Diversidade Bacteriana

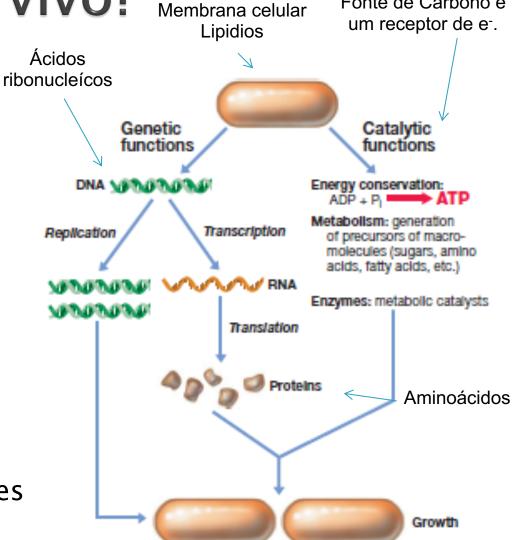
Cristiane Guzzo
Departamento de Microbiologia
ICB-USP

BMM 160 - Microbiologia Básica para Farmácia

Objetivo da Aula

- Origem da Vida
- Metabolismo Primitivo
- Diversidade Microbiana
- Filogenia, Taxonomia e Sistemática

Origem da Vida


O que é um ser vivo?

O que é um ser vivo?

Fonte de Carbono e um receptor de e-.

Capaz:

- Compartimentalização (parede celular)
- Mutiplicar (crescimento)
- Metabolizar compostos químicos (produção de energia)
- Evoluir (novas propriedades biológicas)

Como compostos inanimados criaram seres vivos?

Materia inanimada (CH₄, H₂O, CO₂, NH4+)

Geração Espontânea?

Origem da Vida?

Primeira célula

Lípidio Nucleotideo Polisacarideo Áçucares e carbroidratos aa

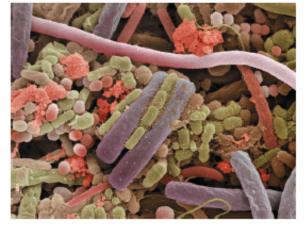
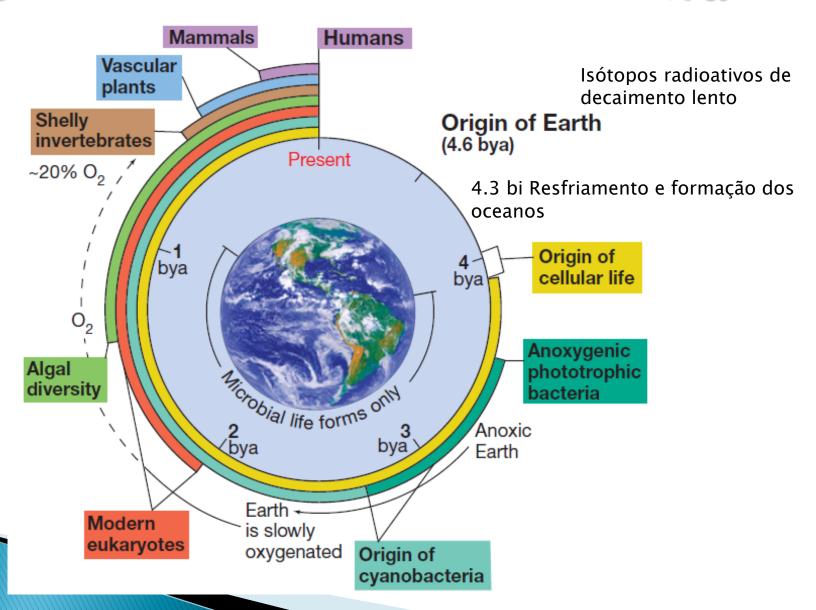
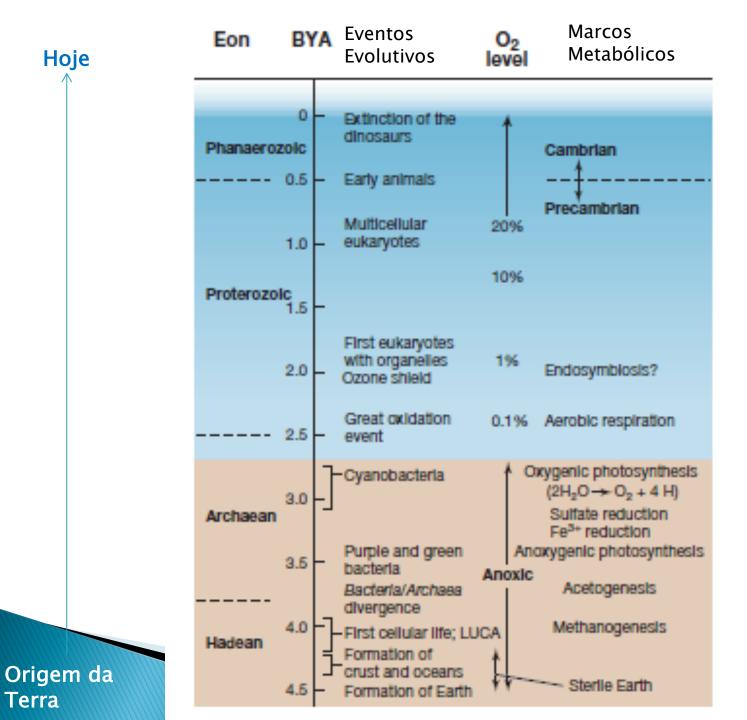


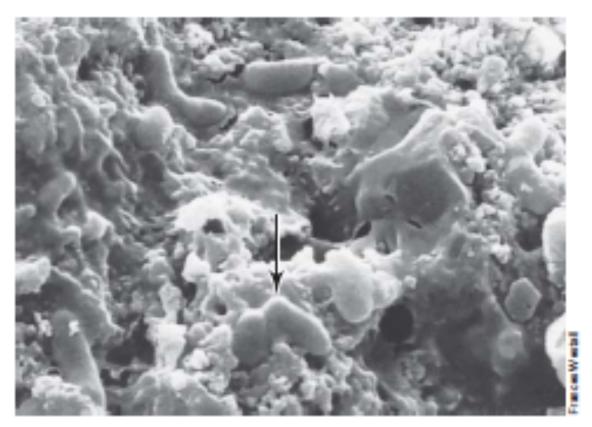
Figure 1.10 Human oral bacterial community. The oral cavity of warm-blooded animals contains high numbers of various bacteria, as shown in this electron micrograph (false color) of cells scraped from a human tongue.

Populações de células


Células altamente complexas e diversas



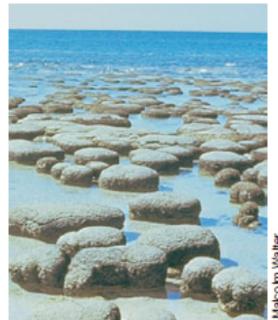
Origem da Vida


- Existem várias teorias pergunta sem resposta
- Entender o que estava acontecendo na Terra a 4.6 bilhões de anos.

