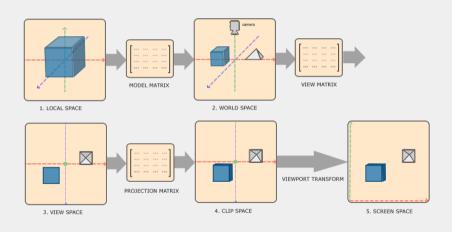
COMPUTAÇÃO GRÁFICA

PIPELINE DE VISUALIZAÇÃO

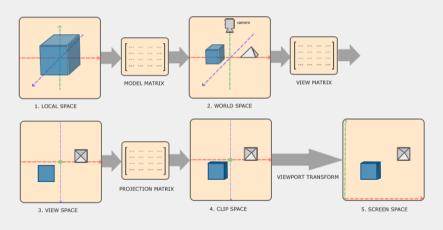
PROF. ALAOR CERVATI NETO

ESPAÇO DE COORDENADAS



 $P' = \text{Projection} \times \text{View} \times \text{Model} \times P$

ESPAÇO DE COORDENADAS



$$P' = Projection \times \boxed{\textit{View}} \times Model \times P$$

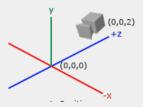
Espaço de Mundo→Espaço de Visão

- Transferência de objetos do cenário (mundo) para sistema de coordenada da visão.
- Dada a posição do observador/câmera:
 - ► Transladar o observador para a origem do sistema de coordenadas do mundo.
 - ► Rotacionar os eixos x_{view}, y_{view}, z_{view} do observador para alinhar com os eixos do mundo x_{world}, y_{world}, z_{world}.
- A Matriz View é composta por Rotação e Translação.

Determinando Ponto de Visão e Target:

- É preciso definir as coordenadas da câmera em relação ao Espaço Mundo.
- É o ponto de visão (olho) do observador.

$$P_{\rm O}=(x_{\rm O},y_{\rm O},z_{\rm O})$$

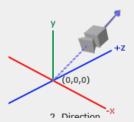


Neste exemplo, o ponto de visão é a coordenada (0,0,2) e o *Target* é a coordenada (0,0,0).

Determinando o vetor normal N:

- A partir do ponto de visão e *target*, conseguimos uma "direção" da câmera.
- Obtém o eixo z da câmera (z_{view}).

$$n=\frac{N}{|N|}=(n_x,n_y,n_z)$$

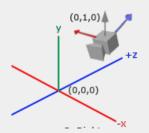


Uma forma de calcular o vetor normal N é subtrair o ponto de visão com o *target* e depois normalizar.

Determinando o vetor view-up V:

- O vetor V usualmente é definido como (0, 1, 0).
- Usaremos para obter o eixo y da câmera (y_{view}) .

$$u = \frac{V \times n}{|V \times n|} = (u_x, u_y, u_z)$$

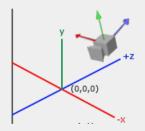


O vetor normalizado u é utilizado para obter o x_{view} . A partir de u e n, obtemos o y_{view} .

Determinando o vetor view-up V:

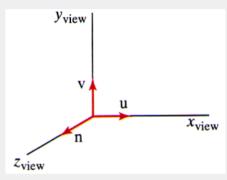
- O vetor V usualmente é definido como (0, 1, 0).
- Usaremos para obter o eixo y da câmera (y_{view}).

$$v = n \times u = (v_x, v_y, v_z)$$



O vetor normalizado u é utilizado para obter o x_{view} . A partir de u e n, obtemos o y_{view} .

Coordenadas da Visão



$$n = \frac{N}{|N|} = (n_x, n_y, n_z)$$

$$u = \frac{V \times n}{|V \times n|} = (u_x, u_y, u_z)$$

$$v = n \times u = (v_x, v_y, v_z)$$

Gerada por Translação e Rotação:

■ Se a origem do sistema de visão for $P_0 = (x_0, y_0, z_0)$, a matriz de translação será:

$$T = \begin{bmatrix} 1 & 0 & 0 & -x_0 \\ 0 & 1 & 0 & -y_0 \\ 0 & 0 & 1 & -z_0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

■ A matriz de rotação pode ser obtida dos vetores $u = (u_x, u_y, u_z)$, $v = (v_x, v_y, v_z)$ e $n = (n_x, n_y, n_z)$:

$$R = \begin{bmatrix} u_{x} & u_{y} & u_{z} & 0 \\ v_{x} & v_{y} & v_{z} & 0 \\ n_{x} & n_{y} & n_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R \cdot T = \begin{bmatrix} u_{x} & u_{y} & u_{z} & -u \cdot P_{o} \\ v_{x} & v_{y} & v_{z} & -v \cdot P_{o} \\ n_{x} & n_{y} & n_{z} & -n \cdot P_{o} \\ o & o & o & 1 \end{bmatrix}$$

MATERIAL DE BASE PARA A AULA

- Hughes, J. F., Van Dam, A., Foley, J. D., McGuire, M., Feiner, S. K., & Sklar, D. F. (2014). Computer graphics: principles and practice. Terceira Edição. Pearson Education.
- LearnOpenGl. Coordinate-Systems. https://learnopengl.com/Getting-started/Coordinate-Systems. Acesso em Abril/2020.
- Computação Gráfica: Aula 07. Slides de Ricardo M. Marcacini. Disciplina SCC0250/0650, ICMC/USP, 2021.

EXERCÍCIO PARA CÔMPUTO DE PRESENÇA

Modifique o exercício da aula anterior para considerar a matriz *View*. Demonstre o resultado da operação sobre os vértices já alterados pela matriz *Model*.