CM II – SMM0194 – Polímeros

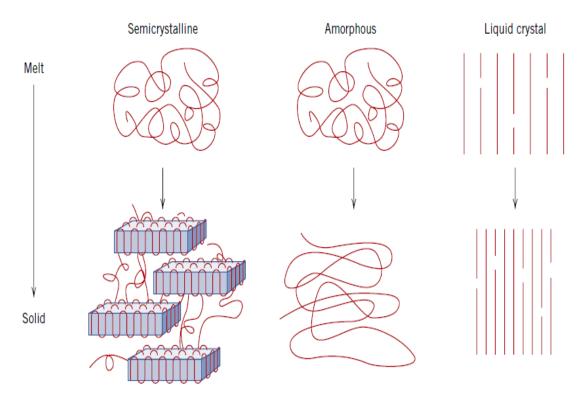
Parte II — Propriedades Aplicações e Processamento

Aula 11: Os principais tipos de materiais poliméricos

Existe uma grande variedade de tipos diferentes de materiais poliméricos que são aplicados em uma grande gama de possibilidades. Essa grande diversidade de tipos e de possíveis aplicações deriva das possibilidades de estrutura e composição que os materiais poliméricos apresentam.

Dentre os principais tipos de materiais poliméricos estão: os plásticos, elastômeros, fibras, revestimentos, adesivos, espumas, filmes.

Tipos de polímeros

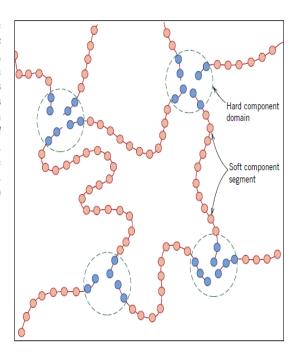

- Classificação de acordo o tipo de uso:
 - Plásticos:
 - apresentam alguma rigidez estrutural quando sob carga
 - Rígidos, frágeis, flexíveis
 - Termoplásticos ou termofixos
 - Usados abaixo de sua Tg (amorfos) ou de sua Tm (semicristalinos)
 - Elastômeros:
 - Apresentam ligações cruzadas
 - Podem ser constituidos de C ou Si
 - Fibras:
 - Razão 100:1 de comprimento para diâmetro
 - Recobrimentos
 - Proteger o substrato do ambiente
 - Melhorar aparência
 - Isolar eletricamente
 - Adesivos
 - Podem promover adesão mecânica ou química
 - Filmes
 - Espumas
 - Termoplásticos ou termofixos

Materiais poliméricos avançados

- PEUAPM (UHMWPE Spectra): polietileno de ultra alto peso molecular
 - Resistência ao impacto extremamente alta
 - Excelente resistência a abrasão
 - Baixo coeficiente de fricção
 - Superfície auto lubrificante e não aderente
 - Boa resistência química a solventes comuns
 - Excelentes propriedades sob baixas temperaturas
 - Ótima capacidade de isolamento acústico e absorção de energia
 - Isolante elétrico e excelentes propriedades dielétricas
 - Baixa T_m

Materiais poliméricos avançados

- Polímeros de cristal líquido
 - Composto por moléculas rígidas em formato de bastão
 - Estado cristalino líquido



