
The interaction of long-chain molecules with liquids is of considerable interest from
both a practical and theoretical viewpoint. For linear and branched polymers, liquids
that will dissolve the polymer completely to form a homogeneous solution can
usually be found, whereas cross-linked networks will only swell when in contact
with compatible liquids. In this chapter, we shall deal with linear or branched
polymers and treat the swelling of networks in Chapter 14.

When an amorphous polymer is mixed with a suitable solvent, it disperses in
the solvent and behaves as though it too is a liquid. In a good solvent, classed as
one that is highly compatible with the polymer, the liquid�polymer interactions
expand the polymer coil from its unperturbed dimensions in proportion to the extent
of these interactions. In a �poor� solvent, the interactions are fewer, and coil expan-
sion or perturbation is restricted.

The fundamental thermodynamic equation used to describe these systems relates
the Gibbs free-energy function G to the enthalpy H and entropy S; i.e., G = H  TS.
A homogeneous solution is obtained when the Gibbs free energy of mixing GM < 0,
i.e., when the Gibbs free energy of the solution G12 is lower than the Gibbs functions
of the components of the mixture G1 and G2.

GM = G12  (G1 + G2) (8.1)

To understand the behavior of polymers in solution more fully, knowledge of the
enthalpic and entropic contributions to GM is essential, and it is instructive to
consider rst mixtures of small molecules to establish some fundamental rules
concerning ideal and nonideal behavior. Raoult�s law is a useful starting point and
denes an ideal solution as one in which the activity of each component in a mixture
ai is equal to its mole fraction xi. This is valid only for components of comparable
size and where the intermolecular forces acting between both like and unlike mol-
ecules are equal. The latter requirement means that component molecules of each
species can interchange positions without altering the total energy of the system;
i.e., HM = 0 and, consequently, it only remains for the entropy contribution SM to
be calculated.

For a system in a given state, the entropy is related to the number of distinguishable
arrangements the components in that state can adopt and can be calculated from the
Boltzmann law, S = k ln , where  is the number of statistical microstates available
to the system. We can begin by considering the mixing of N1 molecules of component



1 with N2 molecules of component 2, and this can be assumed to take place on a
hypothetical lattice containing (N1 + N2) = N0 cells of equal size. Although this
formalism is not strictly necessary for the analysis, the arrangement of spherical
molecules of equal size in the liquid state will, to the rst near-neighbor approximation,
be similar to a regular lattice structure, and so it is a useful structure to use as a
framework for the mixing process.

The total number of possible ways in which the component molecules can be
arranged on the lattice increases when mixing takes place and is equal to (N1 + N2)!
= N0!, but as the interchanging of a molecule of component 1 with another molecule
component 1, or component 2 with component 2 will be an indistinguishable process,
the net number of distinguishable arrangements will be

(8.2)

The congurational (or combinatorial) entropy Sc can then be derived from the
Boltzmann law and

(8.3)

For large values of Ni, Stirling�s approximation can be used to deal with the factorials;
i.e., ln N! = N ln N  N, and Equation 8.3 becomes

Sc = k(N0 ln N0  N0  N1 ln N1 + N1  N2 ln N2 + N2) (8.4)

which on dividing by N0 gives

(8.5)

If xi = (Ni/N0), the mole fraction of component i, then

Sc =  k[N1 ln x1 + N2 ln x2] (8.6)

For pure components, xi = 1, and as SM, the change in entropy on mixing, is given
by (Sc  S1  S2), we can write

So for a two-component mixture,
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(8.7)

This expression is derived on the assumptions that (1) the volume change on
mixing VM = 0, (2) the molecules are all of equal size, (3) all possible arrangements
have the same energy, HM = 0, and (4) the motion of the components about their
equilibrium positions remains unchanged on mixing. Thus, the free energy of mixing,

GM, is

GM =  T SM = kT(N1 ln x1 + N2 ln x2) (8.8)

which shows that mixing in ideal systems is an entropically driven, spontaneous
process.

