Projeto: Efeito Cherenkov

GRUPO J - JAMES MAXWELL

Edgar S. Silva, Juan Vitor O. Pêgas, Lucas M. Mansur, Matheus A. Sanches, Thales Eduardo Q. Bastos

Instituto de Física de São Carlos, Universidade de São Paulo -SP

Resumo

Radiação Cerenkov trata-se de um fenômeno notável de emissão de ondas eletromagnéticas por partículas carregadas quando essas viajam à velocidades superiores à da luz no meio em que se encontram. O efeito é de grande importância na física nuclear, e na astrofísica. O estudo desse efeito envolve principalmente os conceitos fundamentais do Eletromagnetismo e da Relatividade Restrita.

vide Figuras 2 e 3.

I. Introdução

O Efeito Cerenkov é análogo ao efeito de estrondo sônico ocasionado quando uma aeronave se move mais rápido que a velocidade do som - a fonte se move mais rápido que as ondas de pressão que ela gera no ar - produzindo uma onda de choque quando ultrapassam essa velocidade em seu trajeto. Da mesma maneira, quando uma partícula carregada (fonte) passa por um meio dielétrico a uma velocidade maior do que a velocidade de propagação do campo elétrico "gerado"por ela no meio (que é a velocidade da luz nesse meio, $c_n = \frac{c}{n}$), ela produz ondas de choque ópticas e assim, uma radiação eletromagnética pode ser observada (radiação Cerenkov).

Figura 1: Cone de Mach

Para se ter uma melhor ideia de como esse efeito funciona, considere uma partícula carregada (um elétron, por exemplo) viajando por um meio dielétrico a uma velocidade v_e em duas situações distintas: $v_e < c_n$ e $v_e > c_n$ -

Para $v_e < c_n$ (lado esquerdo das Figuras 2 e 3), na região por onde o elétron passa, o campo elétrico vai fazer com que os átomos do meio fiquem polarizados e num estado excitado. Quando o elétron se afasta dessa região, os átomos retomam para sua configuração inicial de equilíbrio e estado fundamental (emitindo, portanto, fótons/radiação). Desta forma, as ondas eletromagnéticas se propagam com a velocidade da luz no meio e não há interferência, já que o elétron que perturba o meio está mais lento que essa propagação (ou seja, essas ondas não se "cruzam"/superpõem).

Figura 3: Esquema visual de polarização

No entanto, para $v_e > c_n$ (lado direito das Figuras 2 e 3), as ondas eletromagnéticas emitidas irão se superpor,

Figura 2: Propagação do campo eletromagnético gerado por um elétron em movimento. Esquerda: $v_e < c_n$; Direita: $v_e > c_n$.

logo haverá uma grande interferência construtiva. Essa radiação é coerente e se propaga na forma de um cone¹ (análogo ao Cone de Mach) - com um ângulo característico θ_C - delineado pela interferência entre as ondas que foram geradas.

Figura 4: Esquema de propagação

De modo que:
$$\cos \theta_c = \frac{ct}{\beta nct} = \frac{1}{\beta n}$$
. E assim,
 $\theta_C = \arccos\left(\frac{1}{\beta n}\right)$ (1)

Logo, assim como o *sonic boom* - que não é como um som comum - a radiação emitida também é bem única, já que trata-se de um acúmulo de ondas eletromagnéticas sendo observadas de uma única vez, e por essa peculiaridade, recebe o nome de radiação de Cerenkov.

Note que, por mais que seja comum se referenciar a radiação Cerenkov emitida por uma partícula carregada, não é a mesma quem emite tal radiação, mas sim os elétrons ligados do meio dielétrico perturbado.

O Efeito Cerenkov é amplamente percebido em reatores nucleares no formato de uma emissão luminosa de cor azul intensa. Além disso, esse efeito é muito utilizado para detectar partículas cósmicas de altas energias e consequentemente estudar as propriedades dessas partículas e de suas respectivas fontes. Logo, o presente projeto visa abordar este efeito a partir do estudo do espectro de emissão de radiação, apresentando aspectos de sua fundamentação teórica, bem como, algumas de suas aplicações, tal como o observatório IceCube.

II. Fundamentação Teórica

Potenciais de Liénard-Wiechert

Para se estudar e determinar as relações que envolvem a Radiação Cerenkov, é evidente a necessidade de estudar os campos relacionados a cargas em movimento. Vamos determinar os potenciais retardados para esse tipo de sistema, conhecidos como **Potenciais de Liénard-Wiechert**.

