## The Complex Barycenter Method

 for Direct OptimizationFelipe Pait
Universidade de São Paulo
pait@usp.br

A randomized version of the recently developed barycenter method for derivative-free optimization has desirable properties of a gradient search. We develop a complex version to avoid evaluations at high-gradient points. The method is parallelizable in a natural way and robust under noisy measurements, and has applications to control design.


## Problem of interest.

$$
\min _{x \in \mathcal{X}} f(x)
$$

No explicit, differentiable expression for $f(\cdot)$ is available.

Values $f\left(x_{i}\right)$ for a set of $x_{i}$ obtained by experiment, simulation.

## Barycenter - batch and recursive formulas.

Batch:

$$
\begin{equation*}
\widehat{x}_{n}=\frac{\sum_{i=1}^{n} x_{i} \mathrm{e}^{-\nu f\left(x_{i}\right)}}{\sum_{i=1}^{n} \mathrm{e}^{-\nu f\left(x_{i}\right)}} \tag{1}
\end{equation*}
$$

Recursive:

$$
\begin{align*}
m_{n} & =m_{n-1}+\mathrm{e}^{-\nu f\left(x_{n}\right)}  \tag{2}\\
\widehat{x}_{n} & =\frac{1}{m_{n}}\left(m_{n-1} \widehat{x}_{n-1}+\mathrm{e}^{-\nu f\left(x_{n}\right)} x_{n}\right) \tag{3}
\end{align*}
$$

Pick points $x_{n}$ as sum of barycenter $\widehat{x}_{n-1}$ and "curiosity" $z_{n}$ :

$$
\begin{align*}
x_{n} & =\widehat{x}_{n-1}+z_{n}  \tag{4}\\
\Delta \widehat{x}_{n} & =\widehat{x}_{n}-\widehat{x}_{n-1}=\frac{\mathrm{e}^{-\nu f\left(x_{n}\right)}}{m_{n-1}+\mathrm{e}^{-\nu f\left(x_{n}\right)}} z_{n} \tag{5}
\end{align*}
$$

## Statement of results.

Theorem 1. If $z_{n}$ has a Gaussian distribution, the expected value of $\Delta \hat{x}_{n}=\widehat{x}_{n}-\widehat{x}_{n-1}$ is proportional to negative of the average value of the gradient of $f\left(\widehat{x}_{n-1}+z_{n}\right)$ in the support of the distribution of $z$.

Define $F_{n}(z)=\frac{\mathrm{e}^{-\nu f\left(\widehat{x}_{n-1}+z\right)}}{m_{n-1}+\mathrm{e}^{-\nu f\left(\widehat{x}_{n-1}+z\right)}}, \quad \bar{F}_{n}(z)=\frac{m_{n-1}}{m_{n-1}+\mathrm{e}^{-\nu f\left(\widehat{x}_{n-1}+z\right)}} F_{n}$.
Theorem 2. Under the conditions of Theorem 1 and assuming that the variance of $z$ is small, the variance of $\Delta \widehat{x}_{n}$ for $\bar{z}=0$ near a critical point of $f(x)$ where $\nabla f=0$ is approximately

$$
\begin{equation*}
\operatorname{Var}(\Delta \hat{x}) \approx \Sigma E\left[F^{2}\right]-2 \nu \Sigma^{T} E\left[F \bar{F} \nabla^{2} f\right] \Sigma . \tag{6}
\end{equation*}
$$

## Complex coefficient $\nu$.

$$
\begin{equation*}
\eta_{n}^{\alpha}=\frac{\sum_{i=1}^{n} x_{i}^{\alpha} \mathrm{e}^{-\nu f\left(x_{i}\right)}}{\sum_{i=1}^{n} \mathrm{e}^{-\nu f\left(x_{i}\right)}} \tag{7}
\end{equation*}
$$

Now estimate of extremum is (for each coordinate $\alpha$ )

$$
\begin{equation*}
\widehat{x}_{n}^{\alpha}=\left|\eta_{n}^{\alpha}\right| . \tag{8}
\end{equation*}
$$

Theorem 3. The expected contribution of measurements made outside of any region where $\nabla f \approx 0$ is discounted by one factor, proportional to $\nabla f$ and to the ratio between the complex magnitude of $\nu$ and its real part, for each dimension of the search space.