Any deviations from assumptions (1) to (4) will constitute a deviation from ideality
� an ideal solution is a rare occurrence � and several more realistic types of
solution can be identied:

1. Athermal solutions, where HM = 0 but SM is not ideal
2. Regular solutions, where SM is ideal but HM  0
3. Irregular solutions, in which both SM and HM deviate from their ideal

values

Polymer solutions tend to fall into category (3), and the nonideal behavior can
be attributed not only to the existence of a nite heat of mixing but also to the large
difference in size between the polymer and solvent molecules. The polymer chain
can be regarded as a series of small segments covalently bonded together, and it is
the effect of this chain connectivity that leads to deviations from an ideal entropy
of mixing. The effect of connectivity can be assessed by calculating the entropy
change associated with the different number of ways of arranging polymer chains
and solvent molecules on a lattice and, as will be demonstrated, this differs from
that calculated for the ideal solution. This is embodied in the theory developed by
Flory and Huggins but still represents only the combinatorial contribution, whereas
there are other (noncombinatorial) contributions to the entropy that come from the
interaction of the polymer with the solvent and are much harder to quantify. Nev-
ertheless, the Flory�Huggins theory forms the cornerstone of polymer solution
thermodynamics and is worth considering further.

The dissolution of a polymer in a solvent can be regarded as a two-stage process.
The polymer exists initially in the solid state in which it is restricted to only one of
the many conformations that are available to it as a free isolated molecule. On passing

S k N x N xid
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into the liquid solution, the chain achieves relative freedom and can now change
rapidly among a multitude of possible equi-energetic conformations, dictated partly
by the chain exibility and partly by the interactions with the solvent.

Flory and Huggins considered that formation of the solution depends on (1) the
transfer of the polymer chain from a pure, perfectly ordered state to a state of disorder,
which has the necessary freedom to allow the chain to be placed randomly on a lattice,
and (2) the mixing process of the exible chains with solvent molecules (Figure 8.1).

The formalism of the lattice was used for convenience to calculate the combi-
natorial entropy of mixing according to the method outlined in Section 8.2 for small
molecules, including the same starting assumptions and restrictions.

Consider a polymer chain consisting of r covalently bonded segments whose
size is the same as the solvent molecules, i.e., r = (V2/V1), where Vi is the molar
volume of component i. To calculate the number of ways this chain can be added
to a lattice, the necessary restriction imposed is that the segments must occupy r
contiguous sites on the lattice because of the connectivity. The problem is to examine
the mixing of N1 solvent molecules with N2 monodisperse polymer molecules com-
prising r segments; we can begin by adding i polymer molecules to an empty lattice
with a total number of cells N0.

N0 = (N1 + rN2) (8.9)

Thus, the number of vacant cells left, which can accommodate the next (i + 1)
molecule, is given by

(N0  ri) (8.10)

The (i + 1) molecule can now be placed on the lattice, segment by segment,
bearing in mind the restrictions imposed, i.e., the connectivity of the segments, which
requires the placing of each segment in a cell adjoining the preceding one. This in
turn will depend on the availability of a suitable vacancy. The rst segment can be
placed in any empty cell, but the second segment is restricted to the immediate near
neighbors surrounding the rst (see Figure 8.1). This can be given by the coordination
number of the lattice z, but we must also know if a cell in the coordination shell is
empty. If we let pi be the probability that an adjacent cell is vacant, then, to a
reasonable approximation, this can be equated with the fraction of cells occupied
by i polymer chains on the lattice, i.e.,

pi = (N0  ri)/N0 (8.11)

which is valid for large values of z. So the expected number of empty cells available
for the second segment is zpi, and having removed one more vacant cell from the
immediate vicinity, the third and each succeeding segment will have (z  1)pi empty
cells to choose from. The total number of ways in which the (i + 1) molecule can
be placed on the lattice is then

