Modern Solid State NMR Techniques for the Study of Molecular Solids

Hellmut Eckert

Institut für Physikalische Chemie WWU Münster, Germany & Instituto de Física, Sao Carlos Universidade de Sao Paulo, Brasil

Current Research Agenda

H. Eckert eckert@ifsc.usp.br

NMR Methods	Glass	Li Ion Battery	Optical	Catalysts
Development	Science	Components	Materials	Biomaterials
SSNMR, ESR	Structure	Electrode	Luminescent	FLP, Zeolite
Dipolar	Dynamics,	Electrolytes,	Ceramics,	Nanocomposites
Techniques	Sol-Gel	Ceramics	Hybrids	Bioceramics

Support

Industry: Corning, Schott, Ivoclar, Nippon Glass DFG, DFG-SFB, IRTG, BMBF CNPq Universal, FAPESP, CEPID, CNPq

Outline

Solid State NMR – General Aspects Anisotropic Interactions:

magnetic shielding dipole-dipole coupling nuclear electric quadrupole coupling

Manipulation of Interactions

high-resolution NMR in crystalline Systems dipolar spectroscopy cross-polarization

NMR Studies of Insensitive Nuclei NMR Studies of Supramolecular Systems NMR Studies of Frustrated Lewis Pairs

Literature

Highlight articles

D. Laws, H. M. Bitter, A. Jerschow, Angew. Chem. Int. Ed. 41 (2002), 3096.M. J. Duer, Ann. Rep. NMR Spectrosc. 43 (2000), 1.

Fundamental Principles (Theory)

A. Abragam, *The Principles of Nuclear Magnetism*, Clarendon Press Oxford (1961).
C. P. Slichter, *Principles of Magnetic Resonance*, Springer Verlag Heidelberg 1978.
B.C. Gerstein, C.R. Dybowski, *Transient Techniques in NMR of Solids*, Academic Press Inc (1985).

M. Mehring, *Principles of High Resolution NMR in Solids*, Springer Verlag Heidelberg (1983)

R.R. Ernst, G. Bodenhausen, A. Wokaun, *Principles of Nuclear Magnetic Resonance in One and Two Dimensions*, Clarendon Press, Oxford (1987)

NMR Applications to Materials Sciences

J. Klinowski, Ed. New Techniques in Solid State NMR,
Topics in Current Chemistry, 246, Springer-Verlag Heidelberg 2005.
K. Schmidt-Rohr, H.W. Spiess, Multidimensional Solid-State NMR and
Polymers, Academic Press, London (1996).
M. J. Duer, Introduction into Solid State NMR Spectroscopy, Blackwell Publ. 2004

NMR = Nuclear Magnetic Resonance

- **N: Property of the Atomic Nuclei in Matter**
- M: Magnetic Property, arising from Spin Angular Momentum
- R: Interaction with electromagnetic waves spectroscopy

Relationship Spin-magnetic moment

Classical model: charge q on a circle with radius r

 μ = current \times area

Charge q on a circle: velocity:

 $v = 2\pi r/t \to t = 2\pi r/v$

current = $q/t = qv/2\pi r$ $\mu = q v r/2$ area = πr^2

Angular momentum: $J = p \times r = m v r$

Magnetic moment: $\mu = J q/2m$ (classical) $\mu = J \gamma$ (quantum mechanical) γ: gyromagnetic ratio (units T⁻¹s⁻¹) Magnetic moments interact with magnetic fields

Zeeman interaction: $E = -\mu B$

B is called "magnetic flux density" and characterizes the strength of the magnetic field: units 1Tesla = Vs/m²

Orientational quantization of spin: $|S_z| = m h/2\pi$

$F = -dE/dz = -\mu (dB/dz) \cos(\mu,B)$

In an inhomogeneous magnetic field (magnetic field gradient) different spin orientations experience forces of different strengths

Case spin-1/2: Two nuclear spin orientations

E(m) = - $m\gamma\hbar B_0$ (Zeeman-interaction) The two orientations have different energies, difference depends on the values of B_0 and γ