Figura 5: Esquema do movimento da partícula

Do esquema anterior, admitindo o meio como vácuo (por questões gerais) e tomando como variáveis: $w(t_r)$, a posição da partícula num instante t_r (o tempo retardado para o sistema), o qual podemos escrever

$$t_r = t - \frac{R}{c} \tag{2}$$

Os potenciais determinados pelo Gauge de Lorenz nos levam a resolver as integrais

$$V(\vec{r},t) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\vec{r}\,',t_r)}{R} d\tau'$$
$$\vec{A}(\vec{r},t) = \frac{\mu_0}{4\pi} \int \frac{\rho(\vec{r}\,',t_r)\vec{v}(t_r)}{R} d\tau'$$

Integrando as expressões anteriores, a dependência em t_r da distribuição leva a um resultado próximo do eletrostático, porém com uma correção da forma

$$\int \rho(\vec{r}',t_r)d\tau' = \frac{q}{1-\vec{R}\cdot\frac{\vec{v}}{c}}$$

em que *c* é a velocidade da luz. Com isso, temos os resultados para os potenciais de uma carga em movimento, na forma de Liénard-Wiechert

$$V(\mathbf{r},t) = \frac{1}{4\pi\epsilon_0} \frac{q}{R - \vec{R} \cdot \frac{\vec{v}}{c}}$$
(3)

$$\vec{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \frac{q\vec{v}}{R - \vec{R} \cdot \frac{\vec{v}}{c}}$$
(4)

 $^{^{1}}$ Note que esse cone, representado bidimensionalmente pela figura 4, só é formado no regime superluminal

e

Dedução dos Potenciais

As deduções a seguir (tanto desta seção, quanto das próximas) foram baseadas, principalmente, em [1] e [2], e podem ser verificadas com mais detalhes nas mesmas.

No contexto da radiação Cerenkov, a partícula encontra-se em um meio diferente do vácuo. Sendo assim, os potenciais que descrevem os campos eletromagnéticos no meio em questão podem ser obtidos a partir dos potenciais de Liénard-Wiechert, já apresentados, apenas realizando as seguintes mudanças

$$\mu_0 \to \mu, \ \epsilon_0 \to \epsilon, \ c \to c_n \equiv \frac{c}{n}, \ \vec{\beta} \equiv \frac{\vec{v}}{c} \to \vec{\beta_n} \equiv \frac{\vec{v}}{c_n}$$
 (5)

Assim,

$$V(\vec{r},t) = \frac{1}{4\pi\epsilon} \left[\frac{q}{|R(t_r) - \vec{\beta_n} \cdot R(\vec{t}_r)|} \right]$$

$$\vec{A}(\vec{r},t) = \frac{\mu}{4\pi} \left[\frac{q\vec{v}(t_r)}{|R(t_r) - \vec{\beta_n} \cdot \vec{R}(t_r)|} \right]$$
(6)

Para analisarmos $\mathbf{R}(t_r)$, precisamos entender a relação entre $\mathbf{R}(t_r)$, $\mathbf{R}(t)$ e t_r . Sabemos que

Figura 6: Relação entre $\mathbf{R}_{(t_r)} \in \mathbf{R}_{(t)}$

Dessa forma, é fácil notar que

$$\vec{R}(t_r) = \vec{R}(t) + \vec{v}(t - t_r) \tag{7}$$

Como,

$$t_r - t = \frac{R(t_r)}{c_n} \tag{8}$$

A norma da equação (7), juntamente com a relação (8), nos dá uma equação quadrática para $\Delta t \equiv t - t_r$. Resolvendo essa equação, obtemos que

$$\Delta t = \frac{-\vec{v} \cdot \vec{R} \pm \sqrt{\left(\vec{v} \cdot \vec{R}\right)^2 - (v^2 - c_n^2)R^2}}{v^2 - c_n^2}$$
(9)

Sabemos que, por causalidade, devemos ter soluções positivas e reais para Δt . Sendo assim, extraímos de (9) que

$$\vec{v} \cdot \vec{R} > 0 \iff \theta > \frac{\pi}{2}$$
 (10)

(11)

 $(\vec{v}\cdot\vec{R})^2 > (v^2 - c_n^2)R^2 \iff \cos^2\theta > 1 - \frac{1}{\beta_n^2}$

Dessa forma, os potenciais existem apenas dentro do cone de Cerenkov.