(i + 1) = (N0  ri)z(z  1)r  2[(N0  ri)/N0]r  1 = (N0  ri)r [(z  1)/N0]r  1 (8.12)



This gives the set of possible ways in which the (i + 1) molecule can be accommo-
dated on the lattice. The total number of ways for all N2 molecules to be placed can
then be obtained from the product of all possible ways, i.e.,

The polymer molecules are all identical and so, by analogy with Equation 8.2,
the total number of distinguishable ways of adding N2 polymer molecules is

(8.13)

Substituting for i gives

(8.14)

To evaluate the product term, we can multiply and divide by r

(8.15)

This can be converted into the more convenient factorial form by remembering that
the product

 Placement of polymer chains and solvent molecules on a lattice as required
by the Flory�Huggins theory.
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(8.16)

is equivalent to

(8.17)

and so Equation 8.14 can be written as

(8.18)

The remaining empty cells on the lattice can now be lled by solvent molecules,
but as there is only one distinguishable way in which this can be done, s = 1, there
is no further contribution to p and the entropy of the system. The latter can now
be calculated from the Boltzmann equation. The factorials can again be approximated
using Stirling�s relation and, although this requires considerable manipulation, which
will be omitted here, it can eventually be shown that

(8.19)

To convert this into a form that will allow us to express this in the correct site fraction
form, we can add and subtract N2 ln R on the R.H.S. of Equation 8.19 to give

(8.20)

For the pure solvent, N2 = 0 and the entropy S1 = 0. Similarly, the entropy of
the pure polymer S2 can be obtained for N1 = 0, which gives

(8.21)

Equation 8.21 then represents the entropy associated with the disordered or amor-
phous polymer on the lattice in the absence of solvent.

It follows that the entropy change on mixing disordered polymer and solvent is
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SM = SM  S1  S2 = �k {N1 ln 1 + N2 ln 2} (8.22)

where i, the volume fraction, can replace the site fraction if it is considered that
the number of sites occupied by the polymer and solvent is proportional to their
respective volumes.

Equation 8.22 is the expression for the combinatorial entropy of mixing of an
athermal polymer solution, and comparison with Equation 8.7 shows that they are
similar in form except for the fact that now the volume fraction is found to be the
most convenient way of expressing the entropy change rather than the mole fraction
used for small molecules. This change arises from the differences in size between
the components, which would normally mean mole fractions close to unity for the
solvent, especially when dilute solutions are being studied.

We can gain a further understanding of how the size of the polymer chain affects
the magnitude of SM and why it differs from  (Equation 8.7) by recasting Equation
8.22 in terms of the volume fractions i = (niVi/V), where ni and Vi represent the number
of moles and the volume of component i, respectively, and V is the total volume.

As Vi can conveniently be expressed as a function of a reference volume V0 such
that Vi = riV0 and assuming that, without introducing signicant error, r can be
equated with the degree of polymerization for the polymer, then

(8.23)

If the volume fraction form is retained, then for a simple liquid mixture,
r1 = r2 = 1, but for a polymer solution, r2 >> 1 and the last term in Equation 8.23
will be smaller than the equivalent term calculated for small molecules. Conse-
quently, SM per mole of lattice sites (or equivalent volume) will be very much less
than , and the contribution of the combinatorial entropy to the mixing process
in a polymer solution is not as large as that for solutions of small molecules when
calculated in terms of volume fractions and expressed as per mole of sites.

