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Abstract: A popular model proposed by W. R. Dickinson and co-workers in the early 1980s 
relates the composition of sandstones to the plate-tectonic setting of the sedimentary basins in 
which they were deposited. The present study is devoted to revision and testing of the 'Dickinson 
model' based on the original data which comprise 11 000 thin sections point-counted by hundreds 
of different operators over a period of three decades. Statistical analyses based on Aitchison's 
additive log-ratio transformation are used to obtain an optimal partitioning of ternary compo- 
sitional spaces into 'provenance fields' and combined with stochastic simulation to assess the 
success ratio of the optimized 'Dickinson model'. Results indicate that differences between the 
grand means of each of the three major provenance associations (continental block, magmatic 
arc and recycled orogen) are highly significant, whereas overall inferential success ratios range 
from 64% to 78% in the four ternary systems studied. Current methods of dealing with sands 
of mixed provenance are unsatisfactory. To improve provenance models, the use of ternary sub- 
compositions should be replaced by analyses of the full six-part (Qm, Qp, P, K, Lv, Ls) compo- 
sition, and their covariance structure could be employed to 'unmix' samples into end-member 
provenance types. 

The idea that sand(stone) composition reflects the 

nature of the rocks exposed in a source area, as 

well as the climatic and physiographic regime in 

which the sand was generated from these rocks, 

forms the basic premise of sediment provenance 

studies (Haughton et al. 1991; Johnsson 1993; 

Basu 2003; Weltje & Von Eynatten 2004). The 

empirical relation between ternary compositions of 

sands and the plate-tectonic setting of the sedimen- 

tary basins in which they were deposited, first 

explored by Crook (1974) and Schwab (1975), was 

formally presented by Dickinson and co-workers 

(Dickinson & Suczek 1979; Dickinson 1982, 

1985; Dickinson et al. 1983). The 'Dickinson 

model '  (DM) is the first quantitative representation 

of this key concept in sand provenance studies, 

whose origins may be traced as far back as the late 

nineteenth century (Weltje & Von Eynatten 2004). 

The DM consists of four ternary diagrams subdi- 

vided into different provenance fields in which 

subcompositions of sands may be plotted to infer 

their most likely plate-tectonic environment (see 

Table 1 for definitions of compositional variables, 

ternary subcompositions and plate-tectonic settings 

used in the DM). The apparently straightforward 

DM enjoyed great popularity from its inception 

and has been regarded as a benchmark by at least 

two generations of sediment petrographers. 

In the light of this popularity, it is remarkable that 

little attention has been paid to tests of its predictive 

power. The main reason for the lack of such tests is 

that problems associated with statistical analysis of 

'closed-sum' data (i.e. compositions) have been 

recognized widely but no solution was available 

until the log-ratio transformation of Aitchison 

(1982, 1986) became known outside of the field 

of mathematical statistics. Although the log-ratio 

transformation is discussed in some detail in 

recent textbooks on geological data analysis 

(Rollinson 1993; Swan & Sandilands 1993; Davis 

1997; Pawlowsky-Glahn & Olea 2004), one can 

hardly call it a standard technique, as witnessed 

by the majority of geological papers in which com- 

positional data are statistically analysed without 

much regard for their inherent limitations. 

Molinaroli et al. (1991) attempted to test the DM 

by means of discriminant function analysis of the 

ternary QFL and QmFLt data of Dickinson et al. 
(1983) without applying a log-ratio transformation. 

They concluded that the DM correctly classifies 

85% of the data at most. However, this conclusion 

is difficult to justify from a methodological point 

of view. 

�9 The intrinsic limitations of compositional data 

caused by the constant-sum and non-negativity 

constraints ('closure effects'), which are 

known to affect the results of discriminant func- 

tion analysis (e.g. Butler 1982), were not taken 

into account. It implies that the DM may 
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Table 1. Compositional variables, ternary systems and provenance 
associations referred to in this study 

Grain categories 
Total quartzose grains: Q = Qm + Qp 

Qm = monocrystalline quartz 
Qp = polycrystalline quartz 

Total feldspar grains: F = P + K 

P = plagioclase grains 
K = alkali feldspar grains 

Total unstable lithic fragments: L = Lv + Ls 

Lv = (meta)volcanic lithic fragments 
Ls = (meta)sedimentary lithic fragments 

Total lithic fragments: Lt = L + Qp 

Ternary systems 
Q~ 
QmFLt 
QmPK 
QpLvLs 

Provenance associations 
A 
B 
C 
M 

Framework (emphasis on maturity) 
Framework (emphasis on parent rock) 
Subcomposition: monomineralic grains 
Subcomposition: lithic fragments 

Continental block provenance 
Magmatic arc provenance 
Recycled orogen provenance 
Mixed provenance 

actually be more powerful if examined in the 

light of an appropriate statistical model. 

�9 The data used to calculate the success ratio of 

the empirical classification procedure were 

also used to establish the discriminant functions. 

This tends to flatter the results and overestimate 

the success ratio of the DM, because sampling 

variability is not taken into account. Tests with 

independent data are more likely to provide a 

reasonable assessment of the efficiency of 

empirical classification schemes, which quite 

often is disappointingly low (e.g. Armstrong- 

Altrin & Verma 2005). 

In other words, the actual performance of the DM 

may be better or worse than suggested by the analy- 

sis of Molinaroli et al. (1991). 

