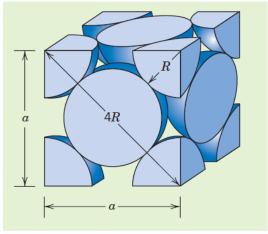
(3)

Universidade de São Paulo - USP

Escola de Engenharia de Lorena - EEL

Departamento de Engenharia de Materiais - Demar


Disciplina: LOM-3016 – Introdução a Ciência dos Materiais				Prof. Dr: Cassius O.F.T Ruchert	
Aluno:			Nº USP.:		
Ano/Semestre: 2021/2	Turma: D1	Turno: [Diurno	Data : 05/10/21	

1º. Prova – Duração de 2 horas

1) (1,0) Explique objetivamente (sem enrolar) quais os principais mecanismos de endurecimento (fortalecimento) dos materiais metálicos estudados? (citar e explicar em detalhes pelo menos 1).

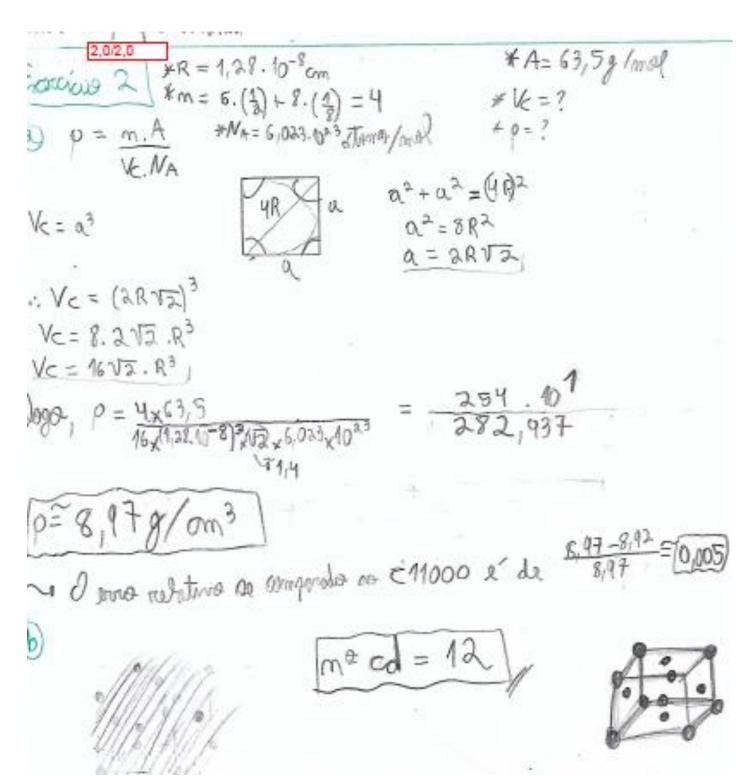
0.8/1,0
of idea paneigal & writizer meanings are restringen a page
Seten ses processarcies, 1200 energeno a ses signicio Ospaniatri
Weconicute Date 1200 250
145COURTADS XXX 1200 200.
D DIMINUIL O TAMENHO DOS GAÃOS JOIS ASSIM SE EM LAR MADOR
THER DE CONTATO DESTES ENTRE BIES E DESSA PORMA UMA DIMINUÇÃO
NA MOBILIDADE DES DISCORDÂNCIAS.
(2) primertal antimeno de fromos de impresos nos interstições
SA ECOCITION & DEVILUINIA MITTA, (CADS) 200 DE 200
DISCORDANDAS DEVIDO A MOIOR CONCENTARÇÃO DE FICADO (MAIOR DECT
Sizade 70000 Faltou distorção da célula cristalina
Parcou distorção da Celula Cristalina
(3) EXCEURE UM MATERIAL GOD METO DE DEFORMAÇÃO PLASOS (AMONDOS,
pos exemple) sumerios a quantidade de deceptados e petrange
moziliable desers ancoragem
BORS 3 MECONISMOS GOZEM FLIMENTAR A TENSIONOS DE CHI MATERIAL
Lesnendia

- 2) (2,0) O cobre possui um raio atômico de 0,128 nm, ou 1,28 A ou 1,28x10⁻⁸ cm, uma estrutura cristalina CFC, e um peso atômico de 63,5 g/mol. (a) Calcular a sua densidade teórica em g/cm³ e comparar <u>calculando o erro relativo</u> à resposta com sua densidade medida experimentalmente do cobre C11000 (cobre eletrolítico tenaz) que é de 8,92 g/cm³.
- (b) Qual o número de coordenação da estrutura cristalina do cobre puro? Faça um esboço dos átomos vizinhos para compreensão da questão.