The derivation of SM from the lattice theory has been made on the assumption that no
heat or energy change occurs on mixing. This is an uncommon situation as experimental
experience suggests that the energy change is nite. We can make use of regular solution
theory to obtain an expression for HM where this change in energy is assumed to arise
from the formation of new solvent�polymer (1�2) contacts on mixing, which replace
some of the (1�1) and (2�2) contacts present in the pure solvent, and the pure polymer
components, respectively. This can be represented by a quasi-chemical process

(8.24)
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where the formation of a solvent�polymer contact requires rst the breaking of (1�1)
and (2�2) contacts, and can be expressed as an interchange energy 12 per contact,
given by

(8.25)

Here, ii and ij are the contact energies for each species. The energy of mixing
UM can be replaced by HM if no volume change takes place on mixing, and for

q new contacts formed in solution

HM = q 12 (8.26)

The number of contacts can be estimated from the lattice model by assuming
that the probability of having a lattice cell occupied by a solvent molecule is simply
the volume fraction 1. This means that each polymer molecule will be surrounded
by ( 1 rz) solvent molecules, and for N2 polymer molecules

HM = N2 1 rz 12 = N1 2 z 12 (8.27)

considering the denition of 2, i.e., rN2 1 = N1 2.
This equation is the van Laar expression derived for regular solutions and shows

that this approach can be applied to polymer systems. To eliminate z, a dimensionless
parameter ( 1) per solvent molecule is dened as

kT 1 = z 12 (8.28)

which is the difference in energy between a solvent molecule when it is immersed
in pure polymer and when in pure solvent. It can also be expressed in the alternative
form RT 1 = BV1, where B is now an interaction density.

The nal expression is

HM = kT 1N1 2 (8.29)

and the interaction parameter 1 is an important feature of polymer solution theory,
which will be met with frequently. The Flory�Huggins interaction parameter is zero
for athermal solutions, positive for endothermic, and negative for exothermic mixing.

Having calculated the entropy and enthalpy contributions to mixing, these can now be
combined to give the expression for the free energy of mixing, GM = HM  T SM as

(8.30)
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It is more useful to express Equation 8.30 in terms of the chemical potentials
of the pure solvent  by differentiating the expression with respect to the number
of solvent molecules, N1, to obtain the partial molar Gibbs free energy of dilution
(after multiplying by Avogadro�s number),

(8.31)

This could also be carried out for the polymer (N2), but as it makes no difference
which one is taken (both having started from GM), Equation 8.31 is more convenient
to use. Although this expression is not strictly valid for the dilute solution regime, it
can be converted into a structure that is extremely informative about deviations from
ideal solution behavior encountered when measuring the molar mass by techniques
such as osmotic pressure. If the logarithmic term is expanded using a Taylor series,

but truncated after the squared term, assuming 2 is small, then

(8.32)

This can be modied by remembering that r = (V2/V1) and 2 = c2v2, where v2 is the
partial specic volume of the polymer. This can be related to the polymer molecular
weight M2 through v2 = (V2/M2), so that ( 2/r) = c2V1/M2 and, nally,

(8.33)

The simple lattice theory does not describe the behavior of dilute polymer solutions
particularly well because of the following invalid simplications in the theoretical
treatment: (1) it was assumed that the segment-locating process is purely statistical,
but this would only be true if 12 was zero; (2) the treatment assumed that the
exibility of the chain is unaltered on passing into the solution from the solid state �
this limits the calculation of SM to the combinatorial contribution only and neglects
any contribution from continual exing of the chain in solution; (3) any possible
specic solvent�polymer interactions that might lead to orientation of the solvent
molecules in the vicinity of the polymer chain are neglected; i.e., polar solutions may
be inadequately catered to by this theory; (4) a uniform density of lattice site occupation
is assumed, but this will only apply to relatively concentrated solutions; and (5) the
parameter 1 is often concentration dependent, but this is ignored. It is now accepted
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that a noncombinatorial entropy contribution arises from the formation of new (1�2)
contacts in the mixture, which change the vibrational frequencies of the two compo-
nents; i.e., assumption (4) in Section 8.2 must be relaxed. This can be allowed for by
recognizing that 1 is actually a free-energy parameter comprising entropic H and
enthalpic S contributions such that 1 = H + S. These are dened by

H =  T(d 1/dT) and S = d(T 1)/dT  (=  S/k)

Experiments tend to show that the major contribution comes from the S component,
indicating that there is a large decrease in entropy (noncombinatorial), which is
acting against the dissolution process of a polymer in a solvent.

