

magnets;  soft magnetic materials are used in devices that are subjected to alternating

magnetic fields such as transformer cores, generators, motors, and magnetic amplifier devices.

22.24  We want to determine the saturation magnetization of the 99.95 wt% Fe in Table 21.5, if it

just reaches saturation when inserted within the coil described in Problem 21.1.  It is first

necessary to compute the H field within this coil using Equation (21.1) as

Hs = 
NI
l

 = 
(200 turns)(10 A)

0.2 m
 = 104 A-turns/m

Now, the saturation magnetization may be determined from Equation (21.5) as

Ms = 
Bs - µoHs

µo

The value of B
s

 in Table 21.5 is 2.14 tesla;  thus,
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Ms = 
(2.14 tesla) - (1.257 x 10-6 H/m)(104 A/m)

1.257 x 10-6 H/m

= 1.69 x 106 A/m

21.25  (a)  The saturation flux density for the steel, the B -H behavior for which is shown in Figure

21.25, is 1.30 tesla, the maximum B  value shown on the plot.

(b)  The saturation magnetization is computed from Equation (21.8) as

Ms = 
Bs
µo

= 
1.30 tesla

1.257 x 10-6 H/m
 = 1.03 x 106 A/m

(c)  The remanence, B
r
, is read from this plot as from the hysteresis loop shown in Figure 21.14;

its value is 0.80 tesla.
(d)  The coercivity, H

c
, is read from this plot as from Figure 21.14; the value is 80 A/m.

(e)  On the basis of Tables 21.5 and 21.6, this is most likely a soft magnetic material.  The

saturation flux density (1.30 tesla) lies within the range of values cited for soft materials, and the

remanence (0.80 tesla) is close to the values given in Table 21.6 for hard magnetic materials.
However, the H

c
 is significantly lower than for hard magnetic materials.  Also, if we estimate the

area within the hysteresis curve, we get a value of approximately 250 J/m
3

, which is in line with

the hysteresis loss per cycle for soft magnetic materials.

21.26  The B versus H curve for this material is shown below.
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21.27  (a)  The B-H data provided in the problem are plotted below.
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(b)  The first four data points are plotted below.
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The slope of the initial portion of the curve is µi (as shown), is

µi = 
∆B
∆H

 = 
(0.15 - 0) tesla

(50 - 0) A/m
 = 3.0 x 10-3 H/m

Also, the initial relative permeability [Equation (21.4)] is just

µri = 
µi
µo

 = 
3.0 x 10-3 H/m

1.257 x 10-6 H/m
 = 2400

(c)  The maximum permeability is the tangent to the B-H  curve having the greatest slope;  it is

drawn on the plot below, and designated as µ(max) .
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The value of µ(max)  is

µ(max) = 
∆B
∆H

 = 
(1.3 - 0.3) tesla
(160 - 45) A-m

 = 8.70 x 10 -3 H/m

(d)  The H field at which µ(max)  occurs is approximately 80 A/m [as taken from the plot shown in

part (c)].

(e)  We are asked for the maximum susceptibility, χ(max) .  From Equation (21.7)

χ(max) = µr(max) - 1 = 
µ(max)

µo
 - 1

= 
8.70 x 10-3 H/m

 1.257 x 10-6 H/m
 - 1 = 6920

21.28  In order to demagnetize a magnet having a coercivity of 4000 A/m, an H field of 4000 A/m

must be applied in a direction opposite to that of magnetization.  According to Equation (21.1)

I = 
Hl
N

= 
(4000 A/m)(0.15 m)

100 turns
 = 6.0 A

21.29  (a)  We want to determine the magnitude of the B  field within an iron- silicon alloy, the B -H

behavior for which is shown in Figure 21.24, when l  = 0.20 m, N  = 60 turns, and I  = 0.1 A.

Applying Equation (21.1)

H = 
NI
l

 = 
(60 turns)(0.1 A)

0.20 m
 = 30 A/m

The B  value from the curve corresponding to H = 30 A/m is about 1.35 tesla.

(b)

(i)  The permeability at this field is just ∆B /∆H of the tangent of the B -H curve at H = 30

A/m.  The slope of this line is

µ = 
∆B
∆H

 = 
(1.6 - 1.07) tesla

(52 - 0) A/m
 = 1.0 x 10-2 H/m
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(ii)  From Equation (21.4), the relative permeability is

µr = 
µ

µo
 = 

1.0 x 10-2 H/m

1.257 x 10-6 H/m
 = 7955

(iii)  Using Equation (21.7), the susceptibility is

χm = µr - 1 = 7955 - 1 = 7954

(iv)  The magnetization is determined from Equation (21.6) as

M = χmH = (7954)(30 A/m) = 2.4 x 105 A/m

21.30  Hindering domain boundary movement will enhance the coercivity of the magnetic material,

without producing a significant alteration of the saturation flux density.  Thus, schematic B-H

behaviors with and without domain boundary obstruction are shown below.

21.31  The manner in which information is stored magnetically is discussed in Section 21.10 on

pages 695 through 698.

21.32  (a)  Given Equation (21.12) and the data in Table 21.7, we are asked to calculate the critical
magnetic fields for tin at 1.5 and 2.5 K.  From the table, for Sn, TC = 3.72 K and BC(0) = 0.0305

tesla.  Thus, from Equation (21.3)
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HC(0) = 
BC(0)

µo

= 
0.0305 tesla

1.257 x 10-6 H/m
 = 2.43 x 104 A/m

Now, solving for HC(1.5) and HC(2.5) using Equation (21.12) yields

HC(T) = HC(0)
 


 
1 - 

T2

TC
2

HC(1.5) = (2.43 x 104 A/m) 
 


 
1 - 

(1.5 K)2

(3.72 K)2
 = 2.03 x 104 A/m

HC(2.5) = (2.43 x 104 A/m) 
 


 
1 - 

(2.5 K)2

(3.72 K)2
 = 1.33 x 104 A/m

(b)  Now we are to determine the temperature to which lead must be cooled in a magnetic field
of 20,000 A/m in order for it to be superconductive.  The value of HC(0) must first be determined

using BC(0) given in the table (i.e., 0.0803 tesla);  thus from Equation (21.3)

HC(0) = 
BC(0)

µo
 = 

0.0803 tesla

1.257 x 10-6 H/m
 = 6.39 x 104 A/m

Since TC = 7.19 K we may solve for T using Equation (21.12) as

T = TC√1 - 
HC(T)

HC(0)

= (7.19 K)√1 - 
20000 A/m
63900 A/m

 = 5.96 K

21.33  We are asked to determine which of the superconducting elements in Table 21.7 are

superconducting at 3 K and in a magnetic field of 15,000 A/m.  First of all, in order to be

superconductive at 3 K within any magnetic field, the critical temperature must be greater than 3

K.  Thus, aluminum, titanium, and tungsten may be eliminated upon inspection.  Now, for each
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of lead, mercury, and tin it is necessary, using Equation (21.12), to compute the value of HC(3);

if this value is greater than 15,000 A/m then the element will be superconductive.  Hence, for Pb

HC(3) = 
BC(0)

µo
 
 


 
1 - 

T2

TC
2

0.0803 tesla

1.257 x 10-6 H/m
 
 


 
1 - 

(3.0 K)2

(7.19 K)2
 = 5.28 x 104 A/m

Since this value is greater than 15,000 A/m, Pb will be superconductive.

For Hg

HC(3) = 
0.0411 tesla

1.257 x 10-6 H/m
 
 


 
1 - 

(3.0 K)2

(4.15 K)2
 = 1.56 x 104 A/m

Inasmuch as this value is greater than 15,000 A/m, Hg will be superconductive.

As for Sn

HC(3) = 
0.0305 tesla

1.257 x 10-6 H/m
 
 


 
1 - 

(3.0 K)2

(3.72 K)2
 = 8.48 x 103 A/m

Therefore, Sn is not superconductive.

21.34  For type I superconductors, with increasing magnetic field the material is completely
diamagnetic and superconductive below HC , while at HC  conduction becomes normal and

complete magnetic flux penetration takes place.  On the other hand, for type II superconductors

upon increasing the magnitude of the magnetic field, the transition from the superconducting to

normal conducting states is gradual between lower-critical and upper-critical fields;  so also is

magnetic flux penetration gradual.  Furthermore, type II generally have higher critical

temperatures and critical magnetic fields.

21.35  The Meissner effect is a phenomenon found in superconductors wherein, in the

superconducting state, the material is diamagnetic and completely excludes any external

magnetic field from its interior.  In the normal conducting state complete magnetic flux

penetration of the material occurs.
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21.36  The primary limitation of the new superconducting materials that have relatively high critical

temperatures is that, being ceramics, they are inherently brittle.