Visão Geral da Evolução da Terra

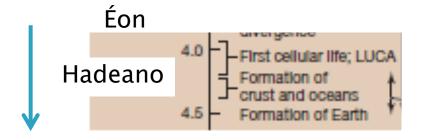
Evidência de Vida microbiana – rochas antigas com microfósseis de bacterias (bacilo)

Rocha de 3.45 bia estromatólito


Estromatólitos

- Massas microbianas misturadas com compostos minerais que formam estruturas parecidas com rochas
- Estrematólitos primitivos Bactérias fototróficas filamentosas (relacionadas as bactérias verdes não sufurosas)

Estrematólito mais antigo conhecido, com 3.5 bia (Grupo Warrawoona – Austrália)


Estrematólito modernos (Baía Shark - Austrália)

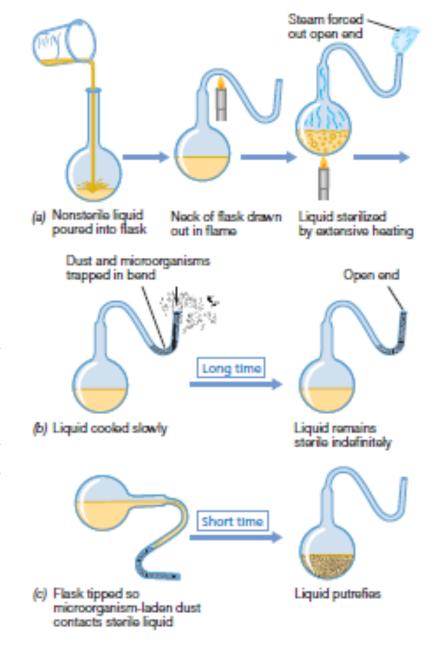
com watter

Rocha Sedimentar mais antiga

- Complexo Gnaisse Itsaq (Groelandia)
 - 3.86 bilhões de anos

- Terra havia resfriado para permitir a condensação do vapor de água
 - Formação dos oceanos
- No entanto, a presença de ZrSiO₄ e sua datação mostra que a formação dos oceanos ocorreu 4.4 – 4.3 bi

Primeiras Teorias da Origem da Via

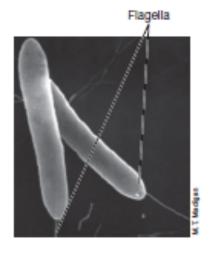

Origem da Vida

Teoria da Biogêneses (Geração espontânea)

Itens não viventes + calor do sol - energia celestial - gera vida)

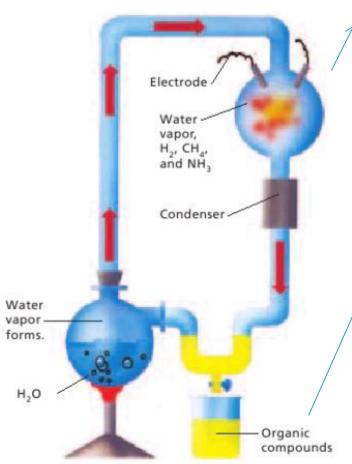
Trapos sujos+trigo gera camundongos

- 1862 Luis Paster que acabou com a teoria da Geração espontânea
- 1859 É publicado o livro "Sobre a Origem das Espécies por meio da seleção natural" Charles Darwin
- Variabilidade aleatória + Seleção
- Origem do LUCA Pequena fonte de água morna



Origem da Vida - Caldo Primordial

Materia inanimada (CH₄, H₂O, CO₂, NH4⁺)

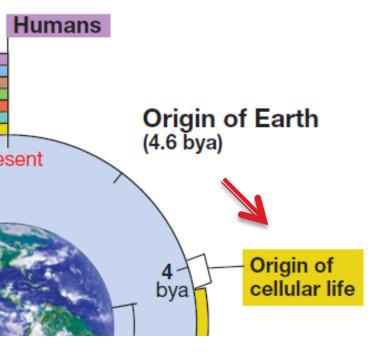

Em algum momento isso aconteceu

Teoria da Sopa Primordial Máquina de Miller SL (1953) - 6 meses

Descargas elétricas - mimetizar a atmosfera Terrestre

O maior problema é tirar o O₂ do sistema

Depois de 5 dias - Gly e Ala


A mistura de gases presente na Terra primitiva irradiada com UV ou descargas elétricas deu origem à moléculas orgânicas

Não foi possível sintetizar célula in vitro

- 1960 A atmosfera Terrestre não tinha NH₄+
 e nem CH₄ Invalidava a máquina de Miller
- Miller repetiu seus experimentos sem NH₄⁺ e
 CH₄ e obteve os mesmos resultados

Evidencias de que a vida não surgio na Superfície

Ambiente Hostis a vida

- grandes variações de temperatura
- > 1000°C
- Choques constantes com meteoros
- Tempestades
- Radiação UV

Teoria Panspermia

- As primeiras formas de vida originou do espaço
 - 1969 (Australia) caiu um meteorito que continham vários compostos orgânicos – lipídios e aminoácidos
 - 1970 Nuvéns de poeira no espaço também tem compostos orgânicos complexos radiação UV converteu materia simples em compostos orgânicos complexos
 - Espaço condição não encontrada na Terra é o Vácuo

Origem da Vida - Subsuperfície

- Fontes hidrotermais no leito oceânico muito abaixo da superfície
- Menos hostis e mais estáveis

Origem da Vida - Subsuperfície

events

Evolutionary

Composta: Pirita (FeS), Argila, sílica e carbonato.

Bacteria Dispersal to other habitats Diversification of molecular biology, lipids, and cell wall structure (~0.3 to 0.5 billion years) LUCA Mound: precipitates of clay, metal sulfides, silica, and carbonates DNA Ocean water (<20°C, containing RNA and metals, CO2 and proteins PO_4^{2-} Flow of substances RNA life up through mound Ácido (H+) Prebiotic chemistry Sugars Ocean crust H₂S HCO₃ NH₄+ CH₃SH CH₄ CN-Nutrients in hot Básico hydrothermal water

Early

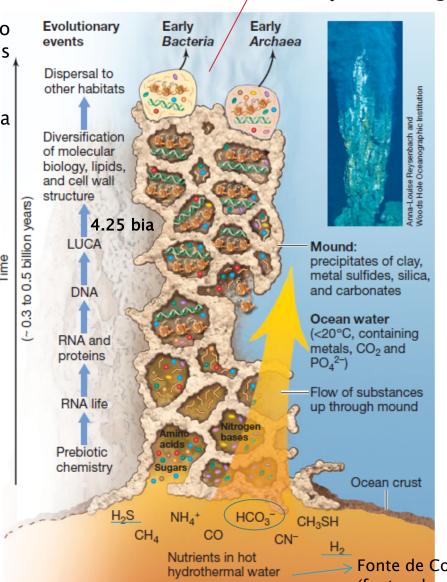
Early Archaea

Porosas Ricas em FeS e Niquel

LUCA - Último ancestral Universal Comum

Diversidade - seleção natural Evolução dos organismos vivos

FeS (pirita) e NiS catalisam a formação de aa, pepetídios, açucares, bases nitogenadas


O fosfato encontrado no mar forma os nucleotídeos AMP e ATP.

