Modern Solid State NMR Techniques for the Study of Disordered Materials

Hellmut Eckert

Institut für Physikalische Chemie WWU Münster, Germany

\&

Instituto de Física, Sao Carlos Universidade de Sao Paulo, Brasil

Literature

Highlight articles

D. Laws, H. M. Bitter, A. Jerschow, Angew. Chem. Int. Ed. 41 (2002), 3096.
M. J. Duer, Ann. Rep. NMR Spectrosc. 43 (2000), 1.

Fundamental Principles (Theory)

A. Abragam, The Principles of Nuclear Magnetism, Clarendon Press Oxford (1961).
C. P. Slichter, Principles of Magnetic Resonance, Springer Verlag Heidelberg 1978.
B.C. Gerstein, C.R. Dybowski, Transient Techniques in NMR of Solids, Academic Press Inc (1985).
M. Mehring, Principles of High Resolution NMR in Solids, Springer Verlag Heidelberg (1983)
R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford (1987)

NMR Applications to Materials Sciences
J. Klinowski, Ed. New Techniques in Solid State NMR, Topics in Current Chemistry, 246, Springer-Verlag Heidelberg 2005.
K. Schmidt-Rohr, H.W. Spiess, Multidimensional Solid-State NMR and

Polymers, Academic Press, London (1996).
M. J. Duer, Introduction into Solid State NMR Spectroscopy, Blackwell Publ. 2004

NMR = Nuclear Magnetic Resonance

N: Property of the Atomic Nuclei in Matter
M: Magnetic Property, arising from Spin Angular Momentum

R: Interaction with electromagnetic waves spectroscopy

Nuclear Magnetism

Nuclear magnetic moment: $\mu=\gamma \hat{J}=\gamma \hbar \hat{I}$

I, the angular momentum, is subject to quantization $\quad z$ laws, concerning both magnitude and orientation

$$
\begin{aligned}
& \hat{\overrightarrow{\mathbf{I}}}^{2}|I, m\rangle=\mathrm{I}(\mathrm{I}+1)|I, m\rangle \\
& \hat{\mathrm{I}}_{\mathrm{z}}|I, m\rangle=\mathrm{m}|I, m\rangle
\end{aligned}
$$

I: spin quantum number
m : orientational quantum number with $m=-I,-I+1, \ldots l-1, I$

$2 \mid+1$ orientational states

Relationship Spin-magnetic moment

Classical model: charge q on a circle with radius r

Magnetic moment:
$\mu=$ current \times area
Charge q on a circle: velocity:

$$
v=2 \pi r / t \quad->t=2 \pi r / v
$$

current $=\mathrm{q} / \mathrm{t}=\mathrm{qv} / \mathbf{2} \pi \mathrm{r}$

$$
\mu=q \vee r / 2
$$

Angular momentum: $J=p \times r=\mathrm{mvr}$ Magnetic moment: $\quad \mu=\mathrm{J} \mathbf{q} / \mathbf{2 m}$ (classical)
$\mu=J \gamma$ (quantum mechanical)
$\gamma:$ gyromagnetic ratio (units $\mathrm{T}^{-1} \mathrm{~s}^{-1}$)

Magnetic moments interact with magnetic fields

Zeeman interaction: E = - $\mu \mathrm{B}$

B is called „magnetic flux density" and characterizes the strength of the magnetic field: units 1Tesla $=\mathrm{Vs} / \mathbf{m}^{2}$

Orientational quantization of spin: $\left|\mathrm{S}_{\mathbf{z}}\right|=\mathrm{m} \mathbf{h} / \mathbf{2} \pi$

$$
F=-d E / d z=-\mu(d B / d z) \cos (\mu, B)
$$

In an inhomogeneous magnetic field (magnetic field gradient) different spin orientations experience forces of different strengths

Case spin-1/2: Two nuclear spin orientations

$E(m)=-m \gamma \hbar B_{0} \quad$ (Zeeman-interaction)

