
## Disciplina: Fisiologia do Esporte

Ciclismo de estrada – características anatômicas, fisiológicas e de treinamento de ciclistas de elite

Prof. Dr. Fabiano A. Pinheiro



• A dúvida não deve ser temida, ela é bem vinda e deve ser discutida (Richard Feynman, 1955).





## Oportunidade no mercado de trabalho

## Em meio à pandemia de Covid, vendas de bicicleta sobem 34% no semestre


Alívio mental e exercício atraem ciclistas, apesar da alta de preços; serviços de aluguel do equipamento também cresceram

https://www1.folha.uol.com.br/cotidiano

Bicicletas continuam em alta no Brasil: Primeiro semestre de 2021 teve aumento de 34% nas vendas em comparação a 2020

17 de agosto de 2021 Estudos Econômicos, Lojistas, Notícias

https://aliancabike.org.br/aumento-nas-vendas-em-2021/



https://aliancabike.org.br/ciclismo-de-estrada-sp/









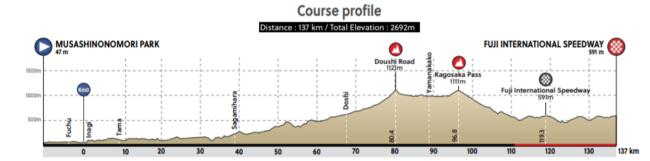








#### **TOKYO 2020**






Masculina: 234 km



Feminina: 137 km



Masculina: 44,2 Feminina: 22,1 km











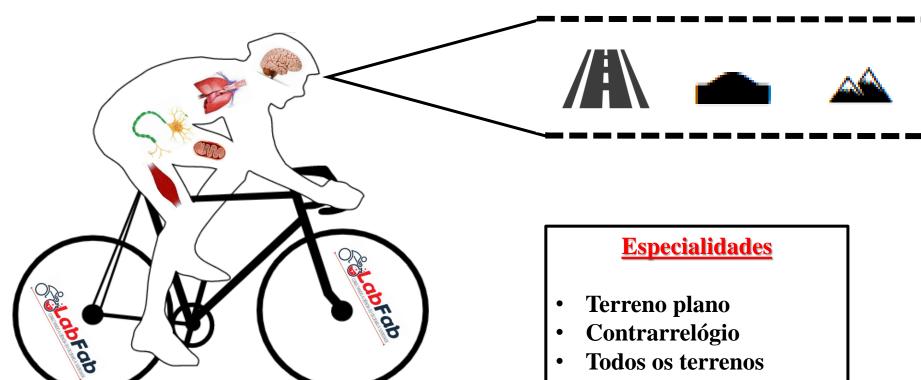
Distância de ~3.228 km










Distância de ~3.410 km

 $\Sigma = 10.055 \text{ km}$ 









- Montanhista (escalador)
- Sprinter (sem dados)

Mujika e Padilla (2001)

#### Gíria do ciclismo

- Gregário
- **Passista**
- Montanhista
- Velocista (sprinter)







**Table III**. Physical caracteristics of the specialist rider groups. Values are mean ± SD

| Characteristic                   | Group                |                    |                     |                             |  |  |
|----------------------------------|----------------------|--------------------|---------------------|-----------------------------|--|--|
|                                  | flat terrain (n = 5) | time trial (n = 4) | all terrain (n = 6) | uphill (n = 9)              |  |  |
| Age (y)                          | 27 ± 3               | 28 ± 5             | 25 ± 2              | 25 ± 4                      |  |  |
| Height (cm)                      | $186 \pm 4$          | 181 ± 6            | $180 \pm 2$         | 175 ± 7 <sup>a</sup>        |  |  |
| BM (kg)                          | $76 \pm 3$           | 71 ± 6             | 68 ± 3 <sup>a</sup> | $62 \pm 4^{a,b,c}$          |  |  |
| BSA (m <sup>2</sup> )            | $2.00\pm0.06$        | $1.91 \pm 0.11$    | $1.87 \pm 0.04^{a}$ | $1.76 \pm 0.10^{a,b,c}$     |  |  |
| FA (m <sup>2</sup> )             | $0.37 \pm 0.01$      | $0.35\pm0.02$      | $0.35 \pm 0.01^{a}$ | $0.33 \pm 0.02^{a,b,c}$     |  |  |
| BSA/BM $\times$ 10 <sup>-3</sup> | $26.3 \pm 0.5$       | $26.8 \pm 0.7$     | $27.4 \pm 0.5^{a}$  | $28.3\pm0.5^{\text{a,b,c}}$ |  |  |
| $FA/BM \times 10^{-3}$           | $4.9 \pm 0.1$        | $5.0\pm0.1$        | $5.1 \pm 0.1^{a}$   | $5.2\pm0.1^{a,b}$           |  |  |

a Significantly different from flat terrain.