In this study, Aitchison's log-ratio approach will 

be used to analyse the DM database and to obtain 

the optimal partitioning of ternary compositional 

space into 'provenance fields'. The final step in 

the analysis is quantification of the discriminatory 

power of the DM. The revised DM employs an 

alternative graphic representation of ternary data, 

which will be introduced under the term 'log-ratio 

diagram', but the results have also been transferred 

to the familiar ternary space to permit a direct com- 

parison with the provenance fields of the original 

DM (Dickinson 1985). 

Statistical analysis of ternary 

compositions 

Many classification schemes developed for sedi- 

ments employ ternary diagrams (Klein 1963; Okada 

1971). The popularity of the ternary diagram, which 

appears to have been invented in the late nineteenth 

century (Becke 1897), is most likely attributable to 

its intuitive appeal. It allows the display of three- 

part compositions x = (Xa, xa, x3) in a way that 

treats all components equally, even though one 

component is redundant because the x-values are 

non-negative and their sum equals unity (or 100%). 

The non-negativity and constant-sum constraints rep- 

resent two fundamental properties of compositional 

data which are equally relevant to the study of 

compositions with more than three parts and have 

frustrated many attempts at statistical analysis, as 

illustrated by Chayes (1960), Butler (1979), Aitchi- 

son (1986), Rollinson (1993) and many others. 

The additive log-ratio transformation introduced 

by Aitchison (1982) is a powerful tool that 

removes the non-negativity and constant-sum con- 

straints on compositional variables, and permits 

the use of standard multivariate statistical methods 

based on the assumption of multivariate normality. 

It is defined as follows. Let xi represent the rela- 

tive abundances of components in a composition 
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made up of k constituents (1 < i < k). The kth com- 

ponent xk, whose value is fully specified by the sum 

of the other k -  1 values, is used as a common 

denominator (or numerator) to form a series ofk - 1 

ratios of component abundances. The logarithms 

of these ratios are defined as the set of additive 

log-ratios Yi: 

Yi - - -  log = l o g  x i  - log xk, 

whe re i - -  1,2 . . . . .  k - 1  

or, alternatively y : alr(x) 

Log-ratios are amenable to rigorous statistical 

analysis, unlike the constrained compositional vari- 

ables. They are unconstrained in the sense that they 

can take on any value, and their values can be modi- 

fied without automatically forcing a response 

from the other log-ratios formed from the same com- 

position. Moreover, the outcomes of log-ratio 

statistical analysis are permutation invariant, i.e. 

unaffected by the choice of common denominator 

or numerator. Compositional data follow an additive 

logistic normal distribution if their log-ratios are 

multivariate normally distributed. The requirement 

of additive logistic normality appears to be fulfilled 

by many types of compositional data. Statistical 

models for ternary compositions (Xl, X2, X3) are 

thus preferentially constructed under the assumption 

of a bivariate normal distribution of the correspond- 

ing set of log-ratios (yl ,  Y2). The results of log-ratio 
statistical analysis may be mapped back onto the 

compositional plane for display in a ternary 

diagram. Mapping is accomplished by the inverse 

log-ratio transformation, which comprises the fol- 

lowing steps. The logistic transformation reimposes 
the non-negativity constraint: 

{e  yi for i = 1, 2 . . . . .  k -  1 
zi = 1 for i = k (2) 

After which the constant sum C is restored: 

C �9 z i  

x i  - z i  

It should be pointed out that the additive log-ratio 

transformation alr(.) is but one way of approaching 

the problem. Two drawbacks of alr(.) are its lack 

of symmetry and orthogonality, which are attribu- 

table to the use of a common numerator or denomi- 

nator. Different forms of log-ratio transformation 
have been developed to alleviate these problems 

and to accommodate the ever-widening range 

of applications in compositional data analysis 

(Aitchison & Egozcue 2005). The centred log-ratio 

transformation clr(.) provides a symmetrical treat- 

ment of all parts of a composition (Aitchison 

1986), whereas the isometric log-ratio transform- 

ation ilr(.) was developed to enable statistical 

analyses on orthonormal coordinates (Egozcue 

et al. 2003). In the present study, alr(.) was used 
because it leads to a representation of compositional 

data that is more similar to conventional ratios used 

in sedimentary petrology than clr(.) and ilr(.), and 

therefore easier to understand. 
Weltje (2002) discussed the construction of con- 

(l) fidence regions and predictive regions in ternary 

diagrams by means of the alr transformation in 

detail, and illustrated their superiority over the con- 

ventional hexagonal fields of variation employed in 

sedimentary petrology. The term confidence region 

is reserved for regions of ternary compositional 

space (or its binary air-transformed equivalent) in 

which the fixed population mean is expected to be 

located with some probability, generally referred 

to as the confidence level. The term predictive 

region refers to the population as a whole, i.e. to 

the region of compositional space in which future 

observations are expected to be located. The prob- 
ability associated with a predictive region is 

termed the content. 

Figure l a shows a set of ternary compositions 
and the corresponding hexagonal fields of variation 

calculated from univariate summary statistics. The 

hexagonal fields are clearly inadequate, because 

they fail to capture the curvature of the dataset 

and extend beyond the boundaries of the diagram, 

which implies the prediction of negative percentage 

values of one or more of the components. The 

reason for this unrealistic result is the underlying 

statistical model which erroneously assumes inde- 

pendent normal distributions of ternary percentage 

values and does not incorporate unit-sum and non- 

negativity constraints. Figure lb illustrates the cal- 
culation of true confidence and predictive regions 

from the air-transformed data. Such regions are, 

by definition, elliptical in log-ratio space if the 

data follow an additive logistic normal distribution. 