Stern - Gerlach experiment

The Stern – Gerlach experiment, 1922

Experiment of Rabi

Resonance: $\omega = \gamma B_o$

History *

- 1922 **Stern-Gerlach** Experiment
- 1938 **Rabi-** Experiment
- 1945/46 Purcell/Pound, Bloch: first NMR in cond. matter
- 1948 Bloembergen, Purcell, Pound: relaxation
- 1948 Pake, van-Vleck: dipolar analysis
- 1949 **KNIGHT** shift in metals
- 1950 **Dickinson, Proctor, Yu:** chemical shift
- 1950-s: commercial spectrometers (VARIAN)
- 1952 Gutowsky, Slichter spin-spin coupling
- 1950s Hahn, Slichter, pulsed NMR, spin echo

*Nobel laureates

Important milestones

1958	Andrew: magic-angle sample spinning
1966	Ernst, Anderson: pulsed Fourier Transf. NMR
early 1970-s	Lauterbur, Mansfield: NMR Imaging
early 1970s	Jeener, Ernst, Bax: 2-D NMR
1970-s	Wüthrich: Protein structure solutions
1975	Schaefer: cross-polarization
1980-s	Spiess: Polymer dynamics via NMR
1985	Weitekamp: Para Hydrogen polarizaiton
1989	Pines: Xe- and He Hyperpolarizaiton
1990	Tycko: Laser polarization
1990-s	Griffin, Levitt, S. Vega: multipulse NMR 1995
	Frydman: High-res. NMR of Q-nuclei
2000:	Nielsen: SIMPSON software
2000-s:	High-field magnet technology-> 23.6 T
2000-s:	Kutzelnigg, Gauss, Schwarz: DFT-calculations
2000-s	Griffin, Emsley, Bodenhausen: DNP/MAS

Nuclear Magnetism

Nuclear magnetic moment: $\mu = \gamma \hat{J} = \gamma \hbar \hat{I}$

I, the angular momentum, is subject to quantization Z laws, concerning both magnitude and orientation

$$\hat{\vec{\mathbf{I}}}^{2}|I,m\rangle = \mathbf{I}(\mathbf{I}+1)|I,m\rangle$$
$$\hat{\mathbf{I}}_{z}|I,m\rangle = \mathbf{m}|I,m\rangle$$

I: spin quantum number m: orientational quantum number with m=-I,-I+1,...I-1,I 2I +1 orientational states

Nuclear spin quantum numbers

Spin quantum number

Case spin-1/2: Two nuclear spin orientations

E(m) = - mγħB₀ (Zeeman-interaction) The two orientations have different energies, difference depends on the value of γ

NMR is element selective

Precession

The precession (Larmor) frequency of the nuclei is given by

 $\omega_{p} = \gamma B_{eff}$

where $B_{eff} = B_0 + B_{int}$

B_{int} contains important structural and chemical information **NMR measures the precession (Larmor) frequency**

How is it done?

By application of a second magnetic field fluctuating with frequency $\omega_0 \sim \omega_p$

Resonance absorption occurs if $\omega_o \sim \omega_p$

Macro-sample: Boltzmann distribution \implies Magnetization $M_z = \sum_i \frac{\mu_i}{V} \left(\frac{A}{m}\right)$

Calculation of M_z:

$$\mathbf{E}/\mathbf{V} = \Sigma_{i} \mathbf{B}_{0} \mathbf{n}_{i} \boldsymbol{\mu}_{i} / \mathbf{V} = \mathbf{M}_{z} \mathbf{B}_{0}$$

where:
$$\mu_i = m_i \gamma \hbar$$
 $n_i = \frac{\exp -E_i/k_B T}{\sum_i \exp -E_i/k_B T} N$

$$exp - \frac{E_i}{k_B T} \approx 1 - \frac{E_i}{k_B T} \qquad E_i = -m_i \gamma \hbar B_0$$

(HT approximation)
$$\Sigma_i exp - E_i / k_B T = 2I + 1$$

$$\mathbf{E}/\mathbf{V} = \Sigma_{i}(\mathbf{1} + \frac{\mathbf{m}_{i}\gamma\hbar\mathbf{B}_{0}}{k_{B}T})\mathbf{m}_{i}\gamma\hbar\frac{\mathbf{N}}{\mathbf{V}} = \mathbf{M}_{z}\mathbf{B}_{0}$$

Macroscopic magnetization in z-direction :

$$M_{z} = M_{o} = \frac{N/V}{3kT} B_{o}$$
 No net
NMR is quantitative

No net magnetization in x- or y-direction

Macroscopic Sample

M_z is the source of the signal:

needs to be made time dependent to measure the precession frequency.