**BM** = body mass; **BSA** = body surface area; **FA** = frontal area

b Significantly different from time trial.

c Significantly different from all terrain.







Equipe australiana de ciclismo feminino de estrada, nível internacional.

| Variáveis            | Média | Valores Mínimos | Valores Máximos |
|----------------------|-------|-----------------|-----------------|
| Idade (anos)         | 24,5  | 21              | 28              |
| Estatura (cm)        | 168   | 162             | 174             |
| Massa Corporal (kg)  | 57,1  | 55,4            | 58,8            |
| Gordura corporal (%) | 9,3   | 7               | 12              |

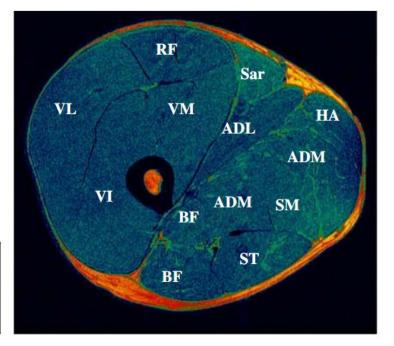
# Selective training-induced thigh muscles hypertrophy in professional road cyclists

François Hug · Tanguy Marqueste · Yann Le Fur · Patrick J. Cozzone · Laurent Grélot · David Bendahan

Eur J Appl Physiol (2006) 97: 591-597








VS



**Table 1** Morphological and physiological characteristics of the professional road cyclists as compared to the sport science students

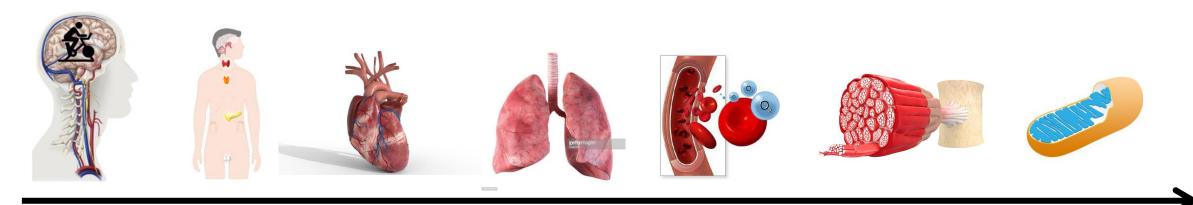
|                                            | Sport science students                  | Professional road cyclists                  |
|--------------------------------------------|-----------------------------------------|---------------------------------------------|
| Age (year)<br>Height (m)<br>Body mass (kg) | $24.0\pm2.8$ $1.77\pm0.07$ $72.1\pm7.7$ | $24.3\pm3.2$ $1.83\pm0.03^{a}$ $73.4\pm3.9$ |
| BMI (kg m <sup>-2</sup> )                  | $22.8\pm2.2$                            | $22.0\pm1.3$                                |