Figure lc shows the same regions projected onto a 

(3) ternary diagram by application of the inverse air- 
transform (equations (2) and (3)). Note that the cur- 

vature of the data points is adequately captured and 

the region is physically meaningful, because it does 

not extend beyond the boundaries of ternary 

compositional space. 

The log-ratio diagram 

The elliptical shape of confidence regions in 

log-ratio space offers an attractive alternative to 
the use of hexagons in ternary space. In many 
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Fig. 1. Hexagonal fields of variation versus air-based regions. Solid lines: confidence regions of population mean. 
Dashed line: predictive regions of population. Confidence limits are 90%, 95% and 99%. (a) Hexagonal region 
constructed from intersections of univariate normal approximations; (b) air-based regions in log-ratio space; 
(c) air-based regions transformed to ternary compositional space (after Weltje 2002). 

applications of compositional data analysis, the 

results of log-ratio statistical analysis are retrans- 

formed to percentage data and displayed in a 

ternary diagram (cf. Figs lb, c). This inverse trans- 

formation has two opposite effects. On the one 

hand, transformation to the original (conventional) 

units of measurement makes the results easier to 

understand. On the other hand, the elegant elliptical 
shape of confidence regions is lost after transform- 

ation to ternary percentages and results may be 

more difficult to interpret if several partly overlap- 

ping regions are plotted in the same ternary 

diagram. An alternative approach, examined in 

this study, is to 'map' the log-ratio space that corre- 
sponds to the ternary diagram and display the 

results as ellipses in that space. If researchers 

become accustomed to this method of display, it 

could eventually replace the ternary diagram. An 

ilr-based log-ratio diagram could also be developed 

as an alternative representation of the air-based 
diagram presented in this study. 

The ternary diagram of Figure 2a contains three 
lines from each of the vertices towards the middle 
of the opposite sides, i.e. lines along which the 

abundance of one component equals that of another. 

Because these lines represent constant (log-)ratios, 

they are also straight lines in log-ratio space 

(Fig. 2b). This does not apply to fixed-percentage tri- 

angles, i.e. lines along which one of the components 

has a constant value (Fig. 2c). Such triangles are rep- 

resented by convex, roughly hexagonal shapes in the 

log-ratio diagram (Fig. 2d). The transformation of 

fixed-percentage lines reveals another property of 

the log-ratio diagram: the distance between two 
lines with values 0.1% and 1% is the same as the dis- 

tance between the 1% and 10% lines. This geometric 

scale is a natural result of the logarithmic transform- 

ation, and indicates that the log-ratio diagram is 

much more sensitive to compositional differences in 

the areas near the edges of the ternary diagram. 
The opposite holds for areas in the centre of the 

ternary diagram, as demonstrated by the distances 

between the 10%, 20% and 30% fixed-percentage 

lines (Figs 2c and d). 

Figure 2e shows a subdivision of the ternary QFL 
diagram into six equal fields. Each field has been 

labelled according to the most abundant component 

(uppercase) and the second-most abundant com- 

ponent (lowercase). This straightforward classifi- 

cation of sands comprises the following types 
(clockwise from Q vertex): Quartzolithic (Q1), 

Lithoquartzose (Lq), Lithofeldspathic (Lf), 
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Fig. 2. Exploration of log-ratio space corresponding to the ternary diagram. (a, b) Straight lines corresponding to fixed 
(log-)ratios; (c, d) minimum-percentage contours; (e, f) sixfold subdivision of compositional space into Quartzolithic 
(Q1), Lithoquartzose (Lq), Lithofeldspathic (Lf), Feldspatholithic (F1), Feldspathoquartzose (Fq) and 
Quartzofeldspathic (Qf) sands. Dashed line is 0.07% contour (see text for discussion). 
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Feldspatholithic (F1), Feldspathoquartzose (Fq) and 

Quartzofeldspathic (Qf). These sand types also 

occupy similar-sized areas in the part of the log- 

ratio diagram enclosed by the dashed line 

(Fig. 2f). This line corresponds to the outer limit 

of log-ratio space one expects to be covered by 

composition estimates derived from point counting. 

The reason for this is that no zero component abun- 

dances are allowed in log-ratios (division by zero is 

not permitted and the logarithm of zero is unde- 

fined). If point counting results in zero abundance 

of one or two components, one therefore has to 

assume that these zeros reflect sampling error. In 

other words, some components are present in the 

population in trace amounts only and have not 

been observed during point counting. Such zeros 

must be replaced by statistically acceptable 

positive values before log-ratio transformation 

(Aitchison 1986; Weltje 2002; Mart/n-Fern~indez 
et al. 2003). 

The fixed-percentage line in Figure 2f was calcu- 

lated by replacing the binary compositions located 

on the edges of the ternary diagram, i.e. compo- 

sitions with one zero value, by a ternary compo- 

sition in which the zero value was replaced by 

6 = 0.07%. The non-zero components were multi- 
plied by a factor ( 1 0 0 -  6)/100. The value of 6 

was obtained from the binomial formula by 
solving for the case in which an analyst who 

counts 1000 points fails to record a rare component 

and assumes the probability of failure to be 50%. In 

other words, the analyst assumes that the unsampled 

component is so rare it will be recorded only in half 

of the point counts of this length, if the procedure 

was repeated many times. The number of points 

counted by this hypothetical analyst is much 

larger than customary in sedimentary petrology, 

which implies that the values of air-transformed 
point-count results are expected to fall within the 

interval [ - 8 ;  +8]. In addition, many compositions 

are likely to plot along the main diagonal of the log- 

ratio diagram in view of the intrinsic correlation 
between the two log-ratios, which share one com- 

ponent (in this case Q has been used as a common 

numerator). 