Materiais poliméricos avançados

Elastômeros termoplásticos

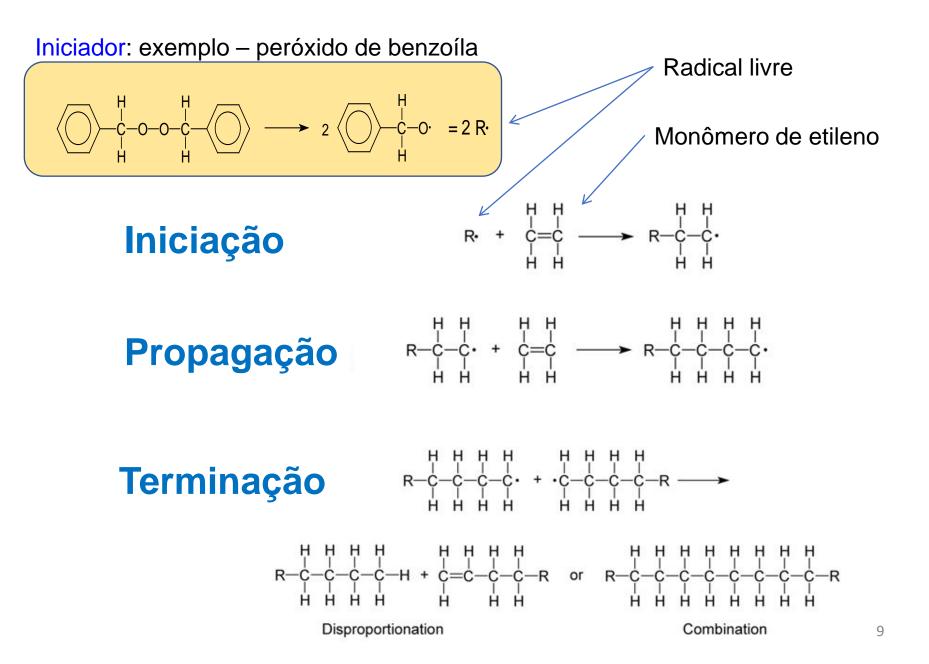
- Maioria dos elastômeros são termofixos, devido as ligações cruzadas.
- Apresentam "moldabilidade" após atingir a $T_{\rm m}$, enquanto os termofixos não podem ser reprocessados após a reticulação ou vulcanização.

Figure 15.22 Schematic representation of the molecular structure for a thermoplastic elastomer. This structure consists of "soft" (i.e., butadiene or isoprene) repeat unit center-chain segments and "hard" (i.e., styrene) domains (chain ends), which act as physical crosslinks at room temperature. (From ASKELAND/PHULE, The Science and Engineering of Materials, 5E. © 2006. Cengage Learning, a part of Cengage Learning, Inc. Reproduced by permission. www.cengage.com/permissions)

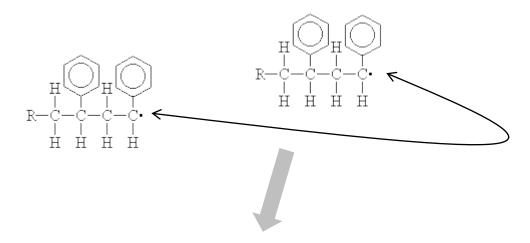
Aula 12: Síntese e métodos de polimerização

Síntese: Processo pelo qual os monômeros são transformados em polímeros de elevada massa molar.

Classificação dos Polímeros: Tipo de reação de polimerização

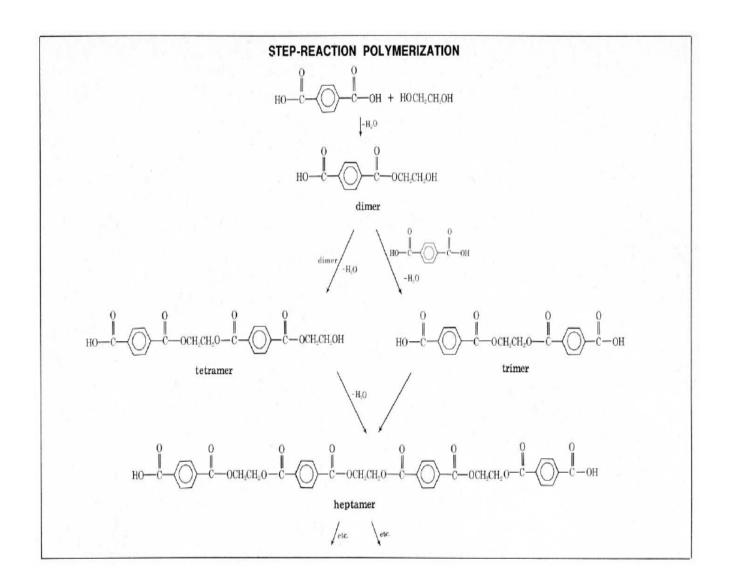

Em 1929, Carothers propôs uma classificação dos polímeros em duas categorias: polímeros de **condensação** e de **adição**.