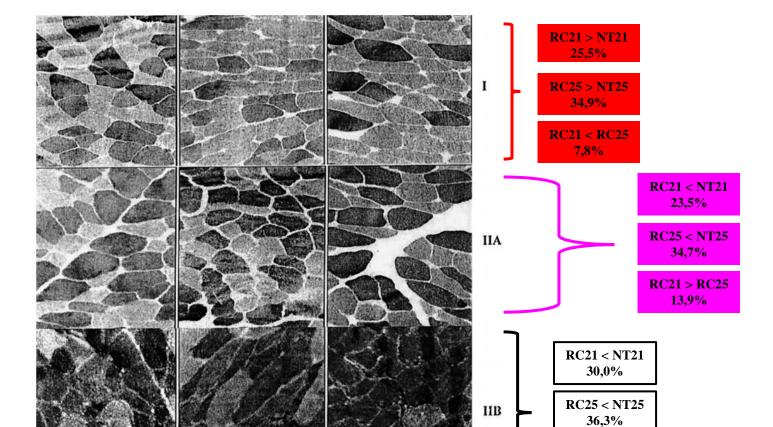
50 mm






Table 2 Cross sectional area value for each thigh muscle

| CSA (mm <sup>2</sup> )                                                     | Sport science student                                                               | Sport science students                                     |                                                                           | Professional road cyclists                                      |  |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------|--|
|                                                                            | Mean ± SD                                                                           | Range                                                      | Mean ± SD                                                                 | Range                                                           |  |
| Thigh All muscles Vastus lateralis Rectus femoris                          | $19,295\pm3,701$ $14,183\pm1,856$ $2,829\pm546$ $1,017\pm286$                       | 15,158–24,478<br>11,425–16,608<br>2,216–3,303<br>610–1,345 | $20,176\pm1,869$ $17,114\pm1,335^{a}$ $3,797\pm275^{a}$ $1,257\pm168$     | 17,440–23,308<br>15,330–18038<br>3,505–4,312<br>1,138–1,514     |  |
| Vastus medialis<br>Vastus intermedius<br>Sartorius<br>Adductor longus      | $921\pm169$ $2,901\pm255$ $406\pm63$ $936\pm397$                                    | 562–1,212<br>2,682–3,302<br>290–501<br>449–1,472           | $968\pm187$ $2,976\pm282$ $507\pm88^{a}$ $1,019\pm188$                    | 730–1,257<br>2,630–3,512<br>401–656<br>863–1,446                |  |
| Adductor magnus Hip adductor Biceps femoris Semitendinosus Semimembranosus | $2652 \pm 684$<br>$520 \pm 111$<br>$951 \pm 102$<br>$1036 \pm 275$<br>$530 \pm 166$ | 1,869–4,003<br>362–696<br>787–1390<br>457–1370<br>299–824  | $3,413\pm589^{a}$ $649\pm198$ $1,372\pm179^{a}$ $1,117\pm300$ $685\pm149$ | 2,626–4,352<br>461–1,083<br>1,128–1,641<br>689–1,528<br>494–955 |  |


Thigh CSA corresponds to the sum of muscles and fat CSA, and all muscles CSA represents only the muscles CSA a Significant difference between the two populations