Design Problems

21. D1  For this problem we are asked to determine the composition of a Co-Ni alloy that will yield a

saturation magnetization of 1.3 x 106 A/m.  To begin, let us compute the number of Bohr
magnetons per unit cell nB  from an expression that results from combining Equations (21.9)

and (21.10).  That is

nB  = 
MSVC

µB

in which MS is the saturation magnetization, VC  is the unit cell volume, and µΒ is the magnitude

of the Bohr magneton.  In Problem 3.7 it was shown for the HCP crystal structure that

VC = ( )c
a

( )12√ 3 R3

where R is the atomic radius.  From the inside of the front cover, the value of R for Co is given

as 0.125 nm (1.25 x 10-10 m).  Therefore, inasmuch as the c/a ratio for Co is 1.623

VC = ( )1.623 ( )12√ 3 ( )1.25 x 10-10 m 3

= 6.59 x 10-29 m3

And, now solving for nB yields

nB = 
( )1.3 x 106 A/m ( )6.59 x 10-29 m3/unit cell

9.27 x 10-24 A-m2

Bohr magneton

= 
9.24 Bohr magneton

unit cell

Inasmuch as there are 1.72 and 0.60 Bohr magnetons for each of Co and Ni, and, for HCP,

there are 6 equivalent atoms per unit cell, and if we represent the fraction of Ni atoms by x , then
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nB = 9.24 Bohr magnetons/unit cell

= ( )0.6 Bohr magnetons
Ni atom ( )6x Ni atoms

unit cell
 + ( )1.72 Bohr magnetons

Co atom ( )6(1 - x ) Co atoms
unit cell

 

And solving for x , the fraction of Ni atoms , x  = 0.161, of 16.1 at% Ni.

In order to convert this composition to weight percent, we employ Equation (4.7) as

CNi = 
CN' iANi

CN' iANi + CC' oACo
 x 100

= 
(16.1 at %)(58.69 g/mol)

(16.1 at%)(58.69 g/mol) + (83.9 at%)(58.93 g/mol)
 x 100

= 16.0 wt%

21.D2  This problem asks that we design a cubic mixed-ferrite magnetic material that has a

saturation magnetization of 4.6 x 105 A/m.  According to Example Problem 21.2 the saturation

magnetization for Fe3O4 is 5.0 x 105 A/m.  In order to decrease the magnitude of Ms  it is

necessary to replace some fraction of the Fe2+ with a divalent metal ion that has a smaller

magnetic moment.  From Table 21.4 it may be noted that Co2+, Ni2+, and Cu2+, with 3, 2, and

1 Bohr magnetons per ion, respectively, have fewer than the 4 Bohr magnetons/Fe2+ ion.  Let

us first consider Co2+ and employ Equation (21.11) to compute the number of Bohr magnetons

per unit cell (nB ), assuming that the Co2+ addition does not change the unit cell edge length

(0.839 nm).  Thus,

nB = 
Msa3

µB

= 
(4.6 x 105 A/m)(0.839 x 10-9 m)

3
/unit cell

9.27 x 10-24 A-m2/Bohr magneton

= 29.31 Bohr magnetons/unit cell

If we let x  represent the fraction of Co2+ that have substituted for Fe2+, then the remaining

unsubstituted Fe2+ fraction is equal to 1 - x .  Furthermore, inasmuch as there are 8 divalent

ions per unit cell, we may write the following expression:
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nB = 8[3x + 4(1 - x)] = 29.31

which leads to x  = 0.336.  Thus, if 33.6 at% of the Fe2+ in Fe3O4 are replaced with Co2+, the

saturation magnetization will be decreased to 4.6 x 105 A/m.

Upon going through this same procedure for Ni and Cu, we find that xNi  = 0.168 (or

16.8 at%) and xCu = 0.112 (11.2 at%) will yield the 4.6 x 105 A/m saturation magnetization.
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CHAPTER 22

OPTICAL PROPERTIES

22.1  Similarities between photons and phonons are:

1) Both may be described as being wave-like in nature.

2) The energy for both is quantized.

Differences between photons and phonons are:

1) Phonons are elastic waves that exist within solid materials. Photons are electromagnetic

energy packets that may exist in solid materials, as well as in other media.

2) There is a considerable disparity between the velocities of photons and phonons.  The

velocity of a photon is the same as the velocity of light in the particular medium;  for a phonon,

its velocity is that of sound.

22.2  From the classical perspective, electromagnetic radiation is wave-like in character, and the

possible energies of the radiation are continuous.  From the quantum-mechanical perspective,

electromagnetic radiation is dual-like in character (being both wave-like and particle-like), and not

all energies are possible (i.e., energy is quantized).

22.3  In order to compute the frequency of a photon of orange light, we must use Equation (22.2) as

ν = 
c
λ  = 

3 x 108 m/s

6 x 10-7 m
 = 5 x 1014 s-1

Now, for the energy computation, we employ Equation (22.3) as follows:

E = 
hc
λ  = 

(6.63 x 10-34 J-s)(3 x 108 m/s)

6 x 10-7 m

= 3.31 x 10-19 J  (2.07 eV)

22.4  Opaque materials are impervious to light transmission;  it is not possible to see through them.

Light is transmitted diffusely through translucent materials (there is some internal light

scattering).  Objects are not clearly distinguishable when viewed through a translucent material.
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Virtually all of the incident light is transmitted through transparent materials, and one can

see clearly through them.

22.5  (a)  The phenomenon of electronic polarization by electromagnetic radiation is described in

Section 22.4 on page 711.

(b)  Two consequences of electronic polarization in transparent materials are absorption and

refraction.

22.6  (a)  In ionic materials, the larger the size of the component ions the greater the degree of

electronic polarization.

(b)  Upon consultation of Table 13.3 we find that the Al3+, Ti4+, Ni2+, and Mg2+ ions are all

greater in size than the Si4+ ion (0.053, 0.061, 0.069, and 0.0.072 nm, respectively, versus

0.040 nm), and, therefore, all of these ions will increase the index of refraction when added to
SiO2.

22.7  (a)  The electron band structures of metals are such that empty and available electron states

are adjacent to filled states.  Electron excitations from filled to empty states are possible with the

absorption of electromagnetic radiation having frequencies within the visible spectrum,

according to Equation (22.6).  The light energy is totally absorbed or reflected, and, since none

is transmitted, the material is opaque.

(b)  Metals are transparent to high-frequency x-ray and γ-ray radiation since the energies of

these types of radiation are greater than for visible light;  electron excitations corresponding to

these energies are not possible because energies for such transitions are to within an energy

band gap beyond the highest partially-filled energy band.

22.8  In order for a material to have an index of refraction less than unity, the velocity of light in the

material (v) would necessarily have to be greater than the velocity of light in a vacuum [Equation

(22.7)].  This is not possible.

22.9  We want to compute the velocity of light in calcium fluoride given that εr  = 2.056 and χm  =

-1.43 x 10
-5

.  The velocity is determined using Equation (22.8);  but first, we must calculate the

values of ε and µ for calcium fluoride.  According to Equation (19.30)

ε = εrεo = (2.056)(8.85 x 10-12 F/m) = 1.82 x 10-11 F/m

Now, utilizing Equations (21.4) and (21.7)
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µ = µo(χm + 1)

= (1.257 x 10-6 H/m)(1 - 1.43 x 10-5) = 1.257 x 10-6 H/m

And, finally

v = 
1

√εµ

= 
1

√(1.82 x 10-11 F/m)(1.257 x 10-6 H/m)

= 2.09 x 108 m/s

22.10  The frequencies of visible radiation are on the order of 10
15

 Hz (Figure 22.2).  At these
frequencies only electronic polarization is operable (Figure 19.31).  Thus, εr  from Equation

(22.10) is the electronic contribution to εr;  let us designate it as εr'.  Or, in other words

εr'  = n2

For fused silica

εr' (silica) = (1.458)2 = 2.13

And, for soda-lime glass

εr' (glass) = (1.51)2 = 2.28

The fraction of the electronic contribution is just the ratio of εr'  and εr, εr values being taken from

Table 19.4.  Thus

εr' (silica)

εr(60 Hz)
 = 

2.13
4.0

 = 0.53

and
εr' (glass)

εr(60 Hz)
 = 

2.28
6.9

 = 0.33
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22.11  This problem asks for us, using data in Table 22.1, to estimate the dielectric constants for

silica glass, soda-lime glass, PTFE, polyethylene, and polystyrene, and then to compare these

values with those cited in Table 19.4 and briefly explain any discrepancies.  From Equation

(22.10)

εr = n2

Thus, for fused silica, since n = 1.458

εr = (1.458)2 = 2.13

Similarly, for soda-lime glass

εr = (1.51)2 = 2.28

And, for PTFE

εr = (1.35)2 = 1.82

For polyethylene

εr = (1.51)2 = 2.28

For polystyrene

εr = (1.60)2 = 2.56

When we compare the values of εr for the polymers with those in Table 19.4 at frequencies of 1

MHz, there is reasonable agreement (i.e., 1.82 versus 2.1 for PTFE, 2.28 versus 2.3 for

polyethylene, and 2.56 versus 2.6 for polystyrene).  However, for fused silica and soda-lime

glass there are some significant discrepancies (i.e., 2.13 versus 3.8 for the fused silica, and 2.28

versus 6.9 for the soda-lime glass).  The reason for these discrepancies is that for these two

materials an ionic component to the dielectric constant is present at 1 MHz, but is absent at

frequencies within the visible electromagnetic spectrum, which frequencies are on the order 109

MHz (1015 Hz).  These effects may be noted in Figure 19.32.