The left-hand side of Figure 3 shows the ternary 

diagrams of the DM with the first-order provenance 
fields proposed by Dickinson et al. (1983). The 

QFL diagram (Fig. 3a) contains three fields in 

which sands of continental block (A), magmatic 

arc (B) and recycled orogen (C) provenance are 

expected to plot. The QmFLt diagram (Fig. 3c) con- 

tains an additional field reserved for sands of mixed 

provenance (M). The diagrams on the right-hand 

side (Figs 3b, d) show the same fields in log-ratio 

space. Dickinson (1985) referred to these fields as 
'provisional' and 'nominal' and stated they corre- 

spond to 'actual reported distributions of mean 

detrital modes'. The criteria used to establish 

these provenance fields were not explicitly stated 

and it is not clear why a mixed-provenance field 

is only present in the QmFLt diagram. The main 

purpose of this study is to define an optimal subdi- 
vision of compositional space according to statisti- 

cal criteria, based on the same data that were used 
to establish the DM, and compare the resulting 

provenance fields to those proposed by Dickinson 
et al. (1983). In addition, the inferential success 

ratio of the optimized DM will be determined. 

Material 

A c q u i s i t i o n  

The database used in this study was assembled from 

three datasets compiled by Dickinson and co- 
workers (Dickinson & Suczek 1979; Dickinson 

1982; Dickinson et al. 1983) that represent the 

foundation of the DM (Dickinson 1985, 1988). 

The paper copies were scanned and digitized by 

means of OCR software and carefully checked for 

digitization errors. This resulted in an initial (raw) 

database of 385 records, each of which comprised 

the following fields: (a) the sample code; (b) up to 
four mean compositions of ternary subsets of com- 

positional variables (see Table 1); (c) the sample 

size n, i.e. the number of observations used to calcu- 

late the means (samples are often referred to as 

'suites' by petrographers); (d) the inferred plate- 

tectonic setting of the sedimentary basin (see 

Table 1); (e) a short description of the lithostrati- 

graphic unit, location and/or age of the deposit; 

(f) the data source (author, year of publication). 

A few typographic errors were detected in the 

ternary compositions, which were corrected by 

checking their internal consistency (using the inter- 

dependence of some ternary compositions, see 
Table 1) and by comparing the tabulated compo- 

sitions with the corresponding ternary graphs. 
Inspection of the raw database showed that not all 

of the records were unique. Several records 

appeared in more than one study, either as exact 

replicates or with modifications to calculated 

ternary compositions or inferred plate-tectonic 
setting. Such replicates were identified by compar- 

ing the data sources and the descriptions of the 

records from each of the three datasets. They were 

treated in various ways, depending on the nature 

of the redundancy between records. 

�9 If records were identical, the oldest was retained. 
�9 The most complete version of two fully overlap- 

ping records was retained. 
�9 The latest version of a record was retained if cor- 

responding ternary compositions appeared to 
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Fig. 3. Subdivision of ternary spaces into provenance fields according to Dickinson et al. (1983). For legend to 
provenance associations and ternary systems see Table 1. (a, b) QFL system; (c, d) QmFLt system. 

have been recalculated or if the inferred prove- 

nance type had changed. 

�9 The latest version of a set of records was 

retained in the case where different records 

referred to a common data source (for instance 

if a sample as well as its subsets were reported 

in different studies). 

�9 The redundancy in records with a common data 

source, but containing compositions of different 

ternary subsets of variables, was removed by 

deleting overlapping subsets. 

This operation reduced the total number of records 

by 54, leaving a database of 331 records in which 

the four ternary subcompositions are represented 

by 309 (QFL), 267 (QmFLt), 101 (QpLvLs) and 

100 (QmPK) records, respectively. Together these 

records represent 11000 thin sections point- 

counted by hundreds of operators over a period of 

three decades. Because very few records are com- 

plete, statistical analyses are limited to studies of 

the variation within each of the four ternary 

systems separately. 

P r e - p r o c e s s i n g  

Statistical analysis of the DM database requires 

some pre-processing to replace missing or truncated 

data by appropriate values. Where sample size n 

was missing from the records, its most likely 

value was estimated from the overall distribution 

of sample size (Fig. 4), which is approximately 

log-normal. The median value of sample size 

(ns0 = 18) was substituted in 14 records. 



86 G.J. WELTJE 

1.0 

0.8- 

0.6- 

P 

0.4- 

0.2- 

0.0 
I ' I ' 

1 2 3 
1~ n 

Fig. 4. Distribution of sample size in the database is 
effectively log-normal and spans almost three orders of 
magnitude. Median sample size equals 18. 