The two orientations have different energies,

 difference depends on B_{0} and γ

Stern - Gerlach experiment

The Stern - Gerlach experiment, 1922

Experiment of Rabi

Resonance: $\omega=\gamma \mathbf{B}_{\text {。 }}$

History *

1922 Stern-Gerlach Experiment
1938 Rabi- Experiment
1945/46 Purcell/Pound, Bloch: first NMR in cond. matter
1948 Bloembergen, Purcell, Pound: relaxation
1948 Pake, van-Vleck: dipolar analysis
1949 KNIGHT shift in metals
1950 Dickinson, Proctor, Yu: chemical shift
1950-s: commercial spectrometers (VARIAN)
1952 Gutowsky, Slichter spin-spin coupling
1950s Hahn, Slichter, pulsed NMR, spin echo

* Nobel laureates

Important milestones

1958	Andrew: magic-angle sample spinning
1966	Ernst, Anderson: pulsed Fourier Transf. NMR
early 1970-s	Lauterbur, Mansfield: NMR Imaging
early 1970s	Jeener, Ernst, Bax: 2-D NMR
1970-s	Wüthrich: Protein structure solutions
1975	Schaefer: cross-polarization
$1980-\mathrm{s}$	Spiess: Polymer dynamics via NMR
1985	Weitekamp: Para Hydrogen polarizaiton
1989	Pines: Xe- and He Hyperpolarizaiton
1990	Tycko: Laser polarization
$1990-s$	Griffin, Levitt, S. Vega: multipulse NMR 1995
	Frydman: High-res. NMR of Q-nuclei
2000:	Nielsen: SIMPSON software
2000-s:	High-field magnet technology-> 23.6 T
2000-s:	Kutzelnigg, Gauss, Schwarz: DFT-calculations
2000-s	Griffin, Emsley, Bodenhausen: DNP/MAS

Nuclear Magnetism

Nuclear magnetic moment: $\mu=\gamma \hat{J}=\gamma \hbar \hat{I}$

I, the angular momentum, is subject to quantization $\quad z$ laws, concerning both magnitude and orientation

$$
\begin{aligned}
& \hat{\overrightarrow{\mathbf{I}}}^{2}|I, m\rangle=\mathrm{I}(\mathrm{I}+1)|I, m\rangle \\
& \hat{\mathrm{I}}_{\mathrm{z}}|I, m\rangle=\mathrm{m}|I, m\rangle
\end{aligned}
$$

I: spin quantum number
m : orientational quantum number with $m=-I,-I+1, \ldots l-1, I$

$2 \mid+1$ orientational states

Nuclear spin quantum numbers

Spin quantum number

Case spin-1/2: Two nuclear spin orientations

$$
\mathrm{E}(\mathrm{~m})=-\mathrm{m} \gamma \mathrm{hB}_{0} \quad \text { (Zeeman-interactions) }
$$

The two orientations have different energies, difference depends on the value of γ

NMR is element selective

Precession of spins around external field similar to gyroscope

The precession (Larmor) frequency of the nuclei is given by

$$
\omega_{p}=\gamma \boldsymbol{B}_{\mathrm{eff}}
$$

where $B_{\text {eff }}=B_{0}+B_{\text {int }}$
$B_{\text {int }}$ contains important structural and chemical information NMR measures the precession (Larmor) frequency

How is it done?

By application of a second magnetic field fluctuating with frequency $\omega_{0} \sim \omega_{p}$

E
Radio waves

Resonance absorption occurs if $\omega_{0} \sim \omega_{p}$

$$
\mathbf{M}_{\mathrm{z}}=\Sigma_{\mathrm{i}} \frac{\mu_{i}}{V}\left(\frac{\mathbf{A}}{\mathbf{m}}\right)
$$

Calculation of M_{z} :
$E / V=\Sigma_{i} B_{0} n_{i} \mu_{i} / \mathbf{V}=M_{z} B_{\mathbf{0}}$
where: $\mu_{i}=m_{i} \gamma \hbar$

$$
\mathbf{n}_{\mathrm{i}}=\frac{\exp -E_{\mathrm{i}} / k_{B} T}{\sum_{\mathrm{i}} \exp -E_{\mathrm{i}} / k_{B} T} \mathbf{N}
$$