Adaptações crônicas do exercício aeróbio









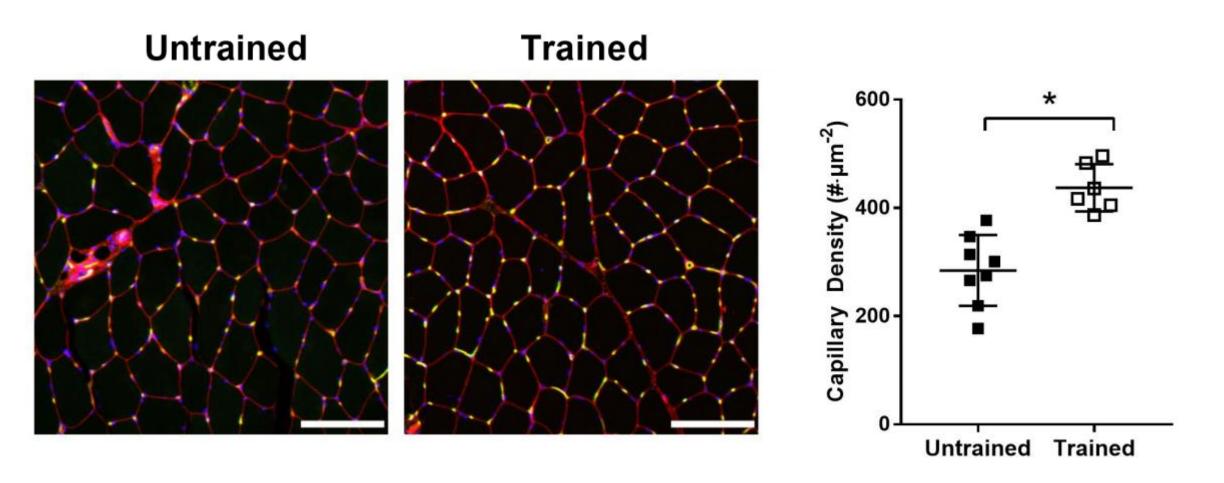


NT

10 Fisicamente Ativos (NT) NT21 NT25



RC21


20 Ciclistas RC21= 3 anos de competição RC25= 7 anos de competição

RC25

RC21 = RC25 Sem diferença









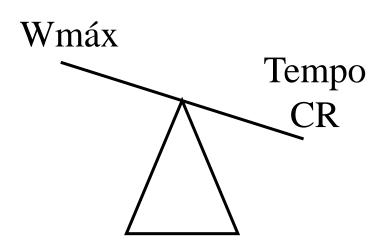








# Preditores do desempenho Wmáx VO<sub>2</sub>máx 2º LL/LV %VO2máx Economia (EC)

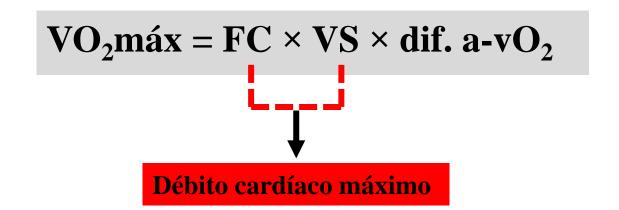


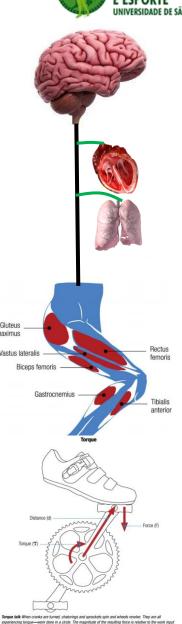





#### Potência mecânica máxima (Wmáx)

máxima potência mecânica alcançada durante um teste incremental máximo



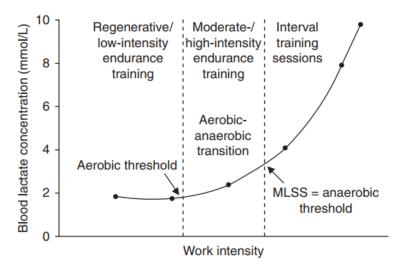




## ESCOLA DE EDUCAÇÃO FÍSICA E ESPORTE UNIVERSIDADE DE SÃO PAULO

#### Consumo máximo de oxigênio (VO<sub>2</sub>máx)

- ➤ capacidade máxima que um indivíduo tem de absorver, transportar e utilizar o O<sub>2</sub> para ressíntese da ATP.
- > Potência aeróbia: quantidade de energia por unidade de tempo



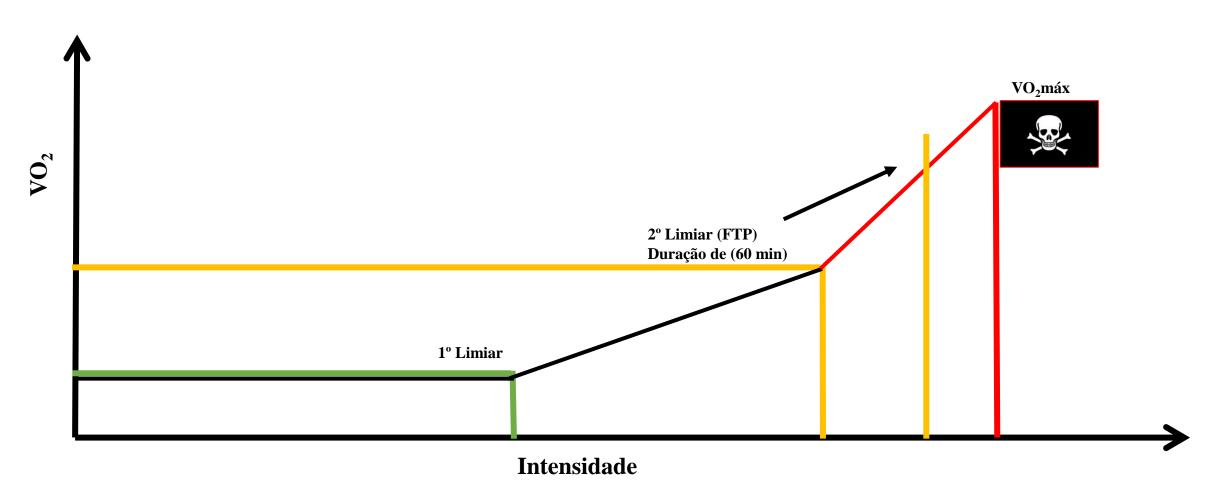







#### Segundo limiar de lactato/ventilatório (2º LL/LV) (MLSS, Critical power)

> a maior intensidade que pode ser mantida sem o acúmulo considerável do lactato sanguíneo




**Fig. 1.** A typical lactate-workload plot including the aerobic anaerobic transition as a framework to derive endurance training intensities for different intensity zones. **MLSS** = maximal lactate steady state.





#### Capacidade de sustentar elevado % do VO<sub>2</sub>máx







#### Economia de Ciclismo

Demanda energética ou o consumo de oxigênio necessário para uma dada intensidade submáxima em equilíbrio metabólico

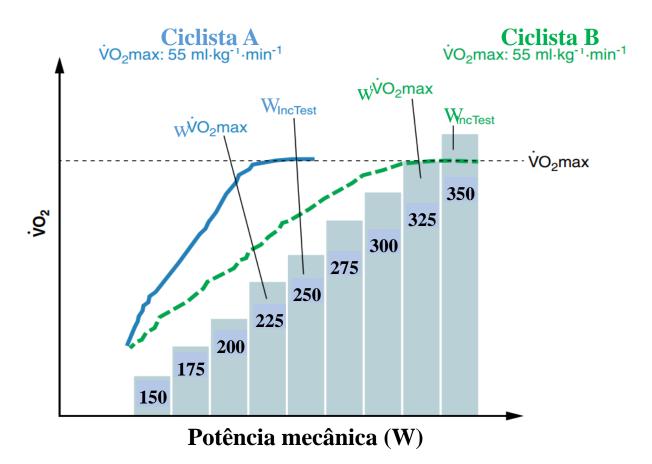



Imagem adaptada de Laursen e Buchheit (2019)