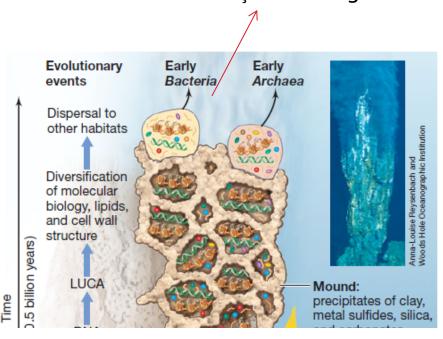
Argila catalisa a formação de RNA

RNA (capacidade catalítica e informacional) – autoreplicante, catalisar, Sintetisar proteínas primitivas

Proteínas assumiram o papel catalítico dos RNA

Surgimento do DNA (informação genética - mais estável que o

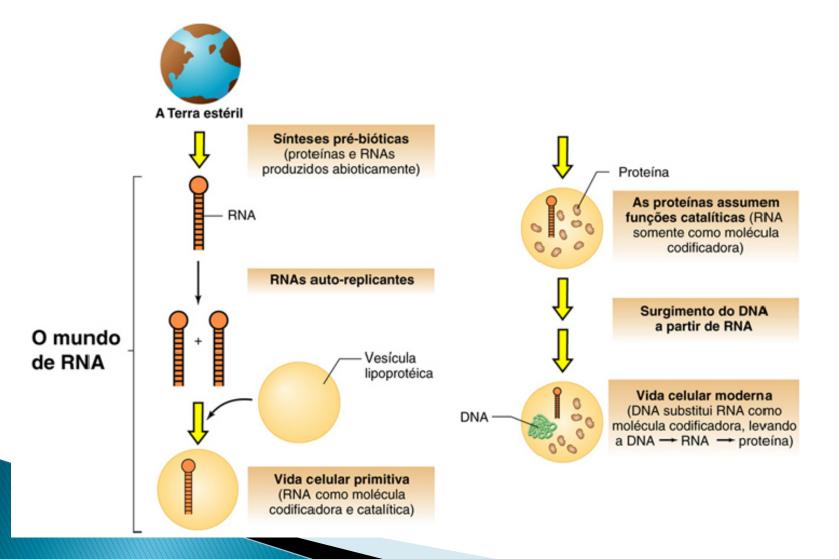
Água do mar

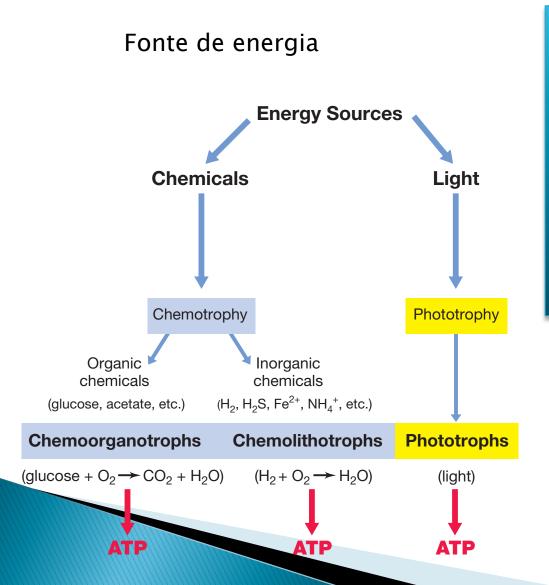

Fe⁺³, H⁺, Ni⁺², CO₂, PO₄³⁻, Fe⁺²

Fonte de Compostos reduzidos (fontes de elétrons)

Formação da Célula

Proteínas embebidas em lipídeos - transformou as vesículas em um ambiente permeável - para armazenamento de energia e síntese de DNA.


 Armazenamento de RNA e DNA podem ter originado a primeiras célula autoreplicante tornando as independes dos precipitados de FeS Diversidade - seleção natural Evolução dos organismos vivos

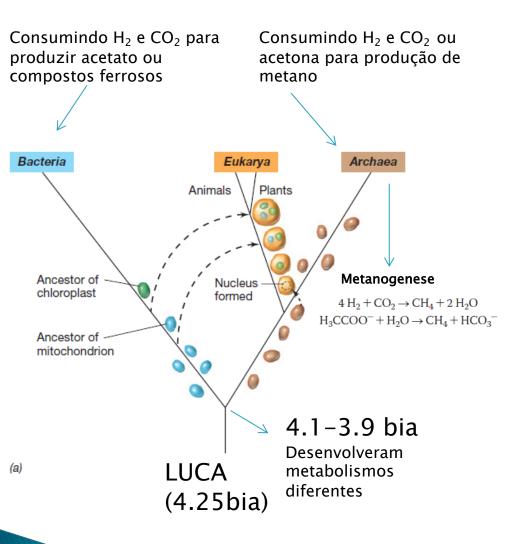

Bactérias e Archaea possuem paredes celulares diferentes e devem ter se formado de forma idenpendentes

O papel do RNA na origem da vida

 Primeiro sistema auto replicante e pode atuar como catalisador

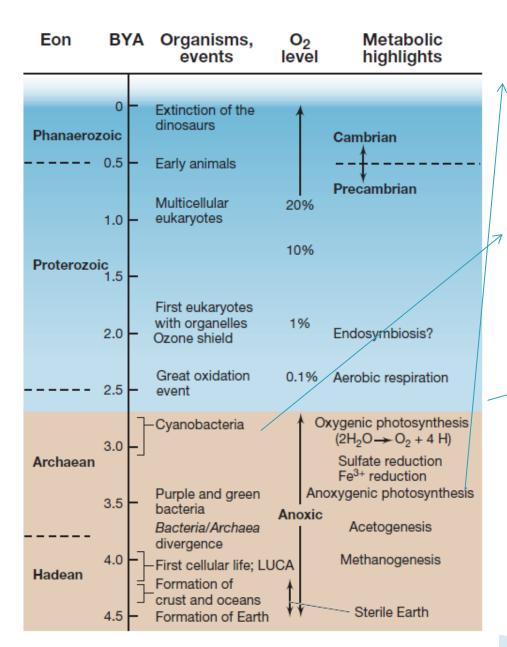
Diversidade metabólica

Fonte de carbono


Autotróficos: CO₂

Heterotróficos: compostos orgânicos

Diversidade: classificação de organismos por habitat


	Muito alta	Alta	Moderada	Baixa
Temperatura	hipertermófilos	termófilos	mesófilos	psicrófilos
pН	acidófilos	acidófilos	neutrófilos	alcalófilos
Oxigênio		aeróbicos	aeróbicos	microaerófilos
Osmolaridade	halófilos			
Pressão	barófilos			

Diversidade Metabólica e Morfológica

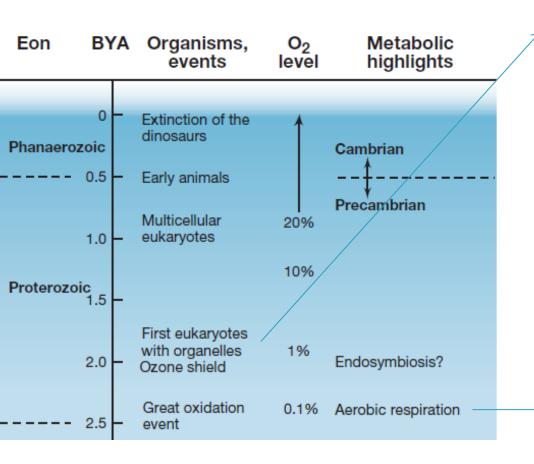
Archaea Algumas características interessantes:


- A maioria são extremófilas
- Altas temperaturas
- Extremos de pH e salinidade
- Todos são quimiotróficos
- Exceção: *Halobacterium* pode usar luz para obter energia (forma muito diferente dos fototróficos)

- 3.2 bia fototrofia (só em bactérias) Utilização da Luz solar (como fonte de energia) possibilitou a diversificação
- 2.7 bia a linhagem de cyanobacterias desenvolveu a capacidade de usar água ao invés de H_2S na redução do CO_2 , liberando O_2 e não S^0
- O surgimento da fotossíntese oxigênica alterou o curso da evolução