$\exp -\frac{E_{\mathrm{i}}}{k_{B} T} \approx 1-\frac{E_{\mathrm{i}}}{k_{B} T} \quad \mathrm{E}_{\mathrm{i}}=-\mathrm{m}_{\mathrm{i}} \gamma \hbar \mathrm{B}_{0}$
(HT approximation) $\quad \Sigma_{\mathrm{i}} \exp -E_{\mathrm{i}} / \mathrm{k}_{\mathrm{B}} \mathrm{T}=2 \mathrm{I}+1$

$$
\mathbf{E} / \mathrm{V}=\Sigma_{\mathrm{i}}\left(1+\frac{\mathbf{m}_{\mathrm{i}} \gamma \hbar \mathrm{~B}_{0}}{k_{B} T}\right) \mathrm{m}_{\mathrm{i}} \gamma \hbar \frac{\mathrm{~N}}{\mathrm{v}}=\mathrm{M}_{\mathrm{z}} \mathbf{B}_{0}
$$

Macroscopic magnetization in z-direction :

$$
M_{z}=M_{o}=\xlongequal{\left\{\begin{array}{l}
V^{2} \hbar^{2} I(I+1) \\
3 k T \\
\text { NMR is quantitative }
\end{array} B_{o} \quad\right. \text { No net magnetization in x- or y-direction }}
$$

The Rotating Frame

In contrast to the B_{0} field, the B_{1} field changes direction in time with the frequency ω_{0}
To simplify the description of the magnetization's time dependence a rotating frame is introduced

Laboratory frame

Rotating frame

Rotating frame rotates with frequency ω_{0} of B_{1}
90° pulse: rotates the z-magnetization into the $x-y$-plane 180° pulse: flips the z-magnetization into the -z-direction

Measuring NMR spectra

= Detection of Larmor frequencies present in the sample

1. B_{1} field is irradiated for a short time t_{p} along the x, y direction
2. If $\gamma B_{1} t_{p}=\pi / 2$ then M_{z} is flipped by 90 degrees (90° pulse)
3. After the pulse, precession of M induces voltage in the coil.
4. This voltage, oscillating with ω_{p}, is the NMR signal

The Basic NMR Experiment

90° pulse -> magnetization flip
Free Induction Decay

NMR-Spectrum

Como funciona?

Sowre, fequercy 20.
B. field is created and iste Hee wots tre sample. Br os
 the cot for a livaly polarized field cect pos.tion into two circularly polarzed cosis

$$
\begin{aligned}
& \text { Rosin } \\
& B_{\text {rigkt }}(z, t)=B_{1} \cos \left(k z-\omega_{t}^{t}\right)+B_{1} \sin \left(k z-\omega_{t} t\right) \\
& B_{1} \text { (qt }(z, t)=B_{1} \cos \left(k z-\omega_{0} t\right)
\end{aligned}
$$

The effect of the $B_{1} f^{3} i e l d$ upon the magnetization is conveniently described in a rotating coordinate system. oral mover wit the frequency of the applied radio waver, is. . .

Laboratory frame
prover
B_{1} vectorrotatesin
Re xyplare $\perp z$

Rotating frame

Bu vector a fixed a aligned along $x^{\prime} a x$

Both in the laboratory frame and in the rota frame te magnetization is a cong Z. ie the is monehzatio

Signal Detection by electromagnetic induction

Schematic Experimental Set-up

Equipment

magnet probe Sample in coil
Console: signal excitatio and detection

Relaxation Processes

Transverse relaxation $\left(T_{2}\right)$: dephasing of spins in the $x-y$ plane (distribution of precession frequencies, spin-spin interactions)

Longitudinal relaxation (T_{1}): build-up of z-magnetization (return to equilibrium, energy exchange with surroundings (lattice)

Four distinct interactions

- magnetic shielding Electric quadrupole coupling Indirect spin-spin coupling magnetic dipole coupling