Destructive interference motivates employing complex values.

## Noise or experimental errors.

Minimize $f$ using noisy oracle answers $f\left(x_{i}\right)+w_{i}$.
Nominal values $\bar{m}=\sum_{i=1}^{n} \mathrm{e}^{-\nu f\left(x_{i}\right)}$ and $\bar{\eta}=\sum_{i=1}^{n} x_{i} \mathrm{e}^{-\nu f\left(x_{i}\right)} / \bar{m}$, scalar quantity $\overline{\bar{m}}=\sum_{i=1}^{n} \mathrm{e}^{-2 \nu f\left(x_{i}\right)}$, vector $\overline{\bar{\eta}}=\sum_{i=1}^{n} x_{i} \mathrm{e}^{-2 \nu f\left(x_{i}\right)} / \overline{\bar{m}}$, matrix $\check{\eta}=\sum_{i=1}^{n} x_{i} x_{i}^{T} \mathrm{e}^{-2 \nu f\left(x_{i}\right)} / \overline{\bar{m}}$.

Theorem 4. Assuming $\sigma^{2}$ (variance of $w_{i}$ ) small, the mean and variance of $\eta$ are approximately:

$$
\begin{align*}
E[\eta] & \approx \bar{\eta}+\frac{\overline{\bar{m}}}{\bar{m}^{2}}(\bar{\eta}-\overline{\bar{\eta}}) \nu^{2} \sigma^{2} \text { and }  \tag{9}\\
\operatorname{Var}[\eta] & \approx \frac{\overline{\bar{m}}}{\bar{m}^{2}}\left(\bar{\eta} \bar{\eta}^{T}-\bar{\eta} \overline{\bar{\eta}}-\overline{\bar{\eta}} \bar{\eta}+\check{\eta}\right) \nu^{2} \sigma^{2} . \tag{10}
\end{align*}
$$

## Illustration: Rosenbrock banana function.



Dots for test points $x$, line for estimates $\hat{x}$.

## Perturbed quadratic function.

$$
\begin{aligned}
f(x, y)=10 x^{2}(1 & \left.+\frac{75}{100} \frac{\cos (70 x)}{12}\right)+\frac{\cos (100 x)^{2}}{24} \\
& +2 y^{2}\left(1+\frac{75}{100} \frac{\cos (70 y)}{12}\right)+\frac{\cos (100 y)^{2}}{24}+4 x y
\end{aligned}
$$




Log plot, missing values are numerical inconsistencies.

## Canoe function.

$\left(1-e^{\|x\|^{2}}\right) \max \left(\|x-c\|^{2},\|x-d\|^{2}\right)$, with $c=-d=[30,40]^{T}$

(Apologies for the obsolete data visualization.)

## Application: Robot searching signal source.



In the spirit of extremum seeking control.

Work by Bruno Lobo, USP.

## Adaptive control example.



Open-loop unstable, non-minimum phase plant:

$$
G(s)=\frac{0.01(3-8 s)}{s^{2}-0,01} .
$$

Work by Rodrigo Romano, Instituto Mauá de Tecnologia.

## Simulation example.

Morse observer with 2 pole pairs at $s=-1.414(1 \pm j)$.

Direct optimization settings:

- $T=8 s$ (duration of intervals).
- $|z|^{2}=y^{T} Q y+u^{T} R u$, with $Q=10$ and $R=0.1$.
- $K\left(t_{0}\right)=-\left[\begin{array}{llll}2 & 1.5 & 0 & 0\end{array}\right]$ (closed-loop unstable with initial gain).


## Plant input output behaviour.




## Barycenter objective function value.



## Feedback controller parameters.



## Morse observer.

Control plant with output $y \in \mathbb{R}^{n_{y}}$, input $u \in \mathbb{R}^{n_{u}}$ using observer-based direct adaptive controller

$$
\begin{align*}
\dot{x} & =A_{\mathcal{O}} x+B_{\mathcal{O}} u+D_{\mathcal{O}} y  \tag{11}\\
u & =K(t) x . \tag{12}
\end{align*}
$$