22.12  Dispersion in a transparent medium is the phenomenon wherein the index of refraction varies

slightly with the wavelength of the electromagnetic radiation.
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22.13  For this problem we want to compute the maximum value of ns  in Equation (22.13) that will

give R = 0.050.  Then we are to consult Table 22.1 in order to ascertain which of the materials

listed have indices of refraction less than this maximum value.  From Equation (22.13)

0.050 = 
[ ]ns - 1

2

[ ]ns + 1
2 = 

ns
2 - 2ns + 1

ns
2 + 2ns + 1

or

0.95ns
2 - 2.10ns + 0.95 = 0

The value of ns  is determined by using the quadratic equation solution, which leads to ns  =

1.576.  Thus, of the materials listed, soda-lime glass, Pyrex glass, and polypropylene have

indices of refraction less than 1.576, and would be suitable for this application.

22.14  The thickness and dielectric constant of a thin surface coating are selected such that there is

destructive interference between the light beam that is reflected from the lens-coating interface

and the light beam that is reflected from the coating-air interface;  thus, the net intensity of the

total reflected beam is very low.

22.15  The three absorption mechanisms in nonmetallic materials involve electronic polarization,

electron transitions, and scattering.  Electronic polarization is described in Section 22.4 on page

711;  absorption by electron transitions is discussed in Sections 22.4 (pages 711 and 712) and

22.7;  and scattering is discussed in Section 22.10.

22.16  We want to decide whether or not Si and Ge are transparent to visible light on the basis of
their band gap energies.  Table 19.2 cites 1.11 and 0.67 eV, respectively, as the E

g
's for these

two semiconductors. According to Equation (22.16b), semiconductors having band gap

energies less than about 1.8 eV are opaque to visible light.  Thus, both Si and Ge fall into this

category, and all visible light is absorbed by valence-band-to-conduction-band-electron

transitions across their reasonably narrow band gaps.

22.17  This problem asks us to determine the range of visible light wavelengths over which ZnTe (E
g

= 2.26 eV) is transparent.  Only photons having energies of 2.26 eV or greater are absorbed by

valence-band-to-conduction-band electron transitions.  Thus, photons having energies less than

2.26 eV are not absorbed;  the minimum photon energy for visible light is 1.8 eV [Equation
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(22.16b)], which corresponds to a wavelength of 0.7 µm.  The wavelength of a photon having

an energy of 2.26 eV is just

λ = 
hc
E

 = 
(4.13 x 10-15 eV-s)(3 x 108 m/s)

2.26 eV

= 5.5 x 10-7 m = 0.55 µm

Thus, pure ZnTe is transparent to visible light having wavelengths between 0.55 and 0.7 µm.

22.18  The magnitude of the absorption coefficient (β in Equation 22.18) depends on the radiation

wavelength for intrinsic insulators and semiconducting materials.  This is because, for photons

having energies less than the band-gap energy (or in terms of wavelength, when  λ  > 
h c
Eg

),

photon absorption due to valence-band-to-conduction-band electron transitions are not

possible, and, therefore, the value of β will be relatively small.  On the other hand, when

photons having energies equal to or greater than the band gap energy (i.e., when λ ≤ 
hc
Eg

) these

electron transitions by the absorption of photons will occur with the result that the magnitude of

β will be relatively large.

In addition, there may be impurity levels that lie within the band gap (Section 22.7) from

or to which electron excitations may occur with the absorption of light radiation at specific

wavelengths.

22.19  In this problem we are asked to calculate the fraction of nonreflected light transmitted through

a 20 mm thickness of transparent material, given that the fraction transmitted through a 10 mm
width is 0.90. From Equation (22.18), the fraction of nonreflected light transmitted is just I

T
' /I

o
' .

Using this expression we must first determine the value of β as

β = - 
1
x

 ln 
 



 

I

T
'

I
o
'

= - ( )1
10 mm

ln(0.90) = 1.05 x 10-2 mm-1

Now, solving for 
I
T
'

I
o
'  when x  = 20 mm
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I
T
'

I
o
'  = exp (- βx)

exp[ ]- ( )1.05 x 10-2 mm-1 (20 mm)  = 0.81

22.20  The problem asks that we derive Equation (22.19), which is

IT = Io(1 - R)2 e-βl

If we examine Figure 22.7, at the front (or left) interface, some of the incident beam having
intensity I

o
 is reflected.  Since I

R
 = I

o
R at this surface

IT
'  = Io - IoR = Io(1 - R)

in which I
T
'  is the intensity of the nonreflected beam at the front surface that is transmitted.

Now there will be absorption of this transmitted beam as it passes through the solid and

transparent medium according to Equation (22.18). Just inside the back (or right) interface, the

beam has passed through a thickness l of this material (x = l ) and, therefore, the intensity of the
transmitted beam at this point (I

T
" ) is just

I
T
"  = Io(1 - R) e-βl

Finally, a second reflection will occur at the back interface as the beam passes out of
the medium.  The intensity of the reflected beam (I

R
" ) is just

I
R
"  = IT

" R = IoR(1 - R) e-βl

And the intensity of the final transmitted beam (I
T

) becomes

IT = IT
"  - IR

"

= Io(1 - R) e-βl - IoR(1 - R) e-βl

= Io(1 - R)2 e-βl
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22.21  We are asked to compute the thickness of material to yield a transmissivity of 0.75 given that

T is 0.85 when l = 20 mm, n  = 1.6, and for normally incident radiation.  The first requirement is

that we calculate the value of β for this material using Equations (22.13) and (22.19).  The value

of R is determined as

R = 
[ ]ns - 1

2

[ ]ns + 1
2

= 
(1.6 - 1)2

(1.6 + 1)2
 = 5.33 x 10-2

From Equation (22.19)

β = - 
1
l
 ln 

 


 
IT

Io(1 - R)2

= - 
1
l
 ln 

 



 

T

(1 - R)2

= - ( )1
20 mm

ln 

 


 
0.85

( )1 - 5.33 x 10-2 2  = 2.65 x 10-3 mm-1

Now, solving for l from Equation (22.19) when T = 0.75

l = - 
1
β ln 

 



 

T

(1 - R)2

= - 
1

2.65  10-3 mm-1 ln 

 


 
0.75

( )1 - 5.33 x 10-2 2

= 67.3 mm

22.22  (a)  The characteristic color of a metal is determined by the distribution of wavelengths of the

nonabsorbed light radiation that is reflected.

(b)  The characteristic color of a transparent nonmetal is determined by the distribution of

wavelengths of the nonabsorbed light radiation that is transmitted through the material.
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22.23  For a transparent material that appears colorless, any absorption within its interior is the same

for all visible wavelengths.  On the other hand, if there is any selective absorption of visible light

(usually by electron excitations), the material will appear colored, its color being dependent on

the frequency distribution of the transmitted light beam.

22.24  This problem calls for a calculation of the reflectivity between two quartz grains having

different orientations and indices of refraction (1.544 and 1.553).  We must employ Equation

(22.12) since the beam is normal to the grain boundary.  Thus,

R = 
[ ]n2 - n1

2

[ ]n2 + n1
2

= 
(1.553 - 1.544)2

(1.553 + 1.544)2
 = 8.45 x 10-6

22.25  Amorphous polymers are normally transparent because there will be no scattering of a light

beam within the material.  However, for semicrystalline polymers, visible light will be scattered at

boundaries between amorphous and crystalline regions since they have different indices of

refraction.  This leads to translucency or, for extensive scattering, opacity, except for

semicrystalline polymers having very small crystallites.

22.26  (a)  The phenomenon of luminescence is described in Section 22.11 on pages 721 and 722.

(b)  The feature that distinguishes fluorescence from phosphorescence is the magnitude of the

time interval between photon absorption and reemission events.  Fluorescence is for delay

times less than a second;  phosphorescence occurs for longer times.

22.27  (a)  The phenomenon of photoconductivity is explained in Section 22.12 on page 722.

(b)  Zinc selenide, having a band gap of 2.58 eV, would be photoconductive.  In order to be

photoconductive, electrons must be excited from the valence band into the conduction band by

the absorption of light radiation. According to Equation (22.16a), the maximum band gap

energy for which there may be absorption of visible light is 3.1 eV;  since the band gap energy

for ZnSe is less than this value, photoinduced valence-band-to-conduction-band electron

transitions will occur.
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22.28  A photographic light meter is used to measure the intensity of incident light radiation.  Each

photon of incident light induces a valence-band-to-conduction band electron transition in which

both electrons and holes are produced, as depicted in Figure 22.5(a).  The magnitude of the

photoinduced current resulting from these transitions is registered, which is proportional to the

numbers of electrons and holes, and thus, the number of incident photons, or, equivalently, the

intensity of the incident light radiation.