Por fim, o denominador $R - \vec{\beta_n} \cdot \vec{R}$, da equação (6) pode ser reescrito como

$$R - \vec{\beta_n} \cdot \vec{R} = \mp \frac{1}{c_n} \sqrt{(\vec{R} \cdot \vec{v})^2 - (v^2 - c^2)R^2} = \mp R \sqrt{1 - \beta_n^2 \sin^2 \theta}$$
(12)

As relações (10) e (11) nos obriga a fazer uma pequena alteração no formato dos potenciais escritos anteriormente. Como existem soluções de Δt apenas para valores de θ que satisfaçam tal relação, devemos impor uma função de Heaviside nos potenciais dada por $H(\Theta)$, com $\Theta \equiv \cos \theta_c - \cos \theta$.²

A equação 12 nos dá dois possíveis valores para o denominador dos potenciais em 6. Como estamos interessados no módulo desse denominador, as contribuições desses resultados são iguais, as quais, ao serem consideradas, faz com que apareça um fator dois no denominador.

Dessa forma, obtemos, finalmente

$$V(\vec{r},t) = \frac{q}{2\pi\epsilon R\sqrt{1-\beta_n^2\sin^2\theta}}H(\Theta)$$

$$\vec{A}(\vec{r},t) = \frac{q\mu\vec{v}}{2\pi\epsilon R\sqrt{1-\beta_n^2\sin^2\theta}}H(\Theta)$$
 (13)

Dedução dos Campos

Com os potenciais em mãos, podemos partir para a dedução dos campos elétrico e magnético. Sabemos que

$$\vec{E} = -\vec{\nabla}V - \partial_t \vec{A} \vec{B} = \vec{\nabla} \times \vec{A}$$
(14)

Usando o fato de que

$$\vec{\nabla}H(\Theta) = \frac{\sin\theta}{R}\delta(\Theta)\hat{\theta}$$
 (15)

²A introdução da função de Heaviside poderia ser ignorada se tomássemos os devidos cuidados quanto à validade das expressões dos potenciais obtidos. Sem a Heaviside, os potenciais seriam válidos apenas dentro do cone de Cherenkov, tornando-se uma singularidade na superfície do cone e não existindo fora dele.

e

$$\partial_t H(\Theta) = \frac{v \sin^2 \theta}{R} \delta(\Theta)$$
 (16)

Obtemos, assim, finalmente

$$\vec{E} = \frac{q\sqrt{\beta_n^2 - 1}\delta(\Theta)}{2\pi\epsilon_0 R^2 \beta_n \sqrt{1 - \beta_n^2 \sin^2 \theta}} \hat{\theta} - \frac{q(\beta_n^2 - 1)\hat{R}H(\Theta)}{2\pi\epsilon R^2 (1 - \beta_n^2 \sin^2 \theta)^{3/2}}$$
(17)

$$\vec{B} = -\frac{\vec{v}}{c_n^2} \sin\theta(\hat{\theta} \times \vec{E})$$
(18)

Dedução do Espectro de Frequência

Para a dedução do espectro da radiação de Cerenkov, vamos utilizar o referencial de repouso da carga em coordenadas polares, ou seja, temos um referencial em movimento uniforme descrito pelo par ordenado (R(t), $\theta(t)$). Vamos, também, assumir que o cone de Mach descrito pela partícula passa por um observador distante em t = 0. Vamos, ainda, fazer a aproximação $R(0) \approx R(t) >> vt$ e $\Delta\theta << 1$, para um intervalo de tempo t pequeno após t = 0.

Para tornar a análise mais simplificada, vamos considerar a figura seguinte

Figura 7: Esquema de vetores Radiação Cherenkov

É possível, então, notar que

$$\Delta \theta \equiv \theta(t) - \theta_{\rm C} \approx v t \frac{\sin \theta_{\rm C}}{R(0)} \tag{19}$$

Dessa forma,

$$\Theta = \cos\theta_{C} - \cos(\theta_{C} + \Delta\theta) \approx \Delta\theta \sin\theta_{C} = \frac{c_{n}t}{\beta_{n}R(0)} \quad (20)$$

Como $\beta_n^2 \sin^2 \theta_c = 1$, temos:

$$1 - \beta_n^2 \sin^2(\theta(t)) \approx -2\beta_n^2 \cos\theta_C \sin\theta_C \Delta\theta = \frac{2c_n t \sqrt{1 - \beta_n^2}}{R(0)}$$
(21)

Substituindo essas aproximações no campo elétrico calculado anteriormente, obtemos o campo elétrico de um observador distante do cone

$$\vec{E}(t) = \frac{q(\beta_n^2 - 1)^{1/4}}{(2c_n)^{3/2} \pi \epsilon \sqrt{R(0)}} \left[\frac{\delta(t)}{\sqrt{t}} - \frac{H(t)}{2t^{3/2}} \right] \hat{R}(0)$$
(22)

