Método dos Mínimos Quadrados (MMQ) Análise Harmônica

Nelson Kuhl

IME/USP

8 de outubro de 2020

Introdução

O objetivo é aproximar funções periódicas. Inicialmente serão consideradas funções de período 2π pois, como veremos adiante, aproximações para outros períodos podem ser deduzidas deste caso. As funções cos x e sen x são as funções de período 2π mais famosas. Mas, para todo inteiro k>0, as funções cos kx e sen kx têm período $2\pi/k$, e portanto têm também período 2π . São estas funções que serão usadas para as aproximações, juntamente com a função constante igual a 1, que tem qualquer período.

Formulação do problema

Dada uma função $f:\mathbb{R}\to\mathbb{R}$ periódica de período 2π , aproxime-a por uma função da forma

$$g_m(x) = a_0 + \sum_{k=1}^{m} [a_k \cos kx + b_k \sin kx]$$
 (1)

de modo a minimizar o erro quadrático

$$EQ(f,g_m) = \sqrt{\int_0^{2\pi} [f(x) - g_m(x)]^2 dx}.$$
 (2)

A solução é chamada de aproximação de f até o harmônico de ordem m.

Observações

• Das expressões (1) e (2) vemos que se trata de um problema de mínimos quadrados linear, onde o produto interno associado ao erro quadrático é definido por

$$\langle u, v \rangle = \int_0^{2\pi} u(x) v(x) \, dx, \tag{3}$$

pois então temos $EQ(f,g_m) = \sqrt{\langle f - g_m, f - g_m \rangle}$;

- ② como estamos trabalhando com funções periódicas de período 2π , basta usar informações sobre elas no intervalo $[0,2\pi]$, o que justifica a definição do erro quadrático;
- **3** as funções 1, $\{\cos kx\}_{k=1}^m$ e $\{\operatorname{sen} kx\}_{k=1}^m$ usadas para aproximar f geram um espaço vetorial G_m de dimensão 2m+1.

Classe de funções

Como o produto interno envolve integrais, precisamos especificar alguma regularidade para as funções, que seja abrangente o suficiente para aplicações.

Definição 1

Dizemos que uma função $f: \mathbb{R} \to \mathbb{R}$ é **seccionalmete contínua** se, em cada intervalo (a,b) com $-\infty < a < b < \infty$, f tem no máximo uma quantidade finita de pontos de descontinuidade e nestes pontos os limites à esquerda e à direita existem.

Definição 2

 $SC_{2\pi}$ é o espaço vetorial das funções seccionalmente contínuas, periódicas de período 2π . As aproximações serão estudadas neste espaço.

• Em $SC_{2\pi}$ a expressão (3) é um produto interno *degenerado*, mas no subespaço G_m ela é de fato um produto interno. Portanto o nosso problema admite uma única solução.

Relações de ortogonalidae

Para calcularmos os coeficientes, basta resolver o sistema normal, com 2m+1 equações e 2m+1 incógnitas. Porém, surpreendentemente, a base de G_m é ortogonal em relação ao produto interno (3), como se pode deduzir das identidades

$$\langle \cos kx, \cos lx \rangle = \int_0^{2\pi} \cos kx \cos lx \, dx = \begin{cases} 2\pi & \text{se } k = l = 0, \\ \pi & \text{se } k = l \ge 1, \\ 0 & \text{se } k \ne l. \end{cases}$$

$$\langle \sin kx, \sin lx \rangle = \int_0^{2\pi} \sin kx \sin lx \, dx = \begin{cases} \pi & \text{se } k = l \ge 1, \\ 0 & \text{se } k \ne l. \end{cases}$$

$$\langle \cos kx, \sin lx \rangle = \int_0^{2\pi} \cos kx \sin lx \, dx = 0 \quad \forall k \ge 0, l \ge 1.$$

Coeficientes de Fourier

Das relações de ortogonalidade concluímos que o sistema normal é diagonal e que os coeficientes da expansão (1) que minimizam o erro quadrático (2) são iguais a

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx, \ a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos kx dx, \quad k \ge 1, \qquad (4)$$
$$b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin kx dx, \quad k \ge 1, \qquad (5)$$

conhecidos como **coeficientes de Fourier** de f.

Intervalos de integração e paridade

Devido à periodicidade dos integrandos, as integrais que definem o erro quadrático (2), o produto interno (3) e os coeficientes de Fourier (4) - (5) podem ser calculadas em **qualquer intervalo de comprimento** 2π , sem alterar os resultados. Usando o intervalo $[-\pi,\pi]$ para as integrais, podemos então concluir que:

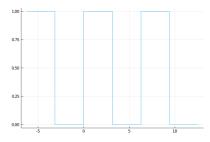
- se $f \in SC_{2\pi}$ é uma **função par**, então $b_k = 0$ para todo $k \ge 1$;
- se $f \in SC_{2\pi}$ é uma **função ímpar**, então $a_k = 0$ para todo $k \ge 0$.