The Rotating Frame

In contrast to the B_0 field, the B_1 field changes direction in time with the frequency ω_0

To simplify the description of the magnetization's time dependence a rotating frame is introduced

Rotating frame rotates with frequency ω_0 of B₁

90° pulse:rotates the z-magnetization into the x-y-plane180° pulse:flips the z-magnetization into the -z-direction

Measuring NMR spectra

= Detection of Larmor frequencies present in the sample

1. B_1 field is irradiated for a short time t_p along the x,y direction 2. If $\gamma B_1 t_p = \pi/2$ then M_z is flipped by 90 degrees (90° pulse) 3. After the pulse, precession of M induces voltage in the coil. 4. This voltage, oscillating with ω_p , is the NMR signal

The Basic NMR Experiment

Schematic Experimental Set-up

Equipment

magnet

probe

Sample in coil

Console: signal excitation and detection

Relaxation Processes

Transverse relaxation (T_2): dephasing of spins in the x-y plane (distribution of precession frequencies, spin-spin interactions)

Longitudinal relaxation (T₁): build-up of z-magnetization (return to equilibrium, energy exchange with surroundings (lattice)

Spatial distribution models in glasses

Prof. Dr. Hellmut Eckert

Selective measurement by spin-echo decay

Selective for homonuclear dipole coupling strengths

$$S/S_0 = exp - (2t^2M_2)$$

28

Four distinct interactions

- magnetic shielding
- Electric quadrupole coupling
- Indirect spin-spin coupling
- magnetic dipole coupling

In the solid state: anisotropy: ω_p ~ 3cos²θ - 1

Magnetic Shielding

Resonance frequency (bare nucleus):

Effective magnetic field at nucleus:

Resonance frequency (real sample)

$$\omega_0 = \gamma B_0$$
$$B_{eff} = B_0 (1 - \sigma)$$
$$\omega_L = \gamma B_0 (1 - \sigma)$$

Chemical shift

Effective magnetic field arises from shielding or deshielding of the external magnetic field by electrons

Probe for electronic environment (bonding)

$$\mathcal{S} \equiv \frac{\omega_L^x - \omega_L^{ref}}{\omega_L^{ref}}$$

$$\delta \equiv \frac{\omega_L^x - \omega_L'}{c}$$

Chemical Shielding Anisotropy

Solid state : chemical shielding is anisotropic: → tensorial description

Example : ³¹P NMR of Phosphates

Indirect spin-spin Coupling

- Spin-spin interaction transmitted via polarization of bonding electrons
- HAMILTONIAN

- $\mathcal{H}_{J} = 2\pi \hat{I}_{1} \hat{J} \hat{I}_{2}$ homonuclear $\mathcal{H}_{J} = 2\pi \hat{I} \hat{J} \hat{S}$ heteronuclear
- Anisotropy accounted for by tensorial description
- Isotropic component: J_{iso} (scalar, isotropic coupling constant)
- Liquid-state and MAS-NMR: only J_{iso} relevant: Π_i (2n_il_i +1) multiplicity rule
- n_i = number of equivalent spins of quantum number I_i the observed nucleus is coupled to

Mechanism: Spin polarization of bonding electrons

One bond: ¹J >0

Observe nucleus

Observe nucleus

Perturbing Nucleus, m =1/2

Perturbing Nucleus, m = -1/2

Two bonds: ²J < 0

Three bonds: ³J > 0

¹H NMR spectrum of ethanol

Examples of Spin-Spin Coupling Multiplicities

Karplus-Relation for J-coupling

For ³J (¹H-¹H) coupling:

$$J(\phi) = C\cos 2\phi + B\cos \phi + A$$

$$A = 4.22, B = -0.5, \text{ and } C = 4.5 \text{ Hz.}$$

Important for conformational studies (protein folding) Nobel Prize 2013

MAS conditions: isotropic peak splitting

G. Brunklaus, J. C.C. Chan, H. Eckert, S. Reiser, T. Nilges, A. Pfitzner, Phys. Chem. Chem. Phys. 5, 3678 (2003)

Magnetic dipole interactions

Magnetic moments of nearby spins affect the local magnetic field and thus the resonance frequency. "Through-space" interaction