Dados:

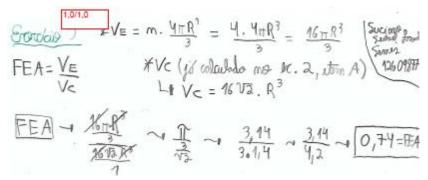
$$\rho = \frac{nA}{V_C N_{\rm A}}$$

(Densidade teórica em g/cm³)

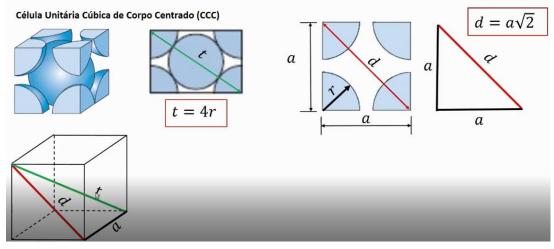

Sendo:

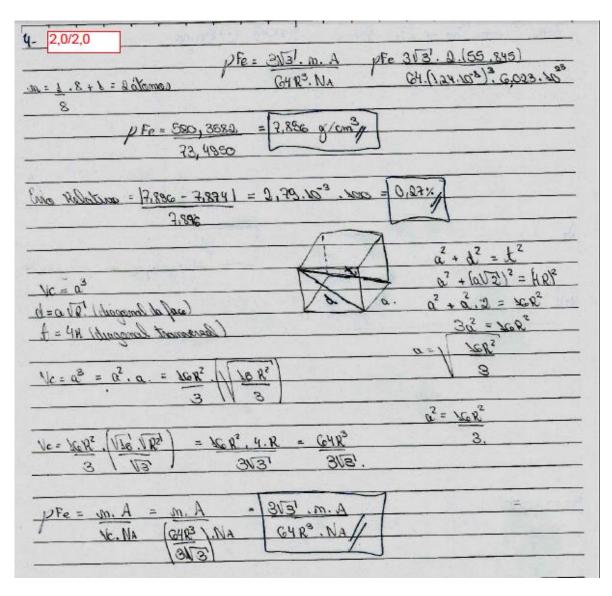
n = Número de átomos associados a cada célula unitária (calcular conforme foi explicado em aula);

A= peso atômico;


Vc = Volume da célula unitária;

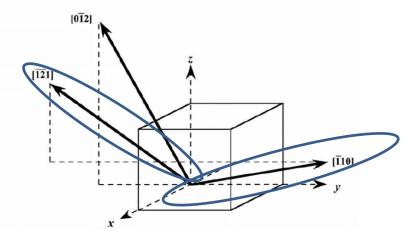
N_A= Número de Avogadro (6,023x10²³ átomos/mol)

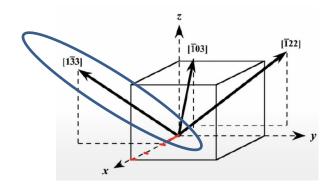



3) (1,0) Calcular o Fator de empacotamento para a estrutura cristalina CFC com auxílio de formulas de volume (conhecidas por vocês) e a figura da questão 2, sabendo-se que:

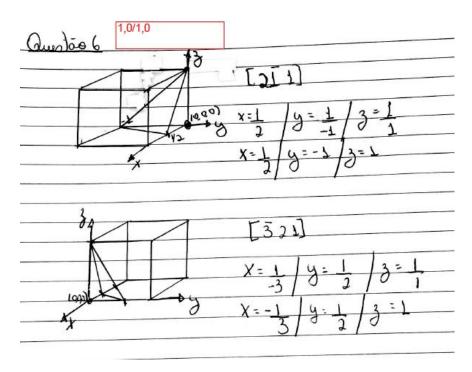
$$FEA = \frac{Volume\ total\ das\ esferas}{Volume\ total\ das\ celulas\ unitárias} = \frac{V_E}{V_C}$$

4) (2,0) O ferro possui um raio atômico de 0,1241 nm, ou 1,24 A ou 1,24x10-8 cm, uma estrutura cristalina CCC, e um peso atômico de 55,845 g/mol. Calcular a sua densidade teórica em g/cm³ e comparar calculando o erro relativo à resposta com sua densidade medida experimentalmente do Ferro de 7,874 g/cm³. Utilizar as equações dadas no exercício anterior e a figura abaixo e montar as equações que forem necessário a resolução. Demostrar todos os cálculos demonstrativos da referida questão.