In spite of much justiable criticism, the Flory�Huggins theory can still generate
considerable interest because of the limited success that can be claimed for it in
relation to phase equilibria studies.

The Flory�Huggins theory can be used to predict the equilibrium behavior of two
liquid phases when both contain amorphous polymer and one or even two solvents.

Consider a two-component system consisting of a liquid (1) that is a poor solvent
for a polymer (2). Complete miscibility occurs when the Gibbs free energy of mixing
is less than the Gibbs free energies of the components, and the solution maintains
its homogeneity only as long as GM remains less than the Gibbs free energy of any
two possible coexisting phases.

The situation is represented by curve T4 in Figure 8.2. The miscibility of this type
of system is observed to be strongly temperature dependent, and as T decreases the
solution separates into two phases. Thus, at any temperature, say, T1, the Gibbs free
energy of any mixture, composition  in the composition range  to  is higher
than either of the two coexisting phases whose compositions are  and , and phase
separation takes place. The compositions of the two phases  and  do not corre-
spond to the two minima but are measured from the points of contact of the double
tangent AB with the Gibbs free-energy curve. The same is true of other temperatures
lying below Tc (T1 to T3), and the inexion points can be joined to bound an area
representing the heterogeneous two-phase system, where there is limited solubility
of component 2 in 1 and vice versa. This is called a cloud-point curve.

As the temperature is increased, the limits of this two-phase coexistence contract,
until eventually they coalesce to produce a homogeneous, one-phase mixture at Tc,
the critical solution temperature. This is sometimes referred to as the critical con-
solute point.

In general, we can say that if the free-energy-composition curve has a shape that
allows a tangent to touch it at two points, phase separation will occur.

The critical solution temperature is an important quantity and can be accurately
dened in terms of the chemical potential. It represents the point at which the
inexion points on the curve merge, and so it is the temperature where the rst,
second, and third derivatives of the Gibbs free energy with respect to mole fraction
are zero.

x2 x2 x2 ,
x2 x2

x2 x2



(8.34)

It is also true that the partial molar Gibbs free energies of each component are
equal at this point, and it emerges that the conditions for incipient phase separation are

(8.35)

By remembering that  application of these criteria for equilib-
rium to Equation 8.31 leads to the rst derivative of that equation

(1  2,c) 1  (1  1/xn)  2 2,c 1,c = 0 (8.36)

Schematic diagram of the Gibbs free energy of mixing GM as a function of
the mole fraction x2 of solute (top half), showing the transition from a system miscible in all
proportions at a temperature T4 through the critical temperature Tc, to partially miscible
systems at temperatures T3 to T1. The contact points for the common tangents drawn to the
minima are shown projected onto the temperature�mole fraction plane to form the binodal
(cloud-point) curve, whereas projection of the inexion points forms the spinodal curve. The
lower part of the diagram indicates the one-phase stable region I, the metastable region II,
and the unstable region III.
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whereas the second derivative is

(1  2,c) 2  2 1,c = 0 (8.37)

where the subscript c denotes critical conditions. The critical composition at which
phase separation is rst detected is then

(8.38)

and

(8.39)

which indicates that 1,c = 0.5 at an innitely large chain length.
The interaction parameter 1 is a useful measure of the solvent power. Poor

solvents have values of 1 close to 0.5, whereas an improvement in solvent power
lowers 1. Generally, a variation from 0.5 to 1.0 can be observed, although for
many synthetic polymer solutions the range is 0.6 to 0.3. A linear temperature
dependence of the general form 1 = a + b/T is also predicted for 1, which suggests
that as the temperature increases, the solvating power of the liquid should increase.

