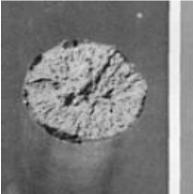


UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA DEPARTAMENTO DE ENGENHARIA DE MATERIAIS

Disciplina LOM-3016 – Introdução a Ciência dos Materiais

Professor Dr. Cassius Olívio Figueiredo Terra Ruchert (cassiusterra@usp.br)

5ª Lista:


FRATURA

PARTE 1

- 1– O que é fratura dúctil e quais estágios ocorrem durante o processo deste tipo de fratura?
- 2– O que é fratura frágil e qual mecanismo envolvido neste tipo de fratura? Quando um material é classificado como frágil?
- 3- O que é ductilidade?
- 4– Observe as fraturas e responda:
 - a) Qual tipo de fratura?
 - b) Identifique nas fraturas a presença de macromecanismos e micromecanismos, quando for o caso.

Figura 1 – Fratura de um aço grau X100 (Mirone e Corallo, 2013).

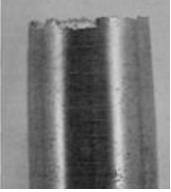


Figura 2 – Exemplo de fratura de uma liga de alumínio 7079 (ASM, 2003).

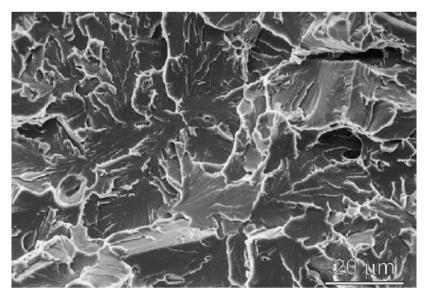


Figura 3 – Exemplo de fratura de um aço, ensaiado à -130° C (Hadraba et. al., 2008).

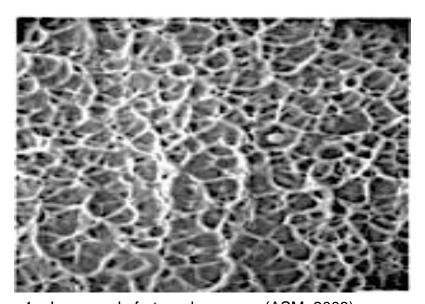


Figura 4 – Imagem de fratura de um aço (ASM, 2003).

- 5 Quais os fatores que contribuem para o surgimento de fratura frágil em materiais que são normalmente dúcteis à temperatura ambiente?
- 6 Comente a respeito do efeito da temperatura sobre a tenacidade ao impacto de um metal. Esboce uma curva de transição dúctil-frágil de um metal com estrutura CCC e um com estrutura CFC e de exemplos de materiais. Cite todos os fatores estudados que podem alterar a temperatura de transição dúctil-frágil.

IMPACTO

PARTE 2

- 7 Qual a diferença entre o ensaio de impacto Charpy e Izod?
- 8 Quais são os parâmetros que afetam a tenacidade ao impacto de materiais poliméricos?
- 9 Os dados da tabela abaixo foram obtidos a partir de uma série de ensaios de impacto realizados em quatro tipos de ferro fundido nodular, com diferentes porcentagens de Si. Desenhe a curva de energia X temperatura de ensaio e determine:

Tabela 1 – Energia absorvida de um ferro fundido nodular para diferentes teores de Si.

	Energia Absorvida (J)				
Temperatura de teste (° C)	2,55%Si	2,85%Si	3,25%Si	3,63%Si	
-50	2.5	2.5	2	2	
-5	3	2.5	2	2	
0	6	5	3	2.5	
25	13	10	7	4	
50	17	14	12	8	
75	19	16	16	13	
100	19	16	16	16	
125	19	16	16	16	

- a) a temperatura de transição definida como a média das energias obtidas no início da região dúctil e início da região frágil e compare com a técnica de 20,0 J energia. Coloque em gráfico este valor em função do teor de Si e comente.
- b) Qual seria o teor de Si máximo permitido caso o ferro fundido nodular tivesse que trabalhar a 25°C.
- 10 Uma série de ligas de Al-Si possui uma microestrutura que consiste de silício metálico na forma de longas agulhas numa matriz de Al dúctil. Essas ligas seriam sensíveis a entalhes em um este de impacto? Elas teriam uma boa resistência ao impacto? Justifique sua resposta.
- 11 Os dados a seguir foram obtidos com uma série de ensaios de impacto Charpy em quatro tipos de aço, cada um deles com um teor de manganês distinto. Trace o gráfico utilizando papel milimetrado de energia absorvida-temperatura e determine:

- a) a temperatura de transição em função do teor de manganês definida pela média das energias absorvidas nas regiões dúctil e frágil;
- (b) a temperatura de transição em função do teor de manganês definida como a temperatura correspondente a 50 J de energia absorvida.
- c) Qual seria o teor mínimo de manganês para que o aço pudesse ser empregado em uma peça usada a 0°C?

Tabela 2 – Energia absorvida de um aço para diferentes teores de Mn.

	Energia Absorvida (J)				
Temperatura de teste (° C)	0,30%Mn	0,39%Mn	1,01%Mn	1,55%Mn	
-100	2	5	5	15	
-75	2	5	7	25	
-50	2	12	20	45	
-25	10	25	40	70	
0	30	55	75	110	
25	60	100	110	135	
50	105	125	130	140	
75	130	135	135	140	
100	130	135	135	140	

12 – Um ensaio de impacto foi executado em diferentes temperaturas.Descreva a fratura levando em consideração a temperatura de ensaio para cada amostra.

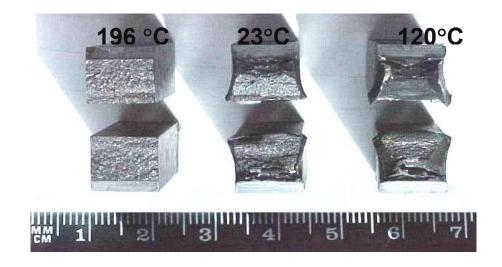


Figura 5 – Fraturas de amostra de aço resultantes de um ensaio de impacto em diferentes temperaturas.