Atmosfera oxigenada

Formação ferríferas bandadas Camadas de óxido de ferro e silicatos de ferro



Cianobactérias surgiram a 2.7 bia

PQ levou 300 milhões de anos para começar a acumular O₂

 $Fe^{+2} + O_2 \rightarrow \text{óxidos de ferro que se}$ acumularam em formação ferríferas

Para ter acumulo de O₂ tem que ter consumido o ferro abundante

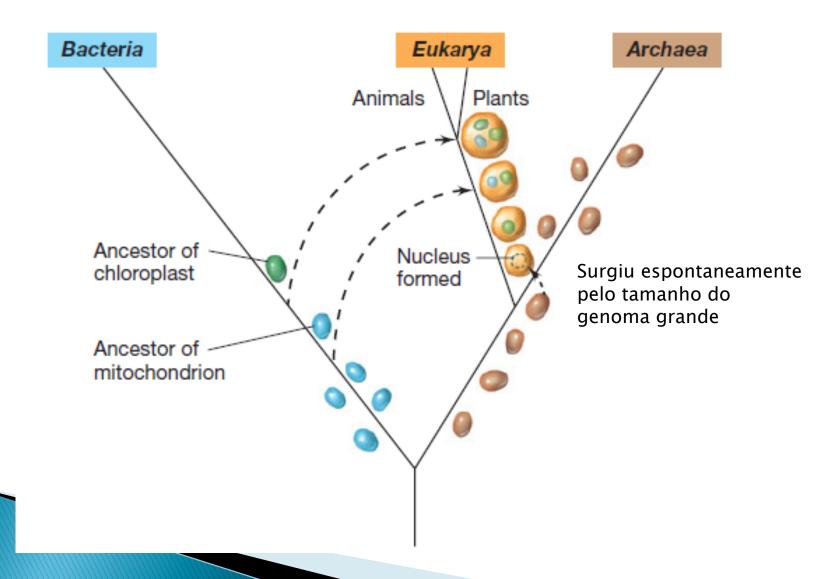
Formação da camada de ozônio

Sem isso eles teriam que ficar abaixo da superfície oceânica, lugares terrestres protegidos

Organismos puderam disseminar por toda superfície terrestre -Criando grande diversidade

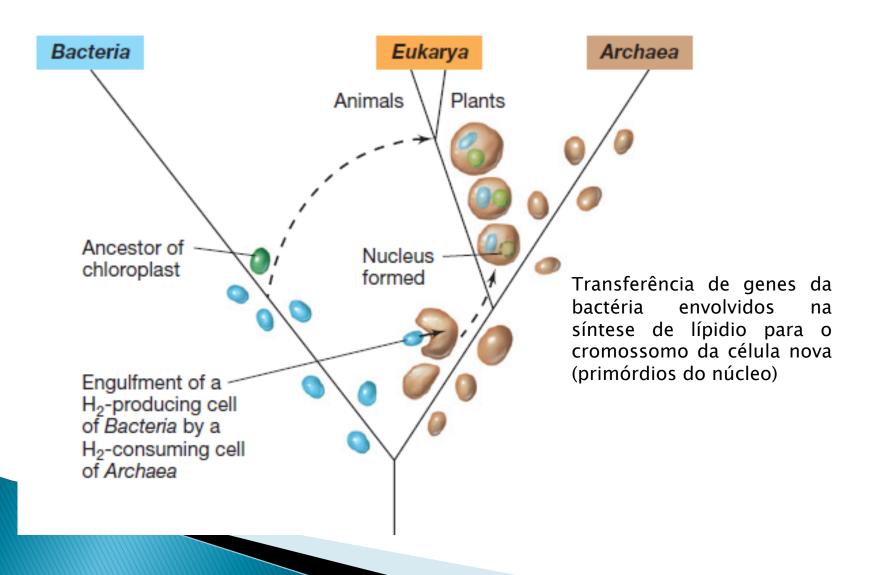
Evolução nas vias metabólicas
Organismos anaeróbicos
ficaram restritos em seus
habitat (principalmente as
archaea)

Facultativos diversificaram rapidamente


Origem dos eucariotos - Endossimbioótica

- Bactérias e as Archaea perduram por 2 bia até surgir os organismos eucarióticos
- 2 bia surgiu os organismos eucarióticos
 - Possuem Núcleo envolto por membrana
 - possue organelas
 - Surgiram após o surgimento de uma atmosfera com O₂
- Endossimbiose
 - Mitocôndrias e os cloroplastos

Cianobacterias (fotossíntese oxigenados)


Bactérias quimiorganotróficas (metabolismos aeróbico facultativo - Protobactoria - Rhizobium ou Riquétsia inga alulares)

Origem dos eucariotos – Endossimbioótica

Origem dos eucariotos - Endossimbioótica

Hipótese do hidrogênio

Células eucarióticas são quimeras

Table 16.1 Major characteristics of Bacteria, Archaea, and Eukarya ^a					
Characteristic	Bacteria	Archaea	Eukarya		
Morphological and genetic					
Prokaryotic cell structure	Yes	Yes	No		
Cell wall	Peptidoglycan	No peptidoglycan	No peptidoglycan		
Membrane lipids	Ester-linked	Ether-linked	Ester-linked		
Membrane-enclosed nucleus	Absent	Absent	Present		
DNA present in covalently closed and circular form	Yes	Yes	No		
Histone proteins present	No	Yes	Yes		
RNA polymerases (Figure 7.2)	One (4 subunits)	One (8–12 subunits)	Three (12–14 subunits each)		
Ribosomes (mass)	70S	70S	80S		
Initiator tRNA	Formylmethionine	Methionine	Methionine		
Introns in most genes	No	No	Yes		
Operons	Yes	Yes	No		
Capping and poly(A) tailing of mRNA	No	No	Yes		
Plasmids	Yes	Yes	Rare		
Sensitivity to chloramphenicol, streptomycin, kanamycin, and penicillin	Yes	No	No		

Evolução

A evolução é guiada em grande parte pela seleção natural proposta por Charles Darwin 1859

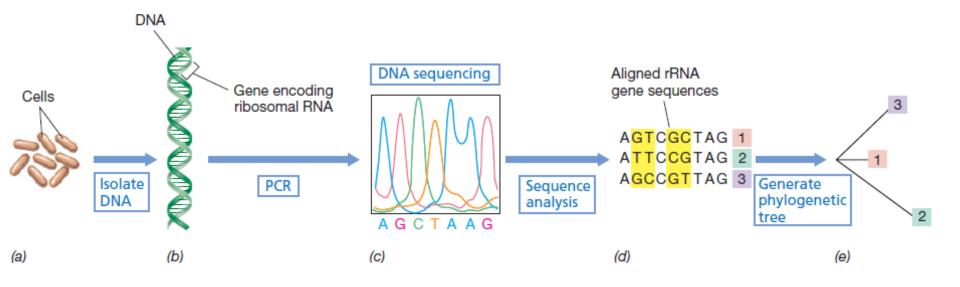
Processo de modificação de características através de mudanças genéticas que se tornam hereditária

Mutações

- Erros no processo de replicação
- radiação UV

Duplicação génica (parálogos) Transferência horizontal de genes Recombinação Perda de genes (parasitas obrigatórios)