#### Características fisiológicas



VS



**Table 1** Morphological and physiological characteristics of the professional road cyclists as compared to the sport science students

|                                                                 | Sport science students | Professional road cyclists |
|-----------------------------------------------------------------|------------------------|----------------------------|
| VO <sub>2</sub> max<br>(ml min <sup>-1</sup> kg <sup>-1</sup> ) | 55.9±4.7               | 74.6±5.1 <sup>a</sup>      |
| MPT (W)                                                         | $334\pm24$             | $477\pm28^{a}$             |
| $VT_1$ (% MPT)                                                  | 54±9                   | $60 \pm 7^{a}$             |
| VT <sub>2</sub> (% MPT)                                         | 80±5                   | 89±5 <sup>a</sup>          |

Adaptado de Hug et al. (2006)

# Physiological Differences Between Professional and Elite Road Cyclists

A. Lucía <sup>1,2</sup>, J. Pardo <sup>1</sup>, A. Durántez <sup>3</sup>, J. Hoyos <sup>4</sup>, J. L. Chicharro <sup>1</sup>

Int. J. Sports Med. 19 (1998) 342 - 348



|                                                            | EC (n = 25)      | PC (n = 25)      | p value   |
|------------------------------------------------------------|------------------|------------------|-----------|
|                                                            | 4.9±0.4          | 5.1 ± 0.6        | NS        |
| $\dot{VO}_2$ max (ml·kg <sup>-1</sup> ·min <sup>-1</sup> ) | 72.9 ± 5.7       | $73.9 \pm 7.4$   | NS        |
| W                                                          | 428.6±31.7       | $466.0 \pm 30.8$ | p < 0.001 |
| W⋅kg <sup>-1</sup>                                         | $6.4 \pm 0.5$    | $6.7 \pm 0.4$    | p < 0.05  |
| RER                                                        | $1.17 \pm 0.11$  | $1.17 \pm 0.10$  | NS        |
| VE (I - min <sup>-1</sup> )                                | $185.7 \pm 23.7$ | $186.2 \pm 15.6$ | NS        |
| VE · VO <sub>2</sub> -1                                    | $37.0 \pm 6.1$   | $37.8 \pm 4.4$   | NS        |
| VE · VCO <sub>2</sub> -1                                   | $32.5 \pm 5.1$   | $33.6 \pm 4.1$   | NS        |
| HR (beats · min-1)                                         | 192±8            | 190±7            | NS        |
| BLa (mM · l-1)                                             | 9.4 ± 3.0        | 7.4 ± 1.5        | p < 0.05  |

All values are expressed as means ± SD.

Abbreviations: NS (no significant difference), BLa (blood lactate).









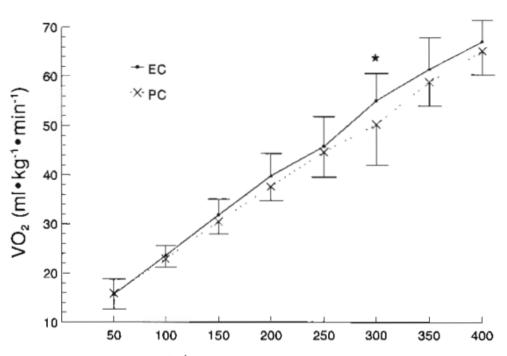
**Table 3** Comparison between physiological parameters at VT<sub>1</sub>.

|                                                        | EC (n = 25)     | PC (n = 25)     | p value  |
|--------------------------------------------------------|-----------------|-----------------|----------|
| $\dot{VO}_2$ (ml·kg <sup>-1</sup> ·min <sup>-1</sup> ) | 44.9±6.1        | 46.1±5.6        | NS       |
| %VO₂max                                                | 61.5 ± 6.2      | $65.0 \pm 6.9$  | p < 0.05 |
| W                                                      | 234.7±34.6      | 262.1 ± 36.0    | p < 0.01 |
| W · kg⁻¹                                               | $3.5 \pm 0.5$   | $3.8 \pm 0.5$   | p < 0.05 |
| RER                                                    | $0.85 \pm 0.07$ | $0.86 \pm 0.05$ | NS       |
| VE (I - min <sup>-1</sup> )                            | $60.7 \pm 9.4$  | $63.5 \pm 17.0$ | NS       |
| $VE \cdot \dot{V}O_2^{-1}$                             | 20.6 ± 1.8      | $20.6 \pm 1.5$  | NS       |
| $VE \cdot \dot{V}CO_2^{-1}$                            | $24.3 \pm 2.0$  | $23.8 \pm 1.9$  | NS       |
| HR (beats · min⁻¹)                                     | 141±9           | 138±7           | NS       |

