Massa Molar e Grau de Polimerização

Qual a massa mola do polietileno?

$$\left[CH_2 - CH_2 - \right]_n$$
 M = n x (12 x 2 + 1 X 4) g/mol

Grau de Polimerização = Mn/M = GP – para uma única molécula = n M = massa molar da unidade repetitiva

Para uma amostra de polietileno com n = 1500 teremos:

Grau de Polimerização, GP = 1.500

Massa Molar = $1500 (12 \times 2 + 1 \times 4) = 42.000 \text{ g/mol}$

Obs. Massa molecular em uma = u.

Massa Molar Média

A massa molar é dada pela média da massa molar de uma dada amostra

$$\overline{M} = \frac{Massa}{N}$$

De um modo geral os polímeros são caracterizados por apresentar uma distribuição de massa molar e não por uma massa molar discreta. A Massa molar média pode ser expressas por diversos tipos de média.

Massa molar média numérica, Mn

Considera o número de moléculas de cada tamanho M_{i.} É definido como a massa da amostra dividido pelo número total de moléculas presentes:

$$\overline{M}n = \frac{\sum n_i M_i}{\sum n_i} = \frac{\sum m_i}{\sum n_i} = \frac{m}{\sum n_i}$$

Onde n_i é o número de moléculas da espécie i de massa molar M_i . E m_i a massa de cada molécula do polímero.

A massa do *i-n*ésimo componente é dada por $m_i = n_i M_i$

Massa Molar Média

Massa molar média ponderal, Mw

Considera a massa mi de cada grupo de moléculas de massa Mi.

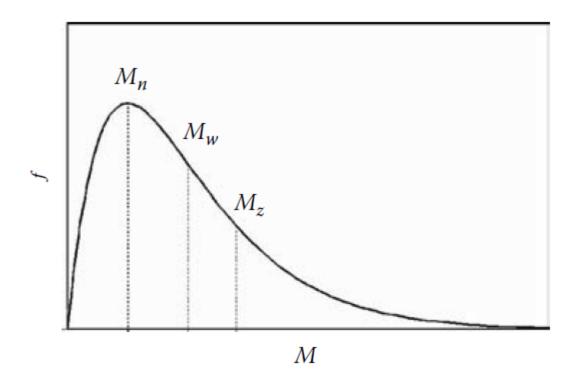
$$\overline{M}_w = \frac{\sum n_i M_i^2}{\sum n_i M_i} = \frac{\sum m_i M_i}{\sum m_i} = \frac{\sum m_i M_i}{m}$$

Massa molar média, Mz

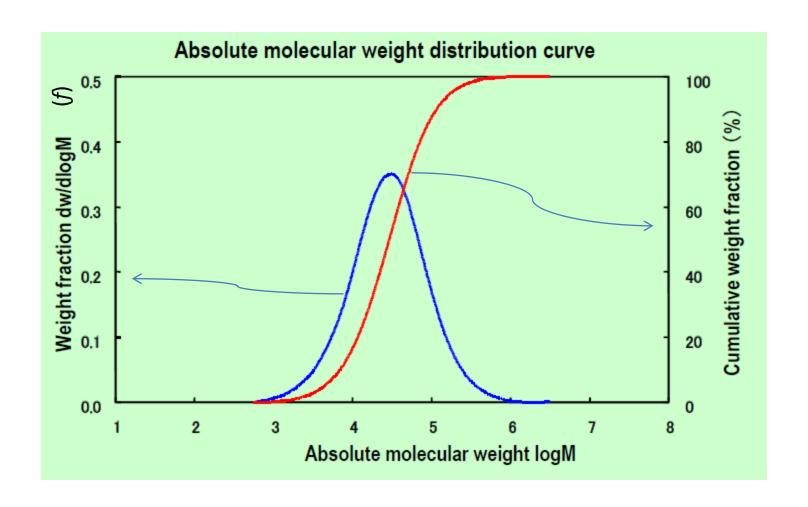
Considera em especial as moléculas de massa muito elevada.

$$\overline{M}_{z} = \frac{\sum n_{i} M_{i}^{3}}{\sum n_{i} M_{i}^{2}}$$

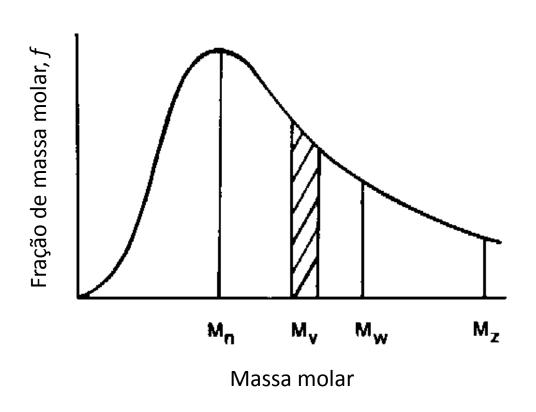
Unidades de massa molar: g mol-1


Determinar Mn, Mw e Mz para uma amostra de polímero dada:

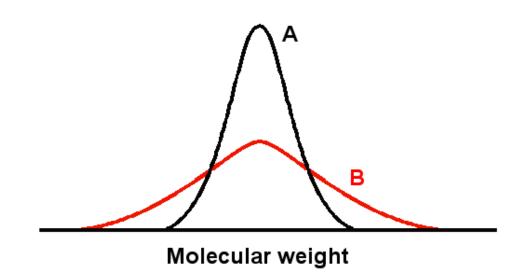
Considere uma amostra de um polímero composto pelas seguintes moléculas: 100.000, 200.000, 500.000 e 1.000.000 g mol-1 na proporção 1:5:3:1.


$$M_n = \frac{(1 \times 10^5) + (5 \times 2 \times 10^5) + (3 \times 5 \times 10^5) + (1 \times 10^6)}{1 + 5 + 3 + 1} = 3,6 \times 10^5 \ gmol^{-1}$$

$$M_{w} = \frac{\left[(1 \times (10^{5})^{2}) \right] + \left[(5 \times (2 \times 10^{5})^{2}) \right] + \left[(3 \times (5 \times 10^{5})^{2}) \right] + \left[(1 \times (10^{6})^{2}) \right]}{(1 \times 10^{5}) + (5 \times 2 \times 10^{5}) + (3 \times 5 \times 10^{5}) + (1 \times 10^{6})} = 5,45 \times 10^{5} \ gmol^{-1}$$


Distribuição típica da massa molar de polímeros sintéticos. Onde f é a fração de polímero para cada intervalo de M considerado.

Dados de distribuição acumulativos de massa molar



Posição relativa das diferentes médias de massa molar

Índice de polidispersão ou polidispersividade

Massa molar a partir das frações em número e em massa.

$$\overline{M}_n = \sum x_i M_i$$

$$\overline{M}_w = \sum w_i M_i$$

Onde, Mi é a massa molar média da faixa de tamanhos i, e x_i é a fração do número total de cadeias com esse tamanho e w_i é fração em peso das moléculas nesse intervalo de tamanho.

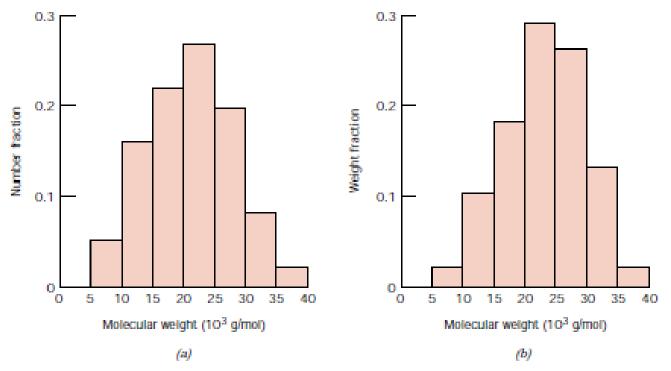
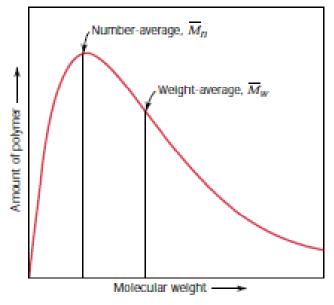



Figure 4.3 Hypothetical polymer molecule size distributions on the basis of (a)

number and (b) weight fractions of molecules.

$$\overline{M}_{n} = \sum x_{i} M_{i}$$

$$\overline{M}_{w} = \sum w_{i} M_{i}$$

Table 4.4a Data Used for Number-Average Molecular Weight Computations in Example Problem 4.1

Molecular Weight	Mean M;		
Range (g/mol)	(g/mol)	x_i	x_iM_i
5,000-10,000	7,500	0.05	375
10,000-15,000	12,500	0.16	2000
15,000-20,000	17,500	0.22	3850
20,000-25,000	22,500	0.27	6075
25,000-30,000	27,500	0.20	5500
30,000-35,000	32,500	0.08	2600
35,000-40,000	37,500	0.02	750
			$\overline{M}_{n} = 21,150$

Table 4.4b Data Used for Weight-Average Molecular Weight Computations in Example Problem 4.1

Molecular Weight	Mean M;		
Range (g/mol)	(g/mol)	w_i	$w_i M_i$
5,000-10,000	7,500	0.02	150
10,000-15,000	12,500	0.10	1250
15,000-20,000	17,500	0.18	3150
20,000-25,000	22,500	0.29	6525
25,000-30,000	27,500	0.26	7150
30,000-35,000	32,500	0.13	4225
35,000-40,000	37,500	0.02	750
			$\overline{M}_{\rm w} = \overline{23,200}$

Métodos para a determinação da massa molar:

- Massa molar média numérica, Mn, Análise de grupos terminais, propriedades coligativas.
- Massa molar média ponderal, Mw, Espalhamento de luz
- Massa molar média viscosimétrica, Viscosimetria capilar
- Distribuição de massa molar e polidispersividade Cromatografia líquida de alta eficiência, GPC, HPSEC.