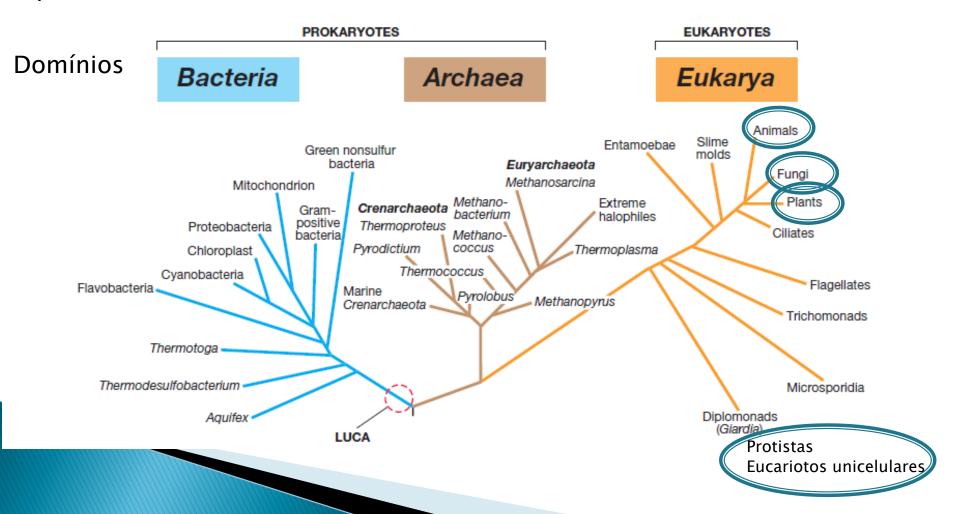
Seleção Natural


Filogenia, Taxonomia e Sistemática

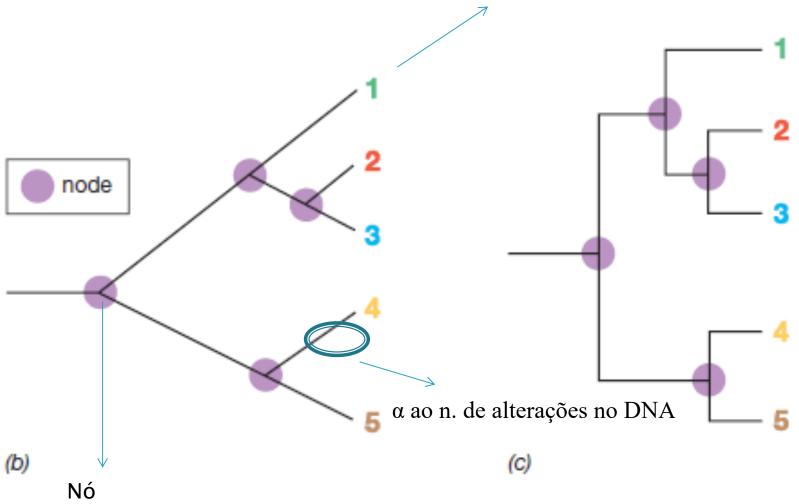
- Filogenia Árvore Filogenética
 - Relação evolutiva entre os microorganismos
- Taxonomia
 - Caracteriza, nomeia e posiciona os organismos em grupos (baseou-se principalmente em aspéctos fenotípicos)
 - Atualmente é Polifásico: fenótipo + genótipo + filogenético
- Sistemática Microbiana
 - Estudo da diversidade e as relações entre microorganismos

Análise Evolutiva - Árvore Filogenética

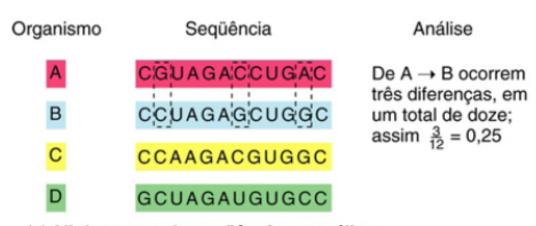
- Woese RNA ribossômal (SSU rRNA) 16S (procarioto) ou 18S (eucarioto)
 - Distribuídos Universalmente
 - Função constante entre os organismos vivos
 - Modificam lentamente altamente conservados
 - Tamanho adequado para análise evolutiva


Filogenia Microbiana

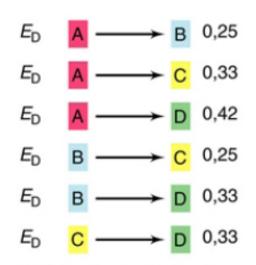
Assim são construídas as ÁRVORES FILOGENÉTICAS
 (Wose estabeleceu que existem 3 domínios - Bacteria, Archaea e Eucaria)


Filogenia Microbiana

Antigamente os serem vivos eram agrupados em: Plantas, animais, fungos, protistas e bactérias



Ramos - linhagens individuais


No Ancestral em comum que divergiu

ED Distância Evolutiva

(a) Alinhamento de sequências e análise

Distância evolutiva

(b) Cálculo da distância evolutiva

Análise Evolutiva - árvore Filogenética

- Outros genes podem auxiliar na filogenia
 - Fator TU de elongação da síntese proteíca
 - Hsp60 choque térmico
 - tRNA sintetases (vários)

Relógios Moleculares

- Correlaciona o número de modificações no DNA com o tempo.
- O problema é que velocidade de mutação não é constante entre os três domínios
 - Correlações diretas e confiáveis são difícies
 - Medidas relativas são mais confiáveis

Conceitos Importantes de Evolução

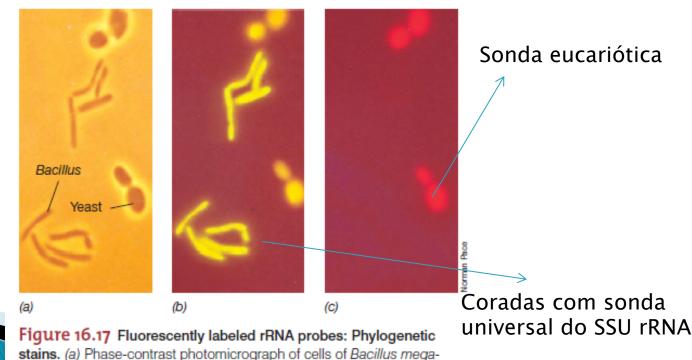
- Genes homólogos
- Genes ortólogos
- Genes parálogos
- Similaridade %
- Identidade %

```
> ref|YP 006294496.1|  type IV pilus assembly protein Pil2 [Methylophaga sp. JAM7]
gb|AFJ03809.1| G Type IV pilus biogenesis protein PilZ [Methylophaga sp. JAM7]
GENE ID: 12843818 Q7C 2689 | type IV pilus assembly protein PilZ
[Methylophaga sp. JAM7]
         134 bits (336), Expect = 6e-38, Method: Compositional matrix adjust
Identities = 66/115 (57%), Positives = 81/115 (70%), Gaps = 3/115 (3%)
Query 5
           NARQGILSLALKDKPALYSAYMPIVKGGGIIVPIPKKYMLGDEVFLLLTLPDSSERLPVA 64
           N R+GILSL + D+ LY +YMPF+K GG+F+PT K Y LG+EVF+LL L D
           NPRKGILSLKISDQNMLYHSYMPFLKNGGLFIPTNKSYALGEEVFILLNLMDEPEKIPVA
Sbict 4
           GKVIWTTPAGAQGNRAAGIGVQFPDGPEGEA--VRNKIETLLAGLTTSDKPTHTM
Ouerv 65
           G ++W TP GAQGN AAGIGV F D +G A VR KIE L
Sbjct 64
           GNIVWLTPNGAOGNHAAGIGVHFSD-IDGSAAVVRGKIENYLVDKLKSDKATYTM 117
```