O espectro é obtido pela transformada de Fourier do campo elétrico

$$\hat{\vec{E}}(r,\omega) = \int_{-\infty}^{\infty} \vec{E}(r,t)e^{i\omega t}dt$$
(23)

A integral pode ser calculada por partes, obtendo

$$\hat{\vec{E}} = \frac{q(\beta_n^2 - 1)^{1/4} \omega^{1/2}}{4\sqrt{\pi} \epsilon c_n^{3/2} \sqrt{R(0)}} (1 - i) \hat{R}(0)$$
(24)

Por fim, sabemos que a energia radiada por unidade de área por unidade de frequência é dada por

$$\frac{d^2 U}{d\omega dA} = \frac{\epsilon c_n}{\pi} |\hat{\vec{E}}(\omega)|^2$$
(25)

Sendo assim, obtemos

$$\frac{d^2 U}{d\omega dA} = \frac{q^2 \omega \mu \sqrt{\beta_n^2 - 1}}{8\pi^2 R(0)}$$
(26)

É comum querer descrever a energia radiada por frequência por unidade de comprimento *l*, que seria, nesse caso, a energia por unidade de frequência que atravessa um cilindro de comprimento unitário de raio ρ centrado na trajetória da partícula carregada em movimento. Pela figura 7, temos que essa quantidade é dada por

$$\frac{d^2 U}{d\omega dl} = 2\pi \rho [\hat{\rho} \cdot (-\hat{\theta})] \frac{d^2 U}{d\omega dA}$$
(27)

Utilizando a equação (26) e a figura 7, obtemos

$$\frac{d^2 U}{d\omega dl} = -2\pi R(0) \sin\theta_C \cos\theta_C \frac{d^2 U}{d\omega dA} = \frac{q^2 \mu}{4\pi} \left(1 - \frac{c^2}{v^2 n^2}\right) \omega$$
(28)

Uma descrição mais precisa requer que generalizemosa para meios cujo índice de refração depende da frequência, ou seja, quando $n = n(\omega)$. Assim, obtemos a fórmula de **Frank-Tamm**:

$$\frac{d^2 U}{d\omega dl} = \frac{\mu(\omega)q^2\omega}{4\pi} \left(1 - \frac{c^2}{v^2 n^2(\omega)}\right)$$
(29)

Uma outra maneira alternativa da expressão acima, que pode ser mais útil para um determinado tipo de aplicação e/ou medição da radiação (IceCube é um exemplo, vide tópico a seguir - mas em geral, casos em que o índice de refração é considerado constante, assim como a permeabilidade magnética, $\mu_{(\omega)} \approx \mu_0$), é com base no número de fótons emitidos via radiação Cerenkov por unidade de comprimento (dN_γ/dl). Para isso, manipula-se a equação (29), usando a relação de Planck e relacionando a frequência da onda emitida com seu comprimento de onda, obtendo

$$\frac{dN_{\gamma}}{dl} = 2\pi\alpha \left(1 - \frac{1}{\beta^2 n^2}\right) \left(\frac{1}{\lambda_{min}} - \frac{1}{\lambda_{max}}\right)$$
(30)

 $\cos \alpha = \frac{q^2}{\hbar c 4\pi \epsilon_0}$ sendo o constante de estrutura fina.

III. Estudo de Caso: Piscina de um Reator e o IceCube

A relação que fornece a energia irradiada no fenômeno da radiação Cerenkov apresenta dependência explícita com o índice de refração do meio. Nesse contexto, é válido questionar se algum fenômeno de caráter dispersivo deve ser analisado com maior cautela.

De acordo com os dados fornecidos na Figura 8, tem-se a relação dada para o índice de refração *n* da água e a frequência da emissão. Há claramente uma variação do índice com o espectro eletromagnético da onda incidente, tal dispersão é mais acentuada para emissões de menor frequência, dentro do infravermelho e micro ondas.

Entretanto, a faixa que estamos preocupados e interessados no problema é dentro da escala visível, destacada na figura na região próxima de $10^{15}Hz$. Notoriamente dentro desse intervalo a variação do índice com a frequência é muito pequena, de forma que é uma excelente aproximação adotar *n* como constante na presente análise. Com isso, a equação (29) torna-se linearmente dependente de ω e adota um formato simples.