Polímeros de Condensação (etapas): São aqueles formados a partir de reações classificadas pela química orgânica como reações de condensação com a eliminação de moléculas pequenas, como água, metanol, ácidos (HCL, etc.). São exemplos os poliésteres, as poliamidas, o policarbonato, poliuretanos*, etc.

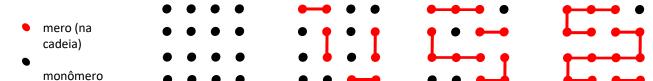

Polímeros de Adição (em cadeia): Os polímeros que não se enquadram na classe dos polímeros de condensação são classificados como polímeros de adição. Nesse caso a estrutura da unidade repetitiva é idêntica a estrutura do monômero, não levando em conta a perda de insaturação devido a reação de polimerização. São exemplos de polímeros de adição as poliolefinas, o poliestireno, o poli(metacrilato de metila), o PVC, e outros.

^{*} Uma das falhas dessa classificação ocorre no caso dos poliuretanos em cuja síntese não ocorre formação de moléculas menores, mas cuja estrutura se aproxima muito mais dos polímeros por condensação.

Polimerização em cadeia ou por adição: Via radical livre



Exemplo do Poliestireno



Neste caso dois reagentes com funcionalidades A e B, que podem reagir entre si, contendo pelo menos duas dessas funcionalidades reagem de forma sucessiva. Um exemplo é a reação entre um diácido, por exemplo, ácido tereftálico e um diálcool, como por exemplo, etileno glicol para formar uma ligação éster com a eliminação de uma molécula de água.

Outros exemplos de reações de condensação são na produção das poliamidas onde um diácido reage com uma diamina (p. ex. Nylon 66 onde o ácido adípico reage com a hexametilenodiamina.

Progresso de uma polimerização em etapas (ou por condensação)

Taxa de conversão =				
ligações efetuadas/ possibilidade total	0	4/16= 25%	8/16=50%	12/16=75%
cota.				

Grau de polimerização médio =				
número de moléculas iniciais/	1	16/12 = 1,3	16/8=2	16/4=4
número de moléculas finais				

O **Grau de Polimerização Médio**, DP_n pode ser previsto em termos da extensão da reação ou grau de conversão, p

Equação de Carothers

$$\overline{DP_n} = \frac{1}{(1-p)}$$

Portanto, a massa molar média numérica, M_n é dada por:

$$\overline{M}_n = \frac{m_0}{(1-p)}$$

onde, m₀ é a massa molar média da unidade repetitiva.

Considerando M_w é fácil demonstrar:

$$\overline{DP}_w = \frac{(1+p)}{(1-p)}$$

$$\mathbf{e} \qquad \overline{M}_w = \frac{m_0(1+p)}{(1-p)}$$

Table 3. Typical Polymers Produced by Step-Reaction Polymerizations

Common Name	Repeat Unit	Applications
Nylon 66	$ \begin{array}{c c} O & O \\ \parallel & \parallel \\ \hline -\{-NH-C+CH_2+\}_4C-NH-CH_2+\}_6 \end{array} $	clothing, tire cord
Polyester -	+0 $-C$ $-C$ $-C$ $-C$ $-C$ $-C$ $-C$ $-C$	clothing, tire cord
Polyurethane	$+0$ $-C$ $-NH$ $-C$ $-CH_3$ $-CH_3$ $-CH_3$	flooring, wood and fabric coatings
Polycarbonates	$+0$ CH_3 O O C	appliance parts, machinery housings

Características das polimerizações:

Por Etapas

- O monômero é consumido nos primeiros estágios da polimerização
- A massa molar aumenta devido ao acoplamento entre monômeros, oligômeros e cadeias longas (qualquer espécie presente no meio reacional podem se combinar).
- É possível calcular a massa molar e sua distribuição em função da conversão ao longo do tempo.
- Não há estágio de terminação sendo os grupamentos terminais reativos durante todo o processo.
- O mecanismo de polimerização é o mesmo durante todo o processo.