Filogenia Microbiana

- Muitos genes comuns nos três Domínios, apesar de terem divergidos a milhares de anos (ter vindo de transferência horizontal) - Promiscuamente transferidos entre populações primitivas
- Ao longo do tempo foi bloqueado a transferência horizontal irrestrita
 - Exemplo: endonucleases
- Gerou diferentes espécies
- Usar a filogenia para auxiliar na Identificação e na Classificação (Taxonomia)

Assinaturas nas sequências de rRNA são usadas para a Identificação e Classificação


Algumas sequencias são específicas e algumas são genéricas

	Localização	ARCHAEA	BACTERIA	EUKARYA
CACYYG	315	0	>95	0
AAACUCAAA	910	3	100	0
AAACUUAAAG	910	100	0	100
YUYAAUUG	960	100	<1	100
CAACCYYCR	1110	0	>95	0
UCCCUG	1380	>95	0	100
UACACACCG	1400	0	>99	100
CACACAGCG	1400	100	0	0

FISH - Fluorescent in situ Hybridization

- Sonda é ligada a um corante fluorescente
- Aplicar diretamente em células em cultura ou no ambiente natural
- Usada em diagnóstico clínico de pacientes (identificação do patógeno)

Fotografia de Contraste de fase

Árvaro filogenética de uma comunidade microbiana

 Amplificar e sequenciar a SSU rRNA de uma população microbiana e gerar uma árvore filogenética - Importante para ecologia

Ribotipagem

- DNA genômico
- Digestão com enzimas de restrição
- Padrão das bandas (Finger print)
- Hibridização com uma sonda marcada de rRNA (16S da rRNA)
- Rápido e específico
- Descriminação entre espécies
- Padrão das bandas (mapa de restrição para plasmídeo) é o ribotipo

Sistemática e Taxonomia

Muitos fenótipos são usados para caracterizar os organismos

Table 16.2	Some phenotypic	characteristics	of taxonomic value
------------	-----------------	-----------------	--------------------

Category	Characteristics
Morphology	Colony morphology; Gram reaction; cell size and shape; pattern of flagellation; presence of spores, inclusion bodies (e.g., PHB, a glycogen, or polyphosphate granules, gas vesicles, magnetosomes); capsules, S-layers or slime layers; stalks or appendages; fruiting-body formation
Motility	Nonmotile; gliding motility; swimming (flagellar) motility; swarming; motile by gas vesicles
Metabolism	Mechanism of energy conservation (phototroph, chemoorganotroph, chemolithotroph); utilization of individual carbon, nitrogen, or sulfur compounds; fermentation of sugars; nitrogen fixation; growth factor requirements
Physiology	Temperature, pH, and salt ranges for growth; response to oxygen (aerobic, facultative, anaerobic); presence of catalase or oxidase; production of extracellular enzymes
Cell lipid chemistry	Fatty acids ^b ; polar lipids; respiratory quinones
Cell wall chemistry	Presence or absence of peptidoglycan; amino acid composition of cross-links; presence or absence of cross-link interbridge
Other traits	Pigments; luminescence; antibiotic sensitivity; serotype; production of unique compounds, for example, antibiotics

^aPHB, poly-β-hydroxybutyric acid (Section 3.10).

^bFigure 16.19

Análise dos ácidos graxos nas membranas

- Técnica de FAME Fatty acid methyl ester
- Amplamente usado em laboratório clínico
- Pode identificar uma espécie bacteriana em particular
- Padronização nos experimentos, pois temperatura e outros fatores modificam o resultado

Classes of Fatty Acids in Bacteria

Class/Example

I. Saturated: tetradecanoic acid

II. Unsaturated: omega-7-cis hexadecanoic acid

III. Cyclopropane: cis-7,8-methylene hexadecanoic acid

IV. Branched: 13-methyltetradecanoic acid

V. Hydroxy: 3-hydroxytetradecanoic acid

Structure of example

Análise Genotípica

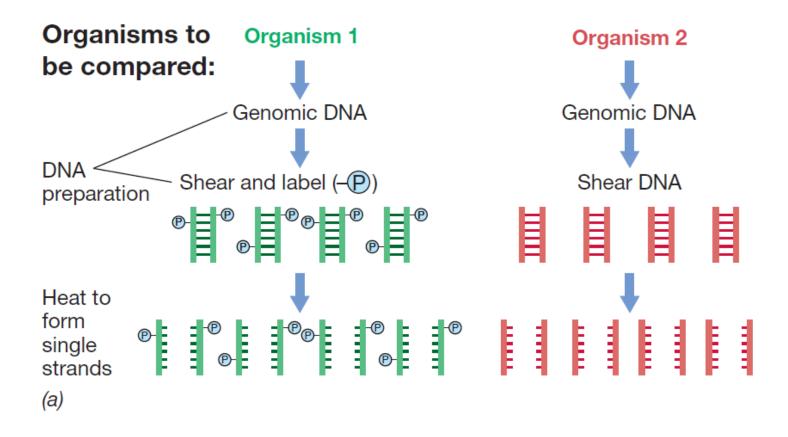
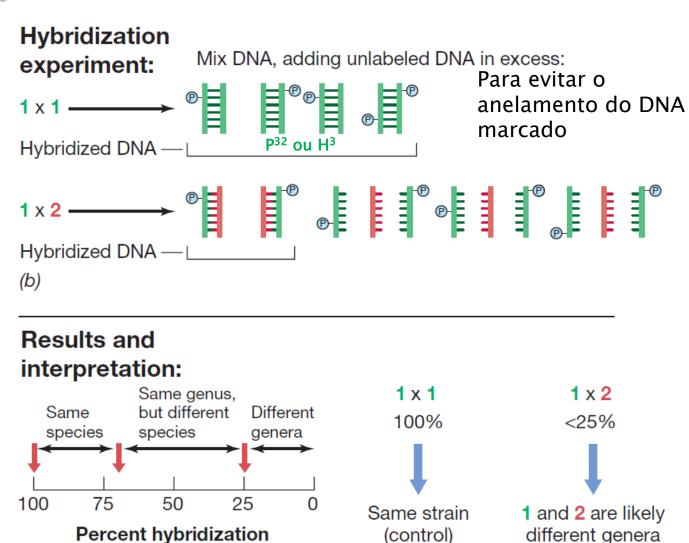
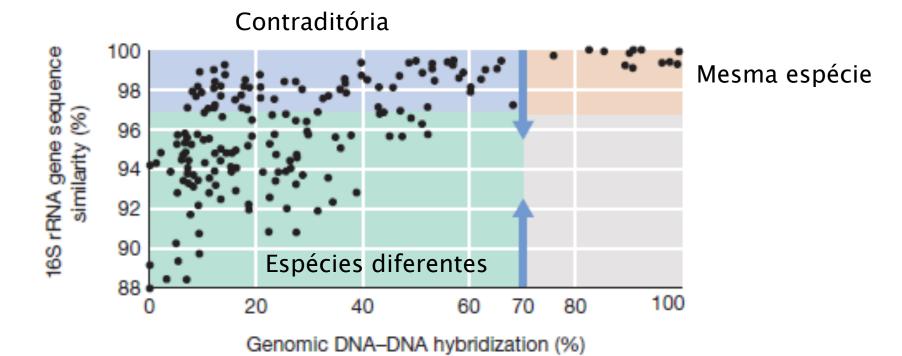