Exemplo 1

Calcule os coeficientes de Fourier da função periódica de período 2π definida em $[0,2\pi)$ por

$$f(x) = \begin{cases} 1 & \text{se } 0 \le x < \pi, \\ 0 & \text{se } \pi \le x < 2\pi. \end{cases}$$

Queremos fazer a análise harmônica da função 2π -periódica cujo gráfico é



Solução. Das fórmulas (4) - (5) para os coeficientes de Fourier temos

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx = \frac{1}{2\pi} \int_0^{\pi} dx = \frac{1}{2}$$

e, para $k \ge 1$,

$$a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos kx \, dx = \frac{1}{\pi} \int_0^{\pi} \cos kx \, dx = \frac{\sin kx}{k\pi} \Big|_0^{\pi} = 0,$$

$$b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \operatorname{sen} kx \, dx = \frac{1}{\pi} \int_0^{\pi} \operatorname{sen} kx \, dx = -\frac{\cos kx}{k\pi} \Big|_0^{\pi}$$
$$= \frac{1 - (-1)^k}{k\pi} = \begin{cases} \frac{2}{k\pi}, & \text{se } k \text{ for impar,} \\ 0, & \text{se } k \text{ for par.} \end{cases}$$

Se quisermos por exemplo a aproximação até o harmônico de ordem 10 teremos

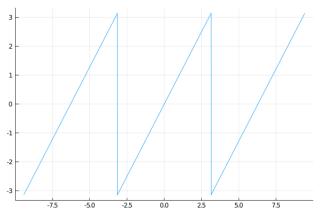
$$g_{10}(x) = \frac{1}{2} + \frac{2}{\pi} \left(\operatorname{sen} x + \frac{\operatorname{sen} 3x}{3} + \frac{\operatorname{sen} 5x}{5} + \frac{\operatorname{sen} 7x}{7} + \frac{\operatorname{sen} 9x}{9} \right),$$

que neste caso coincide com $g_9(x)$. O que acontece quando aumentamos a quantidade de harmônicos? Discutiremos isso adiante, depois de mais alguns exemplos.

Exemplo 2

Calcule os coeficientes de Fourier da função periódica de período 2π definida por f(x) = x, $-\pi \le x < \pi$.

O gráfico de f é



Solução. Note que f é uma função ímpar, e portanto

$$a_k = 0, \quad \forall k \geq 0.$$

Para o cálculo dos coeficientes b_k , $k \ge 1$, temos

$$b_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} x \operatorname{sen} kx \, dx = \frac{2}{\pi} \int_{0}^{\pi} x \operatorname{sen} kx \, dx$$
$$= \frac{2}{\pi} \left(-\frac{x \cos kx}{k} \Big|_{0}^{\pi} + \int_{0}^{\pi} \frac{\cos kx}{k} \right)$$
$$= \frac{2}{\pi} \left(-\frac{\pi \cos k\pi}{k} + \frac{\operatorname{sen} kx}{k^{2}} \Big|_{0}^{\pi} \right) = 2 \frac{(-1)^{k+1}}{k}.$$

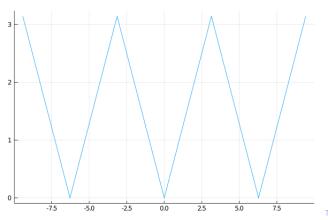
Por exemplo, a aproximação até o harmônico de ordem 5 fica

$$g_5(x) = 2\left(\sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{4} + \frac{\sin 5x}{5}\right).$$

Exemplo 3

Obtenha os coeficientes de Fourier da função periódica de período 2π definida por $f(x) = |x|, -\pi \le x < \pi$.

O gráfico desta função é



Solução. Agora a função é par e portanto

$$b_k=0, \quad \forall k\geq 1.$$

Para os coeficientes a_k temos

$$a_0 = rac{1}{2\pi} \int_{-\pi}^{\pi} |x| \, dx = rac{1}{\pi} \int_{0}^{\pi} x \, dx = rac{\pi}{2}$$

e, para $k \ge 1$,

$$\begin{aligned} a_k &= \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \cos kx \, dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos kx \, dx \\ &= \frac{2}{\pi} \left(\frac{x \sin kx}{k} \bigg|_{0}^{\pi} - \int_{0}^{\pi} \frac{\sin kx}{k} \right) = \frac{2}{\pi} \frac{\cos kx}{k^2} \bigg|_{0}^{\pi} \\ &= \frac{2}{\pi} \frac{(-1)^k - 1}{k^2} = \begin{cases} -\frac{4}{k^2\pi}, & \text{se k for impar,} \\ 0, & \text{se k for par.} \end{cases} \end{aligned}$$

Se quisermos, por exemplo, a aproximação até o harmônico de ordem 10, obtemos

$$g_{10}(x) = \frac{\pi}{2} - \frac{4}{\pi} \left(\frac{\cos x}{1^2} + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \frac{\cos 7x}{7^2} + \frac{\cos 9x}{9^2} \right)$$

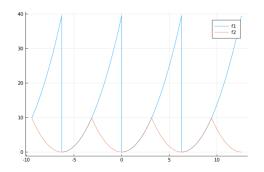
que neste caso também coincide com a aproximação até o harmônico de ordem 10.

Observação

• Para estudar uma função periódica, basta especificá-la em um intervalo de comprimento igual ao seu período. Mas deve-se prestar atenção para se evitar confusões. A função periódica do Exemplo 2 **não é a mesma** que a função periódica de período 2π definida por f(x) = x, $0 \le x < 2\pi$.

Exercício

Calcule os coeficientes de Fourier das funções periódicas de período 2π definidas por (i) $f_1(x)=x^2$, $0 \le x < 2\pi$ e (ii) $f_2(x)=x^2$, $-\pi \le x < \pi$. Note que elas não são iguais, como podemos ver pelos seus gráficos:



Elas coincidem em $[0,\pi)$ e transladados deste intervalo por múltiplos de 2π , mas f_2 é par e contínua enquanto que f_1 não tem paridade e é descontínua em $x_k = 2k\pi$, $k \in \mathbb{Z}$.