• Em Cadeia

- O crescimento das cadeias ocorre por adições sucessivas de monômero a um centro ativo.
- O monômero é consumido lentamente e está presente durante todo o curso da reação.
- Existem mecanismos distintos operando durante a formação do polímero: iniciação, propagação e terminação.
- A etapa de terminação pode não ocorrer em certos casos, como na polimerização viva.

Aula 12: Aditivos e Plastificantes

Os **aditivos** são substâncias adicionadas em pequenas quantidades aos polímeros (em geral até 5%) que tem como função conferir propriedades de interesse sem alterar as propriedades fundamentais (p. ex. módulo de elasticidade, limite de resistência, temperatura de transição vítrea).

Os **plastificantes** por outro lado alteram de forma drástica as propriedades dos polímeros em especial abaixando a temperatura de transição vítrea, o módulo de elasticidade e reduzindo a temperatura de processamento e viscosidade do fundido.

Aditivos

Melhoras as propriedades mecânicas, processabilidade, durabilidade, etc.

- Gerais
 - Melhoras as propriedades de um modo geral, incluindo abrasão, resistência ao impacto, reduzindo custo, etc. etc.
- Plastificantes (também podem ser classificados como aditivos)
 - Tornam o material mais dúctil reduzindo a T_g
 - Comumente usado em composições de PVC, que em geral é frágil

Aditivos

Estabilizantes

- Antioxidantes
- Protetores contra degradação UV

Lubrificantes

- Adicionados para facilitar o processamento
- facilitam o deslizamento pela matriz p. ex:
 Estearato de sódio ou cálcio

Corantes

Corantes ou pigmentos

Retardantes de chama

CI/F & B

Aula 13: Processamento

O **processamento** dos polímeos tem como objetivos primcipais dar forma final e produzir compostos (misturas) de polímeros com cargas aditivos ou outros polímeros.

Com relação a produção de produtos finais que envolve dar forma, existem dois métodos principais:

Termoplásticos

Dar forma por meio de aplicação calor. Os processos envolvem ciclos de calor – forma - resfriamento com fixação da forma.

Podem ser reprocessados (reciclável)

Termofíxos e elastômeros

Dar forma por meio de reações de entrecruzamento.

Nem sempre são recicláveis

• Compressão e moldagem por transferência

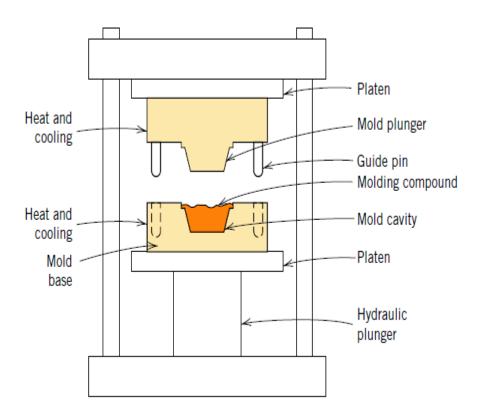


Figure 15.23 Schematic diagram of a compression molding apparatus. (From F. W. Billmeyer, Jr., *Textbook of Polymer Science*, 3rd edition. Copyright © 1984 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.)