22.29  Section 22.13 contains a description of the operation of a ruby laser.

22.30  This problem asks for the difference in energy between metastable and ground electron

states for a ruby laser.  The wavelength of the radiation emitted by an electron transition from

the metastable to ground state is cited as 0.6943 µm.  The difference in energy between these

states, ∆E, may be determined from Equation (22.6), as

∆E = hν = 
hc
λ

= 
(4.13 x 10-15 eV-s)(3 x 108 m/s)

6.943 x 10-7 m

= 1.78 eV

Design Problem

22.D1  This problem stipulates that GaAs and GaP have room-temperature band gap energies of

1.42 and 2.25 eV, respectively, that they form solid solutions in all proportions, that alloys of

these two semiconductors are used for light-emitting diodes wherein light is generated by

conduction band-to-valence band electron transitions, and that the band gap of a GaAs-GaP

alloy increases approximately linearly with GaP additions (in mol%).  We are asked to determine

the composition of an alloy that will emit orange light having a wavelength of 0.60 µm.  It first

becomes necessary to compute the band-gap energy corresponding to this wavelength of light

using Equation (22.3) as

Eg = 
hc
λ
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= 
(4.13 x 10-15 eV-s)(3 x 108 m/s)

0.60 x 10-6 m
 = 2.065 eV

Realizing that at 0 mol% GaP, Eg  = 1.42 eV, while at 100 mol% GaP, Eg  = 2.25 eV, it is

possible to set up the relationship

100 mol% - CGaP
100 mol% - 0 mol%

 = 
2.25 eV - 2.065 eV
2.25 eV - 1.42 eV

Solving for CGaP, the composition of GaP, we get CGaP = 77.7 mol%.
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CHAPTER 23

MATERIALS SELECTION AND DESIGN CONSIDERATIONS

PROBLEM SOLUTIONS

23.D1  (a)  This portion of the problem asks for us to determine which of the materials listed in the

database of Appendix B (or contained on the CD-ROM) have torsional strength performance

indices greater than 12.5 (in SI units) and, in addition, shear strengths greater that 300 MPa.

(Note:   for this performance index of 12.5, density has been taken in terms of g/cm3 rather than

in the SI units of kg/m3.)  To begin, it is noted in Section 2.3 that the shear yield strength, τy =

0.6σy .  On this basis, and given that P = τy
2/3/ρ [Equation (23.9) in the textbook], it follows that

P = 
(0.6σy)2/3

ρ

and, thus, the minimum value of the performance index in terms of yield strength value is
(12.5)/(0.6)2/3 = 17.57.  When a ratio query is performed on the CD-ROM for ρy

2/3/ρ using a

minimum value of 17.57, ten metal alloys are found to satisfy this criterion;  these are listed in

the table below.

____________________________________________

Alloy Condition
( )0.6σy

2/3

ρ σy

____________________________________________
4340 Steel Q/T, 315°C 17.57 1620

440A Stainless Q/T, 315°C 17.90 1650

2024 Al T3 17.75 345

7075 Al T6 22.64 505

7075 Al T651 22.64 505

AZ31B Mg Rolled 20.59 220

AZ31B Mg Extruded 19.32 200

Ti-5Al-2.5Sn Annealed 18.59 760

Ti-6Al-4V Annealed 19.94 830

Ti-6Al-4V Aged 24.10 1103
_____________________________________________
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Now, the second criterion calls for the material to have a shear strength greater than
300 MPa.  Again, since σy = τy /0.6, the minimum yield strength required is σy  = 300 MPa/0.6,

or σy  = 500 MPa.  Values of σy  from the database are also given in this table.  It is noted that

the 2024 Al and both magnesium alloys are eliminated on the basis of this second criterion.

(b)  This portion of the problem calls for us to conduct a cost analysis for these seven remaining

alloys.  Below is given a tabulation of values for ρ/(0.6σy )2/3, relative cost c
_

 (as taken from

Appendix C), and the product of these two parameters.  (It should be noted that no values of c
_

are given for four of these materials.)  The three remaining materials are ranked on the basis of

cost, from least to most expensive.

___________________________________________________

Alloy Condition
ρ

( )0.6σy
2/3 c

_
(c
_

)
ρ

( )0.6σy
2/3

___________________________________________________
7075 Al T6 0.0621 13.4 0.832

Ti-6Al-4V Annealed 0.0705 132 9.31

Ti-5Al-2.5Sn Annealed 0.0756 157 11.87

Ti-6Al-4V Aged 0.0583 -- --

4340 Steel Q/T, 315°C 0.0800 -- --

440A Stain. Q/T, 315°C 0.0785 -- --

7075 Al T651 0.0621 -- --
___________________________________________________

Thus, the 7075-T6 aluminum alloy is the overwhelming choice of the three materials for which

cost data are given since it has the lowest value for the (c
_

)[ ]ρ/(0.6σy)2/3  product.

23.D2  This problem asks that we conduct a stiffness-to-mass performance analysis on a solid
cylindrical shaft that is subjected to a torsional stress.  The stiffness performance index Ps  is

given as Equation (23.11) in the textbook:

Ps = 
√G
ρ

in which G  is the shear modulus and ρ is the density.  Densities for the five materials are

tabulated in Table 23.1.  Shear moduli for the glass- and fiber-reinforced composites were
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stipulated in the problem (8.6 and 9.2 GPa, respectively).  For the three metal alloys, values of

the shear modulus may be computed using Equation (6.9) and the values of the modulus of

elasticity and Poisson's ratio given in Tables B.2 and B.3 in Appendix B.  For example, for the

2024-T6 aluminum alloy

G = 
E

2(1 + ν)

= 
72.4 GPa

2(1 + 0.33)
 = 27.2 GPa

Values of G for the titanium alloy and 4340 steel are, respectively, 42.5 and 79.6 GPa.

Below are tabulated the density, shear modulus, and stiffness performance index for

these five materials.

___________________________________________________

ρ G
√G
ρ

Material (Mg/m3) (GPa) [(GPa)1/2m3/Mg]

___________________________________________________

Carbon fiber-reinforced 1.5 9.2 2.02
    composite

Aluminum alloy (2024-T6) 2.8 27.2 1.86

Titanium alloy (Ti-6Al-4V) 4.4 42.5 1.48

Glass fiber-reinforced 2.0 8.6 1.47
    composite

4340 Steel (oil-quenched 7.8 79.6 1.14
   and tempered)

___________________________________________________

Thus, the carbon fiber-reinforced composite has the highest stiffness performance index, and

the tempered steel the least.

The table shown below contains the reciprocal of the performance index in the first

column, the relative cost (c
_

), and the product of these two factors, which provides a comparison

of the relative costs of the materials to be used for this torsional shaft, when stiffness is an

important consideration.
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___________________________________________________
ρ

√G
c
_

c
_

 


 
ρ

√G
Material [Mg/(GPa)1/2m3] ($/$) [($/$){Mg/(GPa)1/2m3}]

___________________________________________________

4340 Steel (oil-quenched 0.877 5 4.39
   and tempered)

Aluminum alloy (2024-T6) 0.538 15 8.06

Glass fiber-reinforced 0.680 40 27.2
    composite

Carbon fiber-reinforced 0.495 80 39.6
    composite

Titanium alloy (Ti-4Al-6V) 0.676 110 74.4

___________________________________________________

Thus, a shaft constructed of the tempered steel would be the least expensive, whereas the

most costly shaft would employ the titanium alloy.

23.D3  (a)  This portion of the problem asks that we derive a performance index expression for

strength analogous to Equation (23.9) for a cylindrical cantilever beam that is stressed in the

manner shown in the accompanying figure.  The stress on the unfixed end, σ, for an imposed

force, F, is given by the expression [Equation (23.24) in the textbook]

σ = 
FLr
I

(23.D1)

where L  and r  are the rod length and radius, respectively, and I  is the moment of inertia;  for a

cylinder the expression for I is provided in Figure 13.28:

I  = 
πr4

4
(23.D2)

Substitution for I  into Equation (23.D1) leads to
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σ = 
4FL

πr3
(23.D3)

Now, the mass m  of some given quantity of material is the product of its density (ρ) and volume.

Inasmuch as the volume of a cylinder is just πr2L , then

m = πr2Lρ (23.D4)

From this expression, the radius is just

r = √ m
πLρ (23.D5)

Inclusion of Equation (23.D5) into Equation (23.D3) yields

σ = 
4Fπ1/2L5/2ρ3/2

m3/2 (23.D6)

And solving for the mass gives

m = ( )16πF2L5 1/3
 

ρ
σ2/3 (23.D7)

To ensure that the beam will not fail, we replace stress in Equation (23.D7) with the yield
strength (σy) divided by a factor of safety (N) as

m = ( )16πF2L5N2 1/3
 

ρ
σy

2/3 (23.D8)

Thus, the best materials to be used for this cylindrical cantilever beam when strength is a

consideration are those having low 
ρ

σy
2/3 ratios.  Furthermore, the strength performance index,

P, is just the reciprocal of this ratio, or

P = 
σy

2/3

ρ (23.D9)
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The second portion of the problem asks for an expression for the stiffness performance

index.  Let us begin by consideration of Equation (23.25) which relates δ, the elastic deflection

at the unfixed end, to the force (F), beam length (L), the modulus of elasticity (E), and moment

of inertia (I ) as

δ = 
FL3

3EI
(23.25)

Again, Equation (23.D2) gives an expression for I  for a cylinder, which when substituted into

Equation (23.25) yields

δ = 
4FL3

3πEr4
(23.D10)

And, substitution of the expression for r [Equation (23.D5)] into Equation (23.D10), leads to

δ = 
4FL3

3πE 


 
√ m

πLρ

4

= 
4FL5πρ2

3Em2 (23.D11)

Now solving this expression for the mass m  yields

m =  


 
4FL5π

3δ

1/2
 

ρ
√ E

(23.D12)

Or, for this cantilever situation, the mass of material experiencing a given deflection produced by

a specific force is proportional to the 
ρ

√ E
 ratio for that material.  And, finally, the stiffness

performance index, P, is just the reciprocal of this ratio, or

P = 
√ E
ρ (23.D13)

(b)  Here we are asked to select those metal alloys in the database that have stiffness

performance indices greater than 3.0 (in SI units).  (Note:   for this performance index of 3.0,
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density has been taken in terms of g/cm3 rather than in the SI units of kg/m3.)  Seventeen

metal alloys satisfy this criterion;  they and their √ E/ρ values are listed below, and ranked from

highest to lowest value.