The problem of dealing with zeros in log-ratio 

analysis, discussed above, also applies to the DM 

database. However, since each record in the DM 

database is an average of a series of point counts 

of unknown length that has been rounded to the 

nearest integer, it is not immediately clear which 

zero-replacement value to choose. An upper limit 

on the replacement value may be derived from the 

notion that it should not exceed the smallest posi- 

tive number actually recorded (the 'detection 

limit'). This upper limit, which was set at 0.9%, rep- 

resents the replacement value that transforms the 

ternary compositions (99, 1, 0) into the composition 

(98.11, 0.99, 0.90). It seemed appropriate that a zero 

in an average composition calculated from a large 

sample should be replaced by a different value 

than a zero that occurs in a single point count, 

which prompted the introduction of a weighting 

scheme for zero replacement based on n. In view 

of the several-orders-of-magnitude range of n 

(Fig. 4) the following definition of the replacement 

value 3 (in %) was adopted: 

9.9 
3 - -  - -  (4) 

lO + vF~" 

Equation (4) provides the desired upper limit of 

3 ---- 0.9% for the case n = 1 and smaller values for 

larger samples. Compositions with one or two zeros 

were recalculated to 100% by replacement of zero 

component(s) by 3 and multiplication of non- 

zero component(s) by a factor ( 1 0 0 -  N3)/100, 

where N equals the number of zeros in the original 

composition. This zero-replacement strategy is 

consistent with the multiplicative method advocated 

by Martln-Femfindez et al. (2003). 

Analysis of the DM database 

Sources of  uncertainty 

Statistical analyses should take into account the 

level of noise in the data as well as possible effects 

of systematic deviations from 'true' values. Many 

sources of error can be distinguished in the multi- 

stage data-acquisition procedure involved in the 

construction of the DM database. Each record in 

the DM database is made up of one or more 

ternary subcompositions of sandstone calculated 

by arithmetically averaging of a series of n speci- 

mens collected by a single analyst. No information 

is provided on the spread of values about the 

means or their covariance, or on parameters of 

the data-acquisition scheme such as the spatial 

extent of the sampling programme, the volumes 

of the samples, pre-measurement laboratory treat- 

ments of samples, the point-counting conventions, 

the number of grains counted and the (spread in) 

grain size of the sands analysed. Although all of 

these factors influence the degree to which the 

mean composition may be considered representa- 

tive of the lithosome studied (Weltje 2002, 2004), 

they cannot be taken into account without going 

back to the original data sources. Other sources of 

uncertainty play a role when it comes to assessing 

the integrity of the database as a whole. Potential 

sources of bias are the uneven spread of data in a 

geographical and/or stratigraphical sense and 

errors in assignment of inferred plate-tectonic 

setting. The lack of standardized data-acquisition 

methodology could introduce all sorts of bias into 

the results of statistical analyses of such heteroge- 

nous data, but the net result of all these systematic 

deviations from an unknown 'truth' could equally 

well be indistinguishable from random error. The 

following assumptions appear to be reasonable in 

the absence of any other information: 

�9 geographical and stratigraphical coverage of the 

DM database are sufficiently representative to 

allow inferences about sand(stone) composition 

in relation to global tectonics; 

�9 no significant bias is introduced by possible 

errors in assignment of plate-tectonic settings; 

�9 no significant bias is introduced by failures to 

recognize post-depositional (diagenetic) modifi- 

cations to detrital framework grains; 

�9 possible systematic errors do not invalidate the 

results of the statistical analysis, because they 

are indistinguishable from random error; 



SANDSTONE COMPOSITION AND PROVENANCE 87 

�9 the uncertainty of all data-acquisition par- 

ameters being equal, the magnitude of random 

errors in composition estimates is proportional 

inversely to the square root of sample size n. 

M e ~ o ~  

As discussed above, very few records are complete, 
which implies that the four ternary subcompositions 

had to be analysed separately because the full six- 

part compositions (Qm, Qp, P, K, Lv, Ls) could 

not be reconstructed. The following analysis was 
performed for each of the four air-transformed 

ternary systems (each step will be discussed in 

more detail below). 

1. Predictive regions of the population were con- 

structed for each provenance association by a 

weighted version of the method outlined in 

Weltje (2002). 

2. The compositional space was partitioned by 

constructing iso-density lines for each pair of 

predictive distributions in log-ratio space. 

3. The grand mean of each provenance association 

and its 99% confidence region was estimated to 

provide reference compositions of sands with A, 

B and C provenance, as well as sand of mixed 

provenance (corresponding to the iso-density 
point of the three predictive distributions). 

4. Stochastic simulation of compositions from 

each of the three predictive distributions 
was carried out to assess the efficiency of the 

iso-density partitioning. 

The first part of the analysis closely follows the 

method outlined by Weltje (2002) for the construc- 

tion of predictive regions based on the assumption 

of additive logistic normality. The main difference 

between the standard case of constructing a predic- 

tive distribution from a set of data points and the 

present application is that each ternary composition 
is itself a sample (average) of n observations. The 

mean vector and sample covariance matrix of 

each air-transformed set belonging to a provenance 

association must therefore be calculated by a 
weighted method. If the original data had been 

available instead of a series of averages, each obser- 

vation would have had equal weight (assuming that 

other data-acquisition parameters do not differ 

much between observations), indicating that the 

averaging effect should be modelled by assigning 

a weight of n to each sample. However, indiscrimi- 

nate use of this linear weighting scheme may cause 

problems since values of n vary by more than 

two orders of magnitude, so that the estimated par- 
ameters of predictive distributions would be heavily 
influenced by the compositions of a few large 

samples, which is not desirable, given the possi- 

bility of systematic errors in the data. In addition, 

the smallest samples (n = 1) are all from the river 

mouths of major river systems whose sands have 

been thoroughly mixed in large drainage basins, 

indicating that their influence on the parameters of 

the predictive distribution should be larger than 

sample size suggests (cf. Ingersoll 1990). In view 

of these considerations, it was decided to employ a 
scheme in which the weights assigned to each 