Injeção

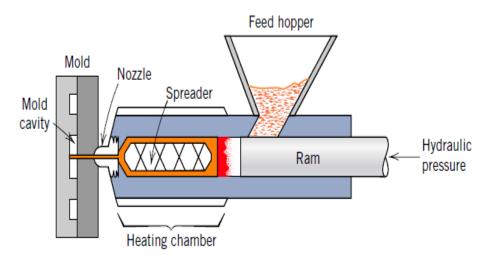
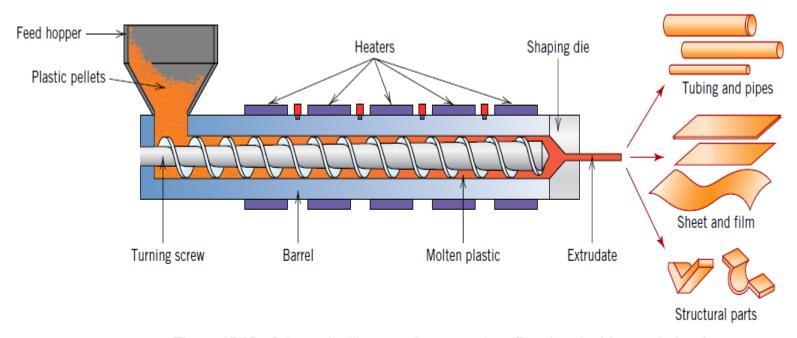
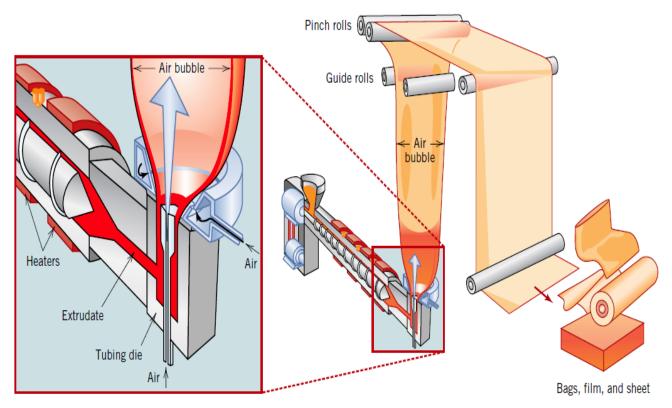
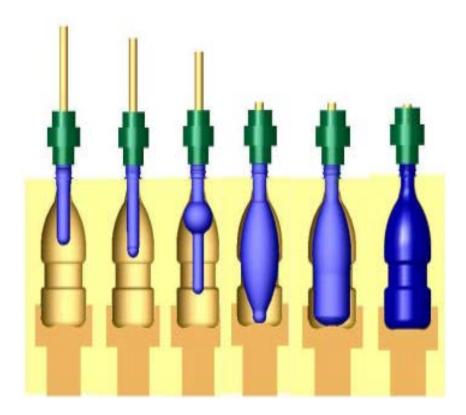


Figure 15.24 Schematic diagram of an injection molding apparatus. (Adapted from F. W. Billmeyer, Jr., *Textbook of Polymer Science*, 2nd edition. Copyright © 1971 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.)

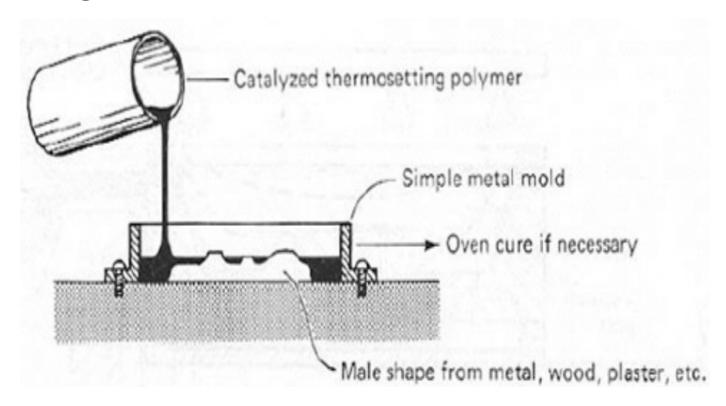
• Extrusão


Figure 15.25 Schematic diagram of an extruder. (Reprinted with permission from *Encyclopædia Britannica*, © 1997 by Encyclopædia Britannica, Inc.)

