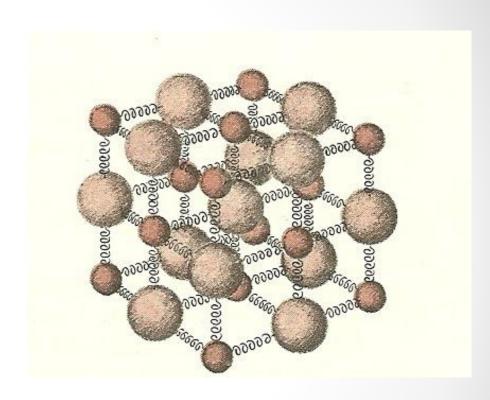
Instituto de Física USP Física V - 4300311 Aula 08


Professora: Mazé Bechara

Aula 08 – Oscilações nos sólidos e A Radiação do "Corpo Negro"

- i. O Calor específico molar a volume constante dos sólidos condutores considerando o modelo de Drude para a condução elétrica.
- 2. Tudo o que você queria saber sobre temas do Tópico I mas AINDA não teve coragem de perguntar.
- 3. Conteúdo detalhado do Tópico II.
- 4. A emissão de energia eletromagnética por efeito de temperatura e a definição de corpo negro (os constituintes da matéria são neutros, mas têm cargas em movimentos com aceleração).
- 5. Características experimentais da radiação de corpo negro: Lei de Stefan Boltzmann para a intensidade (radiança) total emitida pelo corpo negro, a Lei de deslocamento de Wien e a radiança espectral. Relação da emissão do corpo negro, ou forno ideal, com a de um forno real na mesma temperatura.

Modelo mecânico de matéria sólida cristalina

- QUESTÃO:
- Este modelo é, no seu conhecimento, igual para sólidos não condutores e condutores?
- EXPLIQUE

Modelo de Drude para a condução elétrica (1902)

Energia dos íons e dos elétrons de condução:

$$\varepsilon_{ions} = \frac{1}{2} m(v_x^2 + v_y^2 + v_z^2) + \frac{1}{2} k_x x^2 + \frac{1}{2} k_y y^2 + \frac{1}{2} k_z z^2$$

$$\varepsilon_e = \frac{1}{2} m_e (v_{xe}^2 + v_{ye}^2 + v_{ze}^2)$$

A energia média do sistema de N íons + N elétrons pelo teorema de equipartição é dado por:

$$<\varepsilon>=\frac{9}{2}kT(?)$$

Este resultado não está de acordo com o experimental, que para todos os sólidos, condutores ou não tende a 3R. Falha na teoria de Boltzmann não se resolve só com a quantização da energia!

Chegou-se ao limite de validade da estatística clássica?! E agora?!

Física V - Professora: Mazé Bechara

Limites da Mecânica estatística clássica

- Resolvidos na Física no século XX com a Mecânica Estatística Quântica (veja Thornton & Rex, Cap. 9. Tratado na disciplina Física Moderna II)
- o spin dos constituintes definem outras estatísticas (quânticas) para sistemas de muitas partículas, que coincidem com a de Boltzmann em alguns limites.
 - A estatística para os íons está no limite de validade da estatística clássica.
 - A estatística ds elétrons de Fermi-Dirac, apropriada para partículas de número quântico de spin semi-inteiro, nas condições normais de temperatura e pressão não estão no limite de coincidência com a estatística de Boltzmann.
 - Segundo tal estatística, o movimento dos elétrons de condução (s=1/2) é de aproximadamente 0,007% do efeito do movimento dos íons (positivos) nos sólidos condutores. Daí a concordância do resultado experimental nos sólidos isolantes, mas também dos condutores com a previsão clássica, dentro de 0,007%!

Conteúdo detalhado do Tópico II

II.1 A radiação de um corpo real por efeito de temperatura e a radiação do corpo negro: resultados experimentais. O fracasso das previsões das teorias clássicas, eletromagnetismo e mecânica estatística clássica dos sólidos para descrever a emissão do corpo negro. A catástrofe do ultravioleta no tratamento teórico de Rayleigh e Jeans. A proposta de Planck que permitiu a descrição das observações do corpo negro – o início da Física Quântica.

II.2 A proposta do caráter corpuscular da radiação eletromagnética por Einstein - os fótons.