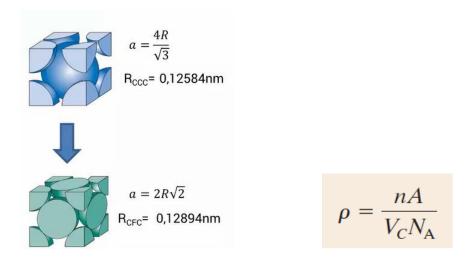

- 5) (1,0) Exibir uma direção [\$\overline{1}\$ 1 0], [\$\overline{1}\$ \$\overline{2}\$ 1], [\$\overline{1}\$ \$\overline{3}\$ 3], [\$1\$ \$\overline{2}\$ \$\overline{3}\$], dentro de uma \$\underline{unica}\$ célula unitária cúbica simples. Selecionar corretamente para a resolução do exercício o local da coordenada (0,0,0). Caso não mencione as coordenadas X,Y,Z a questão será zerada.
- 3. Dentro de uma célula unitária cúbica, esboce as seguintes direções:

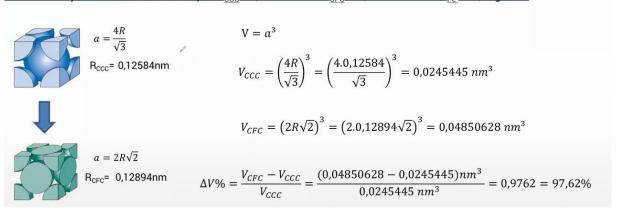


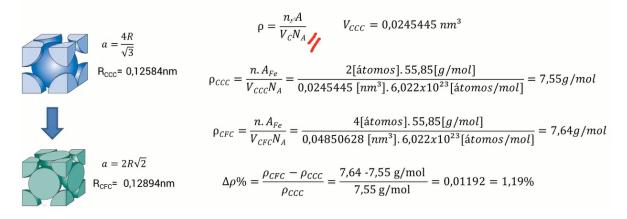
(b)
$$[\overline{12}1]$$
, (f) $[\overline{122}]$,


(c)
$$[0\overline{1}2]$$
, (g) $[1\overline{2}\overline{3}]$,

(d)
$$[1\overline{3}3]$$
, (h) $[\overline{1}03]$.




6) (1,0) Construir dois planos (211), (321) localizado no interior de uma célula unitária denominada cubica simples. Mostrar o raciocínio com as letras a,b e c do tamanho da célula e coordenadas x,y e z padrões. Selecionar corretamente para a resolução do exercício o local da coordenada (0,0,0). Caso não mencione as coordenadas X,Y,Z a questão será zerada.


7) (2,0) Em aquecimento o Fe puro sofre a 912 °C uma transformação polimórfica passando de CCC (fase alfa) para CFC (fase gama), calcule o percentual de <u>variação de volume</u> e <u>massa específica associada</u>. Dado que há uma mudança no raio atômico em que Rccc=0,12584 nm e Rcfc=0,12894 nm e o peso atômico para o cálculo da massa específica A_{FE}= 55,85 g/mol, sabendo-se que o V=a³.

1. Em aquecimento, o Ferro puro sofre, a 912°C, uma transformação polimórfica passando de CCC (fase α) para CFC (fase γ). Calcule o percentual de variação de volume e massa específica associada. Dado que há uma mudança no raio atômico em que R_{CCC} = 0,12584nm e R_{CFC} = 0,12894nm e o R_{ECC} = 0,12894nm e.

Calculo da variação do percentual da densidade

Obs1. Se o aluno porventura acreditar que está faltando algum dado necessário na execução do exercício favor supor que eu analisarei durante a correção.

Obs2. A prova pode ser realizada a lápis e com letra legível, sendo que a resposta final (quando for cálculo) grafada a caneta OBRIGATORIAMENTE.

Obs3. Não esqueça de nomear a prova, colocar o número USP e também nas folhas de execução. Obs4. Caso eu pegue algum aluno consultando a prova do colega (colando) não interferirei no momento, mas no final da prova, marcarei e o mesmo terá sua nota igual a zero quando divulgar os resultados.

Obs5. De preferência utilize a folha ao maço ou a de caderno pautada para as respostas salvo quando quiser mostrar algo em uma figura da prova.

Obs6. No final scanear a prova com aplicativos do tipo "camscanner" e gerar apenas um pdf, após fazer o upload no local mencionado pelo docente no dia da prova.

Obs7. Não precisa realizar as questões na ordem mas não esqueçam de enumera-las bem visível.

BOA PROVA !!!!!!!