Dipolar Hamiltonian Terms

Lineshape of a two-spin system

In the liquid state and under MAS conditions: dipole coupling averaged to zero

Second Moment Description of Multi-Spin Interactions

Specification of an average dipolar coupling in multi-spin systems Where details of the spin geometry are not well known. Using this method distance scenarios can be tested

Relation to structure:

$$M_{2} = \frac{4}{15} \left(\frac{\mu_{0}}{4\pi}\right)^{2} \gamma_{I}^{2} \gamma_{S}^{2} \hbar^{2} S(S+1) \sum \frac{1}{r_{ij}^{6}} \text{ (hetero)}$$
$$M_{2} = \frac{3}{5} \left(\frac{\mu_{0}}{4\pi}\right)^{2} \gamma^{4} \hbar^{2} I(I+1) \sum \frac{1}{r_{ij}^{6}} \text{ (homo)}$$

 $\sum \frac{1}{r_{ij}^6}$. Convergence at 4 times the shortest distance

Spatial distribution models in glasses

Prof. Dr. Hellmut Eckert

Selective measurement by spin-echo decay

Selective for homonuclear dipole coupling strengths

$$S/S_0 = exp - (2t^2M_2)$$

44

Spatial Atomic Distributions in P-Se Glasses

P-Se vs. P-P- bonding

D. Lathrop, H. Eckert, J. Am. Chem. Soc. 111 (1989), 3536 D. Lathrop, H. Eckert, Phys. Rev. B 43 (1991), 7279

I = 0 I = 1/2 I ≥ 1 ; eQ > 0 I ≥ 1 ; eQ < 0 eQ ~ 10⁻²⁵ to 10⁻³⁰ m²

Outline

Solid State NMR – General Aspects Anisotropic Interactions: magnetic shielding nuclear electric quadrupole coupling dipole-dipole coupling indirect spin-spin coupling

Manipulation of Interactions magic-angle spinning cross-polarization -J-spectroscopy/INADEQUATE rotational echo double resonance

Solid State NMR

- element-selective
- locally selective
- quantitative
- experimentally flexible: Selective

averaging

Magic Angle Spinning - MAS

High-resolution spectra, governed by chemical shifts

- -- bonding partners
- -- coordination numbers

Magic Angle Spinning

MAS-NMR probe

Macor Kel-F ZrO₂ BN Vespel

The effect of spinning speed

I = 0 I = 1/2 I ≥ 1 ; eQ > 0 I ≥ 1 ; eQ < 0 eQ ~ 10⁻²⁵ to 10⁻³⁰ m²

The physical picture

This quadrupole moment interacts with local electric field gradients created by the bonding environment of the nuclei. -> probe of local symmetry

For axially symmetric EFG, the 1st order correction is:

$$\left< m \left| \hat{H}_{Q} \right| m \right> = \frac{e^2 q Q}{4I(2I-1)} \left[3m^2 \cos^2 \theta + \frac{3}{2}I(I+1)\sin^2 \theta - \frac{3}{2}m^2 \sin^2 \theta - I(I+1) \right]$$

$$E_{m}^{(1)} = -m\gamma\hbar B_{o} + \frac{e^{2}qQ}{4I(2I-1)} \left[3m^{2} - I(I+1)\right] \frac{3\cos^{2}\theta - 1}{2}$$

Energy level diagram for I = 3/2

Powder samples: orientational averaging case I = 3/2

Powder pattern for spin-7/2

Stronger Quadrupole Coupling:

Second-order perturbation theory

Solid State NMR Periodic Table

¹ H		I															³ He
⁷ Li	⁹ Be											¹¹ B	¹³ C	¹⁵ N	¹⁷ O	¹⁹ F	²¹ Ne
²³ Na	²⁵ Mg											²⁷ AI	²⁹ Si	³¹ P	³³ S	³⁵ Cl	Ar
³⁹ K	⁴³ Ca	⁴⁵ Sc	⁴⁹ Ti	⁵¹ V	⁵³ Cr	⁵⁵ Mn	⁵⁷ Fe	⁵⁹ Co	⁶¹ Ni	⁶³ Cu	⁶⁷ Zn	⁷¹ Ga	⁷³ Ge	⁷⁵ As	⁷⁷ Se	⁷⁹ Br	⁸⁷ Kr
⁸⁷ Rb	⁸⁷ Sr	⁸⁹ Y	⁹¹ Zr	⁹³ Nb	⁹⁵ Mo	⁹⁹ Tc	⁹⁹ Ru	¹⁰³Rh	¹⁰⁵ Pd	¹⁰⁹ Ag	¹¹³ Cd	¹¹⁵ ln	¹¹⁷ Sn	¹²¹ Sb	¹²⁵ Te	127	¹²⁹ Xe
¹³³ Cs	¹³⁷ Ba	¹³⁹ La	¹⁷⁹ Hf	¹⁸¹ Ta	183 W	¹⁸⁵ Re	¹⁸⁷ Os	¹⁹¹ lr	¹⁹⁵ Pt	¹⁹⁷ Au	¹⁹⁹ Hg	205 T	²⁰⁷ Pb	²⁰⁹ Bi	Ро	At	Rn
Fr	Ra	Ac														L	J

Standard

Isotope enrichment required

NMR restricted by quadrupolar interactions

Dominant quadrupolar interaction

Very small magnetic moment

NMR as a Technique in Solid State Sciences

Local Selectivity:	Disorder/Lack of Periodicity
Element Selectivity:	Compositional Complexity Low Scattering Contrast (H; Si/AI)
Interaction Selectivity:	Distance Measurements Connectivity Information Electron Density Information
Uniform Sensitivity:	Quantitative Applications
Dynamic Sensitivity:	Motional Processes on Continuous Timescale (10 ² to 10 ⁻⁹ s)
Low Detection Sensitivity: Bulk Method:	10 ¹⁷ to 10 ¹⁸ spins required poor spatial resolution surfaces/interfaces difficult to study
Magnetic Interference:	transition metals, rare earths: limited

NMR spectroscopy of insensitive nuclei:

Problems with direct detection of ¹³C, ¹⁵N and others:

-Low natural abundance -Small magnetic moments -Long spin-lattice relaxation times

Basic idea of cross-polarization (CP):

exploit dipole-dipole coupling with abundant ¹H nuclei in the sample to transfer magnetization from ¹H to ¹³C spins

Matching of energy levels required E (flip-flop mechanism), not possible in the lab frame

The crosspolarization pulse sequence

Hartmann-Hahn matching condition

$$\gamma_{1H}B_{1H} = \gamma_{13C}B_{13C}$$

¹³C- NMR spectra of adamantane

static, with ¹H-decoupling ∆=500 Hz

MAS, no ¹H-decoupling ∆=50 Hz

MAS, with ¹H-decoupling $\Delta = 5$ Hz

Poly-dicarbazolyl-hexadiyne (poly DCH)

$$\begin{bmatrix} CH_2R \\ 0 \\ C - C \equiv C - C \end{bmatrix} R - CH_2 - C \equiv C - C \equiv C - CH_2 - R$$

$$\begin{bmatrix} R - CH_2 - C \equiv C - C \equiv C - CH_2 - R \\ 0 \\ CH_2R \end{bmatrix}$$

Variable Contact time experiments

CP MAS with delayed decoupling

CPMAS of poly-DCH

2-D Heteronuclear correlation NMR

correlates the ¹³C resonances with those ¹H species from which the magnetization is transferred the fastest = typically the directly bonded protons

High Resolution ¹H/¹³C HETCOR

A Modern 2D HETCOR Sequence

G. Paul, S. Steuernagel, H. Koller, Chem. Commun. 2007, 5194

Cross-polarization dynamics

Variable contact time curves are influenced by three distinct time constants
Separate measurement of T₁(H)

With the further assumption that $T_{1\rho}(^{13}C)$ is very long, these variable contact times can be fitted, yielding T_{CP}

$$I(t) = B(1 - T_{CP} / T_{1\rho}^{H})^{-1} \left[exp(-t / T_{1\rho}^{H}) - exp(-t / T_{CP}) \right]$$

Variable Contact time Experiments in ²⁹Si{¹H} CPMAS of amorphous silica

 $A = SiO_{4/2}$ $B = SiO_{3/2}OH$ $C = SiO_{2/2}(OH)_2$

Electron-> Nuclear Dynamic Polarization (DNP)

Organic Biradicals as nuclear polarizers

Pulse Sequence for Dynamic Nuclear Polarization

An application: surface selective NMR: Functionalization of MCM silica surface

DNP enhanced ¹³C-NMR