- Diferenças da quantização de Planck e de Einstein.
- O número de fótons por área e tempo que garante a compatibilidade entre as descrições ondulatória e corpuscular da radiação eletromagnética na intensidade da radiação eletromagnética monocromática e harmônica.
- II.3 Fenômenos que evidenciam o caráter corpuscular da radiação:
- O efeito fotoelétrico com luz e ultravioleta;
- •Efeito Compton: o espalhamento de raios-X e γ por matéria;
- A produção e a aniquilação de pares de partícula e sua antipartícula;
- •O espectro de raios-X produzido na desaceleração de feixe de elétrons na matéria pesada.
- II.4 A absorção e espalhamento dos raios-X e gama pela matéria compatibilidade das descrições ondulatória e fotônica e o conceito de seção de choque. A competição entre os fenômenos de absorção: efeito fotoelétrico e produção de pares, e de espalhamento: sem (Thomson) e com (Compton) mudança no comprimento de onda. A seção de choque de cada fenômeno e a total.

Física V - Professora: Mazé Bechara

Referências ao Tópico II (veja Guia de Trabalho)

- Livros textos: Escolha! A leitura de pelo menos um deles é indispensável:
- 1. Física Quântica do Eisberg e Resnick; Editora Campus Caps. 1 e 2.
- Notas de aulas do Prof. Roberto Ribas (IFUSP), no seguinte endereço na Internet - http://www.dfn.if.usp.br/~ribas/arquivos.html; Caps. 2 e 3.
- 3. Modern Physics for scientists and engineers de Thornton & Rex; Copyright © 2000 by Saunders College Publishing; Cap. 3;

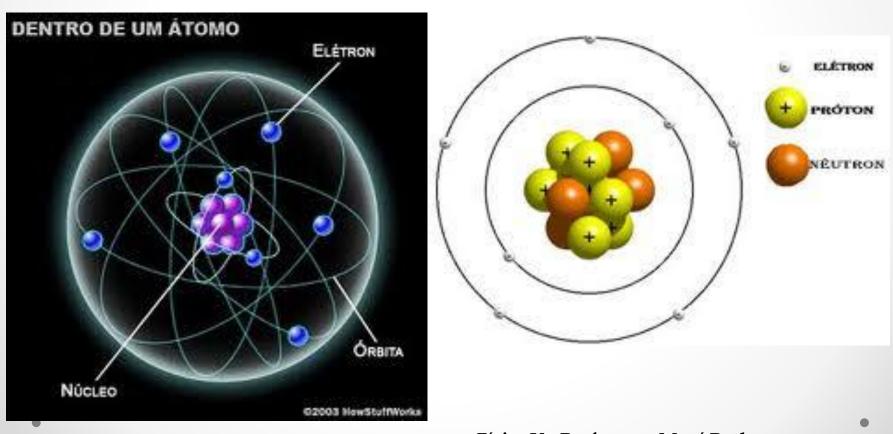
Outros textos:

- Física Moderna Paul A. Tipler e Ralph A . Llewellyn (TL), terceira edição - traduzido para o português pela editora LTC, Cap. 3 (a partir do item 3.2);
- 2. Modern Physics de Serway, Moses e Moyer; 2º edição da Saunders College Publishing; Cap. 2.
- 3. Introduction to Atomic Physics de Enge, Wehr e Richards, Copyright © 1972 by Addison-Wesley Publishing Company, Inc.Cap. 3;

A Radiação do "Corpo Negro"

1.0 que é esta radiação de "corpo negro"?

2. Por que emite radiação?


3.Por que as aspas?

O que é a Radiação do "Corpo Negro"?

- 1. Radiação emitida por efeito de temperatura por um corpo perfeitamente opaco.
- 2. Porque os constituintes da matéria têm carga
- 3. Nem sempre é preto.

O constituinte básico da matéria tem massa e carga

Átomos têm cargas e estão acelerando e desacelerando na matéria. Há emissão de ondas eletromagnéticas, diria Maxwell.

Física V - Professora: Mazé Bechara

O que é "Corpo Negro"

- É chamado de Corpo Negro o melhor absorvedor e emissor possível, isso é, um corpo opaco (zero de transmissão em qualquer frequencia), em equilíbrio termodinâmico, com coeficiente de absorção a=1 e, portanto, de emissão ou emissividade ε=1.
- 2. Um forno perfeitamente vedado, é um exemplo de um "corpo negro" (e ele NÃO tem a cor preta!).

II.1 RADIAÇÃO DE CORPO NEGRO

um forno ideal 100% eficiente– corpo opaco com coeficiente de absorção = 1 = coeficiente de emissão=1. *Entenda isto!*

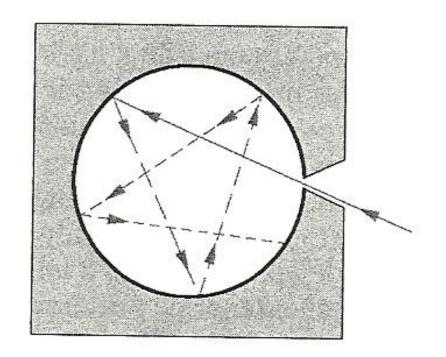


Fig. 3-8 Uma cavidade com um pequeno furo se comporta como um buraco negro ideal. A probabilidade de que um raio que entra na cavidade torne a sair pelo furo antes de ser absorvido pelas paredes é extremamente pequena.