Figura 8: Índice de refração em função da frequência

A consequência disso é que a intensidade da luz recebida é maior para as faixas de maiores frequências do espectro eletromagnético, e dentro do visível, as cores frias, como azul e violeta, são relativamente as mais intensas. Como o olho humano adquire uma maior sensibilidade para os comprimentos de onda próximos ao azul, a cor da radiação Cerenkov observada é predominantemente nessa faixa, como indica a Figura 9 e é condizente com as observações encontradas em diversos experimentos e afins.

Quanto a faixa que é emitida dentro do ultravioleta, grande parte de sua intensidade é absorvida pelo meio em que está inserida, no caso a água, o que torna a radiação Cerenkov um fenômeno que não é fisiologicamente danoso ao ser humano. Portanto, para os fenômenos observados nos reatores nucleares e medidores como IceCube, que no presente trabalho tornam-se motivações para nosso estudo, são provenientes da análise do eletromagnetismo no âmbito clássico e objetos matemáticos que estamos tratando no curso, como era desejado.

Figura 9: Radiação Cerenkov em um reator nuclear

IceCube

O IceCube é um observatório de neutrinos que detecta radiação de Cerenkov de partículas carregadas provenientes das interações de neutrinos altamente energizados (vindos de fenômenos que envolvem as camadas mais externas da atmosfera terrestre e demais eventos de escalas astronômicas). O observatório é composto por cerca de 5160 sensores ópticos do tamanho de bolas de basketball, denominados de "Digital Optical Modules" (DOMs). Esses sensores são ligados a 86 cabos verticais, embutidos no gelo abaixo da superfície do Polo Sul.

Figura 10: Ilustração IceCube

Quando um neutrino, viajando próximo a velocidade da luz, se aproxima o suficiente do núcleo de uma molécula de gelo, ele produz partículas carregadas altamente energéticas: elétrons, múons ou taus. Essas partículas são geradas com velocidades maiores do que a da luz no gelo, produzindo, então, um cone de radiação de Cerenkov. A luz dessa emissão aciona os sensores DOMs em um curto período de tempo. Esses detectores, por sua vez, captam o número de fótons por unidade de comprimento que chega neles, e conseguem obter o espectro de emissão de Cerenkov (via equação 30). Os dados são salvos e enviados para o laboratório na superfície. Como os neutrinos interagem fracamente via gravidade e força nuclear fraca, essas partículas podem viajar bilhares de anos-luz em trajetórias retilíneas (sem sofrerem pertubações de campos magnéticos ou da matéria universo afora). Sendo assim, com os dados obtidos pelo observatório, é possível - via conservação de energia e momento - reconstruir o neutrino incidente e, com isso, traçar um caminho em linha reta até a origem desse neutrino

Figura 11: Neutrinos interagem com a molécula de água gerando partículas carregadas

Diante desse contexto, o IceCube desenvolve um papel central, uma vez que acredita-se que a detecção de neutrinos possa auxiliar no entendimento de diversos aspectos da astronomia e da astrofísica.

Referências

- JACKSON, John David. Classical Eletrodynamics. [S. l.: s. n.], 1962.
- [2] ZANGWILL, Andrew. Modern Electrodynamics. [S. l.: s. n.], 2012
- [3] GRIFFTHS, David J.. Eletrodinâmica. 3. ed. S.I: Pearson, 2011.
- [4] TAKEDA, Carolina Sayuri. Radiação de Cherenkov. 2018. 4 p. Monografia (Bacharelado em Física) - Instituto de Física de São Carlos - USP, [S. l.], 2018. Disponível em: https://www.ifsc.usp.br/ strontium/Teaching/Material2018-1%20SFI5708%20Eletromagnetismo/Monografia%20-%20Carolina%20-%20Cerenkov.pdf. Acesso em: 20 nov. 2021.
- [5] NEUTRINO Detectors. Nova Iorque: Brookhaven Natioonal Lab., 2018. Color. Disponível em: https://www.phy.bnl.gov/diwan/talks/pedagogy/ diwan-nu-detectors.pdf. Acesso em: 20 nov. 2021.
- [6] JEONG, Hyung Mo. A Search for Neutrinos from Decaying Dark Matter in Galaxy Clusters and Galaxies with IceCube: 37° international cosmic ray conference (icrc 2021). Sungkyunkwan University.
- [7] BONIFAZI, Carla. Raios Cósmicos: Fundamentos e técnicas de detecção. Rio de Janeiro: Instituto de Física
 - UFRJ, X Escola do CBPF - 2015.
- [8] HEALD, MARION, Mark, Jerry. Classical Electromagnetic Radiation. 3. ed. rev. [S. 1.]: Dover, 1995. 572 p.