__________________________________

Alloy Condition
√ E
ρ

__________________________________
AZ31B Mg Rolled 3.790

AZ31B Mg Extruded 3.790

AZ91D Mg As cast 3.706

356.0 Al As cast, high production 3.163

356.0 Al As cast, custom 3.163

356.0 Al T6 3.163

6061 Al O 3.077

6061 Al T6 3.077

6061 Al T651 3.077

2024 Al O 3.072

2024 Al T3 3.072

2024 Al T351 3.072

1100 Al O 3.065

1100 Al H14 3.065

7075 Al O 3.009

7075 Al T6 3.009

7075 Al T651 3.009
__________________________________

(c)  We are now asked to do a cost analysis on the above alloys.  Below are tabulated the ρ/√ E

ratio, the relative material cost (c
_

), and the product of these two parameters;  also those alloys

for which cost data are provided are ranked, from least to most expensive.

___________________________________________________

Alloy Condition
ρ

√ E
c
_

c
_

 


 
ρ

√ E

___________________________________________________
AZ91D Mg As cast 0.2640 5.4 1.43

6061 Al T6 0.3250 7.6 2.47
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356.0 Al As cast, high production 0.3162 7.9 2.50

6061 Al T651 0.3250 8.7 2.83

AZ31B Mg Extruded 0.2640 12.6 3.33

1100 Al O 0.3263 12.3 4.01

AZ31B Mg Rolled 0.2640 15.7 4.14

7075 Al T6 0.3323 13.4 4.45

2024 Al T3 0.3255 14.1 4.59

356.0 Al As cast, custom 0.3162 15.7 4.96

356.0 Al T6 0.3162 16.6 5.25

2024 Al T351 0.3255 16.2 5.27

1100 Al H14 0.3263 -- --

2024 Al O 0.3255 -- --

6061 Al O 0.3250 -- --

7075 Al O 0.3323 -- --

7075 Al T651 0.3323 -- --
___________________________________________________

It is up to the student to select the best metal alloy to be used for this cantilever beam on a

stiffness-per-mass basis, including the element of cost, and other relevant considerations.

(d)  We are now asked to select those metal alloys in the database that have strength

performance indices greater than 18.0 (in SI units).  (Note:   for this performance index of 18.0,

density has been taken in terms of g/cm3 rather than in the SI units of kg/m3.)  Seven alloys
satisfy this criterion;  they and their σy

2/3/ρ ratios [Equation (23.D9)] are listed below;  here they

are ranked from highest to lowest ratio value.

__________________________________

Alloy Condition
σy

2/3

ρ
__________________________________
Ti-6Al-4V Soln. treated/aged 24.10

7075 Al T6 22.65

7075 Al T651 22.65

AZ31B Mg Rolled 20.59

Ti-6Al-4V Annealed 19.94

AZ31B Mg Extruded 19.32

Ti-5Al-2.5Sn Annealed 18.59
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__________________________________

(e)  We are now asked to do a cost analysis on the above alloys.  Below are tabulated the

ρ/σy
2/3 values, the relative material cost (c

_
), and the product of these two parameters;  also those

alloys for which cost data are provided are ranked, from least to most expensive.

___________________________________________________

Alloy Condition 10-2 ρ
σy

2/3 c
_

c
_

 


 
ρ

σy
2/3

___________________________________________________
7075 Al T6 4.42 13.4 0.592

AZ31B Mg Extruded 5.18 12.6 0.653

AZ31B Mg Rolled 4.86 15.7 0.763

Ti-6Al-4V Soln. treated/aged 4.15 132 5.48

Ti-6Al-4V Annealed 5.02 132 6.63

Ti-5Al-2.5Sn Annealed 5.38 157 8.45

7075 Al T651 4.42 -- --
___________________________________________________

It is up to the student to select the best metal alloy to be used for this cantilever beam on a

stiffness-per-mass basis, including the element of cost and any other relevant considerations.

(f)  The student should use his or her own discretion in the selection the material to be used for

this application when stiffness- and strength-per-mass, as well as cost are to be considered.

Furthermore, the student should be able to justify the decision.

23.D4  (a)  This portion of the problem asks that we derive strength and stiffness performance index

expressions analogous to Equations (23.9) and (23.11) for a bar specimen having a square

cross-section that is pulled in uniaxial tension along it longitudinal axis.

For stiffness, we begin by consideration of the elongation, ∆l, in Equation (6.2) where
the initial length lo is replaced by L.  Thus, Equation (6.2) may now be written as

∆l = Lε (23.D14)
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in which ε is the engineering strain.  Furthermore, assuming that the deformation is entirely

elastic, Hooke's law, Equation (6.5), is obeyed by this material (i.e., σ = Eε), where σ is the

engineering stress.  Thus

∆l = Lε = 
Lσ
E

(23.D15)

And, since σ is defined by Equation (6.1) as

σ = 
F

Ao
(6.1)

Ao  being the original cross-sectional area; in this case Ao  = c2.  Thus, incorporation of these

relationships into Equation (23.D15) leads to an expression for ∆l as

∆l = 
LF

Ec2 (23.D16)

The mass of material, m , is just the product of the density, ρ, and the volume of the beam,

which volume is just Lc2;  that is

m = ρLc2 (23.D17)

Or

c2 = 
m
ρL

(23.D18)

Substitution for c2 into Equation (23.D16) yields

∆l = 
L2Fρ
Em

(23.D19)

And solving for the mass

m =  


 
L2F

∆l
 
ρ
E

(23.D20)
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Thus, the best materials to be used for a light bar that is pulled in tension when stiffness is a
consideration are those having low ρ/E ratios.  The stiffness performance index, Ps , is the

reciprocal of this ratio, or

Ps = 
E
ρ (23.D21)

Now we will consider rod strength.  The stress σ imposed on this beam by F may be

determined using Equation (6.1);  that is

σ = 
F

Ao
 = 

F

c2 (23.D22)

In the stiffness treatment [(Equation (23.D18)] it was shown that c2 = m /ρL , and thus

σ = 
FLρ
m

(23.D23)

Now, solving for the mass, m , leads to

m = (FL) 
ρ
σ (23.D24)

And replacement of stress with yield strength, σy, divided by a factor of safety , N

m = (FLN) 
ρ

σy
(23.D25)

Hence,  the best materials to be used for a light bar that is pulled in tension when strength is a
consideration are those having low ρ/σy  ratios;  and the strength performance index, P, is just

the reciprocal of this ratio, or

P = 
σy
ρ (23.D26)

(b)  Here we are asked to select those metal alloys in the database that have stiffness

performance indices [i.e., E/ρ ratios, Equation (23.D21)] greater than 26.3 (in SI units).  (Note:

for this performance index of 26.3, density has been taken in terms of g/cm3 rather than in the

SI units of kg/m3.)  Twenty seven metal alloys satisfy this criterion.  All of the twenty-one plain

carbon and low alloy steels contained in the database fall into this group, and, in addition
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several other alloys.  They and their E/ρ are listed below, and are ranked from highest to lowest

value.  (All of these twenty one steel alloys have the same E/ρ ratio, and therefore are entered

as a single item in the table.)  These materials are ranked from highest to lowest ratio.

__________________________________
Alloy(s) Condition

E
ρ

__________________________________
Molybdenum Sheet/rod 31.31

356.0 Al As cast, high production 26.91

356.0 Al As cast, custom 26.91

356.0 Al T6 26.91

17-7PH stainless Plate, CR 26.67

17-7PH stainless Pptn. hardened 26.67

Plain carbon/low
     alloy steels Various 26.37
__________________________________

(c)  We are now asked to do a cost analysis on the above alloys.  Below are tabulated the ρ/E

ratio, the relative material cost (c
_

), and the product of these two parameters;  only those alloys

in the previous table for which cost data are given are included in the table;  these are ranked,

from least to most expensive.

___________________________________________________

Alloy Condition 10-2 
ρ
E

c
_

10-2 c
_( )ρ

E

___________________________________________________
1020 steel Plate, HR 3.79 0.8 3.03

A36 steel Plate, HR 3.79 1.0 3.79

1040 steel Plate, HR 3.79 1.1 4.17

A36 steel Angle bar, HR 3.79 1.6 6.06

1020 steel Plate, CR 3.79 1.6 6.06

1040 steel Plate, CR 3.79 1.9 7.20

4140 steel Bar, normalized 3.79 2.6 9.85

4340 steel Bar, annealed 3.79 3.5 13.3

4140H steel Round, normalized 3.79 4.2 15.9

4340 steel Bar, normalized 3.79 4.7 17.8

356.0 Al Cast, high prod. 3.72 7.9 29.4
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17-7PH SS Plate, CR 3.75 12 45.0

356.0 Al Cast, custom 3.72 15.7 58.4

356.0 Al T6 3.72 16.6 61.8

Molybdenum Sheet/rod 3.19 143 456
___________________________________________________

It is up to the student to select the best metal alloy to be used for this bar pulled in tension on a

stiffness-per-mass basis, including the element of cost and other relevant considerations.