Emissão de radiação (onda) eletromagnética por efeito de temperatura – algumas características

- Qualquer corpo em uma dada temperatura emite radiação eletromagnética porque no seu interior há cargas (positivas e negativas) que aceleram e desaceleram constantemente.
- A chamada radiação de corpo negro é a emissão por efeito de temperatura de um corpo opaco e de coeficiente de absorção igual a 1.
- 3. Um corpo é dito opaco se toda a radiação eletromagnética que incide sobre ele é refletida ou absorvida, e não há transmissão através do corpo. Aqui entendido para qualquer frequencia de onda, não só frequencia luminosa.

Emissão de radiação (onda) eletromagnética por efeito de temperatura

4. Quando um corpo opaco recebe energia eletromagnética ele pode refleti-la e absorvê-la, conservando a energia, ou seja:

$$I_{inc}(\lambda) = I_{refl}(\lambda) + I_{abs}(\lambda)$$

$$I_{inc}/I_{inc} = I_{refl}/I_{inc} + I_{abs}/I_{inc}$$

$$1 = r + a$$

- r =coeficiente de reflexão e
- a = coeficiente de absorção
- 5. Quando dois corpos opacos estão isolados e em equilíbrio térmico em um grande meio, o que um emite é igual ao que absorve; e isto vale para ambos, ou seja: $a1/\epsilon1=a2/\epsilon2=1$ (Kirchhoff 1859).
- 6. Assim um corpo opaco que é o melhor absorvedor quando recebe energia do meio exterior, é também o melhor emissor de radiação eletromagnética quando está emitindo radiação para o meio externo.

Características de emissão e absorção de energia eletromagnética dos corpos opacos

- 1. Os corpos claros refletem a maior parte da radiação incidente, já os escuros absorvem a maior parte, ou seja, os claros têm baixo coeficiente de absorção a e, portanto, de baixo coeficiente de emissão, e alto coeficiente de reflexão r. Os corpos escuros têm alto coeficiente de absorção a (e portanto de emissão), e baixo coeficiente de reflexão r.
- 2. Nas temperaturas menores do que 600C (872K) a radiação emitida por corpos opacos nas freqüências da luz (comprimentos de onda maiores do que as visíveis) têm intensidades menores do que as que sensibilizam o olho humano. Por isso não os vemos com luz própria, mas sentimos na pele a radiação de grandes comprimentos de onda (maiores do que a da luz) que são chamadas de radiação (de freqüência) térmica.

Características de emissão e absorção de energia eletromagnética por corpos opacos

3. Entre 600°C e 700°C o corpo aparece vermelho escuro (menor freqüência visível) porque emite a maior intensidade da onda eletromagnética nessa freqüência. Para temperaturas crescentes a partir de 700C o corpo aparece vermelho claro e depois luminoso azulado (maiores frequencias visíveis).

A lei de Stefan -Boltzmann(*)

Radiança total ou Intensidade total da radiação eletromagnética emitida pelo corpo negro:

$$R_T = 5,7075X10^{-8} T^4 W/m^2$$

- (*) Stefan a estabeleceu empiricamente ou seja, a partir de medidas (1879) e Boltzmann chegou a ela no contexto teórico da termodinâmica (1884).
- Intensidade total: média temporal da energia eletromagnética de qualquer frequencia, emitida por unidade de área e de tempo pelo corpo negro.
- Qualquer corpo opaco emite a intensidade total proporcional à do corpo negro:

$$R_T = \varepsilon 5,7075X10^{-8} T^4 W/m^2$$

Lei de deslocamento de Wien (1893)

 Lei de emissão para qualquer corpo na temperatura T:

$$\lambda_{+p}T = 2.898 \times 10^{-3} mK$$

Comportamento da radiança espectral experimental (intensidade versus λ)

84 Quantização da Carga, Luz e Energia

Observe nos gráficos:
o deslocamento de Wies
a Lei de Stefan-Boltzma
da radiança total (área so
curva) em função
temperatura

