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A randomized version of the recently developed barycenter
method for derivative-free optimization has desirable properties
of a gradient search. We develop a complex version to avoid
evaluations at high-gradient points. The method is

parallelizable in a natural way and robust under noisy Afj,» ,éof‘ol
. . ¢
measurements, and has applications to control design. . ,U‘“A{ "&taf‘q’
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Problem of interest.

min
mig f(x)
No explicit, differentiable expression for f(-) is available.

Values f(x;) for a set of x; obtained by experiment, simulation.



Barycenter — batch and recursive formulas.

Batch:
7 eo—vf(x;)
T = Zzi1 xze_ — (1)
Zz.:]_ e vf(x;)
Recursive:
mn = my_1 + e @), (2)
Ty = i (mn—lfc\n—l -+ e_”f("””):z:n) : (3)
mn

Pick points x, as sum of barycenter x,,_1 and “curiosity”’ zj:

Tn = Tp—1 + 2n, (4)

Az R R e_Vf(xn)
o e L eI (5)




Statement of results.
Theorem 1. If z,, has a Gaussian distribution, the expected
value of Axy, = xn, — x,,_1 IS proportional to negative of the

average value of the gradient of f(z,,_1 + zn) in the support of
the distribution of z.

e—l/f(in_l—kz)

Define Fn(z) = m,,_1+e Y En_1+2)"

n — mp—1
Fn(Z) o mn_1+e_Vf(£n—1+Z) Fn

Theorem 2. Under the conditions of Theorem 1 and assuming
that the variance of z is small, the variance of Az, for z =20
near a critical point of f(x) where Vf = 0 is approximately

Var(Az) ~ SE[F?] — 2vsTE [FF‘VQ f} > (6)



Complex coefficient v.

Sy xz,oze—Vf(:vi)

(@
-
Mn 2?21 e—vf(z;) (7)
Now estimate of extremum is (for each coordinate «)
T = M. (8)

Theorem 3. The expected contribution of measurements made
outside of any region where V f ~ 0 is discounted by one factor,
proportional to Vf and to the ratio between the complex
magnitude of v and its real part, for each dimension of the
search space.

Destructive interference motivates employing complex values.



Noise or experimental errors.

Minimize f using noisy oracle answers f(x;) + w;.

Nominal values m = )", e /@) and 7 = > i zie V@) /i,

scalar quantity m = Y, e=2f@) vector 5 = Y | z,e7 /@) /i,

1

matrix 7 = > 1, zwl e @) /m,

Theorem 4. Assuming o2 (variance of w; ) small, the mean and
variance of n are approximately:

Eln] ~ 7+ %(ﬁ — 202 and (9)

m . __ = =
Var([n] ~ ﬁ(nnT — 75 — i + o2 (10)



Illustration: Rosenbrock banana function.
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Dots for test points z, line for estimates z.



Perturbed quadratic function.
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Canoe function.

(1 — ell=l?y max(||z — ¢|[2, ||z — d||?), with ¢ = —d = [30, 40]T
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(Apologies for the obsolete data visualization.)



Application: Robot searching signal source.
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Adaptive control example.
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Open—loop unstable, non-minimum phase plant:

0.01(3 — 8s)
s2—-0,01

G(s) =

Work by Rodrigo Romano, Instituto Maua de Tecnologia.



Simulation example.
Morse observer with 2 pole pairs at s = —-1.414(1 + j).

Direct optimization settings:
e T'= 8s (duration of intervals).
e 2|2 =vyTQy + uT Ru, with Q =10 and R =0.1.
e K(tg) = —[2 1.5 0 0] (closed—loop unstable with initial

gain).
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Plant input output behaviour.
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Barycenter objective

function value.
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Feedback controller parameters.
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Morse observer.

Control plant with output y € R™, input u € R™ using
observer—based direct adaptive controller

= Apx + Bpou + Doy (11)
u= K(t)x. (12)

An, Bp, Don are fixed, K is a tunable feedback parameter.
State and output estimators

T = En(0)x (13)
y = Co(0)x+ Go(0)y. (14)
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Quadratic error equation.

Compute
212 = yTQy + v" Ru. (15)
Stabilizability of (A, B) = 3P > 0 such that
AP+ PA—-PBR IBIP+ i -a)"1Qu-6)"tcp=0

for positive—definite matrices Q and R.

7 7

t; t;
/t et = /t @ (K = KTR(K — K)adt

+a(t;—T)L Pe(t;—T)—x(t;)L Pz(t;)
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Direct optimization.

Feedback K linearly parametrized by p.
Task: tune p to minimize
t;
/ 1212 dt
ti—T

Solution exists: K(p) = K.
Gradient methods not available.

During each interval [t; —T,t;), apply constant feedback K (p;),
obtain the control cost f(p;).

At each t; use barycenter formula to compute p(t;).

Pick p(t;) as a random variable with mean p(t;).
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Estimate parameters of hybrid linear model.

2(t) = AYz(t) + By u(t)
y(t) = CYla(t) + DY u(t),

using measurements {u(ty),y(tx)}, k € {0,1,..., N} of input and
output signals.

Switching signal o(t) € {1,2,...,S} is piecewise constant
between switching times {7,...,7g}, which themselves are

unknown a priori and need to be determined.

Also work with Rodrigo Romano, Instituto Maua de Tecnologia.
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Consider single model switch, use regressor form.

g(t) = 0L o(1),

Search for candidate switching time 7 that minimizes integral
square error J(7) = J1(7) + Jo(7) with

n@) = [ @) ~y(s)P ds
) = [ I8 - y(s)P s

Given 7, obtain expressions for 81 () and 84 () (least—squares).
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Rough sketch of cost functional.
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Once—switching, Cyﬂ
twice—switching, and
randomly drifting actual “A ?
plants.
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Not convex, even for single switching.
Derivative—free optimization or gradient—descent possible,

2nd order methods not effective.
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The barycenter method is

e Easy to implement. Complex version at least seems new.

e Amenable to analysis: equivalence between batch and

recursive versions. W
N
Nl
e Naturally parallelizable (combined center of mass). (,&LZ%'
¢
N
e Flexible: can incorporate other techniques. .‘,\0)
40‘”\

e Applicable to nonconvex, noisy, not differentiable functions.

e Not too shabby.
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What do you think?

T hanks!

Hoping for an in person visit at an appropriate time.
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