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A randomized version of the recently developed barycenter

method for derivative-free optimization has desirable properties

of a gradient search. We develop a complex version to avoid

evaluations at high-gradient points. The method is

parallelizable in a natural way and robust under noisy

measurements, and has applications to control design.
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Problem of interest.

min
x∈X

f(x)

No explicit, differentiable expression for f(·) is available.

Values f(xi) for a set of xi obtained by experiment, simulation.
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Barycenter — batch and recursive formulas.

Batch:

x̂n =

∑n
i=1 xie

−νf(xi)∑n
i=1 e−νf(xi)

. (1)

Recursive:

mn = mn−1 + e−νf(xn), (2)

x̂n =
1

mn

(
mn−1x̂n−1 + e−νf(xn)xn

)
. (3)

Pick points xn as sum of barycenter x̂n−1 and “curiosity” zn:

xn = x̂n−1 + zn, (4)

∆x̂n = x̂n − x̂n−1 =
e−νf(xn)

mn−1 + e−νf(xn)
zn. (5)
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Statement of results.
Theorem 1. If zn has a Gaussian distribution, the expected

value of ∆x̂n = x̂n − x̂n−1 is proportional to negative of the

average value of the gradient of f(x̂n−1 + zn) in the support of

the distribution of z.

Define Fn(z) = e−νf(x̂n−1+z)

mn−1+e−νf(x̂n−1+z), F̄n(z) =
mn−1

mn−1+e−νf(x̂n−1+z)Fn.

Theorem 2. Under the conditions of Theorem 1 and assuming

that the variance of z is small, the variance of ∆x̂n for z̄ = 0

near a critical point of f(x) where ∇f = 0 is approximately

Var(∆x̂) ≈ ΣE[F2]− 2νΣTE
[
FF̄∇2f

]
Σ. (6)
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Complex coefficient ν.

ηαn =

∑n
i=1 x

α
i e−νf(xi)∑n

i=1 e−νf(xi)
, (7)

Now estimate of extremum is (for each coordinate α)

x̂αn = |ηαn |. (8)

Theorem 3. The expected contribution of measurements made

outside of any region where ∇f ≈ 0 is discounted by one factor,

proportional to ∇f and to the ratio between the complex

magnitude of ν and its real part, for each dimension of the

search space.

Destructive interference motivates employing complex values.
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Noise or experimental errors.

Minimize f using noisy oracle answers f(xi) + wi.

Nominal values m̄ =
∑n

i=1 e−νf(xi) and η̄ =
∑n

i=1 xie
−νf(xi)/m̄,

scalar quantity ¯̄m =
∑n

i=1 e−2νf(xi), vector ¯̄η =
∑n

i=1 xie
−2νf(xi)/ ¯̄m,

matrix η̌ =
∑n

i=1 xix
T
i e−2νf(xi)/ ¯̄m.

Theorem 4. Assuming σ2 (variance of wi) small, the mean and

variance of η are approximately:

E[η] ≈ η̄ +
¯̄m

m̄2
(η̄ − ¯̄η)ν2σ2 and (9)

Var[η] ≈
¯̄m

m̄2
(η̄η̄T − η̄¯̄η − ¯̄ηη̄ + η̌)ν2σ2. (10)
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Illustration: Rosenbrock banana function.

f(x, y) = 100
(
x2 − y

)2
+ (1− x)2
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Perturbed quadratic function.

f(x, y) = 10x2
(

1 +
75

100

cos(70x)

12

)
+

cos(100x)2

24

+ 2y2
(

1 +
75

100

cos(70y)

12

)
+

cos(100y)2

24
+ 4xy

0 20 40 60 80 100

0.01

0.10

1

10

100

function evaluations

fu
nc
tio
n
va
lu
es

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

Log plot, missing values are numerical inconsistencies.
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Canoe function.

(1− e||x||2) max(||x− c||2, ||x− d||2), with c = −d = [30,40]T
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(Apologies for the obsolete data visualization.)
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Application: Robot searching signal source.

In the spirit of

extremum seeking

control.

Work by Bruno

Lobo, USP.
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Adaptive control example.