- Com a era genômica, vários genomas foram sequenciados e depositados em banco de dados públicos
- Análise comparativa destas sequências podem ser usadas para a taxonomia
- Alguns métodos genotípicos:

Table 16.3 Some genotypic methods used in bacterial taxonomy

ı	, , , , , , , , , , , , , , , , , , ,	
	Method	Description/application
	DNA-DNA hybridization	Genome-wide comparison of sequence similarity. Useful for distinguishing species within a genus
	DNA profiling	Ribotyping (Section 16.9), AFLP, rep-PCR (Figure 16.21). Rapid method to distinguish between species and strains within a species
	Multilocus sequence typing	Strain typing using DNA sequences of multiple genes (Figure 16.22). High resolution, useful for distinguishing even

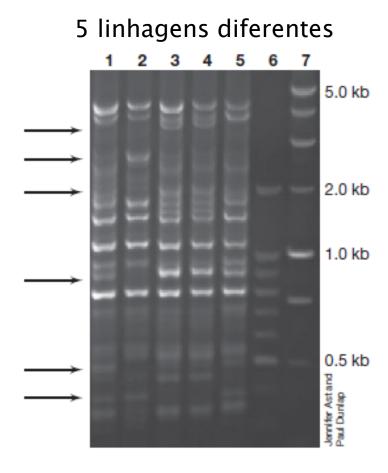
DNA profiling	Ribotyping (Section 16.9), AFLP, rep-PCR (Figure 16.21). Rapid method to distinguish between species and strains within a species
Multilocus sequence typing	Strain typing using DNA sequences of multiple genes (Figure 16.22). High resolution, useful for distinguishing even very closely related strains within a species
GC ratio	Percentage of guanine-cytosine base pairs in the genome. If the GC ratio of two organisms differs by more than about 5%, they cannot be closely related, but organisms with similar or even identical GC ratios may be unrelated. Not much used now in taxonomy because of poor resolution
Multiple-gene or whole genome phylogenetic analyses	Application of cladistic methods to subsets of genes or to whole genomes from the organisms to be compared. Yields better phylogenetic picture than single-gene analyses


Hibridização DNA-DNA



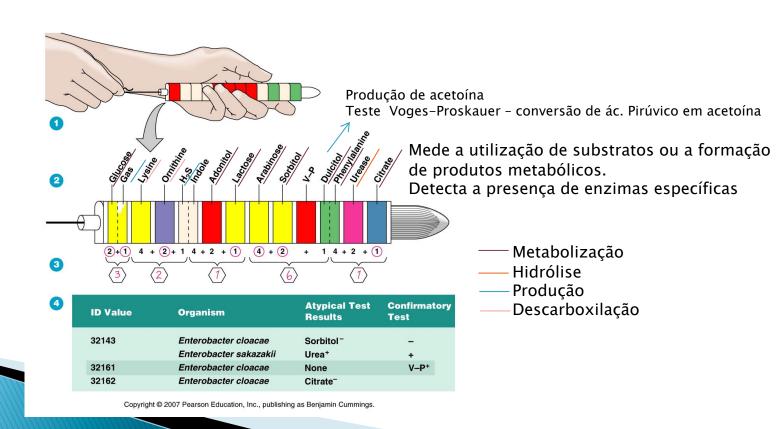
Hibridização DNA-DNA

- 1 Marcado
- 2- Digerido (frag. Pequenos)
- 3 Aquecido
- 4- Misturado
- 5 Resfriado
- 6- DNA dupla fita não hibridizado é separado
- 7- Mede a radioatividade e compara com um controle (100%)


Diferenciação entre espécies

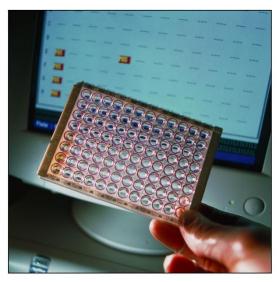
Identificação pelo perfil das Bandas rep-PCR (*repetitive extragenic palindromic PCR*)

- Análise de similaridade genotípica entre genomas
- Avalia a presença de variações na sequência de DNA ao longo de todo o genoma
- Baseia-se em fragmentos altamente conservados e repetitivos ao longo do genoma
- PCR com um par de primers específicos e verifica o padrão de bandas
- Distinguir entre linhagens


Outros métodos

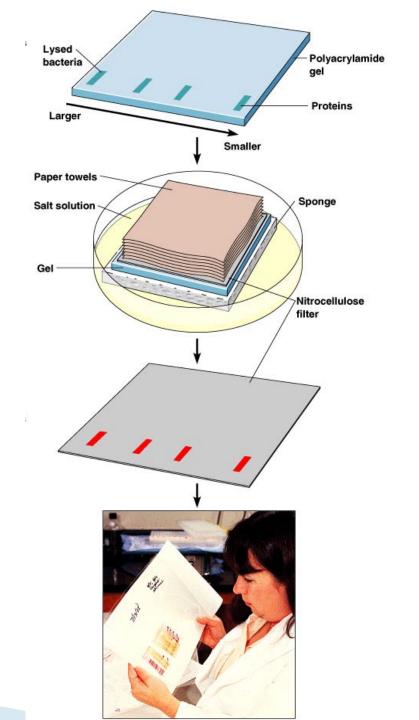
- Sorologia Teste de aglutinação
 - Anticorpo conhecido testa contra um organismo desconhecido

Outros métodos


- Teste Bioquímico rápido (atividade enzimática) Exemplo para teste de bactérias entéricas (família Enterobacteriaceae)
- A mudança de cor é um indicativo que houve reação química e a formação de produtos ácidos por exemplo (indicadores de pH)

Outros métodos

- Ensaio de ELISA.
- Placa com diferentes anticorpos aderidos.
- Incuba com um organismo desconhecido

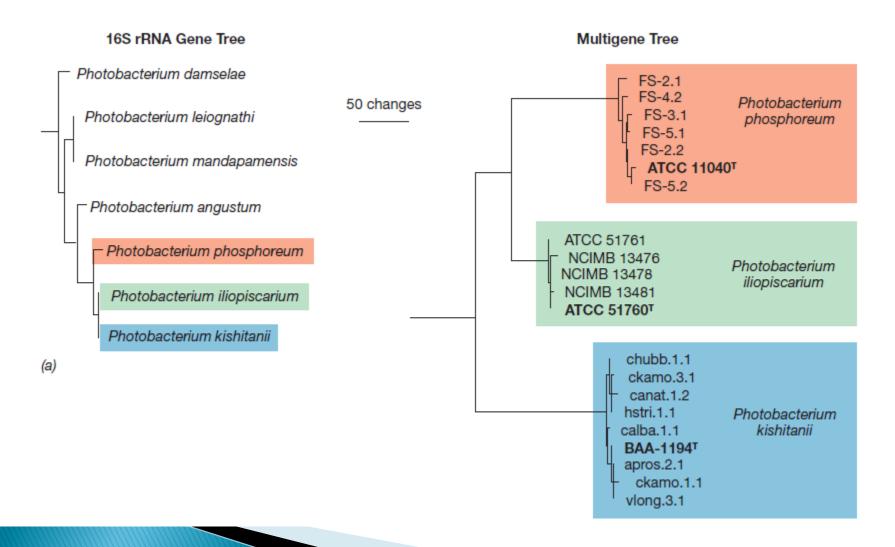

(a)