In the solid state:
anisotropy: $\omega_{p} \sim 3 \cos ^{2} \theta-1$

Magnetic Shielding

Resonance frequency (bare nucleus):
Effective magnetic field at nucleus:
Resonance frequency (real sample)
$\omega_{0}=\gamma B_{0}$
$B_{e f f}=B_{0}(1-\sigma)$
$\omega_{L}=\gamma B_{0}(1-\sigma)$

Chemical shift

$$
\delta \equiv \frac{\omega_{L}^{x}-\omega_{L}^{r e f}}{\omega_{L}^{\text {ref }}}
$$

Effective magnetic field arises from shielding or deshielding of the external magnetic field by electrons

Chemical Shielding Anisotropy

Solid state : chemical shielding is anisotropic:
\rightarrow tensorial description

$$
\omega_{L}=\omega_{0}\left[1-\sigma_{i s o}-\frac{1}{3}\left(\sigma_{z^{\prime} z^{\prime}}-\sigma_{x^{\prime} x^{\prime}}\right)\left(3 \cos ^{2} \theta-1\right)\right]
$$

Example: ${ }^{31} \mathrm{P}$ NMR of Phosphates

Indirect spin-spin Coupling

- Spin-spin interaction transmitted via polarization of bonding electrons
- HAMILTONIAN
$\#_{J}=2 \pi \hat{I}_{1} \boldsymbol{J} \hat{I}_{2}$ homonuclear
$\mathcal{H}_{J}=2 \pi \hat{i} \mathcal{J} \hat{S}$ heteronuclear
- Anisotropy accounted for by tensorial description
- Isotropic component: $\mathbf{J}_{\text {iso }}$ (scalar, isotropic coupling constant)
- Anisotropic component: $\Delta \mathbf{J}$, same dependence on spin operators as
the throughspace dipole-dipole coupling
- Liquid-state and MAS-NMR: only $\mathbf{J}_{\text {iso }}$ relevant: $\Pi_{i} 2 n_{i} \mathbf{l}_{\mathbf{i}}+1$ multiplicity rule
- $n_{i}=$ number of equivalent spins of quantum number I_{i} the observed nucleus is coupled to

Examples of Spin-Spin Coupling Multiplicities

Karplus-Relation for J-coupling

Karplus Curve

For ${ }^{3} \mathrm{~J}\left({ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}\right)$ coupling:

$$
\begin{aligned}
& J(\phi)=C \cos 2 \phi+B \cos \phi+A \\
& \boldsymbol{A}=4.22, \boldsymbol{B}=-0.5, \text { and } \boldsymbol{C}=4.5 \mathrm{~Hz}
\end{aligned}
$$

Important for conformational studies (protein folding)
Nobel Prize 2013

Magnetic dipole interactions

Magnetic moments of nearby spins affect the local magnetic field and thus the resonance frequency. „Through-space" interaction

Dipolar Hamiltonian Terms

Multi-Spin Interactions: Second Moments

$$
M_{2}=\frac{4}{15}\left(\frac{\mu_{0}}{4 \pi}\right)^{2} \gamma_{I}^{2} \gamma_{S}^{2} S(S+1) \hbar^{2} \sum_{S} r_{I S}^{-6}
$$

for heteronuclear coupling between spin species I and S

Spatial distribution models in glasses

random

clustered

uniform

Selective measurement by spin-echo decay

Selective for homonuclear dipole coupling strengths

$$
\mathrm{S} / \mathrm{S}_{0}=\exp -\left(2 \mathrm{t}^{2} \mathrm{M}_{2}\right)
$$

Spatial Atomic Distributions in P-Se Glasses

Uniform

D. Lathrop, H. Eckert, J. Am. Chem. Soc. 111 (1989), 3536
D. Lathrop, H. Eckert, Phys. Rev. B 43 (1991), 7279

Nuclear electric quadrupole moment:

 non-spherical distribution of nuclear charge$$
\begin{array}{llll}
\text { A } & \text { B } & \text { C } & \text { D }
\end{array}
$$

$$
\begin{array}{ccc}
\mathrm{I}=0 & \mathrm{I}=1 / 2 \quad \mathrm{I} \geqq 1 ; \mathrm{eQ}>0 \quad \mathrm{I} \geqq 1 ; \mathrm{eQ}<0 \\
& \mathrm{eQ} \sim 10^{-25} \text { to } 10^{-30} \mathrm{~m}^{2} &
\end{array}
$$