(d)  We are now asked to select those metal alloys in the database that have strength

performance indices greater than 100 (in SI units).  (Note:   for this performance index of 100,

density has been taken in terms of g/cm3 rather than in the SI units of kg/m3.)  Eighteen alloys
satisfy this criterion;  they and their σy /ρ ratios [per Equation (23.D26)] are listed below;  here the

ranking is from highest to lowest ratio value.

__________________________________

Alloy Condition
σy
ρ

__________________________________
Ti-6Al-4V Soln. treated/aged 249

440A stainless Q/T, 315°C 212

4340 steel Q/T, 315°C 206

4140 steel Q/T, 315°C 200

Ti-6Al-4V Annealed 187

7075 Al T6 180

7075 Al T651 180

17-7PH stainless Pptn. hardened 171

Ti-5Al-2.5Sn Annealed 170

17-7PH stainless Plate, CR 158

C17200 Cu Soln. treated/aged 132

2024 Al T3 125

AZ31B Mg Sheet, rolled 124

2024 Al T351 117

AZ31B Mg Sheet, extruded 113

4340 steel Normalized @870°C 110

6061 Al T6 102

6061 Al T651 102
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__________________________________

(e)  We are now asked to do a cost analysis on the above alloys.  Below are tabulated the  ρ/σy

values, the relative material cost (c
_

), and the product of these two parameters;  also those alloys

for which cost data are provided are ranked, from least to most expensive.

___________________________________________________

Alloy Condition 10-3 ρ
σy

c
_

10-2 c
_

 


 
ρ

σy

___________________________________________________
4340 steel Normalized @ 870°C 9.09 4.7 4.3

6061 Al T6 9.80 7.6 7.4

7075 Al T6 5.56 13.4 7.5

17-7PH SS Plate, CR 6.33 12.0 7.6

6061 Al T651 9.80 8.7 8.5

AZ31B Mg Sheet, extruded 8.85 12.6 11.2

2024 Al T3 8.00 14.1 11.3

AZ31B Mg Sheet, rolled 8.06 15.7 12.7

2024 Al T351 8.55 16.2 13.9

C17200 Cu Soln. treated/aged 7.58 51.4 39.0

Ti-6Al-4V Soln. treated/aged 4.02 132 53.1

Ti-6Al-4V Annealed 5.35 132 70.6

Ti-5Al-2.5Sn Annealed 5.88 157 92.3

440A SS Q/T, 315°C 4.72 -- --

4340 steel Q/T, 315°C 4.85 -- --

4140 steel Q/T, 315°C 5.00 -- --

7075 Al T651 5.56 -- --

17-7PH SS Pptn. hardened 5.85 -- --
___________________________________________________

It is up to the student to select the best metal alloy to be used for this bar pulled in tension on a

strength-per-mass basis, including the element of cost and other relevant considerations.

(f)  The student should use his or her own discretion in the selection the material to be used for

this application when stiffness- and strength-per-mass, as well as cost are to be considered.

Furthermore, the student should be able to justify the decision.
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23.D5  (a)  The first portion of this problem asks that we derive a performance index expression for

the strength for a plate that is supported at its ends and subjected to a force that is uniformly

distributed over the upper face.  Equation (23.26) in the textbook is an expression for the

deflection δ of the underside of the plate at L /2 in terms of the force F, the modulus of elasticity

E, as well as the plate dimensions as shown in the accompanying figure.  This equation is as

follows:

δ = 
5FL3

32Ewt3
(23.D27)

Now, the mass m  of the plate is the product of its density (ρ) and volume.  Inasmuch as the

volume of the plate is Lwt , then

m = Lwtρ (23.D28)

From this expression, the thickness t is just

t = 
m

Lwρ (23.D29)

Inclusion of Equation (23.D29) into Equation (23.D27) yields

δ = 
5FL6w2ρ3

32Em3 (23.D30)

And solving for the mass gives

m =  


 
5FL6w2

32δ
1/3

 
ρ

E1/3 (23.D31)

Now, the stiffness performance index P1  is just the reciprocal of the 
ρ

E1/3 term of this expression,

or

P1 = 
E1/3

ρ (23.D32)
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For determination of the strength performance index, we substitute the expression for t

[Equation (23.D29)] into Equation (23.27) in the textbook, which yields

σ = 
3FL3wρ2

4m2 (23.D33)

Now, as in the previous problems, in order to insure that the plate will not fail, we replace stress
in the previous expression with the yield strength (σy) divided by a factor of safety (N) as

σy
N

 = 
3FL3wρ2

4m2 (23.D34)

Now solving Equation (23.D34) for the mass

m =  


 
3NFL3w

4

1/2
 

ρ
σy

1/2 (23.D35)

And, finally, the stiffness performance index P2  is the reciprocal of the 
ρ

σy
1/2 ratio as

P2 = 
σy

1/2

ρ (23.D36)

(b)  Here we are asked to select those metal alloys in the database that have stiffness

performance indices [i.e., E1/3/ρ ratios, Equation (23.D32)] greater than 1.50 (in SI units).  (Note:

for this performance index of 1.50, density has been taken in terms of g/cm3 rather than in the

SI units of kg/m3.)  Fourteen  metal alloys satisfy this criterion.  They and their E1/3/ρ ratios are

listed below.  Furthermore, these materials are ranked from highest to lowest ratio.

__________________________________

Alloy Condition
E1/3

ρ
__________________________________
AZ31B Mg Rolled 2.010

AZ31B Mg Extruded 2.010

AZ91B Mg As cast 1.965

356.0 Al Cast, high production 1.549

356.0 Al As cast, custom 1.549

356.0 Al T6 1.549

6061 Al O 1.519
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6061 Al T6 1.519

6061 Al T651 1.519

1100 Al O 1.513

1100 Al H14 1.513

2024 Al O 1.505

2024 Al T3 1.505

2024 Al T351 1.505
__________________________________

(c)  We are now asked to do a cost analysis on the above alloys.  Below are tabulated the ρ/E1/3

ratio, the relative material cost (c
_

), and the product of these two parameters;  these alloys are

ranked, from least to most expensive.

___________________________________________________

Alloy Condition
ρ

E1/3 c
_

c
_

 


 
ρ

E1/3

___________________________________________________
AZ91B Mg As cast 0.509 5.4 2.75

6061 Al T6 0.658 7.6 5.00

356.0 Al Cast, high production 0.645 7.9 5.10

6061 Al T651 0.658 8.7 5.72

AZ31B Mg Extruded 0.498 12.6 6.27

AZ31B Mg Rolled 0.498 15.7 7.82

1100 Al O 0.661 12.3 8.13

2024 Al T3 0.665 14.1 9.38

356.0 Al Cast, custom 0.645 15.7 10.13

356.0 Al T6 0.645 16.6 10.71

2024 Al T351 0.665 16.2 10.77

1100 Al H14 0.661 -- --

2024 Al O 0.665 -- --

6061 Al O 0.658 -- --
___________________________________________________

It is up to the student to select the best metal alloy to be used for this plate on a stiffness-per-

mass basis, including the element of cost, as well as other relevant considerations.
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(d)  We are now asked to select those metal alloys in the database that have strength

performance indices greater than 6.0 (in SI units).  (Note:   for this performance index of 6.0,

density has been taken in terms of g/cm3 rather than in the SI units of kg/m3.)  Twelve alloys
satisfy this criterion;  they and their σy

1/2/ρ ratios [per Equation (23.D36)] are listed below;  here

the ranking is from highest to lowest ratio value.

__________________________________

Alloy Condition
σ1

y
/2

ρ
__________________________________
AZ31B Mg Sheet, rolled 8.380

AZ31B Mg Sheet, extruded 8.380

7075 Al T6 8.026

7075 Al T651 8.026

Ti-6Al-4V Soln. treated/aged 7.497

2024 Al T3 6.706

2024 Al T351 6.508

Ti-6Al-4V Annealed 6.503

Ti-5Al-2.5Sn Annealed 6.154

6061 Al T6 6.153

6061 Al T651 6.153

AZ91D Mg As cast 6.104
__________________________________

(e)  We are now asked to do a cost analysis on the above alloys.  Below are tabulated the

ρ/σ1
y
/2  values, the relative material cost (c

_
), and the product of these two parameters;  also those

alloys for which cost data are provided are ranked, from least to most expensive.
___________________________________________________

Alloy Condition
ρ

σ1
y
/2 c

_
c
_

 


 
ρ

σ1
y
/2

___________________________________________________
AZ91D Mg As cast 0.1639 5.4 0.885

6061 Al T6 0.1625 7.6 1.24

6061 Al T651 0.1625 8.7 1.41
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AZ31B Mg Sheet, extruded 0.1193 12.6 1.50

7075 Al T6 0.1246 13.4 1.67

AZ31B Mg Sheet, rolled 0.1193 15.7 1.87

2024 Al T3 0.1491 14.1 2.10

2024 Al T351 0.1537 16.2 2.49

Ti-6Al-4V Soln. treated/aged 0.1334 132 17.61

Ti-6Al-4V Annealed 0.1538 132 20.30

Ti-5Al-2.5Sn Annealed 0.1625 157 25.51

7075 Al T651 0.1246 -- --
___________________________________________________

It is up to the student to select the best metal alloy to be used for this plate on a strength-per-

mass basis, including the element of cost, as well as other relevant considerations.