(b)

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

Outros Métodos

- Western Blotting
- Usa o soro do paciente


Classificação dos organismos

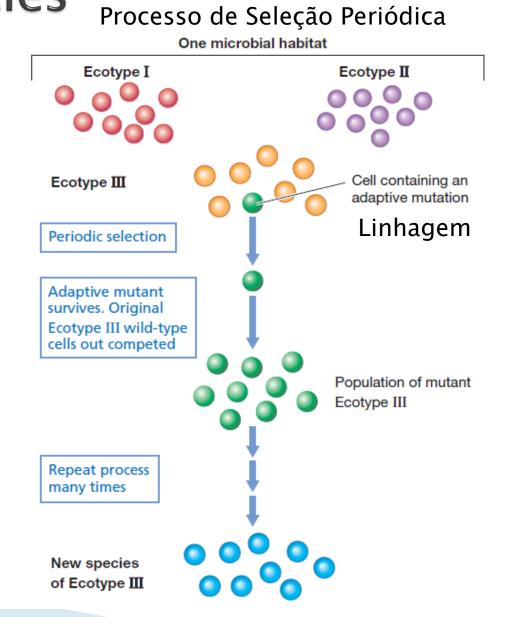
- Todos os nomes de espécies biológicas seguem o mesmo padrão: Gênero seguido da Espécie (com formato itálico).
- A primeira letra do gênero deve ser maiúscula e as demais em minúsculo.
- Espécie: É um conjunto de linhagens que compartilham alto grau de similaridade em vários aspectos (hibridização DNA-DNA de 70 % e rRNA 16S de mais de 97%) - organismos procariotos (assexuada)
- Organismos sexuados cruzamento entre espécies gera um ser infértil
- Exemplo: *Methanopyrus kandleri56*

Taxon	Nome
Domínio	Archaea
Filo	Euryarchaeota
Classe	Methanopyri
Ordem	Methanopyrales
Família	Methanopyraceae
Gênero	Methanopyrus
Espécie	kandleri

- Taxonomia combina :
 - Dados fenotípicos
 - Genotípicos
 - Filogenéticos

Conjunto de Linhagens forma uma espécie

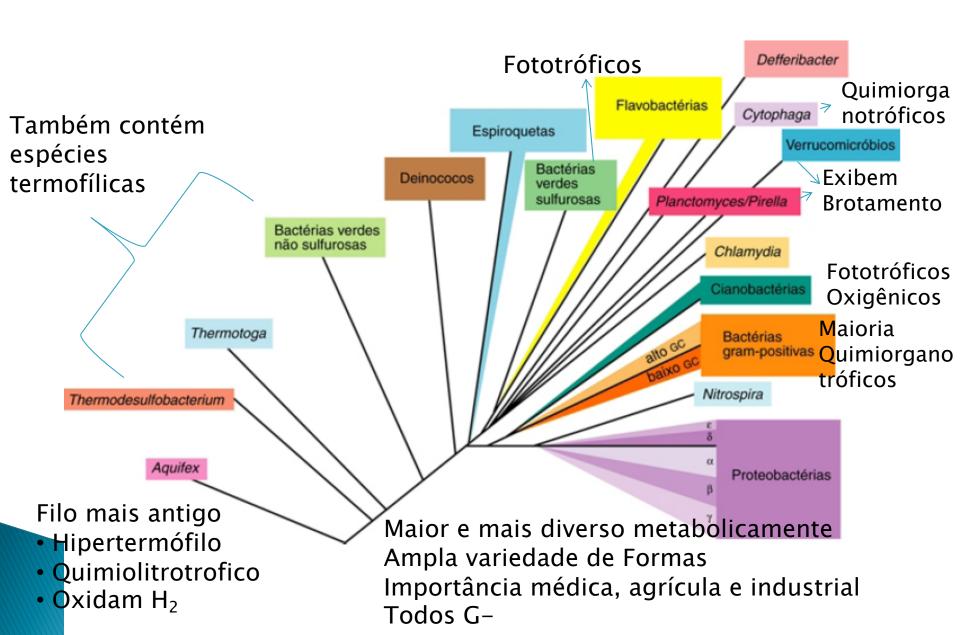
Especiação Bacteriana Surgimento de novas espécies Processo de Seleção Periódica


Ecotipo:

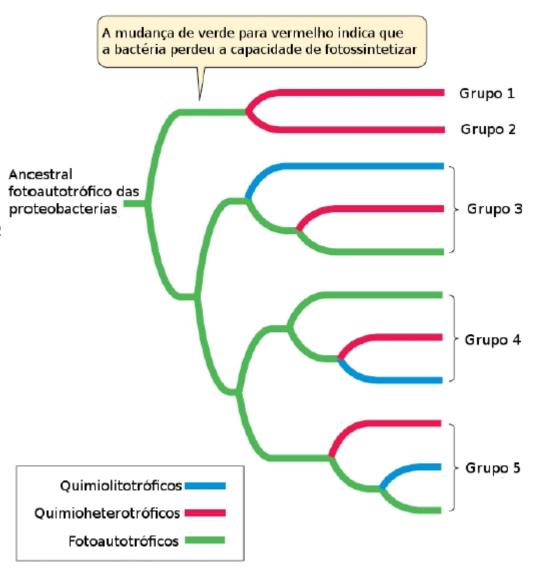
População que compartilham um determinado recurso

Dois passos na evolução

1 - Mutação


2- Seleção Periódica

Classificação e Nomenclatura


- Nomenclatura
 - Nome binomial em latim ou grego
 - Seguir regras específicas
 - Código Internacional de Nomenclatura de bactérias (contem as regras)
 - "Manual de Bergey" contem informações de todos os organismos classificados
 - "Os procariotos" fornece informações detalhadas sobre cultivo, isolamento, tem mais de 4100 páginas

Domínio de Bacterias

Protobactérias

- É o maior grupo de bactérias descritas
- Também conhecidas como bactérias púrpuras
- Fantástica diversidade metabólica
- Ancestral das proteobaterias era provavelmente fotoautotrófico
- Alguns grupos perderam a capacidade de fazer fotossíntese

Bancos de Dados de Organismos

Table 16.5 Some national microbial culture collections			
Collection	Name	Location	Web address
ATCC	American Type Culture Collection	Manassas, Virginia	http://www.atcc.org
BCCM/LMG	Belgium Coordinated Collection of Microorganisms	Ghent, Belgium	http://bccm.belspo.be
CIP	Collection de l'Institut Pasteur	Paris, France	http://www.pasteur.fr
DSMZ	Deutsche Sammlung von Mikroorganismen und Zellkulturen	Braunschweig, Germany	http://www.dsmz.de
JCM	Japan Collection of Microorganisms	Saitama, Japan	http://www.jcm.riken.go.jp
NCCB	Netherlands Culture Collection of Bacteria	Utrecht, The Netherlands	http://www.cbs.knaw.nl/nccb
NCIMB	National Collection of Industrial, Marine and Food Bacteria	Aberdeen, Scotland	http://www.ncimb.com

Questão

- Dois genes homólogos necessariamente pertencem ao mesmo genero?
- O que há em comum entre todos os organismos vivos no que diz respeito ao metabolismo?
- Porque o surgimento do RNA deve ter tido um papel essencial no surgimento da vida?

Questão para casa

Quais técnicas permitem distinguir diferentes espécies, diferentes cepas, diferentes generos e diferentes domínios?