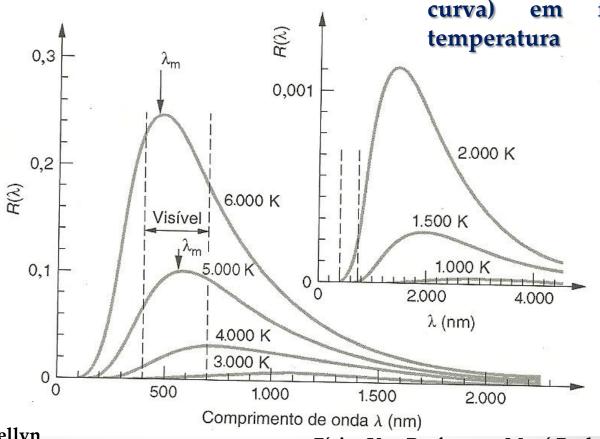


Figura do Tipler & Llewellyn

Física V - Professora: Mazé Bechara

A intensidade ou radiança espectral de um corpo negro - definição

• A radiança espectral em função do comprimento de onda: $R_T(\lambda)$ = distribuição espectral da intensidade= intensidade de comprimento de onda entre λ e λ +d λ por unidade de d λ na temperatura T emitida da cavidade:

$$R_T(\lambda) = \frac{dI(\lambda)}{d\lambda} = <\frac{dU_{EB}(\lambda)}{dAdtd\lambda}>_t$$

- Que é a média temporal da energia eletromagnética dU_{EB} <u>emitida</u> pelo corpo negro (ϵ =1) com comprimento de onda entre λ e o λ +d λ , por unidade de área dA, de tempo dt e de comprimento de onda d λ .
- A radiançac espectral em função da freqüência ($\lambda v=c$):

$$\dot{R_T}(v) = \frac{dI(v)}{dv} = \langle \frac{dU_{EB}(v)}{dAdtdv} \rangle_t = \langle \frac{dU_{EB}(\lambda)}{dAdtd\lambda} \rangle_t \left| \frac{d\lambda}{dv} \right| = R_T(\lambda) \frac{c}{\lambda^2}$$

Vejam de novo aí o conceito de distribuição em outro contexto.

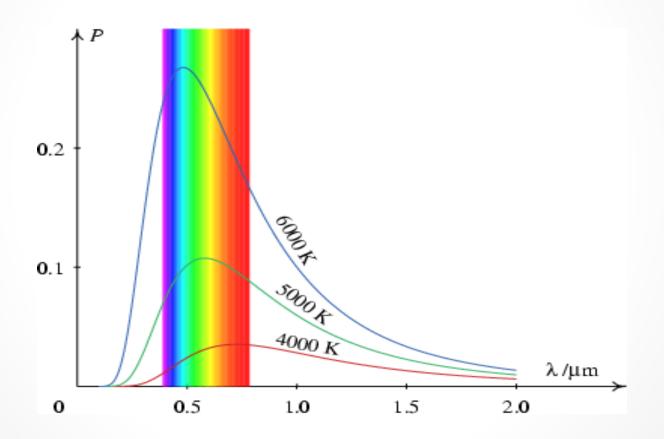
Observação importante: <u>a distribuição de intensidades do corpo negro não é normalizada</u>

Unidades das radianças espectrais e total no sistema universal

 Unidade da radiança espectral em função do comprimento de onda:

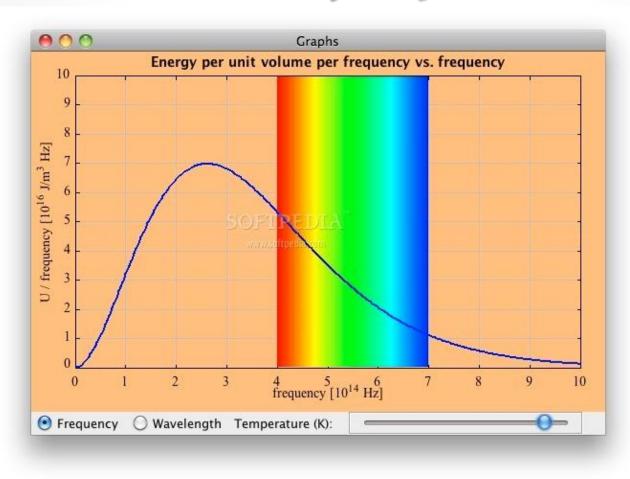
$$[R_T(\lambda)] = \left[\frac{dI(\lambda)}{d\lambda}\right] = \left[\left\langle \frac{dU_{EB}(\lambda)}{dAdtd\lambda} \right\rangle_t\right] = \frac{W}{m^2 m}$$

Unidade da radiança espectral em função da frequência:


$$[R_T(v)] = \left[\frac{dI(v)}{dv}\right] = \left[\left\langle \frac{dU_{EB}(v)}{dAdtdv} \right\rangle_t\right] = \frac{W}{m^2 Hz}$$