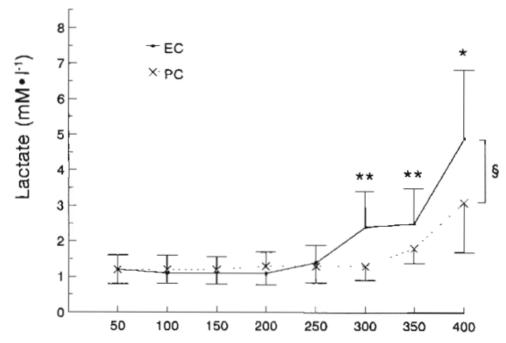
All values are expressed as means  $\pm$  SD.

Abbreviations: NS (no significant difference).

**Table 4** Comparison between physiological parameters at VT<sub>2</sub>.


|                                                        | EC (n = 25)      | PC (n = 25)      | p value   |
|--------------------------------------------------------|------------------|------------------|-----------|
| $\dot{VO}_2$ (ml·kg <sup>-1</sup> ·min <sup>-1</sup> ) | 58.8 ± 7.4       | 62.2±6.8         | NS        |
| %VO₂max                                                | $80.4 \pm 6.6$   | $87.0 \pm 5.9$   | p < 0.001 |
| W                                                      | $323.2 \pm 70.5$ | $385.9 \pm 25.3$ | p < 0.001 |
| $W \cdot kg^{-1}$                                      | $5.0 \pm 0.5$    | $5.5 \pm 0.4$    | p < 0.001 |
| RER                                                    | $0.95 \pm 0.07$  | $0.99 \pm 0.05$  | p < 0.05  |
| VE (I · min <sup>−1</sup> )                            | 93.6 ± 13.9      | $113.0 \pm 12.8$ | p < 0.001 |
| VE·VO <sub>2</sub> -1                                  | $23.9 \pm 2.1$   | $25.1 \pm 2.5$   | NS        |
| VE · VCO <sub>2</sub> -1                               | $25.1 \pm 2.0$   | $25.6 \pm 3.0$   | NS        |
| HR (beats $\cdot$ min <sup>-1</sup> )                  | 171 ± 8          | 172±7            | NS        |

All values are expressed as means  $\pm$  SD.


Abbreviations: NS (no significant difference).

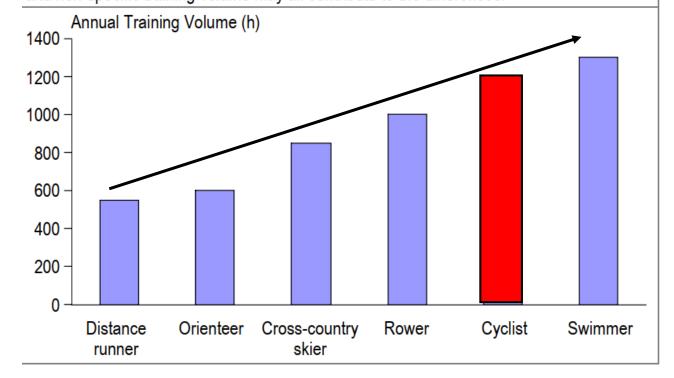






**Fig. 3** Comparison of  $\dot{VO}_2$  values (means  $\pm$  SD) during the tests.  $^*p < 0.05$ .




**Fig. 5** Comparison of blood lactate values (means  $\pm$  SD) during the tests. \*p < 0.05; \*\*p < 0.01; § significant (p < 0.001) interactive effect (group × workload).