The relationship between chain length and solvent power as expressed by Equa-
tion 8.39 is illustrated in Figure 8.3. The implication is that if 1 can be carefully
controlled, conditions could be attained that, for a polydisperse sample, would allow
a given molecular species to precipitate, while leaving larger or smaller molecules
in solution. This process is known as fractionation.

Experimentally, a polymer sample can be fractionated in a variety of ways; two
in common use are (1) addition of a nonsolvent to a polymer solution and (2) lowering
the temperature of the solution.

In the rst method, the control of 1 is effected by adding a nonsolvent to the
polymer solution. If the addition is slow, 1 increases gradually until the critical
value for large molecules is reached. This rst causes precipitation of the longest
chains, which can be separated from the shorter chains that remain in solution.
Successive additions of small quantities of nonsolvent to the solution allow a series
of fractions of steadily decreasing molar mass to be separated.

In the second method, 1 is varied by altering the temperature, with similar
results. For both techniques, it is useful to dissolve the polymer initially in a poor
solvent with a large 1 value. This ensures that only small quantities of nonsolvent
are required to precipitate the polymer in method 1 and that the temperature changes
required in method 2 are small.

To overcome the limitations of the lattice theory resulting from the discontinuous
nature of a dilute polymer solution, Flory and Krigbaum discarded the idea of a
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uniform distribution of chain segments in the liquid. Instead, they considered the
solution to be composed of areas containing polymer separated by the solvent. In
these areas, the polymer segments were assumed to possess a Gaussian distribution
about the center of mass, but even with this distribution the chain segments still
occupy a nite volume from which all other chain segments are excluded. It is within
this excluded volume that the long-range interactions originate, as discussed more
fully in Chapter 10.

Flory and Krigbaum dened an enthalpy ( 1) parameter and an entropy of
dilution ( 1) parameter such that the thermodynamic functions used to describe these
long-range effects are given in terms of the excess partial molar quantities

(8.40)

(8.41)

From Equation 8.33 it can be seen that the excess free energy of dilution is

(8.42)

Variation of 1 with volume fraction 2 of the polymer in solution, showing the
effect of changing chain length xn.
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Combination of these nonideal terms then yields

(8.43)

We will show in Chapter 9 that a relationship exists between the second virial
coefcient B and the interaction parameter 1

(8.44)

When B = 0 and , the solution appears to behave as though it were ideal.
The point at which this occurs is known as the Flory or theta point and is in some
ways analogous to the Boyle point for a nonideal gas. Under these conditions,

The temperature at which these conditions are obtained is the Flory or theta
temperature , conveniently dened as  = T 1/ 1. This tells us that  will only
have a meaningful value when 1 and 1 have the same sign.

Substitution in Equation 8.42 followed by rearrangement gives

(8.45)

and shows that deviations from ideal behavior vanish when T = .
The theta temperature is a well-dened state of the polymer solution at which

the excluded volume effects are eliminated and the polymer coil is in an unperturbed
condition (see Chapter 10). Above the theta temperature, expansion of the coil takes
place, caused by interactions with the solvent, whereas below  the polymer seg-
ments attract one another, the excluded volume is negative, the coils tend to collapse,
and eventual phase separation occurs.

The theta temperature of a polymer�solvent system can be measured from phase
separation studies. The value of 1,c at the critical concentration is related to the chain
length of the polymer by Equation 8.39, and substitution in Equation 8.45 leads to

(8.46)

where now we have replaced r with the equivalent degree of polymerization xn.
Rearrangement gives
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(8.47)

Remembering that xn = (Mv2 /V1), where M and v2 are the molar mass and partial
specic volume of the polymer, respectively, and V1 is the molar volume of the
solvent, the equation states that the critical temperature is a function of M and the
value of Tc at innite M is the theta temperature for the system.

Precipitation data for several systems have proved the validity of Equation 8.47.
Linear plots are obtained with a positive slope from which the entropy parameter

1 can be calculated, as shown in Figure 8.4. Typical values are shown in Table 8.1,
but 1 values measured for systems such as polystyrene�cyclohexane have been
found to be almost ten times larger than those derived from other methods of
measurement. This appears to arise from the assumption in the Flory�Huggins theory
that 1 is concentration independent and improved values of 1 are obtained when
this is rectied.