record equal ~ .  The sum of the weights within 

each provenance group was used as an estimate of 

the number of degrees of freedom used in the calcu- 
lation of the parameters of the predictive distri- 

bution. One can think of these degrees of freedom 

as an effective sample size that encompasses all the 

sources of uncertainty listed above. The predictive 

distributions constructed in this way are considered 

faithful representations of the heterogeneous 

dataset. 
In the second stage of the analysis, the three pre- 

dictive distributions (of the A, B and C associ- 
ations) were plotted together and iso-density lines 

were constructed for each pair of distributions to 

provide an optimal partitioning of log-ratio space 

into provenance fields. The rationale behind this 

partitioning method is the notion that probability 

densities relative to each of the provenance associ- 
ations A, B and C vary continuously in compo- 

sitional space. In each of the three fields that 

correspond to provenance association A, B or 

C, the probability density relative to the parent distri- 

bution should always exceed the probability den- 

sities relative to the other two distributions. The 

boundary between two provenance fields is thus an 

iso-density line, i.e. a set of compositions at which 

the probability densities relative to both distributions 

are identical (but not constant). The three iso-density 

lines coincide at the point in compositional space 

where the probability densities relative to each 

of the three parent distributions are identical: an 

iso-density point. This partitioning maximizes the 

probability that a sample mean of a series of sand- 
stones with unknown provenance is classified 

correctly. 
The results of the analysis were summarized in 

terms of the vector means of the provenance associ- 

ations and their associated 99% confidence 

regions in each of the ternary systems. The 
composition corresponding to the iso-density point 

relative to the A, B and C associations was also cal- 

culated and presented as a typical sand of mixed 

provenance. 
The final step in the analysis was a stochastic 

simulation exercise designed to quantify the overall 

probabilities associated with the empirical classifi- 
cation. A series of 10000 pseudorandom numbers 
was generated from each predictive distribution 
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with the Box-Muller algorithm (Press et al. 1994) 

and the probability densities of these data points 

with respect to each of the A, B and C distributions 

were calculated. Each data point was then classified 

in terms of its actual parent distribution and the dis- 
tribution for which it has the highest probability 

density. Probability densities were calculated by a 

method derived from Barcel6 et al. (1996). The 

result of this stochastic simulation was a 3 x 3 fre- 

quency table for every ternary system, based on 

30000 synthetic data points, from which the 

desired probabilities of (mis)classification were 
calculated. 

R e s u l ~  

Figures 5 -8  show the distributions of provenance 
associations A, B and C in the four ternary systems 

in the form of predictive regions of 50%, 90% and 

99% content plotted together with the records of the 

DM database. The log-ratio diagrams are shown on 

the left-hand side of these figures, the corresponding 

ternary diagrams on the right-hand side. The log-ratio 

diagrams suggest that the additive logistic normal 
distribution fits most datasets reasonably well, 

especially the QFL and QmFLt compositions of pro- 

venance associations A and C (Figs 5a, e, 6a, e). The 

QmPK and QpLvLs compositions of these associ- 

ations (Figs 7a, e, 8a, e) are not well constrained, 

owing to the limited number of data points. 

However, the additive logistic normal distribution 

shows a lack of fit to the data points of provenance 

association B (Figs 5c, 6c, 7c, 8c), which suggests 

the presence of multiple outliers and/or several 

distinct sub-populations within this association. 
Formal evaluation of the goodness-of-fit of the pre- 

dictive distributions by means of appropriate normal- 

ity tests (Aitchison 1986; Pawlowsky-Glahn & 

Buccianti 2002) was not attempted. 

The moderate lack of fit displayed by the data of 

provenance association B merits further investi- 

gation, but is not considered a matter of great 
concern in the present study, which is mainly 

devoted to the construction of provenance fields 

according to a reproducible method. Geologically 

sound explanations for the apparent deviation of 
association B from the simple additive logistic 

normal model require detailed examination of the 

original data, which is beyond the scope of this 

study. A purely statistical approach to the lack- 
of-fit problem involving operations such as outlier 

detection and removal, alternative data transform- 

ations (cf. Barcel6 et al. 1996) and/or the invoca- 

tion of other classes of distributions would not 

improve the geological viability of the DM. Fur- 

thermore, the choice of an alternative model for 
the distribution of data points belonging to prove- 
nance association B will affect the partitioning of 

compositional space into provenance fields, but 

such shifts in the location of provenance fields are 

likely to be quite small. 

Figures 9-12 illustrate the construction of the 

three provenance fields in each of the four ternary 

systems. The upper rows of Figures 9-12 show 

the predictive regions of 50% and 90% content 

for each provenance association. The iso-density 

boundaries between each pair of partly overlapping 

distributions are displayed in the bottom rows. 

Triple junctions of iso-density boundaries corre- 

spond to compositions with equal probabilities of 

belonging to one of the provenance associations. 

Such compositions are regarded as typical examples 

of mixed provenance. Also plotted in the bottom 

rows of Figures 9-12  are the 99% confidence 

regions of the grand means of each of the prove- 

nance associations. The small size of these confi- 

dence regions indicates that the grand means are 

well constrained by the large amount of data. The 

fact that they do not overlap implies that compo- 

sitional differences between grand means are 

highly significant. Table 2 summarizes the four 

characteristic compositions in each of the four 

ternary systems studied. 
The results of the stochastic simulation (Table 3) 

are a set of probabilities associated with the infer- 

ence of provenance from a ternary (sub)composi- 

tion of sand(stone). For instance, if a sample 

mean plots in field A of the QFL diagram, the prob- 

ability that its actual provenance is A is 79%. The 

probability that its actual provenance is C is 20%, 

and the probability that it is B is only 1%. The 

overall probability of correct inference in a given 

ternary system (its success ratio) may be calculated 
as the average of the probabilities of correct 

identification of each of the three provenance associ- 

ations. These numbers equal 76% for QFL, 74% for 

QmFLt, 64% for QmPK and 78% for QpLvLs. 