$A_{\mathcal{O}}, B_{\mathcal{O}}, D_{\mathcal{O}}$ are fixed, $K$ is a tunable feedback parameter. State and output estimators

$$
\begin{align*}
\widehat{x} & =E_{\mathcal{O}}(\theta) x  \tag{13}\\
\widehat{y} & =C_{\mathcal{O}}(\theta) x+G_{\mathcal{O}}(\theta) y . \tag{14}
\end{align*}
$$

## Quadratic error equation.

Compute

$$
\begin{equation*}
|z|^{2}=y^{T} Q y+u^{T} R u . \tag{15}
\end{equation*}
$$

Stabilizability of $(A, B) \Rightarrow \exists P>0$ such that

$$
A^{T} P+P A-P B R^{-1} B^{T} P+C_{\mathcal{O}}^{T}(I-G)^{-1} Q(I-G)^{-1} C_{\mathcal{O}}=0
$$

for positive-definite matrices $Q$ and $R$.

$$
\int_{\int_{t_{i}-T}^{t_{i}}|z|^{2} d t=\int_{t_{i}-T}^{t_{i}} x^{T}\left(K-K_{*}\right)^{T} R\left(K-K_{*}\right) x d t}^{+x\left(t_{i}-T\right)^{T} P x\left(t_{i}-T\right)-x\left(t_{i}\right)^{T} P x\left(t_{i}\right)}
$$

## Direct optimization.

Feedback $K$ linearly parametrized by $\rho$.
Task: tune $\rho$ to minimize

$$
\int_{t_{i}-T}^{t_{i}}|z|^{2} d t
$$

Solution exists: $K(\rho)=K_{*}$.
Gradient methods not available.

During each interval $\left[t_{i}-T, t_{i}\right)$, apply constant feedback $K\left(\rho_{i}\right)$, obtain the control cost $f\left(\rho_{i}\right)$.

At each $t_{i}$ use barycenter formula to compute $\hat{\rho}\left(t_{i}\right)$.
Pick $\rho\left(t_{i}\right)$ as a random variable with mean $\hat{\rho}\left(t_{i}\right)$.

## Estimate parameters of hybrid linear model.

$$
\begin{aligned}
\dot{x}(t) & =A_{\sigma}^{M} x(t)+B_{\sigma}^{M} u(t) \\
y(t) & =C_{\sigma}^{M} x(t)+D_{\sigma}^{M} u(t)
\end{aligned}
$$

using measurements $\left\{u\left(t_{k}\right), y\left(t_{k}\right)\right\}, k \in\{0,1, \ldots, N\}$ of input and output signals.

Switching signal $\sigma(t) \in\{1,2, \ldots, S\}$ is piecewise constant between switching times $\left\{\tau_{1}, \ldots, \tau_{S}\right\}$, which themselves are unknown a priori and need to be determined.

Also work with Rodrigo Romano, Instituto Mauá de Tecnologia.

## Consider single model switch, use regressor form.

$$
\widehat{y}(t)=\theta_{\sigma}^{T} \phi(t)
$$

Search for candidate switching time $\tau$ that minimizes integral square error $J(\tau)=J_{1}(\tau)+J_{2}(\tau)$ with

$$
\begin{aligned}
& J_{1}(\tau)=\int_{t_{0}}^{\tau}\left|\hat{\theta}_{1}^{T}(\tau) \phi(s)-y(s)\right|^{2} \mathrm{~d} s \\
& J_{2}(\tau)=\int_{\tau}^{t_{N}}\left|\widehat{\theta}_{2}^{T}(\tau) \phi(s)-y(s)\right|^{2} \mathrm{~d} s
\end{aligned}
$$

Given $\tau$, obtain expressions for $\widehat{\theta}_{1}^{T}(\tau)$ and $\hat{\theta}_{2}^{T}(\tau)$ (least-squares).

## Rough sketch of cost functional.



Not convex, even for single switching.
Derivative-free optimization or gradient-descent possible, 2nd order methods not effective.

## The barycenter method is

- Easy to implement. Complex version at least seems new.
- Amenable to analysis: equivalence between batch and recursive versions.
- Naturally parallelizable (combined center of mass).
- Flexible: can incorporate other techniques.

- Applicable to nonconvex, noisy, not differentiable functions.
- Not too shabby.


## What do you think?

## Thanks!



Hoping for an in person visit at an appropriate time.