Open–loop unstable, non-minimum phase plant:

G(s) =
0.01(3− 8s)

s2 − 0,01
.

Work by Rodrigo Romano, Instituto Mauá de Tecnologia.
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Simulation example.

Morse observer with 2 pole pairs at s = −1.414(1± j).

Direct optimization settings:

• T = 8s (duration of intervals).

• |z|2 = yTQy + uTRu, with Q = 10 and R = 0.1.

• K(t0) = − [2 1.5 0 0] (closed–loop unstable with initial

gain).
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Plant input output behaviour.
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Barycenter objective function value.
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Feedback controller parameters.

0 50 100 150 200 250 300 350 400 450 500

−2

−1

0
ρ

1
(t

)

 

 

Applied gain: ρ Barycenter

0 50 100 150 200 250 300 350 400 450 500

−10

−5

0

ρ
2
(t

)

0 50 100 150 200 250 300 350 400 450 500
−0.1

0

0.1

0.2

ρ
3
(t

)

0 50 100 150 200 250 300 350 400 450 500

−0.2

0

0.2

ρ
4
(t

)

Time (s)

15



Morse observer.

Control plant with output y ∈ Rny, input u ∈ Rnu using

observer–based direct adaptive controller

ẋ = AOx+BOu+DOy (11)

u = K(t)x. (12)

AO, BO, DO are fixed, K is a tunable feedback parameter.

State and output estimators

x̂ = EO(θ)x (13)

ŷ = CO(θ)x+GO(θ)y. (14)
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Quadratic error equation.

Compute

|z|2 = yTQy + uTRu. (15)

Stabilizability of (A,B)⇒ ∃P > 0 such that

ATP + PA− PBR−1BTP + CTO(I −G)−1Q(I −G)−1CO = 0

for positive–definite matrices Q and R.

∫ ti
ti−T

|z|2 dt =
∫ ti
ti−T

xT (K −K∗)TR(K −K∗)xdt

+x(ti−T )TPx(ti−T )−x(ti)
TPx(ti)
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Direct optimization.

Feedback K linearly parametrized by ρ.

Task: tune ρ to minimize ∫ ti
ti−T

|z|2 dt

Solution exists: K(ρ) = K∗.
Gradient methods not available.

During each interval [ti − T, ti), apply constant feedback K(ρi),

obtain the control cost f(ρi).

At each ti use barycenter formula to compute ρ̂(ti).

Pick ρ(ti) as a random variable with mean ρ̂(ti).
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Estimate parameters of hybrid linear model.

ẋ(t) = AMσ x(t) +BMσ u(t)

y(t) = CMσ x(t) +DM
σ u(t),

using measurements {u(tk), y(tk)}, k ∈ {0,1, . . . , N} of input and

output signals.

Switching signal σ(t) ∈ {1,2, . . . , S} is piecewise constant

between switching times {τ1, . . . , τS}, which themselves are

unknown a priori and need to be determined.

Also work with Rodrigo Romano, Instituto Mauá de Tecnologia.
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Consider single model switch, use regressor form.

ŷ(t) = θTσφ(t),

Search for candidate switching time τ that minimizes integral

square error J(τ) = J1(τ) + J2(τ) with

J1(τ) =
∫ τ
t0
|θ̂T1 (τ)φ(s)− y(s)|2 ds

J2(τ) =
∫ tN
τ
|θ̂T2 (τ)φ(s)− y(s)|2 ds

Given τ , obtain expressions for θ̂T1 (τ) and θ̂T2 (τ) (least–squares).
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Rough sketch of cost functional.
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Once–switching,

twice–switching, and

randomly drifting actual

plants.

Not convex, even for single switching.

Derivative–free optimization or gradient–descent possible,

2nd order methods not effective.
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The barycenter method is

• Easy to implement. Complex version at least seems new.

• Amenable to analysis: equivalence between batch and

recursive versions.

• Naturally parallelizable (combined center of mass).

• Flexible: can incorporate other techniques.

• Applicable to nonconvex, noisy, not differentiable functions.

• Not too shabby.
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What do you think?

Thanks!

Hoping for an in person visit at an appropriate time.
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