Nuclear spin values

The physical picture

This quadrupole moment interacts with local electric field gradients created by the bonding environment of the nuclei.
-> probe of local symmetry

Electric field gradient

Symmetric second-rank tensor

$$
\nabla \mathrm{E}_{\alpha, \beta}=\left[\begin{array}{ccc}
\mathrm{V}_{\mathrm{xx}} & \mathrm{~V}_{\mathrm{xy}} & \mathrm{~V}_{\mathrm{xz}} \\
\mathrm{~V}_{\mathrm{yz}} & \mathrm{~V}_{\mathrm{yy}} & \mathrm{~V}_{\mathrm{yz}} \\
\mathrm{~V}_{\mathrm{zx}} & \mathrm{~V}_{\mathrm{zy}} & \mathrm{~V}_{\mathrm{zz}}
\end{array}\right]
$$

isotropic

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

2 parameters: and
diagonal in the principal axis system

$$
\left|v_{z^{\prime} z^{\prime}}\right| \geq\left|v_{y^{\prime} y^{\prime}}\right| \geq\left|v_{x^{\prime} x^{\prime}}\right|
$$

Laplace equation $V_{x^{\prime} x^{\prime}}+V_{y^{\prime} y^{\prime}}+V_{z^{\prime} z^{\prime}}=0$

$$
\begin{aligned}
& \text { axial, } \eta=0 \\
& \left(\begin{array}{ccc}
-0.75 & 0 & 0 \\
0 & 0.75 & 0 \\
0 & 0 & 1.5
\end{array}\right)
\end{aligned}
$$

intermediate, $\eta=1 / 3$

$$
\left(\begin{array}{ccc}
-1.5 & 0 & 0 \\
0 & 0.5 & 0 \\
0 & 0 & 1.0
\end{array}\right)
$$

$$
\eta \equiv \frac{V_{y^{\prime} y^{\prime}}-V_{x^{\prime} x^{\prime}}}{V_{z^{\prime} z^{\prime}}}
$$

deviation from cylindrical symmetry

The Quadrupolar Hamiltonian

$$
E_{e l}=V(0) \int \rho d \tau+\sum_{\alpha} V_{\alpha} \int x_{\alpha} \rho d \tau-\frac{1}{2!} \sum_{\alpha, \beta} V_{\alpha, \beta} \int x_{\alpha} x_{\beta} \rho d \tau+\ldots \ldots \ldots
$$

Coulomb term dipole term quadrupole term

$$
\begin{gathered}
\mathrm{Q}_{\alpha \beta}=\int\left(3 \mathrm{x}_{\alpha} \mathrm{x}_{\beta}-\delta_{\alpha \beta} \mathrm{r}^{2}\right) \rho \mathrm{d} \tau \\
\mathrm{E}_{\mathrm{Q}}=\frac{1}{6} \sum_{\alpha, \beta} \mathrm{V}_{\alpha \beta} \mathrm{Q}_{\alpha \beta} \\
\hat{\mathrm{Q}}_{\alpha \beta}=\left[\frac{3\left(\hat{\mathrm{I}}_{\alpha} \hat{\mathrm{I}}_{\beta}+\hat{\mathrm{I}}_{\beta} \hat{\mathrm{I}}_{\alpha}\right)}{2}-\delta_{\alpha \beta} \hat{\mathrm{I}}^{2}\right] \cdot \frac{\mathrm{eQ}}{\mathrm{I}(2 \mathrm{I}-1)} \quad \begin{array}{c}
\text { Expre } \\
\hat{\mathrm{H}}_{\mathrm{Q}}=\frac{\mathrm{e}^{2} \mathrm{qQ}}{4 \mathrm{I}(2 \mathrm{I}-1)}\left[\left(3 \hat{\mathrm{I}}_{\mathrm{z}^{\prime}}^{2}-\hat{\mathrm{I}}^{2}\right)+\eta\left(\hat{\mathrm{I}}_{\mathrm{y}^{\prime}}^{2}-\hat{\mathrm{I}}_{\mathrm{x}^{\prime}}^{2}\right)\right]
\end{array}
\end{gathered}
$$