(f)  The student should use his or her own discretion in the selection the material to be used for

this application when stiffness- and strength-per-mass, as well as cost are to be considered.

Furthermore, the student should be able to justify the decision.

23.D6  (a)  This portion of the problem asks that we compute the maximum tensile load that may be

applied to a spring constructed of a 
1
4 hard 304 stainless steel such that the total deflection is

less than 5 mm;  there are 10 coils in the spring, whereas, its center-to-center diameter is 15
mm, and the wire diameter is 2.0 mm.  The total spring deflection δs  may be determined by

combining Equations (23.14) and (23.15);  solving for the load F from the combined equation

leads to

F = 
δsd4G

8NcD3

However, it becomes necessary to determine the value of the shear modulus G .  This is

possible using Equation (6.9) and values of the modulus of elasticity (193 GPa) and Poisson's

ratio (0.30) as taken from Tables B.2 and B.3 in Appendix B.  Thus

G = 
E

2(1 + ν)

= 
193 GPa

2(1 + 0.30)
 = 74.2 GPa
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Substitution of this value and values of the other parameters into the above equation for F

leads to

F = 
(5 x 10-3 m)(2 x 10-3 m)4(74.2 x 109 N/m2)

(8)(10 coils)(15 x 10-3 m)3

= 22.0 N (5.1 lbf)

(b)  We are now asked to compute the maximum tensile load that may be applied without any

permanent deformation of the spring wire.  This requires that we combine Equations (23.12)

and (23.13), and then solve for F.  However, it is first necessary to calculate the shear yield
strength and substitute it for τ in Equation (23.12).  The problem statement stipulates that τy  =

0.6 σy .  From Table B.4 in Appendix B, we note that the tensile yield strength for this alloy in the

1/4 hardened state is 515 MPa;  thus τy  = 309 MPa.  Thus, solving for F as outlined above

F = 
πτyd3

(1.6)(8)(D)( )D
d

-0.140

= 
π(309 x 106 N/m2)(2 x 10-3 m)3

(1.6)(8)(15 x 10-3 m)
 



 

15 x 10-3 m

2 x 10-3 m

-0.140

= 53.6 N (12.5 lbf)

23.D7  (a)  In this portion of the problem we are asked to select candidate materials for a spring that

consists of eight coils and which is not to plastically deform nor experience a deflection of more

that 10 mm when a tensile force of 30 N is applied.  The coil-to-coil diameter and wire diameter
are 12 mm and 1.75 mm, respectively.  In addition, we are to assume that τy  = 0.6σy  and G =

0.4E.  Let us first determine the minimum modulus of elasticity that is required such that the
total deflection δs  is less than 10 mm.  This requires that we begin by computation of the

deflection per coil δc using Equation (23.15) as

δc = 
δs
N

 = 
10 mm
8 coils

 = 1.25 mm/coil
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Now, upon rearrangement of Equation (23.14) and solving for E, realizing that G = 0.4E, we

have

E = 
8FD3

(0.4)δcd4

= 
(8)(30 N)(12 x 10-3 m)3

(0.4)(1.25 x 10-3 m)(1.75 x 10-3 m)4

= 88.4 x 109 N/m2 = 88.4 GPa

Next, we will calculate the minimum required tensile yield strength by employing Equations
(23.18) and (23.13).  Solving for σy , and since τy  = 0.6σy  the following may be written

σy = 
δc(0.4E)d

(0.6)πD2  
 



 



1.60( )D
d

-0.140

= 
(1.25 x 10-3m)(0.4)(88.4 x 109 N/m2)(1.75 x 10-3 m)

(0.6)(π)(12 x 10-3 m)2
 
 



 



1.60( )12 mm
1.75 mm

-0.140

= 348 x 106 N/m2 = 348 MPa

After pursuing the database on the CD-ROM or Appendix B in the textbook, it is

observed that 30 materials satisfy the two criteria that were determined above (viz. E = 88.4
GPa and σy  = 348 MPa).  These materials are listed below, along with their values of E, σy ,

%EL, and relative cost (c
_

).

___________________________________________________

Material Condition E (GPa) σy (MPa) %EL c
_

($/$)

___________________________________________________
1020 steel Plate, CR 207 350 15 1.6

1040 steel Plate, CR 207 490 12 1.9

1040 steel Annealed 207 355 30.2 --

1040 steel Normalized 207 375 28 --

4140 steel Annealed 207 417 25.7 --
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4140 steel Bar, normalized 207 655 17.7 2.6

4140 steel Q/T @ 315°C 207 1570 11.5 --

4340 steel Bar, annealed 207 472 22 3.5

4340 steel Bar, normalized 207 862 12.2 4.7

4340 steel Q/T @ 315°C 207 1620 12 --

304 SS CW, 1/4 hard 193 515 10 4.0

440A SS Plate, annealed 200 415 20 6.7

440A SS Q/T @ 315°C 200 1650 5 --

17-7PH SS Plate, CR 204 1210 1 12.0

17-7PH SS Ptn. hardened 204 1310 3.5 --

Ductile Iron
    (80-55-06) As cast, high production 168 379 6 2.4

Ductile Iron
    (80-55-06) As cast, low production 168 379 6 5.9

Ductile Iron
    (120-90-02) Q/T, high production 164 621 2 2.4

Ductile Iron
    (120-90-02) Q/T, low production 164 621 2 5.9

C17200 Cu Soln. treated/aged 128 905-1205 4-10 51.4

C26000 Cu  CW, H04 110 435 8 6.0

C71500 Cu CW, H80 150 545 3 12.9

Ti-5Al-2.5Sn Annealed 110 760 16 157

Ti-6Al-4V Annealed 114 830 14 132

Ti-6Al-4V Soln. treated/aged 114 1103 10 132

Molybdenum Sheet/rod 320 500 25 143

Tungsten Sheet 400 760 2 111

Tungsten Rod 400 760 2 166

Inconel 625 Annealed 207 517 42.5 35.0

Haynes 25 -- 236 445 62 135
___________________________________________________

The student should make his or her own decision as to which material would be most desirable

for this application.  Consideration should be given to the magnitude of both the elastic modulus

and yield strength relative, in that they should be somewhat greater than the required minima,

yet not excessively greater than the minima.  Furthermore, the alloy will have to be drawn into a

wire, and, thus, the ductility in percent elongation is also a parameter to be considered.  And, of

course cost is important, as well as the corrosion resistance of the material;  corrosion resistant
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issues for these various alloys are discussed in Chapter 18.  And, as called for in the problem

statement, the student should justify his or her decision.

23.D8  This problem involves a spring having 10 coils, a coil-to-coil diameter of 0.4 in., which is to
deflect no more than 0.80 in. when a tensile load of 12.9 lbf is applied.  We are asked to

calculate the minimum diameter to which a cold-drawn steel wire may be drawn such that plastic

deformation of the spring wire will not occur.  The spring will plastically deform when the right-

hand side of Equation (23.18) equals the shear yield strength of the cold-drawn wire.

Furthermore, the shear yield strength is a function of wire diameter according to Equation

(23.28).  When we set this expression equal to the right-hand side of Equation (23.18), the only

unknown is the wire diameter, d , since, from Equation (23.15)

δc = 
δs
N

 = 
0.80 in.
10 coils

= 0.080 in./coil

Therefore,

τy = 
63000

d0.2  = 
δcGd

πD2  Kw = 
δcGd

πD2  
 



 



1.60 ( )D
d

-0.140

Now, this expression reduces to

63000
d0.2  = 

(0.08 in./coil)(11.5 x 106 psi)d

π(0.40 in.)2
 
 



 



1.60 ( )0.40 in.
d

-0.140

Or

63000
d0.2  = 3.33 x 106 d1.14

And

1.89 x 10-2 = d1.34

Finally, solving for d leads to
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d = 0.052 in.

23.D9  This problem involves a spring that is to be constructed from a 4340 steel wire 2 mm in

diameter;  the design also calls for 12 coils, a coil-to-coil diameter of 12 mm, and the spring

deflection is to be no more than 3.5 mm when a tensile load of 27 N is applied.  We are asked

to specify the heat treatment for this 4340 alloy such that plastic deformation of the spring wire

will not occur.  The spring will plastically deform when the right-hand side of Equation (23.18)
equals the shear yield strength of wire.  However, we must first determine the value of δc  using

Equation (23.15).  Thus,

δc = 
δs
N

 = 
3.5 mm
12 coils

= 0.292 mm/coil

Now, solving for τy

τy = 
δcGd

πD2  Kw = 
δcGd

πD2  
 



 



1.60 ( )D
d

-0.140

(0.292 x 10-3 m)(80 x 109 N/m2)(2 x 10-3 m)

(π)(12 x 10-3 m)2
 
 



 



1.60 ( )12 mm
2 mm

-0.140

= 129 x 106 N/m2 = 129 MPa

It is now possible to solve for the tensile yield strength σy as

σy = 
τy
0.6

 = 
129 MPa

0.6
 = 214 MPa

Thus, it is necessary to heat treat this 4340 steel in order to have a tensile yield strength of 214

MPa.  One way this could be accomplished is by first austenitizing the steel, quenching it in oil,

and then tempering it.  In Figure 10.26 is shown the yield strength as a function of tempering

temperature  for a 4340 alloy that has been oil quenched.  From this plot, in order to achieve a

yield strength of 214 MPa, tempering (for 1 h) at approximately 380°C is required.
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23.D10  This problem is to be solved using the E-Z Solve  equation solver on the CD-ROM.