• Extrusão de filmes

Figure 15.26 Schematic diagram of an apparatus that is used to form thin polymer films. (Reprinted with permission from *Encyclopædia Britannica*, © 1997 by Encyclopædia Britannica, Inc.)

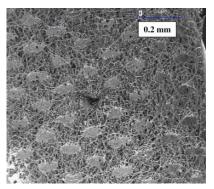

Sopro

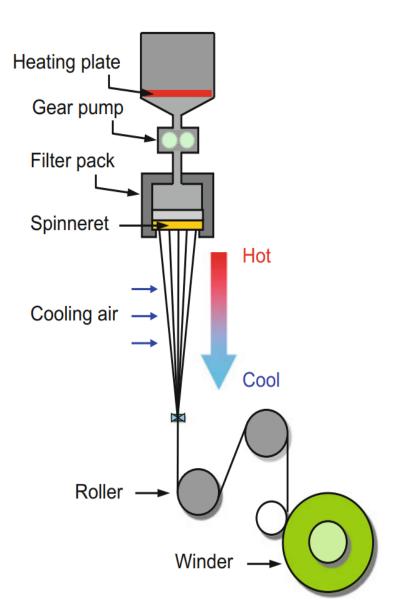
Fonte:

http://www.damec.ct.utfpr.edu.br/automotiva/downloadsAutomot/d6matPolimMod2.pdf

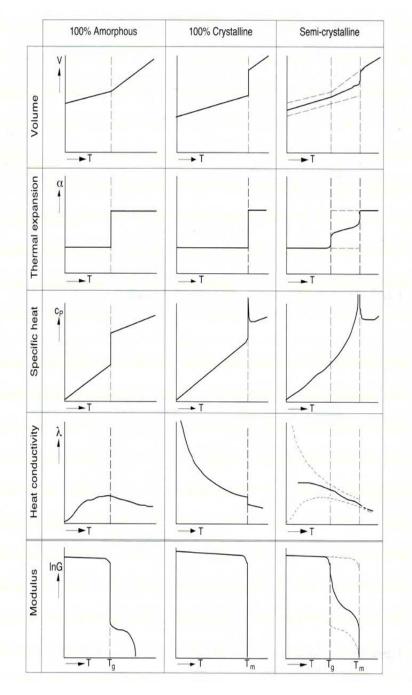
Casting

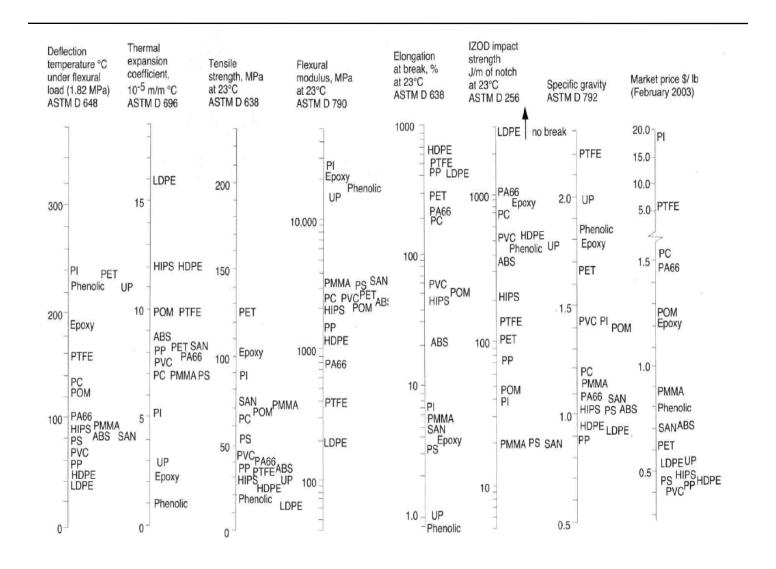
Fonte: https://slideplayer.com/slide/4457649/


Spinning


Fabricação de filamentos para fibras

tecido


Tecido não tecido - TNT


Fonte: Aranishi Y.,
Nishio Y. (2017)
Cellulosic Fiber
Produced by Melt
Spinning. In: Blends
and Graft Copolymers
of Cellulosics.
SpringerBriefs in
Molecular Science.
Springer, Cham