They apply to the iso-density classification pre- 

sented above; the original subdivision of ternary 

space in the DM as presented by Dickinson et al. 

(1983) would have given less favourable results. 

Discussion and conclusions 

Most of the conclusions and points of discussion 

that emerge from this study are methodological as 

well as geological. However, one aspect of the com- 

positional data analysis presented in this study is of 

purely methodological interest. The iso-density par- 

titioning is based on the notion that each point in 

compositional space may be associated with a 

vector of relative probability densities, which can 

itself be regarded as a composition. In the examples 

presented, both compositional spaces are of the 
same dimensionality, but this need not be the 
case. An efficient method to capture the relation 
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90% and 99% content. (a, b) Continental block provenance; (c, d) magmatic arc provenance; (e, f) recycled 

orogen provenance. 
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between these compositional spaces would be 

extremely useful in further iso-density partitioning 

experiments. 

Overview of  the optimized DM 

Statistical analysis of the DM database has per- 

mitted an evaluation of the strengths and weak- 

nesses of this popular plate-tectonic provenance 

model. The three fundamental provenance associ- 

ations (continental block, magmatic arc and 

recycled orogen) are significantly different, 

as demonstrated by the 99% confidence regions 

of their grand means in each of the four 

ternary spaces studied. However, the predictive 

distributions of the populations display consider- 

able overlap, which indicates that inference of the 

correct provenance from composition alone is not 

straightforward. The iso-density partitioning 

resulted in provenance fields that differ consider- 

ably from those proposed by Dickinson et al. 
(1983). The inferential success ratio associated 

with the optimized subdivision of compositional 

space into provenance fields is around 75%. The 

QpLvLs subcomposition has the highest overall 

success ratio (78%), followed closely by the QFL 

and QmFLt compositions, which are essentially 

equally powerful provenance tools with a success 

ratio of around 75%. The QmPK subcomposition, 

with its low overall success ratio of 64%, does not 
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appear to hold much promise for provenance dis- 

crimination. The success ratios of the optimized 

DM suggest that Molinaroli et al. (1991) overesti- 

mated its discriminatory power by testing it with 

the same data used to establish their set of discrimi- 

nant functions. Strategies to extend and further 

improve the DM are discussed below. 

Increasing the dimensionality 

One of the major shortcomings of the database 

underlying the DM is that very few records are 

complete, which limits statistical analysis to a sep- 
arate description of compositional variation within 

the four ternary systems. The partial view on com- 

positional variability obtained by analysing these 

amalgamations and subcompositions of the full 

six-part composition (am, Qp, P, K, Lv, Ls) may 

be insufficient to address the relevant geological 

problems at hand, as illustrated by the following 

example. In an early attempt to apply the log-ratio 

transformation to the DM database, Butler & 

Woronow (1986) analysed the dataset of Dickinson 

& Suczek (1979) for the presence of spurious corre- 

lations induced by the constant-sum constraint. 

Their results suggested that the compositional 

trend of decreasing L relative to Q + F within 
the magmatic-arc provenance field of Dickinson 
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& Suczek (1979) can be produced by imposing the 

constant-sum constraint on a set of independent 

variables, which may indicate that it is the sole 

result of percentage formation ( 'closure')  and has 

no geological meaning. This purely statistical 

interpretation is not very likely, however, because 

the decease of L relative to Q § F, which defines 

the main trend of arc dissection by erosion, 

is usually accompanied by a decrease of P relative 

to K (W. R. Dickinson, pers. comm. 1994). 

Answers to question of this kind require analyses 

of the relationships between log(P/K) on the one 

hand, and log(Q/L),  log(F/L), or log{(Q + F)/L} 

on the other hand. This example indicates that an 

empirical provenance model built on a database of 

six-part compositions (Qm, Qp, P, K, Lv, Ls) is 

much more powerful than a series of models 

based on ternary (sub)compositions only. Full six- 

part compositions of individual specimens should 

be reported in future studies intended to contribute 

to a new database for a second-generation prove- 

nance model (and not only their mean six-part 

composition). 

Sands of mixed provenance 

The DM was designed for classification of means of 

sandstone suites only. Erroneous interpretations 
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may result if local provenance signals in the data 

have not been suppressed by spatial averaging of 

sandstone compositions (Ingersoll 1990; Ingersoll 

et al. 1993; Critelli et  al. 1997). This averaging 

approach, which may be viewed as a way of artifi- 

cially mixing local provenance signals, has the dis- 

tinct advantage of robustness but implies a limited 

spatial and temporal resolution of the DM. It 

seems fair to state that many of the records in the 

DM database are not 'pure' sands of a single prove- 

nance, but contain varying admixtures of sands of 

different provenances. Analyses of modern deep- 

sea sands (Valloni 1985) and reviews of global dis- 

persal systems (Dickinson 1988) indicate that sands 

of mixed provenance are extremely common. It is 

therefore not surprising that many sand suites plot 

in the mixed provenance field of the original 

QmFLt diagram (Dickinson 1985, 1988). Given 

these restrictions, success ratios of empirical prove- 

nance models based on averaging of ternary compo- 

sitions are not likely to exceed those of the 

optimized DM presented in this study. 