Chain length xn dependence of the upper critical consolute solution temperature
Tc for (1) polystyrene in cyclohexane and (2) polyisobutylene in di-isobutyl ketone (data from
Schultz, A.R. and Flory, P.J., J. Am. Chem. Soc., 74, 4760, 1952), and the lower critical
solution temperature for (3) polyoctene-1 in n-pentane (data from Kinsinger, J.B. and Ballard,
L.E., Polym. Lett., 2, 879, 1964).
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The theta temperature, calculated from Equation 8.47 for each system, is in good
agreement with that measured from the temperature variation of the second virial
coefcient A2 (= B/RT, see Chapter 9). Curves of A2, measured at various temperatures
in the vicinity of , are constructed as a function of temperature for one or more
molar masses as shown in Figure 8.5. Intersection of the curves with the T-axis
occurs when A2 = 0 and T = . The curves for each molar mass of the same polymer
should all intersect at T = .

1. Polystyrene Cyclohexane 307.2 1.056
2. Polyethylene Nitrobenzene 503 1.090
3. Polyisobutene Diisobutyl ketone 333.1 0.653
4. Poly(methylmethacrylate) 4-Heptanone 305 0.610
5. Poly(acrylic acid) Dioxan 302.2 0.310
6. Polymethacrylonitrile Butanone 279 0.630

Note: Values have been derived using Equation 8.47;  = theta temperature,  = entropy of dilution.

Location of the theta temperature  for poly( -methyl styrene) in cyclohexane.
Values of A2 are measured for (1) Mn = 8.6 × 104 g mol 1, (2) Mn = 3.8 × 105 g mol 1, and
(3) Mn = 1.5 × 106 g mol 1.
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So far we have been concerned with nonpolar solutions of amorphous polymers,
whose solubility is increased with rising temperature, because the additional thermal
motion helps to decrease attractive forces between like molecules and encourages
energetically less favorable contacts. The phase diagram for such a system, when
the solvent is poor, is depicted by area A in Figure 8.6, where the critical temperature
Tc occurs near the maximum of the cloud-point curve and is often referred to as the
upper critical solution temperature (UCST). This behavior follows from that
depicted in Figure 8.2.

For nonpolar systems SM is normally positive but weighted heavily by T, and
so solubility depends mainly on the magnitude of HM, which is normally endo-
thermic (positive). Consequently, as T decreases, GM eventually becomes positive
and phase separation takes place.

Values of  and 1, in Table 8.1, show that for systems 1 to 4 the entropy parameter
is positive, as expected, but for poly(acrylic acid) in dioxan and polymethacrylonitrile
in butanone, 1 is negative at the theta temperature. As 1 = 1 when T = , the enthalpy
is also negative for these systems. This means that systems 5 and 6 exhibit an unusual
decrease in solubility as temperature rises, and the cloud-point curve is now inverted
as in area B. The corresponding critical temperature is located at the minimum of the
miscibility curve and is known as the lower critical solution temperature (LCST).

Schematic diagram of the two types of phase boundaries commonly encoun-
tered in polymer solutions: (A) the two-phase region characterized by the upper critical
solution temperature and (B) the two-phase region giving the lower critical solution temper-
ature, with a single-phase region lying between the two.



In systems 5 and 6, this phenomenon is a result of hydrogen-bond formation
between the polymer and solvent, which enhances the solubility. As hydrogen bonds
are thermally labile, a rise in T reduces the number of bonds and causes eventual
phase separation. In solutions, which are stabilized in this way by secondary bonding,
the LCST usually appears below the boiling temperature of the solvent, but it has
been found experimentally that an LCST can be detected in nonpolar systems when
these are examined at temperatures approaching the critical temperature of the
solvent. Polyisobutylene in a series of n-alkanes, polystyrene in methyl acetate and
cyclohexane, and cellulose acetate in acetone all exhibit LCSTs.