Unidade da radiança total (todas as frequencias/comprimentos de onda)

$$[R_T] = [I] = [\langle \frac{dU_{EB}}{dAdt} \rangle_t] = \frac{W}{m^2}$$


Física Moderna I - Professora: Mazé Bechara

Corpo negro: radiação emitida versus o comprimento de onda

Física V - Professora: Mazé Bechara

Corpo negro: radiação emitida versus a frequencia

Radianças de um corpo qualquer (coeficiente de emissão constante ×1) na temperatura T

A Radiança espectral de qualquer corpo opaco na temperatura T é proporcional a radiança do corpo negro, sendo o coeficiente de emissão ε a constante de proporcionalidade.

$$R_T^{\varepsilon}(\lambda) = \varepsilon R_T(\lambda) \qquad \qquad R_T^{\varepsilon}(\nu) = \varepsilon R_T(\lambda)$$

 A radiança total de um corpo opaco na temperatura T é proporcional à radiança total na mesma temperatura:

$$R_{\scriptscriptstyle T}^{\scriptscriptstyle \varepsilon} = \varepsilon R_{\scriptscriptstyle T}$$

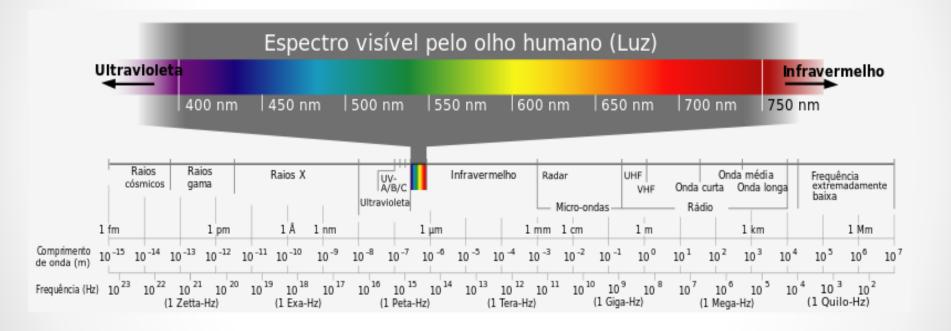
Obs. Se observa experimentalmente uma pequena dependência do coeficiente de emissão com a frequência o que "estraga" a universalidade do comportamento do corpo negro, aqui adotado.

Faça o experimento eletivo no Laboratório de Física V (ou VI) e comprove a afirmação acima!

Física V - Professora: Mazé Bechara

A radiança total - grandeza relevante na radiação do Corpo Negro (forno ideal)

- 1. A radiança total R_T é a intensidade espectral emitida pelo corpo negro (ϵ =1) em qualquer comprimento de onda (ou frequência) na temperatura T. Portanto ela independe do comprimento de onda (ou frequencia).
- 2. R_T é, portanto, a média temporal da energia eletromagnética total dU_{EB} emitida pelo corpo negro com qualquer comprimento de onda na temperatura T, por unidade de área dA e de tempo dt.
- 3. R_T pode portanto ser determinado a partir da determinação da área sob a curva da radiança espectral.
- 4. Calcular a área sob uma curva, se conhecida sua expressão matemática, é calcular a integral da radiança espectral para todas as frequências (ou comprimentos de onda).
- 5. Calcular a partir de teorias a radiança espectral $R_T(\lambda)$ ou $R_T(\nu)$ permite conhecer todas as leis empíricas do corpo
- negro, incluída a da radiança total (Stefan-Boltzmann).


 Física V Professora: Mazé Bechara

Radiação do Sol – Aplicação mãos à obra!

O Sol visto da Terra é amarelo.

- Supondo que o Sol é um corpo negro e que na sua superfície o comprimento de onda mais provável emitido é de 5000angstrons
- Faz sentido, no conatexto do eletromagnetismo clássico, supor que o Sol tem o comprimento de onda mais provável em 5000 angstrons? Justifique.
- 2. Determine a temperatura da superfície do Sol.
- 3. Determine a potência irradiada pela superfície do Sol.
- 4. Determine a potência do Sol que chega na superfície da Terra.
- 5. Como mudariam as suas respostas anteriores se o Sol não for um corpo negro? Justifique.
- <u>Dados conhecidos:</u> $R_s=6,96\times10^8 \text{m}$; $d_{TS}=1,49\times10^{11} \text{m}$; $R_T=6,4\times10^6 \text{m}=6400 \text{km}$

Radiação do Sol – Aplicação mãos à obra!