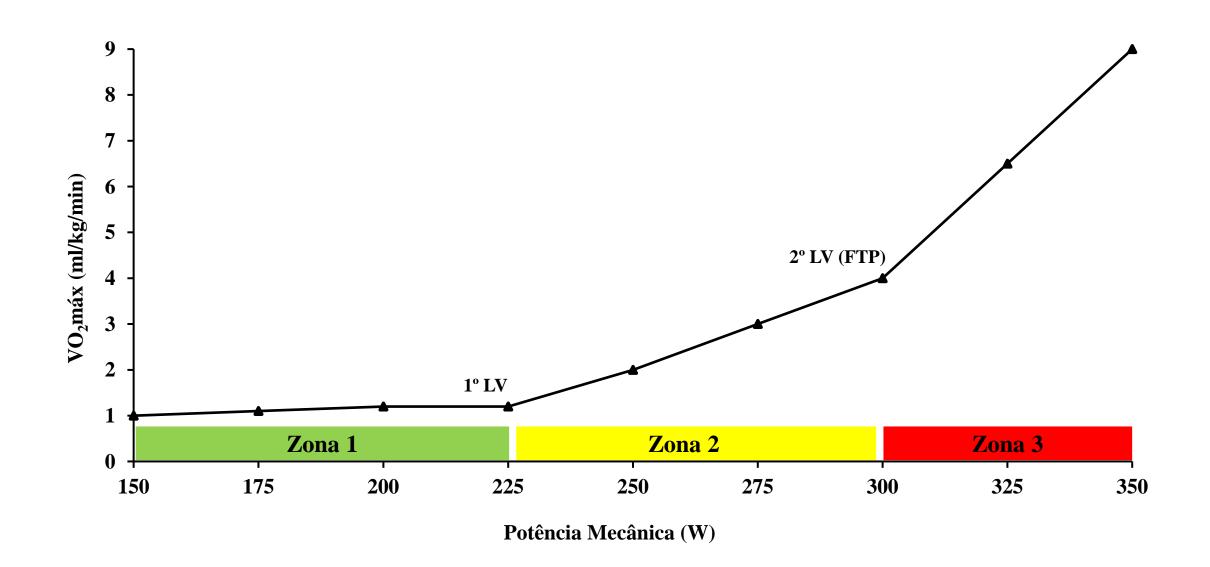
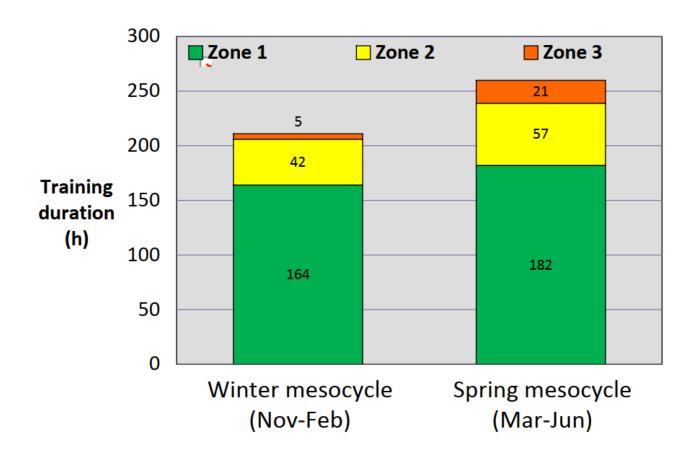

Volume Total (Treino+Competições)
25-35 mil km/ano

Figure 6. Representative peak annual training volumes for champion athletes from different sports. Ballistic and eccentric loading differences, demands on technical entrainment, and non-specific training volume may all contribute to the differences.









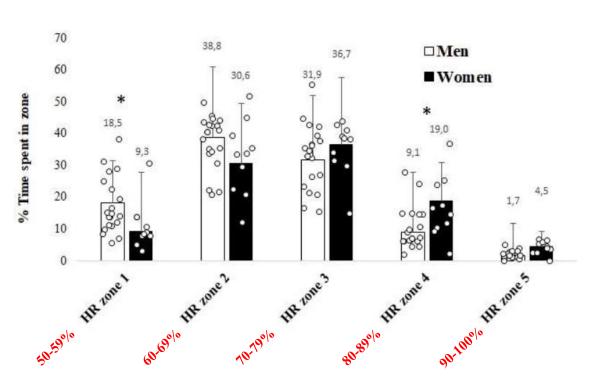


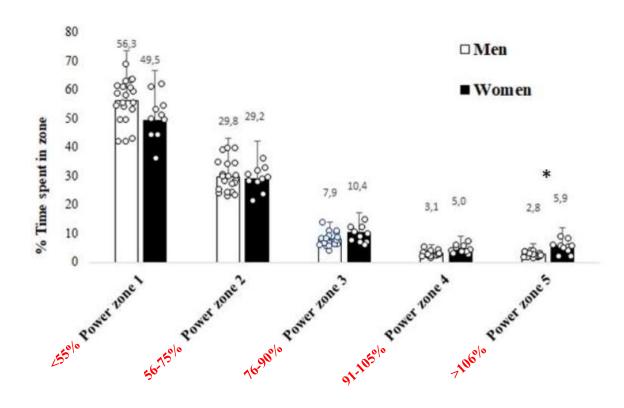



Distribuição do volume total de treinamento nas três zonas de intensidade



## Training Characteristics of Male and Female Professional Road Cyclists: A Four-Year Retrospective Analysis




Teun van Erp, Dajo Sanders, Jos J de Koning

Article in International Journal of Sports Physiology and Performance · July 2019

DOI: 10.1123/ijspp.2019-0320









# <u>De jogador de Futebol à Ciclista de Elite – Um estudo de</u>

#### Knut Anders Fostervold



1994-2002 – Lesão no Joelho

### caso



Após 2,5 anos treinando em alta intensidade e baixo volume, Fostervold reorganizou seu treino em parceria com o Centro Olímpico Norueguês.