For axially symmetric EFG, the $1^{\text {st }}$ order correction is:

$$
\begin{aligned}
& \langle\mathrm{m}| \hat{\mathrm{H}}_{\mathrm{Q}}|\mathrm{~m}\rangle=\frac{\mathrm{e}^{2} \mathrm{qQ}}{4 \mathrm{I}(2 \mathrm{I}-1)}\left[3 \mathrm{~m}^{2} \cos ^{2} \theta+\frac{3}{2} \mathrm{I}(\mathrm{I}+1) \sin ^{2} \theta-\frac{3}{2} \mathrm{~m}^{2} \sin ^{2} \theta-\mathrm{I}(\mathrm{I}+1)\right] \\
& \mathrm{E}_{\mathrm{m}}^{(\mathrm{I})}=-\mathrm{m} \gamma \hbar \mathrm{~B}_{\mathrm{o}}+\frac{\mathrm{e}^{2} q \mathrm{Q}}{4 \mathrm{I}(2 \mathrm{I}-1)}\left[3 \mathrm{~m}^{2}-\mathrm{I}(\mathrm{I}+1)\right] \frac{3 \cos ^{2} \theta-1}{2}
\end{aligned}
$$

Energy level diagram for I=3/2
$\Theta=90^{\circ}$
$\Theta=0^{\circ}$

Effect of Quadrupolar Interactions on the NMR Lineshape

Powder pattern for spin-7/2

Energy

Stronger Quadrupole Coupling:

Second-order perturbation theory

Anisotropic lineshape broadening caused by electric quadrupolar interactions

C_{Q} : maximum component.
$\eta=\left(q_{x x}-q_{y y}\right) / q_{z z}$: asym. Parameter.
$\mathrm{C}_{\mathrm{Q}} \sim \sum \mathrm{q}_{\mathrm{eff}} / \mathrm{r}^{3}$
(point charge model)

Example of an application: Electric field gradients in borates

Typical spectrum of a borate glass

Trigonal planar $\mathrm{D}_{3 \mathrm{~h}}$ Three-coord. $\mathrm{C}_{2 \mathrm{v}}$ Tetrahedral T_{d}

${ }^{23} \mathrm{Na}$ Quadrupole Interaction and Na Coordination

H. Koller, G. Engelhardt, A.P.M. Kentgens, J. Sauer, J. Phys. Chem. 98 (1994), 1544-1551

Magic Angle Spinning - MAS

High-resolution spectra, governed by isotropic chemical shifts and J-coupling
-- connectivities
-- coordination numbers

Magic Angle Spinning

MAS-NMR probe

The effect of spinning speed

static

Lithium inventory in $\mathrm{LiC}_{\mathrm{n}}$ electrodes studied by ${ }^{7}$ Li NMR

S. Hayes, H. Eckert et al., J. Phys. Chem. A107, 3866 (2003)

NMR as a Technique in Solid State Sciences

Local Selectivity:

Element Selectivity:

Interaction Selectivity:

Uniform Sensitivity:
Dynamic Sensitivity:

Low Detection Sensitivity: Bulk Method:

Magnetic Interference:

Disorder/Lack of Periodicity
Compositional Complexity Low Scattering Contrast (H; Si/Al)

Distance Measurements
Connectivity Information Electron Density Information

Quantitative Applications
Motional Processes on Continuous Timescale (10^{2} to $10^{-9} \mathrm{~s}$)
10^{17} to 10^{18} spins required poor spatial resolution
surfaces/interfaces difficult to study transition metals, rare earths: limited