Differences between the original and the revised 

DM are not limited to the locations of the bound- 

aries between provenance fields. In the present 

analysis, each of the ternary systems was treated 

in the same way, in contrast with the method of 

Dickinson et al. (1983), who introduced a separate 
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Table 2. Grand means of provenance associations 
and typical compositions of mixed provenance (legend 
in Table 1) 

Q (%) F (%) L (%) 
A 88 10 2 
B 25 37 38 
C 78 6 16 
M 57 29 14 

Qm (%) F (%) Lt (%) 
A 84 10 6 
B 22 37 41 
C 59 6 35 
M 52 25 23 

Qm (%) P (%) K (%) 
A 86 5 9 
B 38 53 9 
C 87 9 4 
M 60 27 13 

Qp (%) Lv (%) Ls (%) 
A 59 30 11 
B 5 77 18 
C 40 5 55 
M 22 28 50 

field for sands of mixed provenance in the QmFLt 

system only (Fig. 3c). The provisional solution 

adopted in the present study is to regard the compo- 

sitions at the triple junction of the three iso-density 

lines in each of the ternary systems as typical 

examples of mixed provenance. 

It should be noted that any observation located in 

an area of compositional space where two or more 

distributions overlap one another is difficult to 

Table 3. Probabilites of inferring provenance from 
ternary composition (legend in Table 1) 

Actual provenance 

QFL A (%) B (%) C (%) 
inferred A 79 I 20 
inferred B 1 87 12 
Inferred C 16 21 63 

QmFLt A (%) B (%) C (%) 
inferred A 79 4 17 
inferred B 2 81 17 
Inferred C 13 24 63 

QmPK A (%) B (%) C (%) 
inferred A 59 12 29 
inferred B 16 72 12 
Inferred C 34 6 60 

QpLvLs A (%) B (%) C (%) 
inferred A 75 13 12 
inferred B 7 81 12 
Inferred C 17 4 79 

interpret without additional information. On the 

one hand, such sand could have been derived 

from one of these distributions exclusively (the 

point of view adopted in this study), but on the 

other hand, it could represent a mixture of sands 

from two or more of these distributions. The 

overlap between distributions causes the range of 

potential scenarios to be infinite and impossible to 

constrain without taking into account additional 

information about the palaeogeography of the area 

from which the sands were derived. Additional 

complications may arise from variability of sedi- 

ment composition due to past climate change or 

the presence of diagenetic gradients across basins, 

both of which are essentially unrelated to prove- 

nance sensu stricto, i.e. the composition and 

texture of parent rocks (Johnsson 1993; Weltje & 

Von Eynatten 2004). The very fact that such infor- 

mation appears to be required contradicts the basic 

premise of the DM, i.e. provenance of sands may be 

inferred from composition alone. 

The above considerations imply that sands of 

mixed provenance cannot be interpreted by 'aver- 

aging out' all variability. On the contrary, attention 

must be devoted to the development of methods to 

exploit the information contained within the covari- 

ance structure of compositional data. Ingersoll 

(1990), Ingersoll et al. (1993) and Critelli et al. 

(1997) noted a systematic decrease in the variance 

of mean sand composition with increasing spatial 

scales of dispersal systems, a phenomenon further 

explored by Weltje (2004). The covariance struc- 

ture of compositional data is an essential tool of 

quantitative provenance analysis, which permits 

sands of mixed provenance to be statistically 

'unmixed' into end-member provenance associ- 

ations (Weltje 1997). The end-member mixing 

model allows one to address the issue of mixed 

provenance in a systematic and quantitative 

way - thereby providing insights that could never 

have been obtained by plotting arithmetic means 

in ternary diagrams. This approach also requires 

full six-part compositions of individual specimens 

rather than sets of disjointed three-part means. 

Weltje (1995) provides an example of end- 

member modelling of a suite of mixed-provenance 

sands from the Italian Alps and Apennines. 

C o n c l u s i o n s  

The DM in its present form - as a series of four sep- 

arate ternary diagrams - should be recognized for 

what it is: an exploration tool designed to infer the 

large-scale tectonic setting of sediment-dispersal 

systems in the distant past and/or any remaining 

frontier areas of our planet. The DM deliberately 

bypasses all the details of the sediment-forming 

processes. This approach guarantees robustness 
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but does not permit a meaningful analysis of 

mixing, identified as a factor of overriding import- 

ance in sediment generation. The DM is a success- 

ful exploration tool, but it does not lend itself easily 

to other applications, such as regional studies of 

multi-sourced basin fills. 

Traditional provenance models which are aimed 

at inferring source-area characteristics from sedi- 

ment properties could be improved greatly by incor- 

poration of quantified knowledge about the 

processes that govern sediment generation. Predic- 

tion of sediment composition from properties of 

drainage basins (cf. Ibbeken & Schleyer 1991) 

through development of modelling tools to address 

sediment generation is an area of active research 

(Basu 2003; Weltje & Von Eynatten 2004). The 

capability to integrate modelling efforts, measure- 

ments of process rates under laboratory and field 

conditions, and analyses of comprehensive and 

well-documented compositional datasets will ulti- 

mately determine the rate of progress in provenance 

analysis. 

The author thanks J. J. Egozcue for his perceptive review 
of the manuscript. 
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