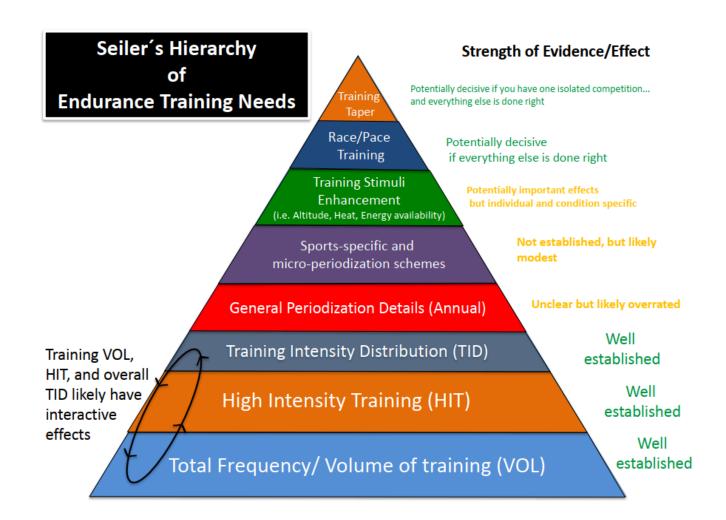
| Table 7. Comparison of weekly training intensity distribu- |
|------------------------------------------------------------|
| tion and total volume in 2004 season and 2005 season -     |
| Case 1.                                                    |

| Ouse 1.                 |                        |                        |  |
|-------------------------|------------------------|------------------------|--|
| Intensity zone (%HRmax) | Season 2004<br>(h:min) | Season 2005<br>(h:min) |  |
| 5 (95-100 %)            | 0:45 (8.5 %)           | 0:05 (0.5 %)           |  |
| 4 (90-95 %)             | _                      | 0:40 (4.0 %)           |  |
| 3 (85-90 %)             | 0:30 (5.5 %)           | 1:00 (5.5 %)           |  |
| 2 (75-85 %)             | 3:05 (36 %)            | 1:00 (5.5 %)           |  |
| 1 (55-75 %)             | 4:20 (50 %)            | 15:20 (85 %)           |  |
| Weekly totala           | 8:40                   | 18:05                  |  |
| Annual totala           | 420:00                 | 850:00                 |  |
| HDmay: mayimum h        | noart rato             |                        |  |

HRmax: maximum heart rate.

<sup>a</sup>Estimates based on diaries for the first 18 wk.

| Table 8.  | Physiological testing before and after training |
|-----------|-------------------------------------------------|
| reorganiz | ation – Case 1.                                 |


|                                                  |     |      | 18 wk | Change  |
|--------------------------------------------------|-----|------|-------|---------|
|                                                  | Pre | post | post  | 0-18 wk |
| BW (kg)                                          | 84  | 81   | 84    | 0 %     |
| VO2max (ml·kg <sup>-1</sup> ·min <sup>-1</sup> ) | 81  | 90   | 88    | 11 %    |
| VO2max (L·min⁻¹)                                 | 6.8 | 7.3  | 7.3   | 7 %     |
| LT power (W)                                     | 375 | 420  | 440   | 14 %    |
| LT power (W·kg <sup>-1</sup> )                   | 4.5 | 5.2  | 5.2   | 15 %    |

#### **Resultados**

- ➤ Medalha de Bronze no Campeonato Nacional de TT.
- Em 2006 e 2007 representou a Noruega no Campeonato Mundial de TT.







### **RESUMO**

- O tempo (anos) e o volume (horas) de treinamento parecem exercer papel fundamental nas adaptações fisiológicas e no desempenho físico-esportivo de atletas de endurance.
- ➤ O maior percentual do volume total do treinamento (~80%) é realizado em intensidade moderada (< LV1/LL1).
- Embora o treinamento de alta intensidade (ex. HIIT, SIT; >LV2/LL2) seja realizado em menor percentual, não significa que não seja importante. Esta estratégia de treinamento é fundamental para induzir adaptações fisiológicas e preparar o ciclista para momentos desafiadores da prova, tais como, a fuga de um pelotão ou o *sprint* final.