23.D11  (a)  This portion of the problem calls for us to search for possible materials to be used for a

leadframe plate in an integrated circuit package.  The requirements are (1) that the material be

highly electrically conductive--i.e., an electrical conductivity of greater that 10 x 106 (Ω-m)-1 [or,

alternatively, an electrical resistivity of 1.0 x 10-7 (Ω-m)];  (2)  that it have a coefficient of thermal

expansion between 2 x 10-6 and 10 x 10-6 (°C)-1;  and (3)  it must also be a thermal conductor

having a thermal conductivity of at least 100 W/m-K.  When a combination query is performed

on the CD-ROM for

ρe < 1.0 x 10-7 (Ω-m)

2 x 10-6 (°C) -1 < α l  < 10 x 10-6 (°C)-1

k > 100 W/m-K

no materials were found to simultaneously satisfy all three criteria.

(b)  Now we are asked to search for insulating materials to be used for the leadframe plate .

The requirements are as follows:  (1)  an electrical conductivity less than 10-10 (Ω -m)- 1

[equivalently, an electrical resistivity greater than 1010 (Ω -m)];  a coefficient of thermal

expansion between 2 x 10-6 and 10 x 10-6 (°C)-1;  and (3)  a thermal conductivity greater than

30 W/m-K.  When a combination query is performed on the CD-ROM for

ρe > 1010 (Ω-m)

2 x 10-6 (°C) -1 < α l  < 10 x 10-6 (°C)-1

k > 30 W/m-K

no materials were found to simultaneously satisfy all three criteria.

23.D12  The first part of this question asks for a description of the shape memory phenomenon.  A

part having some shape and that is fabricated from a metal alloy that displays this phenomenon

is plastically deformed.  It can be made to return to its original shape by heating to an elevated

temperature.  Thus, the material has a shape memory, or "remembers" its previous shape.

Next we are asked to explain the mechanism for this phenomenon.  A shape memory

alloy is polymorphic (Section 3.6)--that is, it can exist having two crystal structures.  One is body-

centered cubic structure (termed an austenite phase) that exists at elevated temperatures;

upon cooling, and at some temperature above the ambient, it transforms to a martensitic

structure.  Furthermore, this martensitic phase is highly twinned.  Upon application of a stress to

this low-temperature martensitic phase, plastic deformation is accomplished by the migration of

twin boundaries to some preferred orientation.  Once the stress is removed, the deformed

shape will be retained at this temperature.  When this deformed martensite is subsequently
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heated to above the phase transformation temperature, the alloy reverts back to the BCC

phase, and assumes the original shape.  The procedure may then be repeated.

One material that exhibits this behavior is a nickel-titanium alloy.  Furthermore, the

desired "memory" shape may is established by forming the material above its phase transition

temperature.

Several applications for alloys displaying this effect are eyeglass frames, shrink-to-fit pipe

couplers, tooth-straightening braces, collapsible antennas, greenhouse window openers,

antiscald control valves on showers, women's foundations, and fire sprinkler valves.

23.D13  The primary reasons that the automotive industry has replaced metallic automobile

components with polymer and composite materials are:  polymers/composites 1) have lower

densities, and afford higher fuel efficiencies;  2) may be produced at lower costs but with

comparable mechanical characteristics;  3) are in many environments more corrosion resistant;

4) reduce noise, and 5) are thermally insulating and thus reduce the transference of heat.

These replacements are many and varied.  Several are as follows:

Bumper fascia are molded from an elastomer-modified polypropylene.

Overhead consoles are made of polyphenylene oxide and recycled polycarbonate.

Rocker arm covers are injection molded of a glass- and mineral-reinforced nylon 6,6

composite.

Torque converter reactors, water outlets, pulleys, and brake pistons, are made from

phenolic thermoset composites that are reinforced with glass fibers.

Air intake manifolds are made of a glass-reinforced nylon 6,6.

23.D14  Relatively high densities of digital information may be stored on the compact disc or CD.  For

example, sound (i.e., music) may be stored and subsequently reproduced virtually free of any

interference.  In essence, the CD is a laser-optical data-storage system, wherein a continuous

laser beam functions as the playback element.  The input signal is stored digitally (as optical

read-only memory or OROM) in the form of very small, microscopic surface pits that have been

embedded into the disc during the manufacturing process.  The incident laser beam is reflected

from the surface of the disc, and modulation (i.e., variation of the phase) of this read or reflected

beam is achieved by optical interference that results from the depth of the pits.

These read-only discs consist of a substrate into which the datum pits have been

replicated.  This substrate must be protected, which is accomplished by a thin and reflective

layer of aluminum, on top of which is coated an ultraviolet curable lacquer.  Since the substrate

is the key component of the optical path, its properties are extremely important.  Some of the

substrate characteristics that are critical are as follows:  1)  it must be highly transparent;  2)  it
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must be possible to economically produce discs that are uniformly thick and extremely flat;  3)

water absorption must be low so as to avoid distortion;  4)  high mechanical stability, good

impact resistance, and high heat distortion resistance;  5)  good flow properties (while in a

molten state) so as to avoid the establishment of thermal stresses and subsequent optical

nonuniformities (i.e., nonuniform birefringence);  6) the material must be clean and defect-free in

order to ensure error-free scanning;  and 7)  it must have a long lifetime (on the order of 10

years).

The current material-of-choice for audio CDs is a relatively low molecular weight

polycarbonate since it is the most economical material that best satisfies the above

requirements.

23.D15  (a)  The mechanism by which the VCR head records and plays back audio/video signals is

essentially the same as the manner by which the head on a computer storage device reads and

writes, as described in Section 21.10 on pages 695 and 696.

(b)  Heads should be made from soft magnetic materials inasmuch as they are repeatedly

magnetized and demagnetized.  Some of the requisite properties for these materials are as
follows:  1) a relatively high saturation flux density (a Bs of at least 0.5 tesla);  2) a relatively high

initial permeability (at least 8000);  3) a relatively small hysteresis loop in order to keep energy

losses small;  4)  a low remanence;  5)  a relatively high mechanical hardness in order to resist

surface wear (a minimum Vickers hardness of 120);  and 6) a moderate electrical resistivity (at

least 0.6 x 10-6 Ω-m).

(c)  It is up to the student to supply three appropriate candidate materials having properties

consistent with the above requirements.

23.D16  (a)  Compositionally, the metallic glass materials are rather complex;  several compositions
are as follows:  Fe80B20, Fe72Cr8P13C7, Fe67Co18B14Si, Pd77.5Cu6.0Si16.5, and

Fe40Ni38Mo4B18.

(b)  These materials are exceptionally strong and tough, extremely corrosion resistant, and are

easily magnetized.

(c)  Principal drawbacks for these materials are 1) complicated and exotic fabrication techniques

are required;  and 2) inasmuch as very rapid cooling rates are required, at least one dimension

of the material must be small--i.e., they are normally produced in ribbon form.

(d)  Potential uses include transformer cores, magnetic amplifiers, heads for magnetic tape

players, reinforcements for pressure vessels and tires, shields for electromagnetic interference,

security tapes for library books.
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(e)  Production techniques include centrifuge melt spinning, planar-flow casting, rapid pressure

application, arc melt spinning.

23.D17  (a)  Advantages of delivering drugs into the body using transdermal patches (as opposed to

oral administration) are:  1) Drugs that are taken orally must pass through the digestive system

and, consequently, may cause digestive discomfort.  2)  Orally delivered drugs will ultimately

pass through the liver which function is to filter out of the blood unnatural substances, including

some drugs;  thus, drug concentrations in the blood are diluted.  3)  It is much easier to

maintain a constant level of delivery over relatively long time periods using transdermal patches.

(b)  In order for transdermal delivery, the skin must be permeable to the drug, or delivery agents

must be available that can carry the drug through the skin.

(c)  Characteristics that are required for transdermal patch materials are the following:  they must

be flexible;  they must adhere to the skin;  they must not cause skin irritation;  they must be

permeable to the drug;  and they must not interact with the drug over long storage periods.

23.D18  The three materials that are used for beverage containers are glass, aluminum, and the

polymer polyethylene terephthalate (designated as PET or sometimes PETE).  Currently, the

most commonly used of these three materials is the PET.  Its optical clarity is excellent, it is

significantly lighter than glass, PET has high burst and impact strengths and is shatter-proof, it is

inexpensive to produce, has high gas permeation resistance, is easily fabricated (by blow-

molding), and PET containers are safer (there is no breakage as with glass and no cuts result

from pull-tabs as with the Al cans).  There are virtually no incineration and landfill problems with

PET, although, PET is relatively nondegradable.  On the down side, PET containers are

nonrefillable, but even so, they require less energy to produce per filled unit volume than either

aluminum or glass.  Also, they can be recycled.

Glass containers are refillable and recyclable, are very impermeable to the passage of

gases and liquids, and are more expensive to produce and fabricate into bottles than is PET.

However, glass bottles are nonbiodegradable and can be dangerous when they break.

Aluminum beverage containers are nonrefillable and nonbiodegradable, but recyclable,

and are also light in weight.  Again, they are more expensive to produce than are PET bottles.
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