The separation of polymer�solvent systems into two phases as the temperature
increases is now recognized to be a characteristic feature of all polymer solutions.
This presents a problem of interpretation within the framework of regular solution
theory, as the accepted form of 1 predicts a monotonic change with temperature
and is incapable of dealing with two critical consolute points.

The problem of how to accommodate, in a theoretical framework, the existence
of two miscibility gaps requires a new approach, and a more elaborate treatment
by Prigogine and co-workers encompasses the difference in size between the com-
ponents of a mixture, which cannot be ignored for polymer solutions. They replaced
the rigid lattice model used by Flory and Huggins, which is valid only at absolute
zero, with a exible lattice whose cells change in volume with temperature and
pressure. This allowed them to include in their theory dissimilarities in free volume
between polymer and solvent together with the corresponding interactions. The
same approach was extended by both Patterson and Flory to deal specically with
polymer systems.

The most important of the new parameters is the so-called structural effect, which
is related to the number of degrees of freedom �3c� that a molecule possesses, divided
by the number of external contacts q. This structural factor (c/q) is a measure of the
number of external degrees of freedom per segment and changes with the length of
the component. Thus, the ratio decreases as a liquid becomes increasingly polymeric.

The expansion and free volume can then be characterized by the ratio of the
thermal energy arising from the external degrees of freedom available to the com-
ponent, Uthermal, and the interaction energy between neighboring nonbonded seg-
ments, Ucohesive, which will oppose the thermal energy effects, i.e.,

(8.48)

where * is the characteristic cohesive energy per contact.
For convenience q may be replaced by r, the number of chain segments, although

q will actually be less than r because some of the external contacts are used in
forming the covalent bonds in the chain.

Free-volume dissimilarities become increasingly important as the size of one
component increases with respect to the second, as in polymer solutions, and when
these differences are sufciently large, phase separation can be observed at the LCST.

U
U

ckT
q

thermal
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The differences in expansivity can be accounted for if the interaction parameter is
now expressed as 

(8.49)

where the rst term reects the interchange energy on forming contacts of unlike
type and includes segment size differences, whereas the second term is the new
�structural� contribution coming from free-volume changes on mixing a dense poly-
mer with an expanded solvent. This can be represented schematically as in Figure 8.7.

The rst term in Equation 8.49, shown by curve 1 in Figure 8.7, is merely an
expression of the Flory�Huggins theory where  decreases constantly with rising
temperature, but now inclusion of the new free-volume term, shown by curve 2,
modies the behavior of . The second term gains in importance as the expansivities
of the two components become increasingly divergent with temperature, and the net
effect is to increase  again until it once more attains its critical value at high
temperature. The LCST that results is then a consequence of these free-volume
differences and is an entropically controlled phenomenon.

This can be illustrated in the following ways. In terms of the exible lattice
model, one can imagine the polymer and liquid lattices expanding at different rates
until a temperature is reached at which the highly expanded liquid lattice can no
longer be distorted sufciently to accommodate the less-expanded polymer lattice
and form a solution; i.e., the loss in entropy during the distortion becomes so large
and unfavorable that phase separation (LCST) takes place. Alternatively, a polymer
solution can be thought of as a system formed by the condensation of solvent into
a polymer. As the temperature increases, the entropy loss incurred during conden-
sation becomes greater until eventually it is so unfavorable that condensation in the
polymer is impossible and phase separation takes place. Neither picture is particu-
larly rigorous, but they serve to emphasize the fact that the LCST is an entropically
controlled phenomenon.

Schematic diagram of 1 as a function of temperature, showing the composite
curve of 1 (� �), rst term in Equation 8.49; and 2 (� � �), the free-volume contribution from
the second term in Equation 8.49, which results in the observation of the LCST.
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