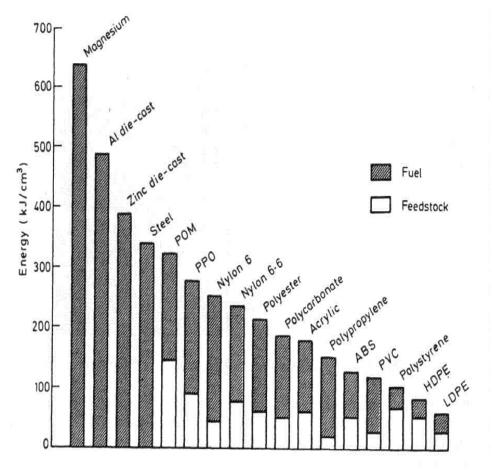
Anexos

Representação
esquemática das
propriedades dos
polímeros em
função da
temperatura de
diferentes
termoplásticos

Propriedades gerais dos plásticos

Questões Ambientais

Estratégias para a reciclagem

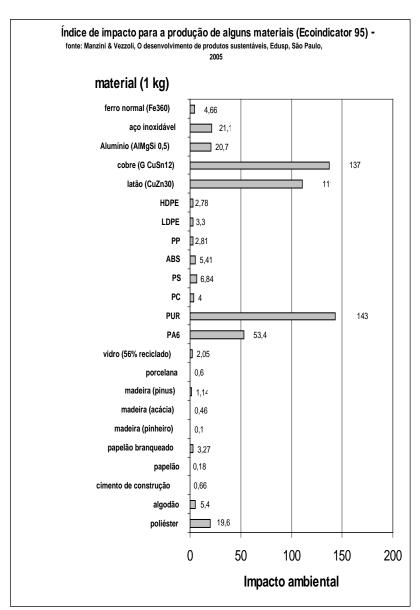

- •Reciclagem
- •Reciclagem química
- •Recuperação energética

Poder calorífico de alguns polímeros comuns e outros materiais

Material	Valor
	calorífico
	(MJkg ⁻¹)
PE, PP	46
Óleo de aquecimento	44
PS	41
Mistura de plásticos	37
Carvão	30
Madeira	16
Resíduos domésticos	11

Consumo de energia para a produção de materiais

No caso dos veículos o de polímeros uso provoca uma diminuição do consumo de combustível devido a redução de peso. Uma regra geral é de que a energia consumida para movimentar um veículo de vida média 160,000 km é 10 a 15 vezes energia a requerida para a sua fabricação.



0.7 Energy requirements to produce metal alloys and plastics. For plastics the energy required to manufacture the plastic is shown separately from the fuel equivalent of the raw material.

O ciclo de vida dos materiais e o seu impacto social e

ambiental

Índice de impacto para a produção de alguns materiais. Ecoindicator 95

Identificação dos diferentes tipos de plásticos

A sociedade Americana da Indústria do Plástico (SPI) desenvolveu uma marca padrão para ajudar o consumidor na identificação dos diferentes tipos de plásticos

⚠ PET	Polietileno tereftalato – Garrafas de bebidas gaseificadas, embalagens de alimentos, filmes transparentes.
دے HDPE	Polietileno de alta densidade – Garrafas para leite e outros tipos de embalagens.
PVC	Policloreto de vinila – Objetos para alimentos (pratos, garfos e facas) filmes para alimentos, garrafas e copos para água mineral e outros produtos.
LDPE	Polietileno de baixa densidade – Sacos plásticos e filmes para alimentos.
△ PP	Polipropileno – Potes para margarina, utensílios para serem levados ao microondas.
△	Poliestireno – Embalagens para iogurte, embalagens expandidas para alimentos, embalagens transparentes para eletrônicos e brinquedos.
OTHER	Qualquer outro plástico que não pertence as categorias acima. Exemplo melamina usada em pratos e potes.